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INTRODUCTION 

There has been much interest recently in the study of thin film multilayers. The 

interest has been spurred in part by several new endeavors for which the soft x-ray region 

of the spectrum is important. It is in this region (,\ = 5 Ato 100 A) which multilayers 

are useful. An example of a field in which multilayers are of increasing interest is fusion 

research, for much of the energy produced in fusion reactions is in the form of soft x-rays. 

Also, multilayers may be used as the optical components of the first x-ray laser cavity. 

In addition, the next generation of high-powered synchrotron radiation sources may use 

multilayers as pre-mirror power filters and monochromator components. 1 

Thin film multilayers are useful in the study of soft x-rays, for they can be used to 

select specific wavelengths of light through use of the Bragg law as discussed below. They 

are also useful for x-ray optics for they can diffract x-rays through large angles. They are 

very durable and can withstand a large x-ray flux without damage. 

A multilayer is an artificial crystal - a periodic system of layers as depicted in Fig. 

la. In most useful multilayers the crystal is made up of layers of a low atomic numbered 

element ( eg., C, Si) alternated with layers of a high atomic numbered element ( eg., Mo, W). 

These are often referred to as the light and heavy sublayers, respectively, which together 

are referred to as bilayers. We refer to the sublayers or bilayers as simply layers whenever 

the meaning is clear from context. Because of the periodicity of the system, the x-radiation 

scattered from the various bilayers can constructively interfere. This occurs when the path 

difference of x-rays"scattered from adjacent bilayers is an integral number of wavelengths 

so that the scattered rays will be in phase and their amplitudes will add. This is called 

the Bragg condition and can be found geometrically from Fig. lb to be: 

I 

m.\' = 2dsin9' 

where ,\' and 9' are the wavelength and angle of incidence of the x-rays while inside the 
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Figure 1. An example of a. multilayer composed of four bilayers. (a) Each 
bilayer is made up of two sublayers of differing composition. (b) The ray 
reflected from layer three travels the additional distance AB + BC with 
respect to the ray reflected from layer two. 

multilayer, dis the periodicity constant of the multilayer and m is an integer called the 

order number. We find>..' and 9' through application of Snell's law: 

n1 cos 9 = n2 cos 9' 

where n 1 is the index of refraction above the multilayer, which equals one for vacuum, and 

n2 is the index of refraction in the multilayer. For soft x-rays, the index of refraction of 

materials is slightly less than one and is usually written n2 = 1-6 -i/3, where 6 and /3 are 

on the order of 10-3 • For x-ray refraction effects, the first order terms in /3 cancel, so we 

may write cos 9/ cos 9' :-- 1-6 = ).j ).'. Using the trigonometric identity cos 9 = Vl - sin2 9, 

we obtain after rearrangement: 

sin 8' sin 9 26 - 62 

--:v- =-:\ 1 - sin2 9 

The 2d values of multilayers are generally in the range of 10 A to 200 A, so we can achieve 

first order Bragg scattering (m = 1) through sizeable angles for all wavelengths in the soft 
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x-ray region (5 Ato 100 A). 

Radio-Frequency Sputtering 

Multilayers are formed most often by Radio-Frequency sputtering (R-F sputtering) . 

In R-F sputtering, a sample of the element from which we wish to make a thin film (called 

the target) is bombarded with positive ions, usually Ar+. The impact of the ions frees 

surface atoms from the target. This process is known as sputtering. The sputtered atoms 

drift away from the target, colliding with and quite often sticking to whatever they come 

across. Thus if we place a fiat substrate in the sputtering chamber at some distance in front 

of the target, we can build up a layer of the sputtered element upon it. Sputtered films are 

smooth to the order of several atomic radii, 2 so they are useful for making multilayers. To 

make a multilayer, we alternately sputter the two elements, thus building up the periodic 

system of layers. The sputtering rate remains relatively stable for a given target, so we 

can generate the desired periodicity by just sputtering each type of layer (light or heavy) 

for a constant amount of time. 

We now consider a more detailed description of R-F sputtering. A typical sputtering 

set-up is schematically drawn in Fig. 2. The target, target shield and substrate upon which 

we wish to sputter are all placed within a vacuum chamber. The chamber is pumped down 

to a pressure of 10-7 Torr before sputtering to remove as much contaminating gas as 

possible. After this pressure is reached, argon gas is bled into the chamber to a pressure 

of about 1 mTorr. 

To begin sputtering, we merely apply a sinusoidal potential to the target with an 

amplitude of a few kilovolts and a frequency of about SMHz. If the element to be sputtered 

is a non-conductor, we cannot apply the potential directly to the target, so we apply it 

to a metal plate placed immediately behind the target as shown in Fig. 3. The target 
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Figure 2. A typical R-F sputtering set-up. 

shield, which serves to prevent sputtering from sides other than the front of the target, is 

grounded, as are the chamber walls and the substrate. The matching network, shown in 

Fig. 2, is present to equalize the load impedance with the impedance of the R-F generator 

to insure maximum power transfer to the target. 

To understand how R-F sputtering works, we may begin by considering the part of 

the potential cycle where the target is at a positive voltage with respect to the chamber. 

If an electron is introduced inside the chamber it will be accelerated towards the target 

due to the field set up by the potential. The mean free path of an electron in 1 mTorr 

of argon gas is approximately five centimeters3, so the electron can gain enough energy 

before colliding to ionize the Argon atom it collides with. To illustrate this, consider an 

instant when the target potential is +lOOOV and let the distance between the target and 

the grounded baseplate of the chamber (see Fig. 2) be one meter. The potential will then 

4 



l 
I I 

CONDUCTOR I ~--GROUNDED SHIELD 
NONCONDUCTOR 

-

Figure 3. Target arrangement for sputtering non-conducting elements. The 
sputtering shield is kept at ground potential and limits sputtering to the 
front surface of the target. . 

decrease linearly to zero from the target to the baseplate with a gradient of lOV /em. Thus 

an electron accelerated for five centimeters by this field will gain 50e V of kinetic energy. 

Since the ionization energy of argon is 15.8eV, we expect an argon atom to be ionized upon 

collision. 

After the collision we have two electrons and an Ar+ ion. The electrons will again be 

accelerated towards the target and can again collide with argon atoms to generate more 

ions and more electrons. 'When the sign of the potential applied to the target reverses, the 

electrons are accelerated away from the target and once again collide with argon atoms. vVe 

see then that a plasma is quickly formed and maintained within the· sputtering chamber. 

Typical sputtering plasmas have one or two percent of the total number of argon atoms 

ionized. 3 

During the part of the cycle when the applied potential is negative the Ar+ ions 
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will be accelerated towards the target. When they impact on the target they will often 

have enough energy to liberate an atom from the target surface- sputtering takes place. 

However, the Ar+ ions quickly build up on the surface of the target, so this state does 

not last long. The build up of positive charge will counteract the negative potential and 

terminate sputtering after "" 10-7 seconds. 3 When the potential applied to the target 

becomes postive, the charge build up is driven away. We can then get another 10-7 second 

burst of sputtering during the next cycle of the potential. Thus if the potential is cycled 

at a few MHz, we can get sputtering for a large fraction of the time. 

The sputtering rate from a given target is relatively constant during a sputtering run. 

To sputter a film of a given thickness, one first determines the sputtering rate. This can 

be done by sputtering a thick layer onto a trial substrate. One measures the thickness of 

this film and finds the sputtering rate, ..,. , by dividing this by the amount of time it was 

sputtered. Then one can make a film of an arbitrary thickness by merely sputtering for 

the appropriate amount of time. For multilayers, we divide the sputtering chamber into 

two regions- one with a target of the light element, the other with a target of the heavy 

element. We determine both rates, T1 and T2 , then move the substrate back and forth 

between the regions, giving each the appropriate amount of time to obtain the desired 

d-spacing (d) and element ratio (r): 

d = Tttl + 'T2t2 

T = T1tt/T2t2 

Several imperfections may be introduced into a multilayer structure during the man­

ufacturing process. For instance, if the sputtering rate of either element does not stay 

constant while making the multilayer, we may get a multilayer whose d-spacing varies 

from layer to layer. This can be a serious problem because now the path difference of 

x-rays incident upon two adjacent layers varies with depth into the crystal. The angle for 
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constructive interference is thus poorly defined, so we expect the intensity of the Bragg 

reflection to be reduced and distorted. This effect is illustrated in Fig. 4. Fortunately this 

problem can be controlled by continuously monitoring the d-spacing during the sputtering 

process.4 

~0 
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Figure 4. The effect of introducing random variations in the d-spacing on 
the Bragg reflection. W is the Gaussian width of variations in d. 

