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ABSTRACT 

The far-infrared linear response of the charge-density-wave (CDW) conductor 

(TaSe4)2I and polycrystalline samples of the high-Tc superconductors LaSrt.ssSro.1sCu04 

and Lat.ssCao.1sCu04 has been measured. The frequency and temperature range of the 

measurements is 8-350 cm-1 and 5 to 300K. At low temperatures in (TaSe4)2I, a mode 

with giant oscillator strength was found at 38 cm-1. This giant FIR mode lies between the 

pinned mode and the Peierls gap, where significant oscillator strength is not expected in 

simple models of the CDW excitation spectrum. It is suggested that a giant FIR mode 

distinct from the pinned mode is a common feature of CDW conductors. 

At low temperatures in the high-T c superconductors, a reflectance edge was observed 

near 2.5ksTc. The BCS-like temperature-dependence of the reflectance edge is suggestive 

of an energy-gap interpretation. However, a simple model shows that a BCS-like 

temperature dependence is also consistent with an interpretation of the reflectance edge as a 



low-frequency plasmon. It is not yet possible to deduce the magnitude of the energy gap 

directly from the FIR spectra of polycrystalline sample. 

The radio-frequency nonlinear response of the CDW conductor NbSe3 has also been 

measured. In the presence of combined rf- and de- electric fields, mode-locking occurs in 

NbSe3. Complete mode-locking in conventional samples is found to dramatically suppress 

sliding CDW conduction fluctuations. The application of combined rf and de electric fields 

to switching samples of NbSe3 is found to induce a large amplitude "ac switching noise" 

for rf frequencies less than 1 rvt:Hz, and a period-doubling route to chaos for rf-frequencies 

greater than 1 MHz. The mode-locking behavior of switching and nonswitching NbSe3 is 

analyzed in terms of simple differential equations and discrete mappings. A model of CDW 

elasticity is also presented. The model qualitatively reproduces all of the experimentally-

observed anomalies which occur for de-, ac- and combined ac- and de- electric fields. It is 

suggested that, during mode-locking, the number of degrees of freedom active in CDW 

transport is reduced. 
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Part 1: Far infrared linear response of charge density wave conductors 

and high T c superconductors 
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1 . Introduction 

In most condensed matter systems, electrical conduction can be well described by a 

nearly-free-electron picture. In conventional metals and semiconductors, the charge 

carriers are successfully modeled as weakly interacting charged fermions. However, there 

are certain condensed matter systems in which strong correlations between the charge

carriers cause the nearly-free-electron picture to break down completely. Two such 

systems are charge-density-wave (COW) conductors and superconductors. Well-above a 

transition temperature Tc, both COW conductors and superconductors are metals in which 

the charge is carried by relatively weakly-correlated electrons. Below Tc in COW 

conductors and in conventional Bardeen-Cooper-Schriefferl (BCS) superconductors, the 

electrons become strongly-correlated in collective-mode ground states. In the 

superconducting ground state, electrons with opposite spin and momentum are correlated in 

Cooper pairs. In the COW ground state, electrons and holes on opposite sides of the Fermi 

surface are correlated to cause a static modulation of the electronic density. At low 

temperatures in COW conductors and high-T c superconductors, an energy gap occurs at the 

Fermi surface. Energy gaps in conventional superconductors and COW conductors are 

typically in the far- and near-infrared, respectively. 

For frequencies less than the energy gap, there are great differences between the low

and high-temperature excitation spectra of COW conductors2 and conventional 

superconductors. At high temperatures, free carriers contribute nonzero frequency

dependent conductivity at frequencies from de to the free-carrier relaxation rate. At low 

temperatures, the free-carrier contribution to the frequency-dependent conductivity is absent 

for frequencies less than the energy gap. A conductivity sum rule3 requires the integral of 

the frequency-dependent conductivity (the total oscillator strength) to be a constant 

dependent only on the number of electrons in the conduction band, and hence independent 

of temperature. In a BCS superconductor, the oscillator strength removed from the free 
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carriers is shifted to a delta function at zero frequency. In a CDW conductor, the oscillator 

strength removed from the free carriers is shared between discrete modes in the energy gap 

and an enhancement of the conductivity continuum just above the energy gap. 

Part 1 of this thesis is concerned with the linear response of CDW conductors and high

T c superconductors to weak far-infrared radiation. CDW conductors have highly 

anisotropic conductivities; Thus it is necessary to use polarized radiation for any 

measurement of the linear response function. Chapter 2 describes an apparatus developed 

for FIR reflectance measurements. The apparatus enables the measurement of polarized 

reflectance and transmittance of a sample from room temperature to SK. 

Chapter 3 de.scribes measurements of the FIR excitation spectrum of the CDW 

conductor (TaSe4)2I . By combining our measurements with the measurements of other 

groups at lower and higher frequencies, we have for the first time completed the excitation 

spectrum of a CDW conductor. In the classic picture of the CDW excitation spectrum 

proposed by Lee, Rice and Anderson (LRA)4, a mode corresponding to translation of the 

CDW center of mass relative to the lattice is expected at very low frequencies. This 

"pinned" mode is expected to have a large oscillator strength. In the LRA picture, only 

relatively weak IR-active phonons are expected between the pinned mode and the gap. We 

have observed at low temperatures a giant FIR mode at 38 cm-1. This mode has larger 

oscillator strength than any other mode in the energy gap, including the pinned mode. The 

giant FIR mode is clearly distinct from the pinned mode observed at 1.2 cm·l and the 

energy gap at 2000 cm-1. Two possible interpretations for the FIR mode are discussed. 

Chapter 4 describes attempts to measure the energy gap of polycrystalline samples of 

the high-Tc superconductors Lat.ssSro.tsCu04 and Lat.ssCat.ssCu04. At low 

.temperatures, a reflectance edge was observed at 60 em· I. The temperature-dependence of 

this edge fits the temperature dependence of the BCS gap. We and other groups initially 

interpreted the edge as an energy gap. However, an alternative interpretationS suggests that 

the reflectance edge is caused by a low-frequency plasmon. A simple model is solved in 
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Chapter 4, and the temperature-dependence of the reflectance edge is found to be consistent 

with the plasmon interpretation. We conclude that the magnitude of the energy gap cannot 

yet be deduced directly from the FIR spectra of polycrystalline samples. 

Part 2 of this thesis is concerned with the nonlinear response of CDW conductors to 

combined strong radio-frequency and de electric fields. An introduction to relevant 

experimental results and theoretical models is to be found in Chapter 5. Superconductors 

are not discussed in Part 2. 
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2. Far infrared equipment 

At far-infrared (FIR) frequencies, it is not possible to directly measure the dielectric 

response function of a material. The reflectance, transmittance or absorption must be 

measured. The dielectric response function is then deduced using linear response theory. 

Since CDW conductors have highly anisotropic conductivity, it is necessary to use 

polarized radiation in order to deduce their dielectric properties. This chapter describes the 

apparatus used to measure the polarized reflectance of the charge-density-wave conductor 

(TaSe4)2I and the high-Tc superconductors Lat.ss(Sr)o.tsCu04 and Lat.ssCao.tsCu04. In 

section 2.1, the problems associated with polarizing radiation in light pipe optics are 

discussed. In section 2.2, a transmittance-reflectance apparatus ("the T-R apparatus") is 

described. Using the T-R apparatus, the polarized reflectance or transmittance of a sample 

may be measured as a function of temperature from 5K to 300K. In section 2.3, 

configurations of the spectrometer and detector that are useful with the T-R apparatus are 

discussed. 

2. 1. Polarization in light pipe optics 

The polarizers used in these experiments are made of a grid of finely-spaced parallel 

wires. Radiation polarized (parallel/perpendicular) to the wires is (reflected/transmitted). 

An ideal polarized transmittance experiment is shown in Fig. 2-la. Unpolarized radiation 

is polarized by the first wire grid polarizer. The polarized radiation impinges on a second 

polarizer that fills the entire beam. The transmitted radiation is then detected. Multiple 

reflections between the sample and polarizer do not occur in an ideal experiment. When the 

polarizers are crossed, as in Fig. 2-1 a, all the radiation reaching the second polarizer is 

reflected back and transmitted away from the detector by the first polarizer. No radiation 

reaches the detector. 

Far-infrared radiation is typically guided by light-pipe optics. If care is not taken, a 

polarized transmittance or reflectance experiment in a light-pipe optical system will be far 

'' 
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from ideal. Consider the transmittance experiment shown in Fig. 2-1 b. In this case, the 

second polarizer fills only about 10% of the area of the light pipe. The path of a typical ray 

is shown inside the light pipe. After being polarized by the first polarizer, the ray may 

bounce off the light pipe wall, possibly suffering a change of polarization.( In the f/1.5 

optics used for my experiments, a typical ray will bounce off the walls of the 1-cm light 

pipe once every few centimeters.) On reaching the second polarizer oriented perpendicular 

to the first one, part of the depolarized ray will be transmitted and reach the detector. The 

remainder will bounce around in the cavity formed by the two polarizers, causing yet more 

radiation to reach the detector. The problem may be exacerbated by the highly reflective 

metal used to block the light pipe. However, some radiation would reach the detector even 

if the second polarizer filled the light pipe. 

Fig. 2-2 shows experimental data for a configuration like that in Fig. 2-b. The 

transmitted intensity in the 50-300 cm·l band for crossed and parallel polarizers is plotted 

as a function of the distance d between polarizers. For d=O (polarizers touching), the 

crossed polarizer configuration transmits less than 10% as much as the parallel polarizer 

configuration. However, the transmittance in the (crossed,parallel) polarizer configuration 

(increases,decreases) rapidly as the distanced is increased. For a separation of only 2 em 

(only twice the diameter of the light pipe), the polarization state of the radiation is already 

uselessly scrambled. 
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ideal real 

Fig. 2-1: (a) Ideal transmission experiment through crossed polarizers. The arrows 
represent light rays. The second polarizer reflects all rays. The reflected rays are perfectly 
transmitted away from the detector by the first polarizer. No radiation reaches the detector. 

