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ABSTRACT

We present a fast, accurate hybrid vortex method for computing incompressible, viscous
flow at large Reynolds numbers in a two-dimensional bounded domain. The random vortex
method is used to model the flow away from the boundary and the vortex sheet method is used to
model the flow ncar the boundary. Our implementation of these methods exploits the localized
nature of interactions among vortex elements in each of the respective regions of the domain. A
local corrections approximation is used to accelerate the velocity computation in the interior. It is
substantially faster than other methods of comparable accuracy and can economically handle tens
' of thousands qf vortex clements. We evaluate the method on the flow in a box due to a central
stationary vortex. The running time for this problem is roughly linear in the number of vortex
clements and results are in good qualitative agreement with other numerical solutions of the same

problem.



§1 INTRODUCTION

The hybrid vortex sheet-random vortex method was introduced by Chorin {9-11] to com-
pute incompressible, viscous flow at large Reynolds numbers. We employ recent innovations to
speed up the computation in two dimensions. Most notable is the method of local corrections [1];
it is an approximation that replaces the O (N 2) calculation customarily used to evaluate vortex
blob velocities by a much faster one. Our code is capable of economically computing with large
numbers of vortex clements, and allows us to perform detailed flow visualizations in reasonable

amounts of time.

We test our code on the flow in the unit box driven by a single vortex fixed at the orgin.
This problem has previously been studied with the aid of another hybrid vortex method by
Sethian {20) who used the O (NV?) method for computing the vortex velocities. Our resuits are in
good qualitative agreement with his work and, for the computations presented here, the cost of

our method appears to be roughly linear in the number of vortices.

Hybrid vortex methods have also been applied to the flow past a circular cylinder [7,24],
dniven cavity flow (8], flow past a backward facing step [14,21], wind flow over a building [22],
stability of the boundary layer [11], and the Falkner-Skan boundary laycer flow [23]. Sce

Lconard’s survey [ 18] for a review of vortex methods.

§2 THE BASIC NUMERICAL METHOD

In the hybnd vortex sheet-random vortex method the computational domain Q is divided
into two regions: an interior £; away from the boundary dQ and a sheet layer Q¢ adjacent to the
boundary. (We usc the term shecet layer to distinguish the computational boundary layer from the
physical boundary layer.) The random voricx method [9] is uscd to solve the incompressiblc

Navicr-Stokes equations within €, the vortex sheet method [10] is uscd to solve the Prandtl
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boundary layer cquations within Qg. Each method is a particle method; the particles carry con-
centrations of vorticity and the velocity ﬁcl_d within each of the respective regions is uniquely
determined by the panticle positions and the appropriate boundary conditions. Both methods are
fractional step mcthods. One of the fractional steps transports the particles in their velocity ficld,

the other applies a random walk to account for the diffusive effects of viscosity.

In € the particles are called vortex blobs and in g, vortex sheets. The no-flow boundary
condition is satisficd on dC2 by imposing a potential flow on the interior region which cancels the
normal component of the velocity due to the blobs. The no-slip boundary condition is satisficd
by creating voriex sheets on dQ which subscquently participate in the flow. The two solutions
arc matched by converting sheets that leave the sheet layer into blobs with the same circulation,
converting blobs that enter the sheet layer into shects with the same circulation, and letting the
vclbcity at infinity in the Prandtl equations be the tangential component of the velocity on the
boundary duc to the intcrior flow. The shecet creation process and subscquent movement of the
sheets into the interior of the flow mimics the physical process of creation of vorticity at a boun-

dary and constitutes onc of the attractive features of this numerical method.

2.1. The Interior In Q; we solve the 2-D, incompressible Navicr-Stokes equations. In vorticity

form these equations are:

o, +u-Vio=R A0 (2.1a)
Vau=0 (2.1b)
u=(0,) on JQ, 2.1¢)

where u(x,t) is the velocity, ® = uy, —v, the vorticity, and R the Reynold’s number. The advec-

tion part of (2.1a-¢) arc Euler’s cquations:

®, +u-VYoo=0 (2.2a)
Veu=0 (2.2b)
u-n=0 on aQ (2.20)



Ay =6 (2.2d)

u= (Wy ,— Wx) = VLW, (2.2¢)

where n is the outward normal to dQ and v is the stream function.