Other imperfections exist which cannot be so easily eliminated. When one sputters 

a film, its surface may not be perfectly smooth, but rather it may be marked by peaks 

and depressions, as depicted in two dimensions in Fig. 5a. When we now sputter another 

element upon this surface, the new layer may :fill in the depressions, as shown in Fig. Sb. 

The result is that we have a jagged interface between the two layers. Even if the surface of 

a sputtered film is perfectly smooth, when one sputters another element onto it these new 

atoms may penetrate the surface and become lodged in it. The effect is that there will 

be a mixing of the two elements at the interfaces. Figure 6 demonstrates this sequence of 
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events. 

A 

B 

Figure 5. A sputtered surface may be very rough (a). When we sputter an­
other element onto this surface (b) the depressions may be filled up, leaving 
a jagged interface. 

Either of these two effects - interface roughness or mixing - can be modelled using 

a transition layer between the two element layers. This is shown in Fig. 7 where the two 

elements have been labelled X and Y. Across the transition region, the number density 

of the X element decreases linearly from its bulk value in the pure X-layer to zero at the 

edge of the pure Y-layer. The number density of theY element correspondingly increases 

linearly from zero to its bulk value. We find the bulk number density, n, of an element 

from the formula: 

pNo 
n=--

A 

where pandA are the element's mass density and atomic weight respectively, and N 0 is 

Avogadro's number. 

vVe can now draw a unit cell for an arbitrary multilayer as in Fig. 8. The crystal is 
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Figure 6. Atoms sputtered onto a smooth plane (a) may have enough energy 
to penetrate the surface (b). This builds up a region of mixing at the interface 
between two elements, (c). 

c 

invariant under translations in the x- andy-directions. We may thus take the cross-section 

of the cell to have any arbitrary area. The only direction of interest is the z-direction, 

that of depth into the multilayer. The cell is divided into four regions as shown, with 

transition layers interposed between the pure element layers. We define T1 and T2 to be 

the thicknesses of the two transition layers and Y to be the thickness of the Y element 

layer as indicated in Fig. 8. We can then find X, the thickness of the X element layer 

from: 

where dis the crystal d-spacing. 

The d-spacing of a multilayer is easily determined from the positions of the Bragg 

peaks by use of the Bragg condition. However the three parameters Y, T1 and T2 cannot 

be so easily determined. Changes in the values of these parameters can have dramatic 
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Figure 7. Either a random mixing (a) or a jagged interface (b) between 
elements X andY can be modelled to first order by a linear transition region 
interposed between the pure X and pure Y layers (c). The number density 
of either element falls off across the transition region, as shown for X in (d). 
Here nxo is the bulk number density for X. 
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Figure 8. Unit cell for an arbitrary multilayer composed of elements X and 
Y. X is the element at the surface of the multilayer. 

effects upon the intensities of the Bragg peaks, as will be discussed later, so it is important 

to be able to determine them if we are to predict multilayer reflectivity. Our method is 

to develop a theoretical model for the reflection of x-rays from multilayer crystals as a 

function of these parameters. We then measure the reflectivity versus angle of incidence 

for a given multilayer for x-rays of various photon energies. Next we vary the parameters 

of our model to best fit the theoretical reflection curves to the measured ones. vVe can 

then use this parameterizaton to predict the reflectivity of the multilayer at other photon 

energies. In addition, we might expect that the thicknesses of the two transition layers 

be approximately the same for all crystals of a given type. Thus if we characterize one 

multilayer, we can then generalize our parameterization to all crystals of the same type. 

vVe have the values of T1 and T2 , so all we need to determine is the value of Y to get a 

complete parameterization. To do this we first find the expected thickness of theY-layer, 
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Ys, !rom the sputtering time and the sputtering rate: 

Ys = Tyty 

Some o£ this material will be in the Y-la.yer and some in the transition layers. Since the 

number density o£ the Y element in the transition regions averages 50% of that in the pure 

layer, we ma.y write: 
1 

Y = Ys - -(Tt + T:z) 
2 

The method of characterization described above has been u5ed effectively by Henke 

et. al. to model tungsten-carbon a.s well a.s other multilayer types. 5 However, in their 

model they consider only transition regions of equal thickness: T 1 = T2 = T. This two 

parameter model works well for several crystal types, but cannot be used to parameterize 

molybdenum-silicon or vanadium-silicon crystals. In this report we characterize these two 

crystal types using the three parameter model and investigate the important differences 

between them and those crystal types which can be fit using the two parameter model. 

.. 
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THEORY 

Fortunately a convenient theory oi x-ray diffraction from multilayer systems has been 

developed. The problem was first treated by C. G. Darwin in 1914 and then generalized to 

include the effects of photo-absorption by J. Prins in 1930. The resulting formula is known 

as the Da.rwin-Prins theory and can be found in standard X-Ray Physics texts 6•
1

• This 

theory, with modifications made by Henke et. al., 8 can be used for our present purposes. 

Scattering From A Free Electron 

We treat the problem of :c-ray diffraction from a multilayer as a scattering problem. 

The di:ff:tacted intensity pattern we see will be the result of summing the amplitudes scat­

tered from each of the atoms in the multilayer. The interaction between soft x-rays and an 

atom is in turn a sum of the scattering from the atom's electrons. We thus must begin by 

considering the scattering of x-rays from an electron. The derivation that follows parallels 

that of Jackson. 9 

'When a plane electromagnetic wave is incident upon an electron, the electron will be 

accelerated along the electric field lines according to the Coulomb force law: 

\Ve write the electromagnetic field for the wave as: 

where • e gives the direction of polarization, Eo is the field amplitude, w is the angular 

frequency of the wave, and k is the wave ...-ector. Note that • e is perpendicular to k. '\Ve 

plug this into the force equation and sol...-e for the acceleration: 

(t) • e E ik·x-i""t a = e- oe 
·m 

12 
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As expected, the electron oscilla.tes along the polarization direction with the same frequency 

as the incident wave. 

A charged particle under acceleration emits radiation. We can think of this radiation 

as the electromagnetic wave which is scattered from the electron. We :find the time-averaged 

power scattered into solid angle dn from Larmor's formula: 

where e is the observation angle with respect to "'e, the direction o£ acceleration. vVe 

would like to express this result in terms o£ the angle o£ scattering, which we will define 

as 28, for reasons which will become clear later. For this purpose, we arbitrarily choose 

the direction o£ propagation for the incident wave to be along the z-a.~, and let the 

polarizat1on direction make an angle t/J with the x-a.~, as shown in Fig. 9. From this 

diagram we :find: 

sin2 e = 1 - sin2(28) cos(¢> - t/J) 
. 

For unpolarized incident radiation we must average over all possible values of t/J, which 

gives us: 

(:~) = 8: /E./2 r; ~ ( 1 + cos
2(26)) 

where r 0 = e2 fmc2 is the classical electron radius and is equal to 2.815 x 10 -.s A. ·we 

can now obtain an expression for the scattered amplitude as a function of the incident 

amplitude by first obtaining the time averaged Poyuting vector for the scattered wave. the 

Po:rnting vector, S, gives energy flow as a function of position, so we may "1\-rite: 

(dP) = (S) ·Area= (S)(R2dn) 

or, rearranging, 
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Figure 9. Geometry for the derivation of the scattering of xrays from an 
electron. 

Here R is the distance of the observation point from the electron. Since we can write 

(S) = cjEp~ j81r, we obtain an expression for the scattered amplitude from an electron: 

ro 1 ( 2 ) E = -Eo R 2 1 +cos (28) 

The minus sign in this expression is adopted by convention. 10 · 

Scattering From An Atom 

Since only the electrons of an atom interact with soft x-radiatiox't, we may think of an 

atom of atomic number Z as a collection of Z electrons. We might then expect that the am­

plitude scattered from an atom to be Z times that scattered from an electron. However, the 

bound electrons of an atom can also absorb incident radiation through photo-absorption. 

vVe can model both the scattering and photo-absorption of an atom by multiplying the 
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amplitude scattered from an electron by a. complex 3cattering factor, f = It + i/z,10 so 

that: 

E 
11tomic 

ICIIth:r 

The real part of the scattering factor, / 11 corresponds to scattering and the complex part, 

/2, corresponds to absorption. "We e.."Cpect then that / 1 will approach Z where the absorp­

tion (h) is small, and to be reduced when it is large. We also e~ect that / 2 will suddenly 

increase in value at photon energies corresponding to transitions between energy states. 

This is because above such an energy we can now e.."Ccite another electronic transition and 

so more photons will be absorbed. For instance, for energies below the K a transition of 

hydrogen (corresponding to the excitation of the electron from the ground state to the 

first excited state), there can be no absorption at all, whereas above this energy there can. 