(b) Light pipe transmission experiment through crossed wire grid polarizers. The 
distance between polarizers is d. If d is large enough, a typical ray reflects off the walls of 
the light pipe between the two polarizers. The reflection changes the polarization state of 
certain rays. Thus, even for crossed polarizers, some radiation will reach the detector. 
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m crossed polarizers 

• parallel polarizers 

Fig. 2-2: Intensity of radiation reaching a pyroelectric detector vs. distanced between 
crossed and parallel polarizers. The experimental configuration was like that in Fig. 2-1 b. 
The inner diameter of the circular polished brass light pipe was 1 em. The wire-grid 
polarizers were manufactured for the Richards group by Hughes Corporation. Even for 
d=2 em , the polarization was severely degraded. 
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2. 2. The Transmittance-Reflectance Apparatus 

2.2.1. Optics 

The polarization problem for a light-pipe transmittance experiment is easily solved by 

minimizing the distance between the sample and polarizer. However, the same solution is 

not viable in a reflectance experiment. If the polarizer is directly on top of the sample, then 

the reflected radiation reaching the detector will have a large (>50%) background 

component due to the reflectance off the polarizer itself. 

A solution to the polarization problem for reflectance is shown in the diagram of the T

R apparatus, Fig. 2-3. The polarizer is placed about 1 em above the sample. A septum 

prevents light reflected off the polarizer from reaching the detector. Between the polarizer 

and the sample, the walls of the light pipe have been cut away. Light baffles in the space 

between the bottom of the light pipe and the sample prevent stray reflections from the T-R 

apparatus chamber from reaching the detector. The light baffles are made of three layers of 

molded black Stycast epoxy #2850 FT (a good FIR absorber). The light reaching the 

sample is >96% polarized in this apparatus I. The costs of the high degree of polarization 

are threefold: a large amount of radiation is lost in the light baffles, the sample is 

inhomogeneously illuminated, and light scattered to large angles by surface roughness is 

lost in the light baffles rather than being collected by the light pipe. 

2.2.2 Cryogenics 

The T-R apparatus is built around an evacuated Air Products LT 3-110 continuous flow 

Helium cryostat. Samples are placed on a three-position sample slide. Cold samples may 

be moved in- and out- of the FIR beam by a shaft connected through a vacuum seal to the 

outside world. To minimize the heat leak from room temperature, the shaft may be 

disconnected from the sample slide once the slide is in the desired position. The sample 

slide is thermally connected by a Copper braid directly to the coldfinger of the cryostat. 

The sample temperature is measured by a calibrated diode placed directly on the sample 
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slide2. Because of large thermal time constants, it is necessary to control temperature from 

a second diode. The temperature-control diode is in a hole drilled through the coldfinger, 

and adjacent to a heater. Temperature may be controlled by a standard proportional 

temperature controller. Sample temperatures as low as 5K have been measured in the T -R 

apparatus. Lower temperatures should be achievable by pumping on the Helium 

transferred to the coldfinger. 

2. 3. Spectrometer and detectors 

The source of radiation for FIR experiments in the Richards lab is a step-and-integrate 

Michelson Fourier spectrometer3. The wavelength range covered in a given experiment is 

determined by choice of an appropriate beam-splitter. Each beam splitter covers a roughly 

a factor of four in frequency. The measurements reported here are between 4 cm-1 and 350 

cm-1. 

The detector is a composite bolometer cooled4 to about 1.5K by a pumped Helium 

bath. The radiation load on the bolometer is in all cases dominated by room-temperature 

black-body radiation. Cold low-pass ftlters are typically placed in front of the bolometer to 

enhance bolometer sensitivity by limiting room-temperature radiation loading. For 

minimum bolometer loading, a different low-pass filter is required for each beam-splitter. 

In a previously built detector cryostat, six filters were arranged on a wheel immersed in the 

Helium bath directly above the bolometer. Using this cryostat with judiciously chosen 

filters in conjuction with the T-R apparatus allows maximum flexibility. Without warming 

up either the sample or the detector, different frequency ranges may be covered by simply 

changing the beam splitter in the Michelson interferometer and rotating in the appropriate 

filter on the cold filter wheel. (The trick is to get the Michelson Fourier spectrometer, the 

detector and the T-R apparatus all working at the same time). Table 2-1 lists the filters used 

in my experiments. 
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Sample chamber detail 

Fig. 2-3: Schematic diagram of the transmittance-reflectance apparatus. With this 
apparatus, polarized reflectance and transmittance of a sample may be measured as a 
function of temperature from 5K to 300K. 

., 
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Filter Beams litter 

Glass beadt 25 cm-1 5, 10 mil 

Perkin-Elmer 1049 60 cm·1 2mil 

Perkin-Elmer 1048 100 cm-1 1 mil 

Z-cut quartz (wedged 250cm·1 
-- 0.5 mil 

Black polyethylene 400cm·1 0.25 mil 

Table 2-1: Low-pass filters mounted in the cold filter wheel above the bolometer, 
approximate cut-off frequencies and appropriate beam splitters. All filters were backed 
with black polyethylene to avoid any radiation leakage at frequencies >400 em· I. 

The bolometer that I used was optimized for relatively low backgrounds. In order to 
avoid overloading the bolometer in high backgrounds, it was necessary to stop down the 
beam with cold apertures for the Z-cut quartz and black polyethylene filters. This explains 
the relatively poor signal-to-noise ratio in spectra recorded above 250 cm·l. 

t Glass beads embedded in a clear polyethylene matrix. This filter was kindly supplied 
by Prof. Andrew Lange. 
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3 • Far infrared spectroscopy of (TaSe4)21 

3 .1. Introduction 

Over the past 15 years, far-infrared (FIR) spectroscopy has been an invaluable tool for 

the study of quasi-one dimensional materials that undergo a Peierls transition to the charge 

density wave (CDW) state 1,2.3.4. Based on the theory of Lee, Rice and Anderson(LRA)5, 

one expects a large IR-active response due to the pinned mode of the CDW at frequencies 

low compared to ordinary phonons and electronic excitations. Large oscillator strength has 

been found in both the FIR 1-4 and microwave 6,7,8 frequency ranges in several CDW 

systems. In both frequency ranges, part of this oscillator strength has been attributed to the 

pinned mode of the CDW. Unfortunately, FIR and microwave measurements reported to 

date have not provided a complete and consistent dielectric function in the millimeter and 

submillimeter wave region, and it is not yet clear whether the FIR and microwave modes 

are distinct. In this chapter, we present FIR data that unambiguously shows that, in the 

CDW material (TaSe4)2I, the microwave and FIR modes are distinct. Therefore, the 

assignment of giant FIR modes observed in other CDW materials to the pinned mode must 

be re-examined. 

3. 2. Experimental methods 

We have measured the polarized reflectance of (TaSe4)2l for frequencies from 8 to 350 

cm·l and temperatures from lOK to 290K. The (TaSe4)2I unit cell has tetragonal 

symmetry, and hence there are two principal optical axes. The sample used for the 

reflectance measurements was a mosaic of several single crystals carefully oriented along 

both principal axes9. The crystals were grown in our laboratory and had large faces that 

were typically 2mm by 5 mm. Th~ sample was placed in a continuous transfer Helium 

cryostat adapted in our laboratory for use with a Michelson Fourier spectrometer to 

measure polarized reflectance. Radiation was detected using a low noise composite 

bolometer operated at 1.5K. At each fixed sample temperature, the sample spectrum was 
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divided by the spectrum of a polished brass surface. The details of the experimental 

apparatus have been described in Chapter 2. 

After all data had been measured, gold was evaporated onto (only) the crystal faces of 

the mosaic. The reflectance was measured after each of several gold evaporations and 

normalized to the brass surface. The reflectance after each of the last two evaporations was 

identical, indicating that sufficient gold had been deposited. From 4 to 15 cm-1, the 

reflectance of the gold-evaporated sample decreased with increasing frequency. Between 15 

and 150 cm-1, the reflectance of the gold-evaporated sample was independent of frequency. 

To properly normalize the temperature-dependent reflectance spectra of (TaSe4)zi for 

frequencies below 15 cm-1, these spectra were divided by the spectrum of the gold

evaporated sample. Above 15 cm-1, spectra were simply divided by the average value of 

the frequency-independent portion (between 15 and 150 cm-1) of the reflectance of the 

gold-evaporated sample. 

3 o 3 o Experimental Results 

Fig. 3-1 presents reflectance curves for (TaSe4)zl at various temperatures for radiation 

polarized parallel to the c-axis. At room temperature the reflectance is high and fairly 

featureless except for a slow decrease with increasing frequency from 0.9 at 30 cm-1 to 0.7 

at 300 cm·1. As the sample is cooled through the Peierls transition temperature Tp=265 K, 

the reflectance between 30 and 90 cm-1 begins to increase, and the decrease in the 

reflectance near 100 cm-1 begins to sharpen. These changes signal the onset of an IR active 

mode associated with the CDW. As the sample is cooled further, the decrease in 

reflectance develops into an extremely sharp edge, with the reflectance at 110K dropping 

from near unity at 92 cm-1 to 0.2 at 96 cm-1. The reflectance changes little between 11 OK 

and 10 K. Fig. 2 (solid line) shows the measured reflectance at IOK. The reflectance rises 

from 0.9 at low frequencies to near unity at 40 cm·1 and remains near unity until 94 cm-1, 

with the exception of a small dip at 79 em· I. At frequencies beyond the reflectance edge, 
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two sharp features are evident, at 143 and 190 cm-1. Between 200 cm-1 and 350 cm-1 the 

reflectance slowly rises with no additional sharp features and then levels off at a value of 

0.58±0.02, consistent with higher frequency measurements10. 