We use the vortex method to solve equations (2.2a-¢). Let At denote the time step. In the
vortex method the vorticity field at time k At is represented as a sum of discrete patches of vorti-
city called vortex blobs,

N
B x)= TKAxf-x)T;. (2.3)
j=1
Here x }‘ is the position of the jth vortex blob at time kA¢, T'; its strength, K 5 the cutoff function,
and o the cutoff radius. The strength T'; is the circulation about the jth vortex. The choice of
cutoff radius and cutoff function is determined by accuracy considerations. See Hald [16] and
Beale and Majda (6] for a discussion of different kinds of cutoffs and their effect on accuracy.
We use the cutoff proposed by Chorin [9]:
Rrslx!)! Ixl<o

Ks(x)= (2.4)
0 Ixl 20. -

We compute the velocity field Gi* induced by the vorticity distribution &* in two steps.
First we find the free-space vclocity ﬁf" = VL\TI; such that "}‘ satisfics (2.2d), with w given by
(2.3), and Wf (x)=0 at x =oo. We then find a potential flow @5 = V' such that §; =—§f on

dQ. The sum of the two flows T* =Tf + T} satisfies (2.2b-2.2¢) with y = §f + ;.

The free-space velocity field Tif is given by
ko _ k
uf(x)= 3 Us(xj—x)T7}, 2.5)

where Us(x) is the velocity induced at x by a vortex blob of unit-strength at the origin. The biob

velocity function U, is determined by the choice of K o; the Uqg corresponding to (2.4) is



(-yx)/2rixlc Ixl<o
Us(x) =
(-yx)/2rlx1? Ixl 20

The potential {low G,f can be found by solving Laplace’s equation A\TI: =0 subject to the
Dirichlct boundary condition \Tf,’,‘ =—\1'1f" on 02 for \Tl: and then differentiating per (2.2¢). There
are scveral ways to obtain approximations to ﬁ:. We discuss our choice after the description of

the method of local corrections in §3.2 below.
Given the velocity field G =@f + T we approximate the solution of (2.2a-e) with initial

data 3* by transporting the blobs in this velocity field

k+12 _ Lk ~k
X; =Xj + AT (x}‘),

where the superscript *k+1/2" indicates the positions of the blobs after the first fractional step.
One can improve the accuracy of the advection step by employing a second or fourth order time
discretization scheme that does two or more velocity evaluations per time step. We cmploy a
time step constraint described in §2.3 below to ensure that blobs do not leave 2 during the advec-
tion step.

The sccond fractional step is the solution of the diffusive part of (2.1a) subject to the no-slip

boundary condition:

W, = R—lA(j) (263)

u-t=0 on 9Q, (2.6b)

where T is a tangent vector 1o 9Q2. The solution of (2.6a) with initial data @ %2

is obtained by
letting all blobs undergo a random walk

k+l _ o k+172 )
Xj =X,

where the n; arc independent, Gaussian distributed random numbers with mean O and variance
2At/R . Any blobs that end up in the sheet layer or in the image of the sheet layer as a result of
the random walk become sheets, and any that end up outside the image of the shcet layer are dis-

carded. The no-slip boundary condition (2.6b) is approximately satistied by using the vortex sheet



method to cancel the tangential velocity on dQ induced by the blobs with positions xl"”. We

next describe this method.

2.2. The Sheet Layer Let Qg consist of those points in € lying within a distance € of 9Q. In

Qg we use the vortex sheet method to solve the Prandtl boundary layer equations:

é&uéﬁvaﬁ%% (2.72)
E= —u, (2.75)
Uy +v, = 0 (2.7¢)
(u,v)=(00) at y=0 2.7d)
ylﬂu (x,y.t)=U.(x.0). (2.7¢)

Here (x,y) denotes coordinates which are, respectively, parallel and perpendicular to the boun-
dary, (4,v) denotes the respective velocity components, & is the vorticity, and U, is the velocity
at infinity. We determine U, by linearly interpolating the tangential velocity induced by the inte-
rior flow at discrete points on dQ2. We assume that the boundary is located at y =0 and identify
the four walls of the domain Q with the periodic interval [0,4]. As a result of this identification,
we can map Qg onto the rectangle {0,4]x(0,e]. This is a convenient way of dealing with a vortex
sheet that moves into a corner, for it docs not involve special treatment of the comers. Other

workers (e.g. (8]) have employed special procedures for sheets that move into a comer.
In the vortex sheet method the vorticity at time ¢ = kAt is approximated by a sum of lincar
concentrations of vorticity,
Sy =& bix %) 30 —y)
J
where §; is the strengthi ot the jth vortex sheet, (xj" ,{y/‘) is its center, 0 is the Dirac delta function.

and b, is the smoothing function. We use the ‘hat’ function originally proposed by Chorin [10],

1-1x/101 lx! €1,
by(x)= (2.8)

0 otherwise.
The paramecter [ is often referred to as the sheer length, although for b; defined by (2.8) the sheets

-6-



are of length 2/.