In this case, the h value changes discontinuously at the transition energy from zero to a 

finite value. 
.. 

The / 1 and h values for a given element can be detennined by use of Hartree - Fock 

calculations, 11 however these calculations are very tedious and require extensive computer 

resources. These values are most often found experimentally. The data from a large survey 

of scattering factor e~erim:~nts have been compiled and averaged for elements 1 to 94 by 

Henke et. al10• '\Ve use these tabulated values of the scattering factors throughout this 

report. The tabulation for carbon is sho~-n in Fig. 10 as an example of this work. Notice 

that the / 1 and / 2 curves behave as expected at the C-K transition (277 eV). 

Scattering From A Single Layer 

\Ve would like now to obtain an expression for the scattering from a unit cell. "We 

treat the unit cell as a collection of atoms, each of which scatters incident radiation, just 

15 
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Figure 10. The atomic scattering factors for carbon compiled by Henke, 
et.al. (1982). 

as we treated individual atoms as collections of electrons. 

We cannot just add up the amplitudes scattered from all the atoms m the unit cell 

because the scattered waves will have travelled different distances and so will not be in 

phase. We assume the unit cell cross-section to be small compared with the wavelength of 

incident radiation, so that the phase difference across the unit cell laterally is small. We 

then only need to consider phase differences in the z-direction. For two scattering points 

separated by a distance z along the z-axis and incident radiation which makes an angle f) 

with the x-y plane, the path difference between wavefronts scattered from the two points 

will be 2zsin8' (see Fig. 3). The phase difference is then 47rzsin8'/>.'. Thus we add a 

phasing term to our summation: 

cp _ L Jqe -4riz9 sinS'/>..' 

q=all atom• 

Jq = ftq + ij2q 
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~ acts as an effective scattering factor for the entire unit cell and is called the crystal 

structure factor. For a continuous distribution of matter, we turn the summation into an 

integral over the volume of the unit cell: 

1 
~=­v 

o/11tom 

j nq(r)fqe-·briuin8'/>.'dv = ~ L lad nq(z)fqe-4muin8'/l'dz 
q 

where nq is the number density of the qth species of atom as a function of position. We 

apply this e:ocpression to our particular unit cell: 

with number densities as in Fig. 11. Performing the integration, we arrive at: 

where A= 4r.isin8'f>..'. 

It is important to note that this e.""Cpression was found assuming that all atoms in 

the unit cell have the same amplitude of radiation incident upon them- we neglected 

absorption effects. Thus this expression for is only valid in the case where the absorption 
.. 

per layer is small. 

For our derivation of diffraction from a multilayer crystal system, we v.;ll need 4.> ', the 

structure factor for incident radiation from below the unit cell. For the case of negligible 

absorption per layer, we get the same integral as before, so~'= 4.>. 

"We can no>\· use 4.> as our "scattering factor" to determine the sc~ttering from a single 

layer of unit cells. \Ve use an ordinary Fresnel construction to add up the contributions 

from all the unit cells in the layer1 . For an incident amplitude T 0 , >\·e get a diffracted 

amplitude -i3T0 as shown in Fig. 12, "·here: 

a( B) = r~>.~d ~(8) P(28) 
s1n f7 1 
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Figure 11. Number densities of the X- and Y-elements as a function of 
position in the multilayer unit cell. Here n:co a.nd nyo a.re the number densities 
for the bulk materials. 

the P(28) term accounts for the polarization of the incident radiation and is equal to 1 

or cos(28) for radiation parallel or perpendicular to the scattering plane respectively. For 

unpolarized radiation, we average the two to get t(1 +cos 28) as we had before. 

The transmitted amplitude will be the sum of the incident amplitude and that of the 

forward scattered beam, -is(8=0)T0 • We rename 8(8=0) to be u so that the transmitted 

beam becomes (1- iu)T0 , as shown in Fig. 12. Notice that the value of u is independent 

of the polarization of the incident beam. 

The Darwin-Prins Formula 

vVe now consider a semi-infinite system of layers, as drawn in Fig. 13. Above the rth 

layer we have a net downward propagating wave Tr and a net upward propagating wave 
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Figure 12. The absorption and reflection from a plane of unit cells. 

Sr. For the top layer, we have the incident wave To and the net diffracted wave S 0 • our· 

goal then is to solve for S 0 in terms of T0 • 

Consider now the net upward propagating wave above the rth layer, S r· Part of Sr 

comes from the fraction ofTr which is reflected from the rth plane, which we have expressed 

as -isTr. Another part of Sr comes from the fraction of Sr+l which is transmitted upward 

through layer r. This wave has travelled the additional distance between the two layers, 

dsinfJ'. Thus we write for this part (1- icr)Sr+1exp(-2idsinB'f>..') and the difference 

relation for Sr is obtained: 

Sr = -i3Tr + (1- icr)Sr+le-27ridsintJI/).
1 

\Ve proceed in a similar manner to obtain an expression for T r: 

where s' corresponds to s, but for radiation incident from below the layer. Note that s' is 
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/s, 
r 

r+l --------------------------------------------

Figure 13. The amplitudes of the net upward and downward propagating 
waves above each layer of a multilayer. The first layer of the multilayer is 
here labelled r = 0. 

identical to s because 4>' equals 4> as we determined earlier. 

We can combine these two difference expressions to get: 

S - . T. + (1 + io-) (T. 211"idain8' f>..' (1 . )T.) r - -as r . r+l e - - 10" r 
-as 

To solve this expression with r = 0, we need to make an assumption about the form Tr 

will take. We may expect a solution where Tr is related to To by a sort of absorption factor 

which depends upon the number of planes traversed. This leads us to expect a solution of 

the form: 

where x is the effective absorption factor per layer. ··we require that the real part of x be 

less than unity, otherwise the wave will increase in amplitude as it traverses the crystal. 
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Plugging into the expression !or Sand setting r = 0 we get: 

So -Z3 

T0 = 1 - z(l - i<T )e-2rid sinS' /l' 

We are not yet finished, for we have no expression for the absorption factor, :z:. We 

proceed by assuming that any angle of interest is near the Bragg angle, designated 8 s, so 

that: 

21rdsin8' 21rdsin8s ~ ~ 
-~--= +, =m1r+, .. \' .. v 

where { is a small parameter which measures how close we are to the Bragg angle. We 

then see that the phase difference per layer becomes: 

We can now solve the difference equations for z. We combine our second e..'"Cpression for S,. 

with the e.""q>ression forT,. and the above e.."Cpression for the phase difference per layer, to 

get: 

Plugging in T,. = T0 z" and solving for z, we arrive at: 

where the fact that s, u and e are all small quantities has been utilized. The ambiguity of 

the sign of the radical in this e:-cpression is resolved by the requirement that the real part 

of x must be less than unity. \Ve now plug x into the e:-..t>ression for S 0 /Ta, which after 

rearrangement appears as: 

where 

: __ 2nd sin 8' 
' -~---mr. .. \' 
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This expression is known as the Darwin-Prins formula. 

Limiting The Solution To N Layers 

The above expression is only valid for a crystal system with an infinite number of 

layers. We would like to extend the results to finite crystal systems with N layers. The 

argument given below parallels that devised by Henke et. al. 8 

We consider a semi-infinite crystal with an upper surface at z = N d and layers 

extending t.o z = -oo. We also have an incident wave T0 and a net diffracted wave S0 • 

This geometry is depicted in Fig. 14a. At the Nth layer of the crystal, the net downward 

8 c 
0 

A 

Figure 14. Geometry used to derive the Modified Darwin Prins (MDP) 
formula. 

propagating wave will have an amplitude: 

22 

Nd 



where :r: = ( -l)ml ± ,j.s2 - (0' + ~)2 • Below the Nth layer, we again have a semi-infinite 

crystal just as we had at the surface of the crystal, so we expect that the ratio S N /T.v will 

be identical to S0 /T0 • Therefore the net upward propagating wave at the Nth layer is: 

We now consider a semi infinite crystal with layers extending to z = +oo as drawn 

in Fig. 14b. We keep the orientation of the unit cells the same as in Fig. 14a., so that 

now the incident beam, T~, strikes the unit cells from below. The reflection from below 

the unit cells is the same as for above ( ~1 = ~ ), so we have S~/T; = S0 /T0 , and write the 

waves at the Nth layer as shown in Fig. 14b. T~ is arbitrary, so we choose it to have an 

amplitude SozN, the amplitude of the upward propagating wave at the Nth layer for the 

crystal in Fig. 14a. the resulting set of wave amplitudes are drawn in Fig. 14c. 