Fig. 3-3 presents the reflectance of (TaSe4)2I at room temperature and at lOK for the 

electric field polarized perpendicular to the c-axis. Whereas the parallel reflectance looks 

metallic at room temperature (high reflectance, all phonons screened by free carriers), the 

perpendicular spectrum looks more like that of a semiconductor (low reflectance, phonons 

visible at room temperature). The perpendicular reflectance shares no common features 

with the parallel reflectance described above. At room temperature, the reflectance 

decreases from 0.44 at 8 cm-1 to 0.40 at 40 cm-1. There is a small bump centered at 47 cm-

1, and a larger _one centered at 71 cm-1. Above 80 cm-1 the reflectance drops to roughly 

0.25. There is another bump at 118 cm-1. Above 120 cm-1, the reflectance decreases 

gradually to 0.2±0.02 at 300 cm-1. At 10K, the reflectance looks similar to the room 

temperature reflectance. The reflectance at 8 cm-1 is lower at 10K ( 0.38±0.02 at 9 cm-1) 

than at room temperature (0.44 ± 0.02 at 9 cm-1). This is probably because the all of the 

free carriers present at room temperature have been frozen out at low temperatures. The 

bumps at 47, 71 and 118 cm-1 have all sharpened into features with the characteristic shape 

of weakly damped phonons. Additional small features are now visible at 64 and 79 cm-1. 
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Fig. 3-1: FIR reflectance of (TaSe4)2I for electric field polarized parallel to the highly
conducting c-axis at selected temperatures. 
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Fig. 3-2: FIR ret1ectance of (TaSe4)2l at 10 K for electric field polarized parallel to c
axis (solid line) and oscillator fit (dashed line) calculated from the parameters of Table 3-1. 
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3. 4. Oscillator fits 

In order to extract the complex dielectric function €=£1+i€2 from the reflectance data, 

we have fitted the perpendicular and parallel reflectances to standard oscillator models. The 

dielectric function is represented as sum a of Lorentz oscillators and a background dielectric 

constant Eoo: 

L 1-(...L/ 
€I(t) = Eoo + Sn f 2 ;Tn f2 

o-<rT ~ ) + f 4 2 
n Tn 'tn 

(3-1) 

n 

L
- f 

S . fTn2'tn 
n f 22 f2 
(1-(fT ~ ) + f 4 2 

n Tn 'tn 

(3-2) 

n 

where the TO frequency, static polarizability, and damping time of the nth mode are 

respectively fTn. S0 , and 't0 • The oscillator strength Op2 = (21tfTn)2S is related to the 

fundamental parameters of a mode by the formula 

47tne*2 
(""\ 2 - ---.-.:."p - m* (3-3) 

where n is the density of oscillators, e* is the charge on the mode and m* is the mode 

mass. 

The pattern of a rise in the parallel-polarized reflectance from 0.9 at 20 cm-1 to near 

unity above 40 cm-1 followed by a reflectance edge suggests the presence of a mode with a 

giant oscillator strength 11 in the region between 25 and 50 cm-1. The other peaks in the 

spectrum (for example at 143 and 190 cm-1) indicate modes with much smaller oscillator 

strength. The dashed line in Fig. 3-2 shows the fit to the reflectance computed from a 



22 
model dielectric function. This dielectric function is dominated by a mode with fr-=38 cm-

1, f-rt=13 and S=500. Changes in the parameters of the 38 cm-1 mode of only 5% visibly 

degrade the quality of the fit. Three other modes with fT = 79, 149 and 194 cm-1 have 

been added to model smaller features. Table 3-1 lists all the parameters used in the 

oscillator fit. Our fit is not at all sensitive to the existence of a mode with S=104 at 35 

GHz, as observed using microwave techniques 7. This proves that our data are consistent 

with lower frequency measurements. 

Fig. 3-4 shows E1 and E2 calculated from Eqs. 1 and 2 using the fitted parameters. 

Peaks in E2 (and hence the conductivity) occur at each of the mode frequencies, the largest 

being at 38 cm-1. At frequencies much less than the 38 cm-1 resonance peak, E1 of Fig. 3-4 

is approximately equal to 600, which is consistent with the high reflectance at low FIR 

frequencies. Between 38 and 100 cm-1, the dielectric function is negative, giving rise to 

the near unit reflectance over this frequency range. The small dip at 79 cm-1 results from a 

weak mode at that frequency. At 100 cm-1, the dielectric function crosses the real axis, 

leading to the sharp reflectance edge observed in Fig. 3-2. 

The dashed line in the lower trace of Fig. 3-3 is an oscillator fit to the perpendicular 

reflec~ce. The parameters of the fit are listed in Table 3-1. The most prominent feature in 

the perpendicular spectrum is fit by an oscillator with S=3.8 and fT = 71 cm-1. All other 

features have S:s;l. ·The total FIR oscillator strength in the perpendicular spectrum is at low 

temperatures at least 30 times smaller than the FIR oscillator strength in the parallel 

spectrum. The low oscillator strength perpendicular to the c-axis is consistent with the 

highly one-dimensional band structure of this material. 
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Table 3-1: Parameters used in the oscillator fits 

TO frequency fT ( cm-1) Static polarizability S Dimensionless lifetime fyt 

a) E parallel to c 

38 500 13 

79 1.5 25 

149 2.5 50 

194 4 50 

b) E perpendicular to c 

47 .5 14 

64 1 19 

71 3.8 21 

79 . 1 24 

118 .3 35 

Table 3-1: Parameters of the oscillator fits to the parallel and perpendicular reflectance. 
For the parallel and perpendicular fits, Eoo is respectively 75 and 9.7. For comparison, the 
optic mode in Csl has fT = 65 cm-1 and S=4. 
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3. S. Analysis: a new picture of the CDW excitation spectrum 

Our measurement of the parallel polarized FIR spectrum of (TaSe4)2I completes the 

excitation spectrum for this material, and for the first time we have a complete and 

consistent dielectric response function from de to the Peierls gap of a sliding CDW 

compound. The contributions to the dielectric function in the CDW state are as follows. A 

broad peak with a temperature dependent frequency12 appears below 1MHz and has been 

associated with dielectric relaxation of the CDW. A large, underdamped resonance 7 at 35 

GHz=l.2 cm-1 has been convincingly attributed to the pinned mode of the CDW. At 38 

cm-1 we have observed the giant FIR resonance described above. The 38-cm-1 resonance 

has 80 times the oscillator strength of the 1.2-cm-1 resonance. From 78 to 194 em· I we 

observe a number of weaker resonances. Finally, the Peierls gap has been observed9,13 

near 2000 cm-1. Table 1 is a summary of the principal features of the dielectric functions of 

(TaSe4)2l, Ko.3Mo03, and NbSe3. 

A giant FIR resonancel.3 at 15 cm-1, similar to that in (TaSe4)2I, has been reported in 

Ko.3Mo03. The FIR resonance was originally assigned to the pinned model. Howeve~, 

the presence of a distinct mode near 3 cm-1 was later deduced3 by combining 40 K 

microwaveS and 2K FIR data3. The assignment of the 3 cm-1 mode to the pinned mode3 is 

consistent with assignments for the microwave modes in other CDW materials6,7. 

In NbSe3, the pinned mode appears at microwave frequencies6 as an extremely 

overdamped mode with width 60 GHz. A large temperature dependent reflectance edge2 

similar to that in Fig. 1 has also been observed at 140 cm-1 and has been interpreted as 

arising from a combination of free carriers and the pinned mode. However, the parameters 

for the pinned mode extracted under this interpretation are inconsistent with the microwave 

data. A possibility that should be investigated is that the 140 cm-1 edge arises from a 

combination of free carriers and a giant FIR mode. 



Table 3-2 

Radio Frequency: a Microwave: b Far Infrared: c Near Infrared:d 

Dielectric relaxation Pinned phason Kohn Anomaly mode? Peierls gap 

(MHz) (GHz) (cm-1) (cm-1) 

(TaSe4)2l 0.2 35 38 2000 

Ko.3Mo03 0.7 84 15 1200 

NbSe3 19 4.3 <140? 560 

Table 3-2: Dielectric response of COWs for frequencies up to the Peierls gap. 
a Ref. 11 
b (TaSe4)2l: Ref. 7; NbSe3: Ref. 6; Ko.3Mo03: Ref. 3 
c Ko.3Mo03: Refs. 1 and 3; NbSe3: Ref. 2. 
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d (TaSe4)2l: Ref. 10; Ko.3Mo03: Ref. 1; NbSe3: Tunneling measurement of A. 
Fournel, J. P. Sorbier, M. Konczykowski, and P. Monceau, Phys. Rev. Lett. 57, 2199 
( 1986). Ref. 2 reports a value of 190 cm-1. 
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A giant Kohn anomaly drives the Peierls transition in COW materials14. In the simplest 

picture, an acoustic phonon with wavevector q=2kp softens as the Peierls transition 

temperature is approached from above. The phonon frequency goes to zero at the transition 

temperature, and the static COW distortion of the electrons and lattice sets in. In the seminal 

work on the excitation spectrum of the COW state, Lee, Rice and Anderson5 predicted two 

branches of excitations for a COW: an acoustic or phason branch consisting of excitations 

of the phase of the COW, and an optical or amplitudon branch consisting of excitations of 

the COW amplitude. In the theory of LRA, the zero-wavevector phason is totally 

antisymmetric and hence only IR-active, while the zero-wavevector amplitudon is totally 

symmetric and hence only Raman-active. The presence of two IR-active modes of the 

COW with large oscillator strength in (TaSe4)2l requires a modification of this standard 

picture. We discuss two possibilities. 

A second IR active mode that is generic to all COW systems is the optical phason, also 

called by Walker15 the first harmonic phason. The optical phason may be simply 

understood if one draws a parallel between the modulated electronic density in a COW and 

the more familiar case of alternating positive and negative ions in an ionic crystal like NaCL 

The peaks and troughs in the modulated electronic density are mapped onto the Na and Cl 

ions. In this analogy, the q=O acoustic phason corresponds to translations of the entire 

NaCI crystal, the amplitudon would correspond to a mode in which charge is transferred 

between Na and Cl ions, and the optical phason would correspond to the familiar IR active 

optic mode of NaCl. In the same way one would calculate the frequency of the zone center 

optic phonon mode in a 1-d diatomic crystal with nearest neighbor interactions, one can 

estimate the frequency of the optical phason from the slope of the dispersion relation and 

the COW wavevector 2kp. The slope of the acoustic phason branch is given by LRA as 

Vph=..J (mbfmFr)VF, where mb is the band mass, mpr the Frohlich mass, and VF the Fermi 

velocity. We assume mb=free electron mass, m*/mc=l04 from microwave measurements7, 
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vp=hkp/m, and 2kp =21t/14A from x-ray measurements16. The calculated frequency of the 

optical phason is then (2/1t)(2kpvphl'27t)=39 cm-1, remarkably close to the 38 cm-1 resonant 

frequency derived from our measurements. 