With the aid of (2.7b) and (2.7e) we can express the tangential velocity « in terms of the

vorticity and so obtain an approximation &* from E*

@*(x.y) = U k80 + X8 bi(x —x} )Y HO =), 29
j
where H(y) is the Heaviside function. Similarly, we use (2.7c¢) and (2.7d) to write v as an

intcgral over u, and approximate u, with a centered divided difference to votain
P (xy) = =0, Uulx t) y

1 h h .
—;Z&l b,(x +E'—Xjk) -b,(x —'E —Xjk) Mm(y,yj").
J

In the advection step we evaluate the velocity (i%,7*) at the centers of the sheets and
advance each sheet one time step of length At accordingly. If we denote the velocity at the center

of the jth sheet at time kAt by (4 }‘,\7}‘), then the sheet positions after the advection step are given
by
(2 y ey = (f iy )+ Ac@afof). (2.10)
To satisfy the no-slip boundary condition 4 =0 at y = 0 we create sheets on the boundary as
follows. Let a;, i =1, ..., M denote equally spaced gridpoints at y =0 with grid spacing /. The
sheets at the positions given by (2.10) generally induce a non-zero tangential velocity on the
boundary, 2**2(x ,0). Let u; = 2**(q;,0) and let &, denote a computational parameter called
the maximum sheet strength. Then for each i we create q; = [ | u; 1/€,,,] sheets with centers (a;,0)
and strengths —sign (4; )& ., Where [x] denotes the greatest integer less than or equal to x. The
numecrical solution of the diffusion equation is found by letting all sheets (new and old) undergo a

random walk in the y direction, and reflecting any that go below the boundary. The new sheet

positions at time (k+1)Az are thus given by

k+1 k+ly _ k+1/2 k+1/2
&Sy D = @ Ty e D

where the n; are independent Gaussian distributed random numbers with mean 0 and vanance



2At /R . Atthe end of the diffusion step any sheets which have left the sheet layer become blobs.

In our implementation all sheets have magnitude &,,,. We do not create sheets at a; if
lu; | <E&max and hence the no-slip boundary condition is satisfied at a; only up to order &,,,.
Other workers (e.g. [7, 8, 10, 11]) create sheets at the i th gridpoint whenever lu; | 2&_ ;. for some
Emin < Emax Such that the sum of the strengths of these sheets exactly cancels ;. However it has
been shown [19] that this greatly increases the number of sheets created without improving the
accuracy of the computation. The sheet creation algorithm presented here significantly reduces
the total number of vortex elements in the computation thereby improving the economy of the

method.

2.3. Choosing the Computational Parameters There are four computational parameters in
this method: the time step At, the sheet length /, the maximum sheet strength & .., and the cutoff
o. Since the circulation remains constant when a sheet becomes a blob we have 1T 1 =/ &,
Following Chorin [11] and Sethian [20] we set o=mn/!/. The reader should consult

[11,19,21,24] for a more dctailed discussion of the relationship between the various parameters.

The only gencrally agreed upon constraint that the parameters in the vortex shcet method
must satisfy is the so called ‘CFL’ condition:

Atmax U, £ 1 2.1

The justification usually given for (2.11) is that one wants to ensure that sheets move downstrecam

at a rate of no more that one grid point per time step. This is an accuracy condition (as opposed to

a stability condition) which cnsurcs that information propagating in the streamwise direction will

influence all featurcs of the flow which are at least O ({).

To cnsure that vortex blobs do not exit the box during the advection step we enforce a con-
straint similar to (2.11) in the interior; no vorntex is allowed to move more than a distance 0.9¢
(where € is the sheet layer thickness) in any direction during a single time step. We incorporate

these two constraints into one global constraint on the time stcp as follows. At each time step we
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dectermine the maximum velocity component of i* over the centers of all the vortices. We then
y

adjust Ar accordingly before moving the blobs.
$§3 OUR IMPLEMENTATION OF A FAST VORTEX METHOD

3.1. The Method of Local Corrections Traditionally, vortex blob methods entail solving an
N -body problem directly, at a cost that is quadratic in N, the number of vortices. This limits the
number of elements that can be handled in a reasonable amount of computer time, perhaps no
morc than a fcw thousand vortices. It tumns out that there are faster ways of computing the
mutually-induced velocity field on a collection of vortices. These methods are based on the idea
that interactions involving distant length scales can be effectively lumped or averaged with an.
relatively inexpensive computation. Only interactions involving nearby vortices need to be com-
puted directly, and these account for only a small fraction (typically 5%) of the N (N ~1) interac-

tions computed by the direct method.