The wave amplitudes drawn in Fig. 14a and those drawn in Fig. 14c are each a. 

valid set of amplitudes for the N layer.; between ·z = 0 and z = N d. If we subtract 

the amplitudes of Fig. 14c from those of Fig. 14a., we will again have a valid set of 

amplitudes for the N layers. This is what is done in Fig. 14d. Notice that we have no 

upward propagating wave at- z = 0. this is e."Uctly the necessary boundary condition for a. 

finite crystal of N layers. Therefore, for radiation incident upon anN layer crystal ~;th 

amplitude To(l- ( ¥o-)2:r:2N), we exped a diffracted amplitude equal to 5 0 (1- x 2N). '\Ve take 

the ratio of these amplitudes to get our final result, known as the ~!edified Da.~;n-Pr:ins 

(MDP) formula: 
So.v (1 - :r:2N)So/To 
To = 1- (So/To)2:r:2.V 

Once we haYe found the reflected amplitude, we obtain the intensity from: 

23 



The Crystal Parameters And Reflectivity 

The angular profile of a typical Bragg peak diffracted from a multilayer appears in 

Fig. 15. We characterize this curve with three values: its width ( w ), the peak reflectivity 

"" ·~ 

;; 
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£ 
T l 

·~ , 
·' T • 

,.....,'"'""' 
A 8 

.. _,. ...... 
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Figure 15. A typical Bragg reflection profile. The reflectivity curve is de­
scribed by three values: a) the peak intensity, b) the angular width, and c) 
the integrated reflectivity (shaded area). 

(P) and the integrated reflectivity (R). The width is just the full-width-at-half-ma.umum 

(F'YVHM) value of the curve. It varies with energy and to some degree with the character­

istics of the crystal and is typically on the order of 10 milliradians. The peak reflectivity 

is merely the maximum value of the curve and is usually expressed as percent of the 

incident intensity. The value of P is strongly dependent upon the crystal parameters. 

The integrated reflectivity is the total area under the reflectivity curve, integrated over 

an appropriate range. Because Bragg peaks are basically Lorentzian in form, R will be 
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appro:cima.tely related to P and w by: 

7r 
R=-Pw 

2 

We would like to understand how the reflectivity o£ a crystal depends upon the unit . 

cell parameters, Y, T1 and T2• These parameters enter into the expression for the crystal 

structure factor, cl), which is proportional to the scattering per la.yer of the multilayer. We 

therefore begin with our previous e=cpression for q;: 

where 

A = 47ri sin 8' / )\' 

We begin by considering the simpler case where T 1 = T1 = T. With this substitution 

and simple algebraic manipulations we obtain: 

q; = d~ { n~ofs(e.AA -1) + (nvofv- n~ofs] [A~(eAT -1)(1- e...t(Y+T))]} 

We are interested in the reflectivity a.t the Bragg angle. We use the Bragg condition to 

ree=cpress A: 

.. 

so 

The structure factor becomes: 

m>.' = 2d sin 8' 

4 • • ~I ? • 
A = ;n sm r7 = ::.::::: 

,\' d 

Since e2 ~im is equal to one for all integers m, the first term in the a.bo..-e expression is equal 

to zero. '\Ve are left ~-ith a product of three terms: 

q; = ( nrof;;mnvofv) (a)(,B) 



where 

Q = 'l:!t(e.'lrimT/d -1) and f3 = 1- e.'lrim(Y+T)/d 

The first term tells us the scattering per layer increases with the contrast between 

scattering factor densities of the two elements which make up the multilayer. This is why 

multilayers are usually made from "light" and "heavy" elements. 

We would like to know for which values of the parameters Y and T that the amplitude 

of q; equals zero. When this occurs, the scattering per layer is zero, so there is no net 

scattering from the crystal and the Bragg reflection is suppressed. Because the amplitude 

of q; is proportional to the amplitudes of a and /3, twill tend towards zero whenever either 

of a or /3 tends towards zero. 

We will first consider /3. The condition 1/31 = 0 is e.""Cpressedas: 

which we solve: 

2 {1- cos(2rrm(Y + T)/d)) = 0 

cos(21rm(Y + T)/d) = 1 .. 
m(Y+T)/d=n 

vVe see then that whenever the suppression condition: 

--- Y- +--T- = ;: , _ n --::5 .m 

is satisfied, ~ = 0, so we expect the mth Bragg peak to be missing. Note that Y + T 

is merely the value of the sputtered thickness of the heavy layer, Ys for equal interface 

thicknesses: 

1 1 
Ys = Y + -(Tt + T2) = Y + -(T + T) = Y + T 

2 2 
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vVe can thus easily manufacture multilayers which diffract x-rays, but with certain orders 

suppressed. For instance, to make a multilayer which will exhibit no 2nd order Bragg 

reflection (m = 2), we sputter the heavy element for an appropriate amount of time such 

that Ys = d/2. This corresponds to a 1 : 1 ratio of the sputtered thicknesses of the 

two elements. Figure 16 shows the peak reflectivity for the first three Bragg orders of a 

hypothetical Si- Mo multilayer as a function of Ys/d. These plots show clearly that the 
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Figure 16. The dependence of the reflectivity for the first three Bragg orders 
on Ysfd. Here we use a hypothetical Si- Mo multilayer with d = 70 Aand 
N = 100 layers. 

reflectivity tends toward zero whenever Ys/d = nfm. '\Ve also observe that the reflectivity 

generally decreases with increasing values of Ys. This occurs because we are increasing the 

amount of the heavy element, molybdenum, so the absorption per layer increases. '\Ve can 

quantify this by considering the forward scattering, ~(B =0), which will be proportional 

to the absorption per layer ( o'). '\Ve write: 

(1- Y- T) 
~(0) = n:rof:r d + nyo/y(Y + T)jd 
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The value of n:ofz will be greater than nyo/11 if theY element is the heavy element, so the 

absorption increases with Y5 • With more absorption per layer, fewer layers of the crystal 

contribute to the Bragg peak, so it is less intense. 

We can illustrate the suppression condition by considering second order reflection 

from a layer composed of equal heavy and light layers, each with a thickness of d/2, as 

drawn in Fig. 17. We let ray 1 represent an incident wave scattered from the top of the 

~ 
~ RAY l 

~RAY 2 ' 

""" :: = d 

:: = 3d/4 X LAYEk 

:: = d/:! 

"{ LAYER 

:: = !) 

Figure 17. Destructive interference will occur between ray 1 and ray 2 at 
the Bragg angle for m = 2. . 

light sublayer at z = d and ray 2 represent an incident wave scattered from the center of 

this sublayer at z = 3d/ 4. As discussed earlier, the path difference for two waves scattered 

from points separated by a. distance ~z is 2~z sin8'. In this case, ~z = d/4 so the path 

difference is d sin 8' /2 a.nd the phase difference is 1rd sin 8' /A.'. From the Bragg condition, 

d sin 8' / >..' = m/2 which for m = 2 equals one. Thus the phase difference is 1r, a.nd we see 

that ray 1 a.nd ray 2 exactly cancel each other. Now if we consider two rays scattered from 
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points z = d- 5 and z = 3d/4- 5 for 5 between 0 and d/4, we again have a separation 

of ~z = df 4 so again we get cancellation. The rays reflected from the bottom half of the 

sublayer cancel the rays reflected from the top hal!-we get pair-wise cancellation of all of 

the radiation reflected from the light sublayer. Since the same argument can be applied to 

the heavy sublayer, we get no net reflected radiation. 

We now wish to examine the effects of a, the other term in the expression for~. We 

write: 

lal2 = ( d )
2 

(e21rimT/d -l)(e-21rimT/d -l) 
21rmT 

which, if we let x = 27rmT / d, can be written: 

lal 2 = 2(1- cosx) 
z2 

lal2 is plotted in Fig. 18. It has zeroes at x = 2mr , where n is a positive integer. This 
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leads us to our second suppression condition: 

T = nd n < l.!!!.J m' - 2 

I£ we keep Ys constant, then 1~1 2 will vary with T as in Fig. 18. We can then expect the 

intensity of reflection from a system of layers to behave similarly. Figure 19 shows the 

peak reflection of the first three Bragp; orders from a hypothetical multilayer as a function 
0 

~~-------------------------, 
0 

H 

0 
0 

0 

? 
0 
0 

0 

2 
0 

" 

1st 

0 :.::nd .. 