Unfortunately, the optical phason is not expected to have a very large oscillator 

strength. The amplitude of the charge modulation at low temperatures in (TaSe4)2I is about 

5%. Returning to the NaCl analogy, the optical phason corresponds to a lattice with each 

ion containing 5% of the charge in the unit cell. We find that, in order for the optical 

phason explanation to be correct, the effective mass of the 38 cm-1 mode17 would have to 

be an unreasonably small m*=0.5Ille. Since the 38 cm-1 mode is a coupled electron-lattice 

mode, its effective mass should be between the electronic and ionic masses. 

Sugai et. al.18 have suggested that the simplest picture of the Peierls transition is not 

valid in (TaSe4)2I. Fig. 3-5 (from Ref. 18) is a schematic diagram of the electronic and TA 

phonon dispersion relations for (TaSe4)2I. The conduction band in (TaSe4)2I is nearly 

filled, so kp is near the edge of the first Brillouin zone. The giant Kohn anomaly at 2kp is 

in the second Brillouin zone. In the extended zone scheme, it is an optic mode at 2kp 

which begins to soften well above the transition temperature Tp. In the reduced zone 

scheme, this optic mode (which I will call the Kohn anomaly mode) has wave-vector 2rc/a-

2kp, where a is the lattice constant of (TaSe4)2l. As the Kohn anomaly mode softens, its 

frequency must approach the frequency of the acoustic mode at 27t/a-2kp. When the 

acoustic and optic modes at 27t/a-2kp are sufficiently close in frequency, they hybridize 

and repel one another. The mode that is finally driven to zero frequency to form the static 

CDW is not the Kohn anomaly mode, but a hybrid mode mostly derived from the acoustic 

mode at 2rc/a-2kp. The optical phason is 2kr away from point a, at the points labeled "op" 

in the reduced and extended zone drawings. 

In the Sugai et. al. picture, unlike the standard LRA picture, the Kohn anomaly mode is 

not the lowest lying IR-active mode. The Sugai et. al. picture is supported by their Raman 

data. They have observed a very strong, temperature-dependent Raman mode with 

.• 
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(a) 

n/4d nt2d Jnt4d n/d 
WAVE VECTOR 

Fig. 3-5: Schematic dispersion relation of the conduction band (a) and the TA phonon 
branch (b). A fourfold periodicity in the Ta-Ta distance above T = Tp causes the edge of 
the Brillouin zone to be at 7t/4d above T=T P• where d is the mean Ta-Ta distance. The 
Fermi wave-vector is nearly at the edge of the Brillouin zone. In the CDW state, 
antisymmetric IR-active CDW phase modes and Raman-active CDW amplitude modes 
occur at points a,b,c and d at wavevector q=7t/2d. From Ref. 18. 
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frequency 87 cm-1 at T=25K. They argue that this mode corresponds to the symmetric TO 

amplitude mode derived from the Kohn anomaly mode (mode b in Fig. 3-5). Two weaker 

temperature-dependent Raman peaks, with frequency 153 and 197 cm-1 at T=25K, are 

assigned to other symmetric TO amplitude modes at q=21t/a-2kp in the reduced zone 

scheme (modes c and din Fig. 3-5). Associated with each symmetric amplitude mode, 

there should be an antisymmetric phase mode at lower frequencyl9. In the picture of Sugai 

et. al., the modes we observe at 38, 149 and 194 cm-1 are naturally assigned to the 

antisymmetric phase modes associated with points b, c and din Fig. 3-5. The 35-GHz 

microwave mode is assigned to the antisymmetric phase mode associated with point a in 

Fig. 3-5. No Raman-active mode has been seen at 38 cm-1, indicating that this is a totally 

antisymmetric mode. We note that a Raman-active mode associated with point a in Fig. 3-5 

is expected in the Sugai et. al. picture. However, this frequency is too low to be observed 

in conventional Raman scattering experiments. 

The Kohn anomaly mode is expected to have a large oscillator strength. It is the 

phonon mode most strongly coupled to the electrons in (TaSe4)2I. If the Brillouin zone 

were twice as large, the Kohn anomaly mode would soften to zero frequency at the Peierls 

transition temperature Tp and give birth to the LRA amplitudon and acoustic phason in the 

CDW state. LRA calculated the oscillator strength of the acoustic phason using Eq. 3-3 

with e*=e, the full electronic charge. The effective mass of the 38 cm-1 mode derived from 

Eq. 3-3 with the full electronic charge is m*=200mc, a plausible value which is between the 

electronic and ionic masses. 

The picture of Sugai et. al. suggests that all CDW materials with 2kp in the second 

Brillouin zone should have a linear response spectrum similar to that of (TaSe4)2I. The 

blue bronze Ko.3Mo03 has 2kF in the second Brillouin zone. A giant FIR mode at a higher 

frequency than the pinned mode has been observed in Ko.3Mo03. NbSe3 has 2kp in the 

first Brillouin zone, but the presence of a giant FIR mode is unclear because of the large 

concentration of free carriers at low temperatures. TaS3 has 2kp in the first Brillouin zone 

.. 
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and is an insulator at low temperatures. TaS3 should not have a giant FIR mode in the 

picture of Sugai et. al., but it should have an optical phason. A measurement of the FIR 

linear response spectrum of TaS3 is thus important to an understanding of the linear 

response of CDW conductors20 . 

By completing the excitation spectrum of (TaSe4)zl, we have demonstrated 

conclusively the presence of an IR-active mode of the CDW with large oscillator strength 

and with frequency between the pinned mode and the Peierls gap. Combined with Raman 

data and evidence of similar modes in other CDW systems, our results require a signi~cant 

modification of the standard LRA picture of the CDW excitation spectrum. Giant FIR 

modes previously observed in other CDW conductors have been assigned to the pinned 

mode. The assumption was that the pinned mode is the only candidate for a giant FIR" 

mode in a CDW conductor. These assignments, especially in materials which have 2kF in 

the second Brillouin zone (for example, KCP)21 should be re-examined. 



References 

1 G. Travaglini and P. Wachter, Phys. Rev. B 30, 1971 (1984) 

2 W. A. ~hallener and P. L. Richards, Solid State Commun. 52, 117 (1984) 

3 H. K. Ng, G. A. Thomas and L. F. Schneemeyer, Phys. Rev. B 33, 8755 (1986) 

4 P. Briiesch, S. Strassler and H. R. Zeller, Phys. Rev. B 12, 219 (1975) 

5 P. A. Lee, T. M. Rice and P. W. Anderson, Solid State Commun. 14,703 (1974) 

6 S. Sridhar, D. Reagor and G. Gruner, Phys. Rev. Lett. 55, 1196 (1985) 

7 D. Reagor, S. Sridhar, M. Maki and G. Gruner, Phys. Rev. B 32, 8445(1985) 

32 

8 R. P. Hall, M. S. Sherwin and A. Zettl, Solid State Commun. 55, 307 (1985); S. 

Sridhar, unpublished. 

9 The mosaic was constructed as follows. The crystals were placed face down on a 

glass slide inside of a 1-cm diameter metal ring. Warm (but not liquid) wax was pressed 

onto the backs of the crystals. The wax and a small amount of (TaSe4)2l were scraped 

away from the backs of the crystals. Stycast epoxy was then poured into the metal ring 

over the backs of the crystals. The wax prevented the stycast from covering the 

experimentall-important face-down crystal surfaces. When the epoxy was set, the epoxy

wax-sample plug was pushed out of the metal ring. The experimentally-important crystal 

surfaces were clean and coplanar. The plug was then pressed right-side up into a hole in a 

copper sample holder. The tight fit of the plug and the Stycast contact to the (TaSe4)2l 

crystals ensured good thermal contact between the crystals and the cold stage. 

When it came time to evaporate gold onto the sample surface, the wax was a nuisance. 

It was necessary to cool the sample in the evaporator bell jar in order to prevent the wax 

from melting or evaporating. After the gold evaporation, gold was (carefully) scraped from 

the wax in the cracks between the crystals. 



33 

10 H. P. Geserich, G. Scheiber, M. Diirrler, F. Levy and P. Monceau, Physica 

1438, 198 (1986). 

11 The 10% rise in the FIR reflectance between 8 and 50 cm-1 is important }n obtaining 

the fitting parameter fo=38 cm-1 for the giant mode. Experienced FIR spectroscopists are 

correctly suspicious of such small effects in this frequency range. We have no reason to 

doubt the validity of our data between 8 and 50 cm-1. The rise is statistically significant 

(much larger than the noise fluctuations between 15 and 40 cm·l ). The only obvious 

source of frequency-dependent systematic errors is diffraction from the surface of the 

mosaic. The large size of the crystals making up the mosaic, and the frequency

independence of the reflectance of the gold-evaporated sample in this frequency range, 

make that possibility seem unlikely. However, there may remain a few doubting Thomases 

who are not convinced. Assuming that the data below 40 cm·l were spurious, they would 

say that say that the zero-crossing of Et at 100 cm·l could be the LO mode of a large-

oscillator strength mode whose TO mode has been observed in the microwave at 35 GHz 7. 

Using the Lyddane-Sachs-Teller relation, we can show this assignment to be impossible. 

The dimensionless oscillator strength S = Eo - Eoo for the microwave mode is 1 ()4. Based on 

the reflectivity of 0.6 at 300 cm·l, we deduce Eoo= 75. The LST relation 

(3-3) 

predicts the longitudinal mode frequency WL = 12.5 cm·l, eight times lower than the 

observed reflectance edge. The existence of a mode near 40 cm·l is also supported by 

transmittance data on a sample of order 100 microns thick. The transmittance decreases 

from 5% at 10 cm·l to less than 0.5% at 40 em· I 



34 

12 R. J. Cava, R. M. Fleming, P. B. Littlewood, E. A. Rietmann, L. F. Schneemeyer 

and R. G. Dunn, Phys. Rev. B 30, 3228. The frequencies in Table 3-2 are for T!I'p=0.5) 

13 J. Brill 

14 For reviews of the mean field theory of the Peierls transition and the CDW 

excitation spectrum, see G. A. Toombs, Physics Reports 40, 181 (1978); A. J. Berlinsky, 

Rep. Prog. Phys. 42, 1243 (1979) 

15 M. B. Walker, Can. J. Phys. 56, 127 (1978) 

16 H. Fujishita, M. Sato, S. Sato and S. Hoshino, J. Phys. CIS, 1105 (1985) 

17 Effective mass obtained by solving Eq. 3-3 form using n=l.6xi021 cm-3 (the 

electronic density) and e*=0.05e, where e is the electronic charge. 