We use a stratcgy based on the above observation, known as the method of local corrections
[1]. Itis similar to the particle-particle, particle-mesh algorithm of Hockney et al. [17] and more
accurate than Christiansen’s vortex-in-cell [12], since the latter doesn’t compute close interac-
tions directly. A novel feature of this method is that it exploits the fact that a vortex blob bchaves
like a point source of vorticity outside the cutoff radius o, and hence induces a harmonic velocity
field there. (In this sense it is similar to Rokhlin and Greengard’s multipole expansion method
[15].) This allows onc to take advantage of fourth order interpolation formulas for harmonic func-
tions. The local corrections algorithm is nearly as accurate and considerably faster than the direct
method. For example, it can perform a vclocity evaluation on a collection of 12848 vortices, dis-
tributed cvenly among two patches of constant vorticity, in under 7 seconds on the Cray X-MP;
the dircct method takes 56 scconds. The amount of spced up one obtains with the method of

local corrections depends on the distribution of the vortices in the computational domain and
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hence is problem dependent. See Baden {5] for further discussion on the speed and accuracy of

this method.

The method of local corrections distinguishes between two kinds of vortex interactions: (1)
far-field interactions approximated by solving a discrete Poisson equation; (2) N -body interac-
tions computed exactly for vortices close enough to one another. A finite differcnce mesh, with
spacing 4, is superimposed on the domain; it is used to compute the far-field interactions. A
sccond mesh of spacing & called the chaining mesh, with boxes whose centers coincide with the
grid points of the first mesh, is also used. The edges of the chaining mesh coincide with dQ2; the
cdges of the first mesh extend beyond dQ by 4/2 in each direction. We denote this extended

domain and its boundary by Q’ and dQY’ respectively.

The computation is organized around the boxes of the chaining mesh. An integer C, called
the correction distance, is chosen to distinguish nearby vortices from distant ones. Vortices
interact directly only if both indices of the boxes containing them differ by no more than C. It
has been observed that, for a given level of accuracy, C is a constant which is independent of V.
The accuracy of the algorithm improves with increasing C, but this increases the cost; C =2
appears to effect a rcasonable tradeoff between speed and accuracy [5]. The method of local
corrections in predicated on the assumption that the vortex blobs behave like point vortices at dis-

tances greater than Ch from their centers. Thus, we must ensure that 6 < Ch.

In the following discussion we omit mention of the time step £ for notational convenience.
The algorithm first computes an approximation ﬁf" to the free-space velocity iy by solving a
discrete Poisson equation on the first finite difference mesh,
R h X
AMut(x)= 3 gp(x—x;) xe Q' (3.1a)
j=1
N
u ()= 3 (—(x —y;).y =x,)/2nlx—x; 1% xe . (3.1b)

j=1
Here A* is the discrete Laplacian, x; is the center of the j th vortex, and
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A" ((=y,x)/2r1x1?)  1x1<Dh and ly| <Dh

gp(x)=
Ix! >Dh and ly | >Dh.

The function g, approximates the discrete Laplacian of the velocity field due to a point vortex at
the origin, and is zero outside a square neighborhood of the vortex. The parameter D is an
intcger called the spreading dis;ance anq must satisfy D <C. Thus, like C, D is also indepen-
dent of N, and the cost of computing the right hand side of (3.1a) is proportional to N. To com-
pute the boundary condition (3.1b) we cvaluate the velocity induced on dQ’ by point sources of

vorticity centered at the x;.

Having set up the right hand side and boundary conditions for (3.1a,b) we use a fast Poisson
solver to obtain U f" (We uscd a solver that was accurate to fourth order in the mesh spacing h.)
This velocity ficld will be interpolated onto the centers of the vortices; but first it must be
corrccled to account for the influence of the nearby vortices which do not act like point sources of
vorticity.