~~---.. ----~~.----&~.--~~-----~~.--~». 0 

o~,.--~ •• ~~u~o--~~.----~-.----~-.--~~0 
I(A) 1(.0) 

e~-------------------------, 
3rd 

~~ .. --~ .. ----a-.---c~~.--~~~-~~~~.~-;»0 
I(A) 

Figure 19. The dependence of the reflectivity of the first three Bragg orders 
on T. Here we use a hypothetical Si - Mo multilayer with d = 70 A, N = 100 
layers and Ys/d = 0.4. Notice that the third order reflectivity goes to zero 
when T:::: 23 A. This corresponds to T/d = 1/3. 

ofT with Ys/d = 0.4. Note that practical intensities for mth order reflection cannot be 

achieved for transition region thicknesses greater than d/m. vVe conclude that the effect of 

increasing the transition layer thickness is basically to reduce the reflected intensity with 

increasing severity at higher orders. 

If we now consider the unit cell where T1 =/: T2 , the structure factor at the mth Bragg 

angle appears: 

q, = n:r:of:r:- nyofy [ d (e2rrimTl/d _ l) _ d (e2rrimT2fd _ l)e2rrim(Y+Tl)/dl 
27rm 21rmT1 21rmT2 
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We now have a difference of two terms, so the amplitude of cp will equal zero only when 

both terms equal zero. Thus the addition of an asymmetry in the thicknesses of the 

transition regions counteracts the effects of the previously stated suppression conditions. 

This is illustrated in Fig. 20. Notice that the effects of asymmetry are appreciable only at 

large transition layer thicknesses. Requiring that both terms in the expression for ip go to 

zero gives us the suppression conditions: 

where land n are integers, and l + n ::5 m. 
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Figure 20. The reflectivity of the multilayer in Fig. 19 as a function of 
Tav = HTt + T2), for various ratios of the two transition regions. Here we 
define the asymmetry parameter, o:, to be TtfT2• 

~·· 

We summarize the relationship between the crystal parameters and reflectivity from 

a multilayer as follows: 

1. When T1 = T2 = T, the mth order is suppressed when Ys = ndjm. 

31 



2. Reflectivity generally decreases as the amount o£ the heavy element increases. 

3. Reflectivity decreases as T increases. This effect is increasingly severe at higher 

orders. 

4. When T1 :f: T2 , the effects of 1) and 3) are decreased . 

.. 
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EXPERIMENTATION 

We determine the crystal parameters, Y, T17 and T2 , for a given multilayer by actually 

measuring its reflectivity at several photon energies and then varying the parameters in the 

MDP theory to best fit the predicted reflectivity to the measured values. In this section we 

discuss the experimental methods which are used to obtain multilayer reflectivity values. 

We use an x-ray spectrograph, drawn schematically in Fig. 21, to obtain x-ray re-

to H'l 

Froportional 
Counter r-------------~ Amplifier 

£ource Window r-

1": -~~ kaoor 

-·-~ 
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I 
~ ~~~~~e ~--~_::R•_>:• ~ ~ 

1 !. --i 8 ~ ~ul til aver 
1._ -- ~upport 
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I 
Vacuum Chamber · · L Hain Vacuum Chamber 

--- _j 

Discriminator 

MCA 

Figure 21. A block diagram of the x-ray spectrograph used in this report. 
The source vacuum is isolated from the main vacuum by the source window. 
Not drawn is the goniometer upon which the multilayer and proportional 

. counter are mounted. 

flection data. X-rays are produced by the Henke tube x-ray source This radiation then 

passes through a window which serves to isolate the source vacuum from the generally 

poorer vacuum of the main vacuum chamber. The window also serves to collimate the 

beam so that we have a uniform beam spot. The collimated x-rays then scatter off of the 

multilayer, passing under the edge of a razor blade which is lowered close to the multilayer 
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surface. The scattered rays are then detected by a proportional counter. The counter and 

multilayer are mounted on a goniometer in such a way that when the multilayer is rotated 

through an angle(), the proportional counter will be rotated through an angle of 2B. · 

We proceed in our discussion by detailing further various important components of 

the x-ray spectrograph. We begin by discussing the x-ray source, discuss the detection 

apparatus, then consider how to generate a reflection profile and how to interpret the mea-

surements. 

The Henke Soft X·ray Source 

Figure 22 shows a cross section of a Henke x-ray tube. 12 To generate x-rays, we pass 

TARGET 
(WATER COOLED) 

ELECTRONS 

CATHODE SUPPORT 

CATHODE 

FOCUSING ELECTRODE 

HOUSING (WATER COOLEOl 

Figure 22. The Henke x-ray tube. Typical paths which the thermionic 
electrons follow from the cathode to the anode are drawn as dashed lines. 

a current through the helical tungsten cathode, which then undergoes Ohmic heating. 
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At a high enough temperature, electrons will have enough kinetic energy to escape from 

the cathode. This process is known a.s thermionic emission. The anode is maintained at 

a positive potential (lkV-lOkV) so the emitted electrons will be accelerated towards it, 

tra veiling along the pa.ths indicated in Fig. 22. The grounded focusing strip behind the 

cathode helps to constrain the electrons to the paths shown. The electrons strike the anode 

in two la.rge focal spots ( ,_ 1 cm2) and e.""Ccite the atoms they strike, causing the atoms to 

emit their characteristic line spectrum. This radiation then passes out of the tube hous­

ing through a thin window which may be chosen for its x-ra.y transmission properties to 

filter out undesired wavelengths. The anode and tube housing a.re water-cooled to prevent 

melting under electron bombardment. The anode is interchangeable, so we can obtain ra­

diation at many characteristic wavelengths by choosing an anode made of the appropriate 

element. If we wish to obtain characteristic radiation for a non-conductor, simply coating 

a copper anode with a thinla.yer of the non-conductor is effective. 12 

Several steps a.re taken to prevent contamination which will lead to undesired spectral 

lines being produced. First, before an anode is mounted in the x-ray tube, it is cleaned and 

its surface heated to degas it. While it is operating, the x-ray tube is constantly pumped 

to maintain a good vacuum (- 10 -a Torr) nearly free of contaminants. Also, the position 

of the cathode behind the anode prevents the sublimation of tungsten upon the anode's 

active surJ..3.ces. \Ve can put additional filters in the path of the :c-ra.ys outside the tube 

window to reduce the intensity of any contaminating lines which might be present. The 

filtration ~-e use for our Ya.rious spectral lines is given in Table I. 

Even ~-ithout contamination, we do not only see the desired spectral lines emitted 

from the source- we also see a continuum background. This continuum arises from the de­

celeration experienced by the electrons emitted from the cathode when they impact upon 

the anode. An electron which strikes the anode does not gi...-e up all of its kinetic energy 

all at once, but rather in a series of collisions. If an electron loses an amount of energy ~E 
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line E(eV) source PC PC 

filter filter window 

B-K 183.4 Formvar Mo-C-Formvar Formva.r 

C-K 277.0 Kim£ol - Kim£ol 

Cu-K 929.7 C u-Formvar Cu-Formvar Formvar 

Al-K 1486.7 Al-Kimiol Al Al-Kimfol 

Table L Filtering for various :t-ray wavelengths 

in a collision, it will emit a photon (Bremsstrahlung radiation) with wavelength he/ D.E. 

The value of D.E can range from zero up to the full kinetic energy of the electron. The net 

effect of a large number of electrons each undergoing a. series of such collisions is to build 

up an x-ray continuum. 

An approximate e.""Cpression !or the intellSity of this continuum as a. function of wave­

length has been found to be:13 

!(>.) = Ciz (2:::-- 1) fr 1 >. < Amin 
mon 

Here Z is the atomic numbE!'r oi the anode element, i is the cur=ent across the :c-ra.y tube, 

and C is a. constax:.t. The cur.-e has a. high energy cutoff.\ min above which the continuum 

intensity is zero. This wavelength cocresponds to the light e:::itted by those elect:ox:s 

which gi>·e up all of their kinetic e!lergy in one collision. An elec~:on ~-h.icb. c:osses a 

pote!ltial difference ~ v· gains kinetic e:J.ergy equal to e( .~.Y). Th.t.:.S .\min = he/ e(::.. V) 

where ~ v· is the anode to cathode potential difference, called the exciting pote:ltial. The 

depe!ldence of the continuu.::D. intensity on z I i and ~ v" is shown in Fig. 23. \Ye find the 

maximum of the of the continuous spectrum by setting d!jd).. = 0. From this we find that 

Afmar = 1.5)..min· In other v;ords, the energy of the peak of the continuum e:o..-pressed in e\" 

is equal to 2/3 of the e:=cciting voltage e:=cpressed in volts. \Yhen the :=c-ray spectrograph is 
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Figure 23. The effect of x-ray tube current, potential and atomic number of 
the anode on the intensity of the continuous spectrum produced in the x-ray 
source.14 

set up for measurements, we set the exciting voltage high enough so that the maximum in 

the continuum is at a much higher energy than the spectral line of interest. We can then 

electronically filter it out, as we shall discuss later. 