18 S. Sugai, M. Sato, and S. Kurihara, Phys. Rev. B 32, 6809 (1985) 

19 Ref. 5. See also W. A. Challener, Ph. D. Thesis (1983), 

20 W. N. Creagor, P. L. Richards and A. Zettl, measurement in progress. 

21 KCP was extensively studied in the 1970's. KCP has 2kp in the second Brillouin 

zone (Phys. Rev. B 8, 571 (1973)). A giant FIR mode was observed in KCP at 15 cm-1 

(Ref. 4). To my knowledge, detailed frequency-dependent conductivity studies have not 

been performed below 3 cm-1. In the picture of Sugai et. al., both a FIR and a microwave 

mode are expected. 



35 
4 • Far infrared optical properties of polycrystalline samples of the bigh-

T c superconductors Lat.ssSro.1sCu04 and La1.ssCao.1sCu04. 

4 .1. Introduction 

A vigorous research effort into the electrodynamics of high-Tc superconductors has 

been fueled by the great scientific and technological importance of this subject. The 

existence and magnitude of the superconducting energy gap are crucial scientific issues that 

have traditionally been illuminated by far infrared (FIR) spectroscopy. The possibility of 

devices that operate with low resistive loss in the 100-1000 GHz frequency range at liquid 

nitrogen temperature is of technological importance. In this chapter we use experimental 

and theoretical results on the temperature dependence of the FIR reflectance of 

polycrystalline Lat.Ss(Sr,Ca)o.IsCu04 to address the following questions. First, can one 

extract an energy gap from the FIR reflectance of high-Tc superconductors? Second, how 

well do the temperature dependent electrodynamics of the BCS theory fit high-Tc 

superconductors? Third, do the ac losses for frequencies much less than the energy gap 

predicted by BCS scale with temperature as predicted by BCS? 

Although the mechanism for superconductivity in high-Tc superconductors is not yet 

clear, experiments have provided important guidelines. Measurements on Josephson 

junctions I indicate that current is carried by pairs of electrons. However, the absence of an 

observable isotope shift2 in Tc in YBa2Cu307 and the small size of the oxygen isotope 

shift3 in Lat.ssSro.1sCu04 indicates that phonons alone probably do not mediate the 

pairing. It has been suggested that a BCS-like theory in which excitons or other relatively 

high energy excitations mediate electron pairing may apply4. The electrodynamics 

predicted by this class of theories should be close to that of BCS theory. In particular, a 

mean field treatment of these theories should predict an energy gap with a temperature 

dependence and magnitude identical to that predicted by BCS. The magnitudes of the 

energy gap extracted by tunneling for5 Lat.ssSro.tsCu04 and6 Y 1 Ba2Cu307 have been 
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4.5 to 9 and 3.7 to 5.6 respectively, consistent with a strong coupling pairing theory. In 

contrast, Anderson7 has suggested that there may be no observable energy gap in high-Tc 

superconductors if they are described by a resonating valence bond model. 

We begin with a review of relevant and sometimes conflicting interpretations of the FIR 

reflectance of polycrystalline Lat.ssSro.1sCu04. Many groups8-ll have observed a 

reflectance edge near 50 cm-1 in the superconducting state of polycrystalline 

Lat.ssSro.1sCu04. This edge was first assigned to the onset of absorption due to 

excitations across a superconducting energy gap. The magnitude of the energy gap 

extracted by the first such assignments8-10 was from 1.6 to 2.7 kBTc, considerably 

smaller11,12 than the BCS prediction of 3.5kBTc and the tunneling measuremems5. 

Recently, an entirely different mechanism for the 50 cm-1 edge in polycrystalline 

La1.ssSro.lsCu04 has been proposed by Bonnet. ai.l3 They have assigned this edge to a 

zero-crossing of the real part of the dielectric function £1, caused by a strong resonance at 

240 cm-1 and a weaker resonance at 500 cm-1. Under this interpretation, neitherthe 

existence nor the value of the energy gap are obvious from far infrared reflectance data. 

A priori, one might think that the temperature dependence of the 50 cm-1 reflectance 

edge could be used to distinguish between the hypothesis of an energy gap and the 

hypothesis of a plasmon. We report here measurements of the FIR reflectance of 

polycrystalline samples of Lat.ssSro.1sCu04 and Lat.ssCao.1sCu04. We have probed the 

temperature dependence of the AR reflectance of La1.ssSro.1sCu04. At temperatures well-

below Tc, we find a reflectance edge whose frequency scales with Tc in different materials. 

The frequency of this edge in a given material scales with temperature as the BCS gap. We 

also describe a model to determine the temperature dependence of the reflectance edge 

predicted by the plasmon hypothesis. The superconducting state is modeled using the 

temperature dependent theory of Mattis and Bardeen, which should hold for any mean field 

pairing theory of superconductivity, independent of the nature of the coupling. We find 
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that the plasmon and the energy gap hypotheses give nearly identical predictions for the 

temperature dependence of the frequency of the reflectance edge. The predictions for the 

temperature dependence for both theories agree with experimental results. We conclude 

that a mean field, BCS-like theory of the electrodynamics of high-Tc superconductors is 

consistent with the FIR data. However, it seems premature to deduce an energy gap from 

FIR data. 

The most technologically significant result of the FIR work described in this chapter is 

that our experimentally observed temperature dependence of the absorption in the 

superconducting state of polycrystalline La1.ssSro.IsCu04 for frequencies well below the 

reflectance edge seems well described by the temperature dependent Mattis-Bardeen theory, 

or equivalently by a two-fluid model. If this result holds for Y tBa2Cu307, it imposes 

constraints on the operating temperature of fast superconducting devices made from this 

material. 

4. 2. Experiment 

The samples used for the measurements reported here are 1 em diameter ceramic pellets 

of La1.ssSro.IsCu04 and Lai.ssCao.tsCu04 kindly provided by Prof. A. Stacy. The 

pellets were not polished before the optical experiments. Fig. 4-1 shows the magnetic 

susceptibility X(T) for the Sr doped sample. The susceptibility drops sharply as the 

temperature is decreased below T co = 36K, signaling the onset of the superconducting 

state. For the Ca doped sample, T co = 17K. At low temperatures the Sr doped sample 

showed a large volume exclusion of a magnetic field, indicating that a large fraction of the 

sample consisted of a superconducting phase. TheCa doped sample excluded only 1/5 as 

much of the magnetic field as the Sr doped sample. The details of the sample preparation 

have been described elsewhere8. The superconducting phase transition was also observed 

directly from the FIR measurements in the Sr doped sample. The reflectance near 15 cm-1 

began to increase sharply as 'a function of decreasing temperature at 37K± 1 K, (see Fig. 4-
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6). This temperature is in agreement with the value ofT co determined from X(T), and thus 

we scale all temperature and material dependent properties to T co· 
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Fig. 4-1: Magnetic susceptibility X vs. temperature for the Sr doped sample. The 
onset temperature Tc0 =36K. This data was provided by Prof. A. Stacy. 
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During the experiment, chopped radiation with a 10° angle of incidence was detected 

after a single reflection off the sample surface by a sensitive composite bolometer. The 

radiation source for the FIR experiments was a Michelson Fourier spectrometer. The 

sample was mounted in the transmittance-reflectance apparatus (see Chapter 2). The 

transmittance-reflectance apparatus was configured as in Fig. 2-3, except that no polarizer 

was in place. Light scattered by surface roughness was lost in the light baffles, not 

collected by the light pipe. The FIR system is described in detail in Chapter two. 

At each sample temperature for which a reflectance spectrum was recorded, the data 

were normalized to a polished brass mirror. After all measurements on Lat.ssSro.tsCu04 

had been performed, we attempted to correct our results for the effects of surface scattering 

by evaporating metal onto the sample surface and using the metallized sample as a 

reference. The reflectance of the metallized sample was independent of frequency for 

frequencies less than 60 cm·l, indicating that our data in this frequency range is not much 

affected by the roughness of the sample surface. Above 60 cm-1, however, the reflectance 

of the metallized sample decreased continuously with increasing frequency, indicating that 

our absolute reflectance data in this frequency range is significantly affected by surface 

scattering. Small cracks occurred in the sample surface just before metallization which 

prevented an accurate final normalization. However, the conclusions of this chapter are not 

affected by surface scattering: we are investigating changes in the reflectance as a function 

of temperature, and thus are relatively insensitive to temperature independent losses due to 

sample geometry. 

Fig. 4-2a shows the ratio RsfR.n of the superconducting to the normal state reflectance 

for Lat.ssSro.1sCu04. Here, Rs and Rn are the reflectances measured at 6K and 52K, 

respectively well below and well above Teo· RsfR.n is greater than one for frequencies less 

than 60 cm-1(=2.4kaTc0 (Sr)). As the frequency increases past 60 cm-1, Rs/Rn drops 

below unity, reaches a minimum at 70 cm-1, and then approaches unity from below. This 
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Fig. 4-2: The ratio RJRn of the superconducting to normal state reflectance as a 
function of frequency for polycrystalline Lat.ssSro.tsCu04 and Lat.ssCao.tsCu04.- A 
solid line has been drawn to mark Rs/Rn=l. The scale of Fig. 4-2b is expanded relative to 
that of Fig. 4-2a by the ratio of the superconducting onset temperatures 
T co(Sr){f co(Ca)=36K/17K, showing that the frequency of the characteristic features of 
RsfRn scales with T co· 

(a) Lat.ssSro.tsCu04: Rs and Rn are reflectances measured at 5K and 52K. The solid 
and dotted lines represent data from different experimental runs. 

(b) Lai.ssCao.tsCu04: Rs and Rn are reflectances measured at 9K and 24K, 
respectively. 



42 
behavior is consistent with that reported by many groups9-11,13. Fig. 4-2b shows the first 

published reflectance data for La1.ssCao.IsCu04. We have expanded the frequency scale 

of Fig. 4-2b relative to 4-2a by the ratio of the transition temperatures of the two materials 

T co(Sr)(f co(Ca)=36/17. The behavior of Rs/Rn is similar to that for the Sr doped material, 

with characteristic frequencies scaled by T co· Below 30 cm-1, Rs/Rn is greater than one. 