The local corrections are done one box at a time. Associated with each box is a surrounding
region of space that is C boxes thick on each side, called the correction neighborhood, and an
intcrpolation stencil. (We use a S-point stencil; the interpolation procedure is accurate to fourth
order.) The local corrections are done in two steps. In the first step we compute the point vortex
velocities at each point of the interpolation stencil which are due to the vortices in the correction

#. We use these corrected values of i/ when

ncighborhood and subtract these values from U
interpolating onto the vortices in the box. In the second step we compute the influence of each
vortex in the correction neighborhood on each vortex in the box using the exact blob velocity

function Us,.

3.2. The Potential Flow In our solution of the potential flow problem we employ a modified
mcthod of images schemc suggested by Anderson [2]. This method is based on the observation

that the potential flow §, is the flow duc (o an infinite sct of images of the vortices in the box {13,
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pg 378]. The positions of these images may be found by periodically extending the box in the
plane and reflecting each vortex about the walls of the boxes. The idea is to include any image
vortices that are within one correction distance of 92 in the computation of U Y and hence, in the
computation of U f" . These images must be included because their influence on nearby vortices on
the other side of the boundary cannot be accurately represented in a finite difference solution of
u,. This is important because of the sharp gradients in the velocity field near the boundary due to
the images. We eliminate the contributions of these images to 1, by explicitly including them in

the computation of u f" where they can be locally corrected.

To accommodate the image vortices in the computation of ﬁf" we extend Q" by D +C
boxes in all dircctions. For a vortex in €2, which is within'C boxes of the wall and away from a
comner, one image is generated by reflecting the vortex in the plane of the wall and taking the
negative of the strength. For a vortex in a corner 3 images are generated; one reflected in the
plane of each of the two adjacent walls and one reflected through the comer. The first two images
have opposite strengths from that of the original vortex, while the third image has the same

strength as the original.

We compute \TI:, an approximation to §, on the unextended domain €2, as follows. We
first solve the discrete Laplace equation A"} =0 subject to the Dirichlet boundary condition
\T!; =-{, on d€2, taking care to include the influence of the image vortices when setting up the
boundary conditions. We use divided diffcrences to obtain ﬁ",‘ at the grid points and then intcrpo-
late to obtain approximate values for i, at arbitrary x € Q (here we use a four point stencil). All
of the finite difference formulas we used are accurate to fourth order. We take a single-sided
divided difference of . at the boundary to obtain the tangential velocity @i7-1. However, we
compute the normal vclocity on the boundary ﬁ,ﬁ'-n (= -t -n) directly, since we know of no
fourth order formula for computing the tangential derivative of \T!F',‘ at the boundary. Since the

stream function induced by a vortex and its image(s) algebraically cancel onc another on the
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wall(s) closest to them, we do not compute such influences when sctting down the boundary con-
ditions for \47,','. This is donc to avoid a possible loss of accuracy due to roundoff errors. We also

cmploy algebraic cancellation in the direct computation of ﬁ:-n.

3.3. Speedup of the Vortex Sheet Method We have employed one relatively simple
modification of the original vortex sheet algorithm which significantly speeds up the computation
of the velocity of a sheet which is due to the other sheets. (This modification was first suggested
by Chorin {10].) From (2.9) it is apparent that the velocity of a given sheet is affected only by
those sheets within a distance 2/ of its center. We divide the sheet layer Qg into M bins where
M is the number of gridpoints a; on the boundary at which sheets are crcatecd. The ith bin
extends over g; —[/2<x <a; -1/2 and 0Ly <o, (Recall that @; —a;_; =/.) Thus, sheets in the
ith bin are influcnced only by other sheets in the ith bin and the two adjoining bins. At the end of

cach time step we sort the sheets by bin.

§4 COMPUTATIONAL RESULTS

We present results for the ‘spindown’ problem investigated by Sethian [20]. In this prob-
lem a single vortex is fixed at the center of the box, with sufficient strength to induce a unit velo-
city at the center of cach wall. We set the numerical parameters as follows: the Reynolds
R =1000; the sheet layer thickness € = 0.02; the maximum sheet strength &, = 6.25x1073; and
the sheet length [ =0.1. The initial time step was Az =0.05. As described in §2.3 the cutoff
radius was chosen to be g ={/r. In the interior we use a second-order Runge-Kutta time integra-
tion scheme. This requires two velocity evaluations per time step, a fact which should be kept in
mind when we discuss the computation time below. Due to doubts about the effectiveness of a
higher-order time discretization in the vortex sheet method (see [19-20]) we use only the first

order Euler method (2.10) in the sheet layer.
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We ran the calculation until time ¢ = 5.0 on a Cray X-MP. Figures 1 and 2 show a scrics of
snapshots taken at various times during the run. The formation of eddies is quite clear, and our
results appear to be in good qualitative agreement with those of Sethian. However, note that we
used roughly five to ten times as many computational elements as in that study, each with one-

eighth the strength.