Detection Of X-Rays 

We detect x-rays using a proportional counter (PC), drawn schematically in Fig. 24. 

The counter is filled with a detector gas, which continuously flows through the counter 

and out into the atmosphere at a rate of about 0.1 ft 3 /hour. The walls of the PC act as 

a cathode and a thin wire which runs through the middle of the gas volume acts as an 

anode. X-rays enter through a thin window in the side of the PC as shown. 

A proportional counter operates as follows: When a photon enters the gas volume 
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Figure 24. The structure of the proportional counter. The housing is basi­
cally cylindrical in shape and acts as a cathode. The anode wire is insulated 
from contact with the housing when it passes out of the proportional counter· 

inside the PC, it is absorbed, creating an ion-electron pair. Virtually all of the energy of the 

photon is converted into the kinetic energy of the photoelectron. The photoelectron then 

expends its energy in collisions with neighboring gas atoms, creating more ion-electron 

pairs. These electrons are referred to as secondary electrons. The average number of 

secondary electrons produced by the photo- or primary electron will be: 

n, = E/Veo 

where E is the energy of the incident photon and Veo is the effective ionization potential. 

Veo will generally be a slightly higher energy than the first ionization potential of the detec-

tor gas because some gas particles may become doubly ionized and the second ionization 

potential is higher than the first. The number of secondary electrons actually created for 

a given photon will obey Poisson statistics, 14 so the distribution of n, for a large number 

of photons will have a standard deviation of ..;;;:;. 
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All of the electrons liberated by an absorbed photon will be accelerated towards the 

anode. Each of these will cause a cascade of further ionizations so that a large number of 

electrons will eventually (- 1~) reach the anode and form an electrical pulse. We speak 

of the gas gain, G, as the number of electrons collected by the anode, n, divided by the 

number of secondary electrons produced: 

G = nfn, 

G is typically on the order of 105 and is independent of incident photon energy. Thus the 

number of electrons collected by the anode and therefore the size of the electrical pulse 

generated in the PC is proportional to the energy of the incident photon. This is why 

detectors of this type are called proportional counters. 

It is desirable for the absorption of x-rays in the detector gas to be high so that 

nearly all of the incident photons are counted. However, the absorption must not be so 

high that all of the photons are absorbed in a thin layer just inside the counter window, 

for the window may capture some of the secondary .. electrons produced, so proportionality 

would be lost. In practice, we choose a detector gas and gas pressure for each wavelength 

of radiation so that about ninety-five percent of the incident photons are absorbed within 

the counter volume. The ~ types and pressures we use are given in Table II. 

The output from the proportional counter is a series of electrical pulses. Each pulse 

corresponds to the absorption of one photon and the pulse's amplitude or height is pro­

portional to the pulse's energy. This output signal is amplified and then is fed into a 

multichannel analyzer (1ICA), which merely counts the number of pulses produced. '\Ye 

interpose an electronic discriminator between the amplifier and the MCA ~-hich passes 

only pulses within a certain height range. In this ~·ay ~-e can count only photons within 

a limited range of energy. '\Ye set the discriminator to pass only energies near the charac­

teristic line energy. The contribution of the Bremsstrahlung continuum to the measured 

intensity is then negligible, since we have set the source voltage so that the continuum 
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peaks at an energy well away from the characteristic line energy. 

Measurement Of Reflectivity 

To actually measure the reflectivity of a multilayer at a particular photon energy, we 

first install the proper anode, filters and so forth as given in Tables I and II. Then we 

mount the multilayer as shown in Fig. 21, with a razor blade lowered to a small distance 

3 above its surface. This is done to limit the reflection seen by the proportional counter 

to come from a small area of the crystal, and correspondingly to represent a small range 

of incident angles. \Ve begin measurement at a small negative angle (8 ~ -2 degrees) so 

that no intensity is seen by the proportional counter. \Ve then periodically increment the 

scattering angle by .6.8 (typically .005" to .02°). To maintain the proper geometry so that 

the PC remains at the angle of reflection for the crystal, each time we rotate the multilayer 

by .6.8 we also rotate the PC around the same a.'tis by an angle of 2.6.8. At each angle we 

measure for a period of time ~t (1 to 5 seconds) the number of photons which scatter off 

of the multilayer and are subsequently detected by the PC. In this way we build up an 

intensity versus incident angle curve. We continue this process until all the desired Bragg 

peaks have been detected. ·• 

The number of photons seen by the PC at a given angle is not only dependent upon 

the reflecth-ity characteristics of the crystal, but also upon the intensity of x-rays incident 

upon the crystal. Simply stated, if we double the incident intensity, we double the number 

of photons detected. Unfortunately, due to the geometry of our spectrograph, the incident 

intensity varies ·with the angle of incidence. \Ve now examine this angular dependence in 

detail. 

At the start of a reflecti".,;ty run, the multilayer is positioned so that 8 has a negative 

value, as dra·wn in Fig. 25a. The multilayer is sputtered onto a thick substrate, so no 
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line E(eV) detector pressure 

~ (Torr) 

B-K 183.4 Propane 100 

C-K 277.0 Propane 200 

Cu-K 929.7 Propane 200 

Al-K 1486.7 PlO 760 

Table II. PC Gas a.nd Gas Pressures for various :t-ray wavelengths 

transmission of x-rays through the bottom of the multilayer is possible. The intensity 

detected by the PC is zero. As we increment 8, eventually :c-ra.ys will be able to pass 

through the slit between the multila.yer and the razor, as drawn in Fig. 25b. This begins 

a.t a.n a.ngle determined by: 

ta.n8 = -sfa 

where s is the perpendicular slit width and a is oxre-hal! of the length of the multilayer as 

shown.. The ratio of sfa is typically about 1/50 so we may v.-rite: 

8 = -s/a .. 

For a.n a:l.gle in the range of -sf a< 8 < 0, the intensity will inc=ea.se linearly with 8: 

I= c(.J + a8) 

~-he::e cis a. proportionality constant. 

Figu::e 25c sho~·s the orie:J.tation of the crystal ~-hen 8 = 0. For the inte:lsity at this 

point we ~-rite I(O) = cs. \Yhen 8 becomes positive we begin to ha....-e reflectio::. oE of the 

su.-face of the multilayer. At grazing incidence, the multilayer surface ~-ill act just like a 

rcirror and ~;u tota.lly reflect soft x-rays. However, the reflected intensity may not be equal 

to the incident intensity even as 8 approaches zero because the roug!lness of the surface 
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Figure 25. The geometry for determination of the effective incident intensity 
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will result in some loss. The intensity detected by the PC will be the sum of contributions 

from the intensity which passes directly through the slit and that which is reflected off of 

the multilayer. from the geometry drawn in Fig. 25d, this equals: 

I= c [s cos fJ- (a+ s sinfJ) sinfJ + a(2a sinfJ)] 

where a gives the grazing incidence reflectivity of the crystal. For the angles of consider-

ation (0 < fJ < ;), we may write: 

I= c(s + {2a -l)afJ) 

Again the intensity increases linearly with fJ, but now with a different slope. Thus we find 

an inflection point at fJ = 0, as depicted in Fig. 26 for various values of a. Typically a is 

nearly equal to one, so the change in slope may not be great. 

Figure 26. The x-ray intensity seen opposite the multilayer slit for the range 
~· < 8 < i· When the grazing incidence re:fl.ectivity of the multilayer, a, is 
less than one, we see an in:fl.ection point at (} = 0, as shown. 

At angles greater than fJ = ;, all of the x-rays detected by the PC are reflected by 
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the multilayer, as shown in Fig. 25e. The incident intensity here is: 

I= c{23 cos 9) 

This is the region in which the Bragg peaks occilr. If we count n 0 photons at the zero 

angle position (determined by the location of the inflection point), then from a perfectly 

reflecting crystal we expect: 

1(8) 
n =no 1(Q) = 2n0 COS 8 

photons to be counted at an angle 8. We determine the crystal's real reflectivity at a given 

angle by dividing the actual number of photons measured, n : 1 by the value of n given 

above. For e.'"Ca.ID.ple, the measured peak refiectivity for the first Bragg order is given by: 

where 81 is the first order Bragg angle. 

The value we are most interested in !or each of the Bragg orders is the integrated 

reflectivity, R. We use this value instead of the.peak reflectivity, P, for two reasons. 