Between 30 cm-1(=2.4kBTc0 (Ca)) and 40 cm-1 (=3.2kBTc0 (Ca)), Rs/Rn drops below unity. 

The deviations of Rs/Rn from unity are smaller for the Ca than for the Sr doped sample. 

These differences may arise from the fact that, based on magnetic measurements, a smaller 

fraction of the Ca doped sample was of a superconducting phase. 

Fig. 4-3 shows a series of normalized reflectance spectra of La1.ssSro.1sCu04 for 

frequencies 10 to 90 cm-1 at selected temperatures above and below Te0 =36K. In the low-

temperature regimes well below Te0 , the reflectance follows a consistent behavior. At low 

frequencies, R is near unity and decreases only slightly with increasing frequency. At 

higher frequencies, R drops sharply at a characteristic frequency fo and begins to flatten out 

once again at an even higher characteristic frequency f1. At 6K, fo and f1 are clearly 

identified at 50 and 66 cm-1, respectively. Both fo and f1 decrease with increasing 

temperature above 6K. Above 36K, fo and ft are no longer clearly identifiable. At 52K, 

the reflectance R decreases smoothly with increasing frequency. Above 50K, the 

reflectance curVe was found to be rather insensitive to temperature. 

If one assumes (as is done in Refs. 8-12) that the real part of the dielectric function is 

negative throughout the FIR, then a general interpretation of the spectra in Figs. 4-1 and 2 

is straightforward. The reflectance feature windowed by fo and ft can be identified as the 

onset of photon absorption at the superconducting energy gap 2~. A similar interpretation 

is possible for the La1.ssCao.tsCu04 data shown in Fig. 4-2b. The fact that the frequency 

of these features in the two materials at temperatures much less than Teo scales with Teo is 

consistent with the energy gap hypothesis. As we shall see below, the 
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temperaturedependence of the reflectance edge is also consistent with the hypothesis of a 

BCS-like energy gap. 



44 

.... 
(1) 

a: 
La 1.as Sro.1s CuO 4 

30 60 

Frequency (cm-1
) 

Fig. 4-3: Reflectance of polycrystalline Lat.ssSro.1sCu04 at selected temperatures 
above and below T co· The temperature dependent reflectance edge has been interpreted as 
an energy gapa and as a plasma edgeb. A solid line marks R= 1. 

a Refs. 8-12 bRef. 13 
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4. 3. Model for the Reflectance Edge 

In the remainder of this chapter we construct a model to investigate the temperature 

dependence of the reflectance predicted by the plasmon hypothesis, and we compare its 

predictions to those of the energy gap hypothesis. We note that the temperature 

dependence of the plasmon hypothesis has not been investigated previously. Finally, we 

investigate the scaling of the reflectance of polycrystalline Lat.ssSro.tsCu04 near 16 cm-1 

(500 GHz) with temperature for both the energy gap and plasmon hypotheses. 

The interpretation of the normal state reflectance of polycrystalline samples of 

La t.ssSro.tsCu04 is complicated by the fact that the crystal structure of this material is 

highly anisotropic. The conduction electrons are thought to be mostly confined to sheets 

parallel to the a-b plane, with a relatively low conductivity perpendicular to the a-b plane. 

Two approaches have been taken to account for the effect of anisotropy on FIR spectra of 

polycrystalline samples, and these approaches yield different assignments for the observed 

features in the reflectance spectra. Thomas et. al.14 have argued that since the size of 

typical crystallites is much smaller than a wavelength at FIR frequencies, a long wavelength 

effective medium theory should apply. In such a theory, the reflectance is calculated from a 

dielectric function which is an average over all crystallite orientations. Under this 

interpretation, the 240 cm-1 resonance first reported by Bonn et. al. must have an extremely 

large oscillator strength and must have components both in the a-b plane and perpendicular 

to the a-b plane15. Furthermore, if one interprets the 50 cm-1 edge in the superconducting 

state as a plasma edge, this feature must also have components both in and out of the a-b 

plane. Schlesinger et. at16 have analyzed the spectra of their polycrystalline samples by 

using a short wavelength approximation and averaging reflectivities over different 

crystallite orientations, rather than averaging the dielectric function. This approach is 

combined with the assumption that the normal state reflectance of La1.ssSro.tsCu04 should 
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closely resemble that of LazNi04, a material of the same crystal structure on which FIR 

measurements of a single crystal have been made17. In LazNi04, there is a moderate 

oscillator strength resonance near 250 cm·l which has components only perpendicular to 

the a-b plane. Schlesinger et. al. assign the 240 cm-1 resonance to vibrations perpendicular 

to the a-b plane, and assign the temperature dependent reflectance edge near 50 cm-1 to a 

plasma oscillation also perpendicular to the a-b plane. The first infrared data on single 

crystals and oriented films of the related Y-Ba-Cu-0 compound show that the phonon 

peaks in that case are confined to the c-axis21. 

The analyses of Thomas et. al. and Schlesinger et. al. both assume a low frequency 

plasmon. The differences are that the two analyses give different assignments to the 

direction of the plasma oscillation, and different oscillator strengths for the 240 cm-1 mode 

are needed to fit the normal state spectra. In our modeling, since we are concerned with 

wavelengths larger than 50 microns (much greater than the size of the <lOJ.tm crystallites) 

we adopt a long wavelength approximation in which the reflectance is given by the standard 

formula R=l( E 112-1 )/( E 112+ 1 )12 where R is the reflectance and E= E 1 +i E2 is an average 

dielectric function. In order to convincingly model the reflectance in the normal state, it 

is necessary to consider the reflectance over a broad frequency range. We have chosen the 

best available data in each frequency range. We use our data in the 10 to 90 cm-1 range, 

those of Bonn et. al.13 (which are close to our reported data from 50 to 90 cm-1) from 90 to 

1000 cm-1, and those of Orenstein et. al.18 from 1000 to 24000 cm-1. The most important 

conclusions of our modeling will prove to be insensitive to the details of the data above 

1000 cm-1. 

In the normal state, we model the reflectance for frequencies less than 200 cm-1 with a 

Drude term for the free carriers, a Lorentz oscillator for the 240 cm-1 mode deduced by 

Bonn et. al., and a background dielectric constant for the oscillator strength at much higher 

frequencies than the FIR. Thus, 

-. 



47 

(4.1) 

(4.2) 

where EI and E2 are the real and imaginary parts of the dielectric function, co is the incident 

photon frequency, COp and 1: are the plasma frequency and relaxation time of the free carriers 

COT, co 1, and 1:1 are the plasma frequency, resonant frequency and relaxation time of the 

Lorentz oscillator, and Eoo is the background dielectric constant. 

We determine the parameters of our normal state fit as follows. Orenstein et. al. fitted 

their high frequency reflectance data to a model in which 94% of the oscillator strength of 

the electrons in the conduction band is associated with a (non-superconducting) gap at 3600 

cm-1 which contributes a constant Et =20 in the FIR. The remaining 6% is associated with 

a term of the Drude form. We have parameterized the FIR resonances at 240 cm-1 and 500 

cm-1 deduced by Bonnet. al. by Lorentz oscillators and have added them to the Orenstein 

et. al. model. We adjusted the oscillator strength of the Drude term so that the sum of the 

oscillator strengths of the Drude term and the two resonances adds up to 6% of the total 

oscillator strength in the conduction band proposed by Orenstein et. al. In the 0-100 cm-1 

range the resonance at 500 cm-1 can be modeled by a constant contribution to EI of 3. 

The parameters of our model are as follows: COp=3350 cm-1, COT=1860 cm-1, C01=239 

cm-1, 1/1:1=33 cm-1, and Eoo =23. the relaxation time 1: of the free carriers is adjusted to fit 

our normal state data. We find 1/1:=2000 cm-1 gives an adequate fit to our data and those of 

Bonn et. ai.13 in the frequency range 10-100 cm-1. Given the inhomogeneous nature of 

these samples, a detailed fit to the reflectance is not warranted. We note that our model 
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predicts a positive £1 at zero frequency in the normal state: the ability of heavily damped 

free carriers to screen electromagnetic radiation is overwhelmed by the polarizability of the 

FIR resonances. 

Once we fit the normal state reflectance, we calculate the reflectance at selected 

temperatures in the superconducting state with no additional adjustable parameters. To 

model the reflectance in the superconducting state, we assume an energy gap of magnitude 

and temperature dependence predicted by weak coupling BCS. The Drude terms in Eqs. 

4.1 and 4.2 are replaced with terms calculated from the temperature dependent Mattis

Bardeen20 expressions for the frequency dependent conductivity in the superconducting 

state. We have integrated numerically these singular integrals using Gaussian and 

Chebyshev integration routines21 (See Appendix A). The Mattis-Bardeen expressions are 

valid in the limits in which the penetration depth of the electromagnetic radiation is much 

larger than or much less than the coherence length. The former limit applies in the 

superconducting oxides. 

The temperature dependent reflectance from our plasmon model is shown in Fig. 4-4. 

Many qualitative features of the data are apparent. Below T=Tc. the calculated reflectance 

shows systematic trends similar to the data of Fig. 4-3. For low frequencies, the 

reflectance is near unity. At a frequency fo the reflectance begins to drop and at f1 it begins 

to flatten out. ForT< 34K there is a minimum. The reflectance then approaches the normal 

state reflectance from below. The steepness of the reflectance edge increases with 

decreasing temperature. At T=6K the reflectance edge at 80 cm-1 is extremely sharp. The 

experimentally observed reflectance edge is broader, which is to be expected if sample 

inhomogeneity leads to damping mechanisms not included in the model. The assumed 

energy gap for T=6K is 88 cm-1 and is marked by an arrow in Fig. 4-4. There is no 

obvious feature in the calculated reflectance at this frequency. This shows that if the 

... 

.. 
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Fig. 4-4: Reflectance calculated at selected temperatures from a model which contains 
free carriers and a strong phonon, and treats the reflectance edge as a plasma edge. The 
model qualitatively reproduces the experimental data of Fig. 4-3. The position of the 
energy gap 2~(T=0) used in this calculation is marked with an arrow. There is no obvious 
feature in the calculated reflectance at this frequency. 
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plasmon hypothesis is correct, it is impossible to extract a value for the energy gap by 

simple inspection of the reflectance. 