During the initial time stép 3760 vortex shects were created. During the second time step
109 sheets left the sheet layer and became blobs. The maximum (componentwise) velocity of
these blobs was 0.977, so the time step was reduced to 0.018. The time step Ar slowly decreased
throughout the run and attained a minimum value of 0.011. The run took 320 time steps and con-
sumed 4107 seconds (68.4 minutes) of CPU time on a CRAY X-MP. Of this, only 2.2% of the
time was spent in the sheet calculation. At the end of the run there arc 13094 blobs, 7161 images,
and 4034 sheets. At each time step the numbcr of images was roughly half of the number of

blobs.

Figure 3 shows that the total number of vortex blobs and their images steadily incrcases
with time but that the number of sheets is roughly constant. Figure 4 shows that the computa-
tional cost is roughly a linear function of the number of vortex blobs. The times shown in Figure
4 are the toral cost per time step. In addition to the vortex blob velocity evaluations, the times
include all sources of overhead such as: the potential flow, the random walks, and the sheet com-
putation. In particular, this includes a third vortex blob velocity evaluation at each of the x; for
the purpose of computing U,. (This third velocity evaluation could be eliminated by a redesign
of the algorithm.)

Figure 5 shows the computational cost per time step and compares it with an estimated cost
of using the direct method to compute blob velocitics. The estimated speedup (per time step) of

the local corrections algorithm increases with time; by the end of the run it is roughly 10. The

specdup averaged over the entire run is about 8. To estimate the cost of using the dircct method
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to do velocity evaluations we timed a simple program that directly computed the free-space velo-
city function (2.5) for various values of N. We found that the cost of computing just one interac-
tion of a velocity evaluation was 0.4 pusec on the CRAY X-MP. Using the statistics obtained
from our trial run we determined that, if the direct method had been used for the run shown in
Figures 1 and 2, then it would have computed a total of 8.53x10'® interactions, at a cost of
3.41x10* seconds of CPU time. We estimate that the cost of any additional comput'ation. e.g. the
potential flow, the random walks, and the sheet velocities, would add only an additional 5% to the
running time of-the computation. Thus, the running time of the vortex blob velocity evaluations
gives a rough cstimate of the overall running time of the direct method-based calculation. We
arrive at the cstimated speedup of 8.3 by dividing the 4107 CPU seconds for the local
corrections-based code with the estimated time of 3.41x10* CPU seconds for the direct method-

based code.

§5 CONCLUSIONS

The goal of this paper has been to demonstrate a fast, accurate vortex method for computing
two-dimcensional, incompressible, viscous flow at large Reynolds numbers. Our test run modeling
the flow induced by a central stationary vortex in a square box is in good qualitative agreement
with the earlier results of Sethian [20]. A typical run of the type shown here (beginning with no
vortex elements, running for 320 time steps, and ending with 13094 blobs, 7161 images, and
4034 sheets) consumed roughly 68 minutes of CPU time on a CRAY X-MP. The run would take
at least 8 times longer to complete if vortex blob velocities were evaluated using the direct
method instead of the method of local corrections. Moreover, the speedup improves as the
number of computational elements increases. Finally, we have shown that the cost of our method
is cffcctively lincar in the number of vortices. (The algorithm is presumably O (N log N), but

log N is, in practice, bounded by 6.) This represents a substantial improvement in speed over pre-
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vious implementations of the hybrid vortex sheet-random vortex algorithm.

So far our efforts to assess the accuracy of the method of local corrections have shown no
appreciable loss of precision. Future work will include an application of this method to the flow
in a driven cavity. Our code can be readily modified to exccute in parallel on a multiprocessor

like the Cray X-MP, as discussed in {3, 4].
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Figure 3. The number of vortex elements varies as a function of
time. The vortex blobs steadily increase (second curve), but the
number of vortex sheets remains relatively stable (bottom). The top
curve plots the number of blobs as well as their images.
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instcad of the direct mcthod. The speedup of the local corrections
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