First, each of the Bragg peaks will undergo instrumental broadening as well as broadening 

due to the energy width of the source line. As the curve is broadened, the peak value is 

correspondingly decreased. l;[owever, R remains constant, so we can avoid estimating the 

amount of broadening that occurs for a given arrangement of the spectrograph by merely 

using R. Second, the statistical error in R is smaller than that in P. Both R and P will 

obey Poisson statistics, so the statistical error for each of these is: 

err(P) = }n-p x 100% err(R) = ..}na x 100% 

where nR is the number of counts for Rand np is the number of counts for P. The ·va.lue 

of nR '\\;u generally be many times that of np, so the error in R '\\;11 be much smaller 

than the error in P. As a typical e:-cample, we may haYe nR = 100000 and np = 1000. 

The statistical errors in R and P are then approximately 0.3 percent and three percent, 
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respectively. 

We have not yet stated over what rangeR will be integrated for each order. We wish 

to retain as much of the. Bragg peak as possible and so may wish to integrate over a wide 

range of angles about the peak. However, the number of counts in the tails of the Bragg 

peak will be low, so if there is a small amount of background intensity in our measurements, 

the area. in this background may be greater than that of the tail, and we a.re increasing 

the error in R. In addition, the MDP expression is only valid near the Bragg peak, where 

e is small. In this report we defineR over a. range of ±2 FWHM (w) around the position 

of peak intensity, 8p, as shown in Fig. 27. This retains about ninety percent of the total 

area. of the peak and minimizes the problems associated with the tails of the curve. 

ep-lw e, 
B(arbitrary units) 

Figure 27. The integrated reflectivity is defined over a range of ±2w. It is 
represented here for a. typical Bragg peak a.s the shaded area.. · 

As mentioned earlier, a multilayer crystal will reflect x-rays from its surface at small 

angles. This is known as total reflection, and is calculated from the usual Fresnel equations 
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for the reflection of electromagnetic waves at the interface between two materials. For the 

interface between the multilayer and the surrounding vacuum we write: 1 

(
ER) = sin9- Jn;- cos2 9 

Er , sin9 + Jn;- cos2 9 

where n: is the comple:x index of re:fra.ction of the surface materia.!, which ma.y be written 

1-8- i/3, where 8 and /3 a.re small compared to one. (ER/Er)tr and (ER/EI), are the 

ratios of the reflected wave amplitude to the incident wave amplitude for light polarized 

para.llel and perpendicular to the plane of scattering, respectiYely. For unpola.rized light, 

we average the contributions of the 1r and <r polarizations. If a. Bragg peak occurs at a. 

small enough angle, it may overlap with the tail of the total reflection curve. Figure 28 

demonstrates this for a. real multilayer. U nfortuna.tely the MD P theory cannot be used to 

model the total re:fiection in the vicinity of a. Bragg pea.k. We treat this problem as follow: 

If a Bragg pea.k is outside of the total reflection region, as shown in Fig. 29a, we have no .. 
problem and calculate R normally. If the total reflection tail is small with respect to the 

Bragg peak, we may approximate the tail as a linear function and subtract its area. out 

from the integrated re:fiectivity as in Fig. 29b. If the total reflection tail is large in the .. 
vicinity of the Bragg peak, a.s in Fig. 29c, we cannot easily decon...-oh·e its area. with that 

of the peak. In this ca.se we cannot use the order in the fitting process. \Ve arbitrarily 

choose the cutoff point for this to be when the intensity at Bp- 2w equals twenty percent 

of the peak intensity. 
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Figure 28. At small angles, the Bragg peak may compete with the total 
reflection curve. Notice the inflection point at IJ = 0. 

DATA AND ANALYSIS 

As was mentioned earlier, we have been able to fit the reflectivity characteristics of 

several tungsten-carbon and vanadium carbon crystals using the MDP theory and a two 

parameter model of the unit cell. However, we found two parameter fitting to be insuffi­

cient to model molybdenum- silicon or vanadium-silicon multilayeiS. We will first consider 

the two parameter fits obtained for these multilayers then compare them to our recent 

three parameter fits. 

We attempted to fit two Mo-Si and two Si-V crystals received from Energy Conversion 

Devices Corporation (ECD ), as well as one Si-Mo crystal made at the Center for X-Ray 

Optics (CXRO) at Lawrence Berkeley Labs. Here we have listed the element which ap­

pears as the top layer in the crystal first (this is the X-element in our model). The basic 

46 



...... .. 
B(~.nts) ~·-

A a 

~-~ 
c 

Figure 29. Varying amounts of competition between the Bragg peak and the 
total reflection curve and how we define the integrated reflectivity in each 
case. a) no competition. b) a small total reflection background is subtracted 
out. c) a large background prevents a value for R from being determined. 

characteristics of these crystals are given in Table III. To designate a particular crystal, 

we give its composition followed by its approximate 2d value. Thus SiV145 refers to the 

silicon-vanadium crystal with a 2d value approximately equal to 145 A. 

'VVe measured the reflectivity profiles of these crystals to as many as four Bragg or­

ders at three photon energies. 'VVe used the C-K (277.0 eV), Cu-L (929.7 eV), and Al-K 

(1486.7 eV) lines for the vanadium-silicon crystals. For the molybdenum-silicon crystals, 

we substituted B-K (183.4 eV) line for C-K line because the reflectivity for this type of 

crystal is low for C-K radiation. 

To obtain a best fit characterization of the unit cell, we varied the two parameters, 

Y and T, until the mean relative error for all the measured orders was minimized. For N 

measured orders, the function we minimized is: 

[ 
N lt 1 "" Ri( theory) - Ri( ezpl) 

err= -L.J 
N i=l Ri(ezpl) 
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crystal source composition 2d N 

designation (X- Y) 

MoSi166 ECD Mo-Si 166.0 95 

MoSi198 ECD Mo-Si 197.8 60 

SiMo197 CXRO Si-Mo 196.6 30 

SiV145 ECD Si-V 145.2 60 

SiV210 ECD Si-V 209.7 60 

Table ill. Crystal· characteristics for the multilayers studied in this report. 

This fitting was performed automatically by a FORTRAN code which uses a standard 

minimization routine on a VAX computer. The parameters we found for each crystal 

are given in Table IV. Table V lists the measured integrated reflectivity values and the 

crystal y T err 

designation (A) (A) 

MoSi166 14.0 19.6 .318 

MoSi198 24.8 19.0 .488 

SiMo197 18.2 11.9 .424 

SiV145 15.9 16.0 .492 

SiV210 39.7 15.4 .615 

Table IV. Resulting characterization from two parameter fitting. 

theoretical values based on the parameters of Table IV. These fits are unacceptably poor 

for fourth order Bragg reflection, where the theoretical reflectivity is often off by a factor 

of ten or more from the measured values. 

In order to more accurately characterize the molybdenum-silicon and vanadium-silicon 

multilayers, we turn to the three parameter model outlined in this report. vVe perform 
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crystal E (eV) order Rez,t Rtheor11 

designation 

MoSi166 183.4 1 0.923 1.447 
929.7 2 0.046 0.048 
929.4 3 0.005 0.005 

1486.7 1 1.990 1.863 
1486.7 2 0.064 0.059 
1486.7 3 0.009 0.007 

Mo5i198 183.4 1 1.325 1.856 
929.7 2 0.033 0.026 
929.7 3 0.035 0.029 
929.7 4 0.030 0.002 

1486.7 1 2.315 2.266 
1486.7 2 0.031 0.036 
1486.7 3 0.029 0.035 

SiMo197 183.4 2 0.105 0.152 
929.7 1 3.103 3.035 
929.7 2 0.403 0.557 
929.7 3 0.017 0.009 

, 929.7 4 0.033 0.019 
1486.7 1 2.678 3.063 
1486.7 2 0.385 0.656 
1486.7 3 0.014 0.013 
1486.7 4 0.028 0.025 

SiV145 277.0 1 0.448 0.337 
929.7 1 0.759 1.252 
929.7 2 0.015 0.014 
929.7 3 0.006 0.007 
929.7 4 0.004 0.000 

1486.7 1 1.411 1.477 
1486.7 2 0.019 0.021 
1486.7 3 0.014 0.012 

SiV210 277.0 3 0.007 0.009 
277.0 4 0.005 0.000 
929.7 2 0.007 0.004 
929.7 3 0.035 0.035 
929.7 4 0.005 0.001 

1486.7 2 0.004 0.006 
1486.7 3 0.047 0.048 

Table V. Comparison of experimental reflectivity values to those from the 
MDP theory (two parameters). 



the fitting procedure just a.s before, now varying the values of Y, T1 and T2 to best match 

the model to the e%pe:rimen.tal intepted refiectivity values. These pa.rameteriza.tions are 

given in Table VI and a. comparison between the experimental and theoretical reflectivities 

is given in Table VII. The fits are substantially unproved !or a.ll oi the crystals. especia.llv 

crystal y Tt T2 err 

designation (A) 

MoSil66 18.9 18.8 38.1 .120 

MoSil98 26.7 10.4 32.5 .318 

SiMol97 19.9 20.6 1.5 .207 

SiV145 20.9 25.6 8.5 .227 

SiV210 37.2 23.8 7.2 .358 

Table VI. Resulting characterization from three parameter fitting. 

for the fourth order refiectivities. Tl1e greater improvement in the higher orders is to be 

apected~ for they are more sensitive to variations in the aystal pa.mmeteriza.tion (see~ for 

e:oo::ample, Fig. 20). 