The derivatives of the reflectance curves in Figs. 4-3 and 4-4 show clear minima at a 

frequency fp between fo and f1 and thus enable an objective comparison of the temperature 

dependence of the reflectance edge in the model and the experiment. We have plotted the 

temperature dependence of fp for both experiment and model in Fig. 4-5. We have also 

plotted the temperature dependence of the BCS gap. All quantities are normalized to 1 for 

temperatures much less than T co· We see that the temperature dependence of the reflectance 

edge in both the model and the experiment closely fits the temperature dependence of the 

BCS gap. Thus the predicted temperature dependences of the reflectance edge in the 

plasmon hypothesis and the energy gap hypothesis are virtually indistinguishable. The 

only difference between the temperature dependence predictions of the two hypotheses is 

that fp in the plasmon hypothesis lies at slightly higher frequencies than the BCS curve for 

temperatures Tcc/3<T<Tco· This arises in the model from the frequency dependence of the 

contribution to E 1 of the 240 cm-1 resonance. 

In the model the reflectance edge is caused by a zero-crossing of E 1· We hereafter refer 

to the frequency of the reflectance edge as the plasma frequency. A second higher plasma 

frequency is of course to be expected at near IR or visible wavelengths. The temperature 

dependence of the reflectance may be qualitatively understood as follows. At T=O, the 

maximum number of carriers are condensed into the dissipationless superconducting state 

and the system can screen electromagnetic radiation effectively for frequencies as high as 

the low temperature plasma frequency 80 cm-1. As the temperature is increased toward T c. 

the fraction of carriers in the superconducting state decreases with the temperature 

dependence of the order parameter, decreasing the ability of the free carriers to screen and 

lowering the plasma frequency until it reaches zero for T>Tc. The broadening of the 

.. 
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Fig. 4-5: Frequency of the reflectance edge vs. reduced temperature for experiment 
(triangles) and for the plasmon model (solid line). The BCS gap is also plotted (dashed 
line). All quantities are normalized to 1 at T:==O. 
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reflectance edge with increasing temperature arises from fmite dissipation for ro<M(T) due 

to quasi particles excited across the superconducting gap. 

The plasmon hypothesis as implemented in our model can also account for the scaling 

of the frequency of the reflectance edge with Teo· We have observed a clear bump in the 

reflectance of Lat.ssCao.1sCu04 near 250 cm·l, indicating at least one strong phonon 

·similar to that observed in the Sr doped material. If we assume that the free carrier density 

and relaxation times in La1.ssCao.IsCu04 and La1.ssSro.IsCu04 are comparable, and that 

the energy gap scales with the transition temperature, then the oscillator strength condensed 

into the superconducting state should also scale with transition temperature and so should 

the frequency of the reflectance edge. 

Although the plasma frequency in our model depends critically on the parameters of the 

normal state fit, the scaling of the plasma frequency with temperature does not. Given the 

uncertainties inherent in modeling the normal state reflectance of polycrystalline 

La1.ssSro.IsCu04, we do not attempt to make more than a rough comparison between the 

plasma frequencies in the model and in the experiment, and we are pleased that they agree 

to within 30%. Agreement could clearly be improved by adjusting the model parameters or 

the magnitude of the energy gap. However, our conclusions about the scaling of the 

plasma frequency with temperature and with Tc are robust. These conclusions depend only 

on the normal state being characterized by a low free carrier density and a resonance that 

has large enough oscillator strength to yield a positive Et for low FIR frequencies. Thus 

our main results should be valid for both the long wavelength effective medium 

characterization of the normal state which we have adopted, and for the short wavelength 

approximation adopted by Schlesinger et. al. 
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4. 4. Low Frequency Reflectance 

Finally, we investigate the scaling of the reflectance of polycrystalline 

La1.ssSro.1sCu04 with temperature at sub-mm wavelengths. We give the reflectance in a 

manner that is independent of the details of the fit to ¢e normal state and independent of 

small (1-2%) temperature independent losses due to surface scattering or to a normal 

surface layer. In Fig. 4-6, we have plotted (R(T)-R0 )/(Rs-Rn) averaged over a 2 cm-1 band 

about 16 cm-1 for our experiment (squares) and our model of the plasmon hypothesis (solid 

line). R0 and Rs are here the reflectance at T=37K and at T=24K. The agreement between 

model and experiment is quite good. A model dielectric function which does not include 

the 240 cm-1 phonon (consistent with the energy gap hypothesis) gives results identical to 

those of the plasmon hypothesis. This indicates that the simple Mattis-Bardeen model of 

the superconducting state, which is equivalent a two fluid model with current carried by 

normal and superconducting carriers, is adequate to describe the temperature dependence of 

the reflectance at sub-mm wavelengths. This temperature dependence cannot be used to 

distinguish between the plasmon and the energy gap hypotheses. 

In order to assess the feasibility of using high-Tc superconductors for the construction 

of electronic devices that operate at sub-mm wavelengths, it is useful to compare the losses 

in these materials for frequencies less than 2.!lacs/4=0.9kaTc (where our calculations 

should be valid) to the losses in a good metal like copper. The absorption Acu of copper in 

the FIR was calculated using the de conductivity and the Hagen-Rubens relation. The 

absorption for T>Tc of the Lat.ssSro.1sCu04 sample discussed here is typical for sintered 

polycrystalline samples 11, and is roughly 200 times that of copper, independent of 

frequency to within 10% for frequencies less than 2-!lacs/4=25 cm-1. Assuming no 

extrinsic surface losses and a temperature dependence of the absorption in the 

superconducting state described by BCS, LatssSro.tsCu04 would have to be cooled to 
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Fig. 4-6: Excess submillimeter reflectance [R(T)-R0 ]/[Rs-Rnl in the superconducting 
state vs. temperature. Here, Rs and Rn were measured at 24K and 37K respectively. In 
this frequency range, the predictions of the plasmon model and those of the simple Mattis
Bardeen expressions are indistinguishable. Both models (solid line) agree with the 
experimental results (circles). 
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T!Tc0=0.4 (T=14K) before its absorption equalled that of room temperature Copper for 

frequencies less than 25 cm-1. A recent measurement22 of the reflectance of an epitaxial 

film of YtBa2Cu307 (Tc=90K) showed a normal state absorption of roughly 60Acu for 

frequencies less than 200 cm-1. If the temperature-dependent electrodynamics of this 

material for frequencies much less than the energy gap are also described by BCS, we 

estimate that this film would have to be cooled to T!Tc0=0.5 (45K) before its absorption 

equalled that of room temperature Copper for frequencies less than 2~Bcs/4=60 cm-1. 

Thus it appears that for existing materials, devices made from high-Tc superconducting 

oxides will have to be cooled to temperatures lower than T cf2 in order to have lower losses 

than good metals. Some improvement in the conductivity of single crystals and epitaxial 

films can be expected. 

4.5. Conclusion 

The reflectance polycrystalline samples of the high-Tc superconductor 

L~t.ssSro.tsCu04 for frequencies less than 100 cm-1 is well described by BCS 

electrodynamics. Our results are therefore consistent with a mean field pairing theory of 

superconductivity. We have also shown that the temperature- dependence of the FIR 

reflectivity cannot be used to distinguish between the plasmon hypothesis and the energy 

gap hypothesis. The success of our model strengthens the plasmon hypothesis. However, 

a definitive understanding of the FIR dielectric function for Lat.ssSro.tsCu04 must await a 

better understanding of the effect of crystal anisotropy on the reflectance of polycrystalline 

samples. Until this matter is clarified, it is premature to deduce the magnitude of the energy 

gap for polycrystalline samples from the infrared data 



56 
References 

1 Daniel Esteve, John M. Martinis, Christian Urbina, Michel H. Devoret, Gaston 

Collin, Philippe Monod, Michel Ribault and Alexandre Revcolevschi, Europhysics Letters 

3, 1237 (1987); W. R. McGrath, H. K. Olsson, T. Claeson, S. Eriksson and L.-G. 

Johannson, Europhys. Lett. 4, 357 (1987) 

2 L. C. Bourne, M. F. Crommie, A. Zettl, Hans-Conrad zur Loye, S. W. Weller, K. 

J. Leary, Angelica M. Stacy, K. J. Chang, Marvin L. Cohen and Donald E. Morris, Phys. 

Rev. Lett. 58, 2337 (1987); B. Batlogg, R. J. Cava, A. Jayaraman, R. B. van Dover, G. 

A. Kourouklis, S. Sunshine, D. W. Murphy, L. W. Rupp, H. S. Chen, A. White, K.T. 

Short, A. M. Mujsce, and E. A. Rietman, ibid., 2333; L. C. Bourne, A. Zettl, T. W. 

Barbee Ill, and M. L. Cohen, Phys. Rev. B 36, 3990 (1987) 

3 T. A. Faltens, W. K. Ham, S. W. Keller, K. J. Leary, J. N. Michaels, A. M. 

Stacy , H-C zur Loye, D. E. Morris, T. W. Barbee III, L. C. bourne, M. L. Cohen, S. 

Hoen and A. Zettl, Phys. Rev. Lett. 59, 915 (1987); B. Batlogg, G. Kourouklis, W. 

Weber, R. J. Cava, A. Jayaraman, A. E. White, K. T. Short, L. W. Rupp and E. A. 

Rietman, Phys. Rev. Lett. 59, 912 (1987) 

4 V. J. Emery, Phys. Rev. Lett. 58, 2794 (1987) 

5 J. R. Kirtley, C. C. Tsuei, S. I. Park, C. C. Chi, J. Rozen, and M. W. Shafer, 

Phys. Rev. B 35, 7216 (1987); M. E. Hawley, K. E. Gray, D. W. Capone II, and D. G. 

Hinks, ibid., 7224 ; S. Pan, K. W. Ng, A. L. de Lozanne, J. M. Tarascon, and L. H. 

Greene, ibid, 7220 



57 
6 M. F. Crommie, L. C. Bourne, A. Zettl, Marvin L. Cohen, and A. Stacy, Phys. 