The pa.ramete:s we are most interested in are the transition la.yer thicknesses, T 1 and 

T2, !or we e.oocpect that th~~ thickilesses should be approximately the same for different 

· multila.yers of the same type. In fact, we see e:teellent agreement in these values for the 

two vanadium· silicon multila.yers. For the molybdenum-silicon multila.yers the agreement 

is not a.s good-the c:r:-sta.l sputtered. at CXRO ha.s much smaller interf<~.ce thicknesses 

than those sputtered at ECD. This may be due to differences in the sputtering conditions 

at the t\\·o locations. The t\\·o ECD crystals, MoSiS3 and MoSi99, still show a moderate 

discrepanc:· between them. 
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crystal E (eV) order a_, Rtheorv 
designation 

MoSi166 183.4 1 0.923 0.941 
929.7 2 0.046 0.047 
929.4 3 0.005 0.005 

1486.7 1 1.990 1.868 
1486.7 2 0.064 0.059 
1486.7 3 0.009 0.007 

MoSi198 183.4 1 1.325 1.695 
929.7 2 0.033 0.029 
929.7 3 0.035 0.027 
929.7 4 0.030 0.013 

1486.7 1 2.315 2.550 
1486.7 2 0.031 0.036 
1486.7 3 0.029 0.032 

SiMo197 183.4 2 0.105 0.107 
929.7 1 3.103 3.233 
929.7 2 0.403 0.350 
929.7 3 0.017 0.012 
929.7 4 0.033 0.023 

1486.7 1 2.678 3.254 
1486.7 2 0.385 0.421 
1486.7 3 0.014 0.017 
1486.7 4 0.028 0.031 

SiV145 277.0 1 0.448 0.336 
929.7 1 0.759 1.082 
929.7 2 0.015 0.014 
929.7 3 0.006 0.007 
929.7 4 0.004 0.004 

1486.7 1 1.411 1.314 
1486.7 2 0.019 0.020 
1486.7 3 0.014 0.012 

SiV210 277.0 3 0.007 0.008 
277.0 4 0.005 0.002 
929.7 2 0.007 0.004 
929.7 3 0.035 0.034 
929.7 4 0.005 0.005 

1486.7 2 0.004 0.006 
1486.7 3 0.047 0.047 

Table VII Comparison of experimental reflectivity values to those from the 
MDP theory (three parameters). 



Unfortunately we do not know whether the sputtering conditions for these two multi­

layers were the same. Petford-Long et. al. report the transition region thicknesses of two 

molybdenum-silicon crystals to be 17 A±3 Afor Mo sputtered onto Si interfaces and 10 

A±3 Afor Si on Mo interfaces. 15 These multilayers were sputtered at Lawrence Livermore 

National Laboratory, and were measured using transition electron microscopy (TEM) tech­

niques. These interface thicknesses agree reasonably well with our values for the multilayer 

manufactured at CXRO. 

All of the multilayers we measured show values of T1 and T2 which differ by a factor 

of two or more. In all cases, the transition region produced when the heavy element is 

sputtered onto the light element is much thicker than the transition region produced by 

the reverse process. To understand this, let Us consider the sputtering of a molybdenum­

silicon crystal. Because a Mo atom is much more massive than a Si atom, Mo is sputtered 

with an average kinetic energy correspondingly greater than that of Si. 16 Thus Mo atoms 

impinging upon a silicon surface may penetrate further than Si atoms impinging upon a 

molybdenum surface. In addition, sputtered molybdenum films are for the most part crys­

talline, whereas silicon films are amorphous. Thus atoms can penetrate the rather open 

silicon structure more easily than the densely packed crystalline structure of the molybde­

num surface. 15 Also, the amorphous Si will have a rougher surface than the crystalline Mo, 

so even without surface penetration, the Moon Si interface region will be thicker than the 

Si on Mo surface. These considerations should also apply to vanadium-silicon interfaces. 

It would seem that these considerations should apply also to such multilayer types as 

tungsten-carbon and vanadium-carbon, and so we might expect to see a large difference in 

the interface thicknesses of these multilayers as well. However, this was not the case--we 

were able to use the two parameter model to fit these types. This can be explained if 

we consider the important differences between carbon and silicon. Both of these elements 

form amorphous layers when sputtered, but carbon forms a more compact structure, and 
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the energy necessary to liberate a carbon atom from this structure is several times the 

energy necessary to liberate a silicon atom from its less dense structure 17• Thus we expect 

that atoms will not be able to penetrate a carbon surface as deeply as a silicon surface. 

Also, because carbon is much less massive than silicon, it will not penetrate surfaces as 

deeply. These considerations imply that the transition regions of multilayers with carbon 

as the light element will be thinner than those of multilayers with silicon as the light ele­

ment. This is in fact what we observe-the average transition layer thickness for the two 

vanadium- silicon multilayers in this report is about 16 A; for vanadium carbon multilayers 

we found an average value about half of this5 • Multilayers such as vanadium-carbon may 

in fact have interfaces of appreciably different thicknesses, but our model is not sensitive 

to this difference when the thicknesses are small (see Fig. 20). 

Although we can obtain reasonably good characterizations with our present model, it 

has several limitations which we now discuss. First, our model is based upon a perfectly 

periodic layer system. Effects such as layer to layer variations of the d-spacing and lateral 

variations in the crystal characteristics are not accounted for. Also, we have used the bulk 

densities of the two elements in our calculations, whereas the actual densities of sputtered 

films may be somewhat lower. For most multilayers, however, we expect that the error 

introduced to the reflectivity values by these effects will be small, as films generated using 

current R-F sputtering techniques are usually uniform and have layer densities which ap­

proach bulk values. 2 

The tabulated values of the atomic scattering factors for a given element may not be 

very reliable near its absorption edges. For this reason, we cannot use measurements made 

at these energies for characterizing multilayers. For instance, we would not measure the 

reflectivity of a molybdenum-silicon crystal using Si-L radiation (91.5 eV). 

Another limitation of our model is that it is only valid when the absorption per layer 

is small. This means that we cannot use the model for crystals with large d-spacing values 
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and at long wavelengths. As an example, we cannot use measurements of the SiV210 crys­

tal made at the B-K line {183.4 eV) because the absorption per layer, u, has a magnitude 

of about 0.4 at the first Bragg order. Our calculations assume that u is small compared 

to one, which does not hold in this case. Finally, we have modelled the interface structure 

as a linear function. This is a reasonable first approximation, but it has been suggested 

that a more precise model would have a Gaussian form, such as is drawn in Fig. 30 18• We 

might expect such a model to better fit the higher orders, as it is these orders which are 

most sensitive to changes in the parameterization of the. unit cell. 

0 z 

Figure.30. The Gaussian interface structure suggested by Chauvineau et. al. 
It appears analytically as: nz = nz0 exp( -z2 /2u) for z > 0. u is a measure 
of the width of the transition region. 
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CONCLUSIONS 

The ability to quickly and accurately characterize arbitrary multilayers is very valu­

able for not only can we use the characterizations .to predict the reflectivity of a multilayer 

for any soft x-ray wavelength, we also can generalize the results to apply to other mul­

tilayers of the same type. In addition, we can use the characterizations as a means of 

evaluating various sputtering environments and refining sputtering techniques to obtain 

better multilayers. 

In this report we have obtained improved characterizations for sample molybdenum­

silicon and vanadium-silicon multilayers. However, we only examined five crystals overall, 

so the conclusions that we could draw about the structure of general multilayers is limited. 

Research involving many multilayers- manufactured under the same sputtering conditions 

is clearly in order. In order to best understand multilayer structures it may be necessary 

to further refine our model, eg., adopting a Gaussian form for the interface regions. vVith 

such improvements we can expect even better agreement with e.."'Cperimental values and 

continued concurrence with other characterization techniques. 
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