Rev. B 35, 8853; J. Moreland, J. W. Ekin, L. F. Goodrich, T. E. Capobianco, A. F. 

Clark, J. Kwo, M. Hong and S. H. Liou, ibid., 8856; J. R. Kirtley, R. T. Collins, Z. 

Schlesinger, W. J. Gallagher, R. L. Sandstrom, T. R. Dinger, and D. A. Chance, ibid., 

8846 

7 P. W. Anderson, in Novel Superconductivity, Proceedings of the International 

Workshop on Novel Mechanisms of Superconductivity, Berkeley, 1987, edited by S. A. 

Wolf and V. Z. Kresin (Plenum, New York, 1987), p. 295. 

8 U. Walter-. M. S. Sherwin, A. Stacy, P. L. Richards and A. Zettl, Phys. Rev. B 

35, 5327 (1987) 

9 P. E. Sulewski, A. J. Sievers, S. E. Russek, H. D. Hallen, D. K. Lathrop and R. 

A. Buhrmann, Phys. Rev. B 35, 5330 (1987); P. E. Sulewski, A. Sievers, R. Buhrman, 

J. Tarascon and L. Greene, ibid., 8829 

10 Z. Schlesinger, R. T. Collins, and M. W. Shafer, Phys. Rev. B 35, 7232 (1987) 

11 G. A. Thomas, A. J. Millis, R. N. Bhatt, R. J. Cava, E. A. Rietman, Proceedings 

of the Eighteenth International Conference on Low Temperature Physics, Kyoto, 1987 

[Jpn. J. Appl. Phys. 26, Suppl. 26-3, 1001 (1987)]. In this work the reflectance in the 

superconducting state was fit to a long wavelength effective medium theory. A value of the 

energy gap consistent with weak coupling BCS was found to give the best fit. 



58 
12 D. A. Bonn, I. E. Greedan, C. V. Stager and T. Timusk, Solid State Comm. 62, 

383 (1987). 

13 D. A. Bonn, I. E. Greedan, C. V. Stager, T Timusk, M.G. Doss, S. L. Herr, K. 

Kamaras, C. D. Porter, D. B. Tanner, J. M. Tarascon, W. R. McKinnon and L. H. 

Greene, Phys. Rev. B 36, 8843. 

14 G. A. Thomas, H. K. Ng, A. I. Millis, R. N. Bhatt, R. I. Cava, E. A. Rietman, 

D. W. Johnson, Jr., G. P. Epinosa, and J. M. Vandenberg, Phys. Rev. B 36, 846 (1987) 

15 G. A. Thomas, private communication 

16 Z. Schlesinger, R. T. Collins, M. W. Shafer, and E. M. Engler, Phys. Rev. B 36, 

846 (1987) 

17 I. M. Bassat, P. Odier, and F. Gervais, Phys. Rev. B 35, 7224 (1987) 

18 R. T. Collins, Z. Schlesinger, R. H. Koch, R. B. Laibowitz, T. S. Plaskett, P. 

Freitas, W. J. Gallagher, R. L. Sandstrom, and T. R. Dinger, Phys. Rev. Lett. 59, 704 

(1987) 

19 I. Orenstein, G. A. Thomas, D. H. Rapkine, C. G. Bethea, B. F. Levine, R. J. 

Cava, E. A. Rietman and D. W. Johnston, Jr., Phys. Rev. B 36, 729 (1987). 

20 D. C. Mattis and J. Bardeen, Phys. Rev. 111,412 (1958) 



59 
21 See for example M. Abramowitz and I. A. Stegun, Handbook of Mathematical 

Functions, National Bureau of Standards Applied Math Series SS (1970), formulas 

25.4.37 and 25.4.39. See also appendix A. 

22 R. T. Collins, Z. Schlesinger, R. H. Koch, R. B. Laibowitz, T. S. Plaskett, P. 

Freitas, W. J. Gallagher, R. L. Sandstrom, and T. R. Dinger, Phys. Rev. Lett. 59, 704 

(1987) 



60 

Part 2: Radio-frequency nonlinear response of charge-density-wave 

conductors. 
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The first part of this thesis describes measurements of the linear response of COW 

conductors and high-Tc superconductors. Linear response theory provides a 

straightforward means of extracting physical parameters from any experimental linear 

response data. The second part of this thesis describes aspects of the novel radio

frequency nonlinear response of the pinned mode in the COW conductor NbSe3. 

Nonlinear response is much more varied than linear response. To extract detailed 

information from a particular nonlinear response experiment, it is necessary to model the 

experiment by solving a particular nonlinear differential equation. However, all the details 

may not be of great interest Recent advances in the theory of nonlinear dynamical systems 

provide methods of understanding certain general features of the nonlinear response of a 

particular dynamical systems by solving simple, generic models. In Chapter 5, relevant 

experimental and theoretical results on COW transport are discussed. Some concepts from 

the theory of nonlinear dynamical systems are also introduced. 

In Chapter 6, the first observation of complete mode-locking in a COW conductor is 

discussed. The experiments were performed on nonswitching crystals of NbSe3. The 

differential resistance dV /dl in the completely mode-locked state is equal to dV /dl in the 

pinned state, indicating that the entire volume of the COW is locked to the ac field. The 

noise level in the completely mode-locked state is indistinguishable from the noise level in 

the pinned state. The many-degree of freedom COW dynamical system apparently 

collapses onto a surface with few degrees freedom. The dramatic reduction of COW 

velocity fluctuations is analyzed in terms of continuous time models and the sine circle map 

with added noise. 

In Chapter 7 the response of switching NbSe3 to combined ac and de electric fields is 

discussed. The response is dramatically different from that of nonswitching COWs. For 

low frequency ac electric fields, "ac switching noise" occurs. The power spectrum of ac 
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switching noise is broad band and has amplitude as much as 10 dB larger than the broad 

band noise associated with de sliding CDW conduction. In samples driven by combined de 

and high frequency ac electric fields, a period doubling route to chaos and related 

instabilities are observed when the CDW is mode-locked. All instabilities are consistent 

with the phase slip picture of switching CDW conduction. Mode-locking and associated 

instabilities in switching CDWs are analyzed in terms of the sine circle map, the logistic 

map and the theory of noisy precursors. 

In Chapter 8 a continuous time model of CDW elasticity is proposed to explain the 

behavior of the CDW elasticity in the presence of de, ac and combined ac and de electric 

fields. The model is an extension existing models of CDW conduction which assigns 

degrees of freedom to the impurities that pin the CDW. The model predicts that the elastic 

constants in the mode-locked state are close to those in the pinned state, consistent with 

experimental observations. This hardening of the crystal during mode-locking is seen to 

arise from the strong coupling induced between CDW and lattice degrees of freedom. 
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For sufficiently large applied electric fields, some CDWs can be induced to slide. 

Sliding CDW conduction is a highly nonlinear process. One of the most fascinating 

aspects of sliding CDW conduction is the ac-dc interference, or mode-locking, which 

occurs in the presence of combined strong rf and de electric fields. In the second half of 

this thesis, several novel features of mode-locking in NbSe3 are explored. Mode-locking 

is discussed in terms of both specific models of CDW conduction and generic models 

borrowed from the theory of nonlinear dynamical systems. This chapter provides the 

background necessary for a discussion of mode-locking in CDWs in Chapters 6-8. Section 

5.1 briefly discusses relevant experimental results on sliding CDWs. For more detailed 

information, the reader is referred to one of the excellent reviews of CDW transportl,2. 

Section 5.2 reviews various models of CDW transport. Section 5.3 reviews relevant 

concepts from the theory of nonlinear dynamical systems. Section 5.4 summarizes the 

results of Chapters 6-8. 

S .1. Experimental results 

NbSe3 is a quasi one-dimensional conductor with three inequivalent conducting chains 

in its unit cell. As NbSe3 is cooled, two of the chains undergo Peierls distortions to CDW 

states. The first transition is at 144K, the second at 59K. The third chain remains metallic 

as low as has been measured. Fig. 5-1 shows the temperature-dependent resistance of 

NbSe3 for various applied currents below 70K. The lower phase transition manifests itself 

as a large bump on a background resistance that decreases as temperature is lowered. 

Monceau et. ai.3 were the first to observe nonlinear de conductivity in.the CDW states of 

NbSe3. As shown in Fig. 5-l, the height of the resistive bump decreases for increasing 
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Fig. 5-1: Variation of the normalized de resistivity of NbSe3 below 70K as a function 
of temperature at several current densities applied to the sample (from Ref. 3) 
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applied currents. The enhanced de conductivity at high currents is attributed sliding CDW 

conduction. 

Fleming and Grimes4.S later discovered the existence of a threshold for the onset of 

electric field-dependent conductivity. Fig. 5-2 shows I-V and dV/dl curves for a typical 

"nonswitching" sample of NbSe3. For sufficiently low electric fields, the de conductivity 

is linear. Nonlinear de conductivity occurs only above a well-defined threshold electric 

field ET. In such conventional samples, the conductivity increases smoothly from the 

ohmic value as the electric field E is increased above ET ("Switching samples", to be 

discussed in Chapter 7, show a different depinning behavior). The differential resistance 

dV/di remains always positive. In nonswitching samples of NbSe3 the nonlinear 

conductivity above ET is well-described by the empirical expression 

(5-1) 

O'a is the low field de conductivity, representing the contribution to the de conductivity of 

electrons not condensed into the COW. ET is the threshold field, and Eo and O'b are free 

parameters. For E>>ET, the conductivity approaches a high-field limit O'ctc = O'a + O'b. The 

threshold field ET is highly temperature-dependent. The minimum ET in NbSe3 samples 

typically occurs near 50K. ET also depends sensitively on the impurity concentration. In 

NbSe3, ET at 50K may vary from 1 mV/cm for extremely pure samples to >100 mV/cm for 

samples purposely doped with impurities. 

A small fraction of NbSe3 samples exhibit threshold behavior radically different than 

that predicted by Eq. 5-1. These are called "switching" samples6. Typical 1-V curves for a 

switching sample of NbSe3 are shown in Fig. 5-3. As the electric field is increased in a 

switching sample, a small deviation from ohmic behavior often (but not always) occurs at a 
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Fig. 5-2: Electric field dependence of the current and normalized differential resistance 
in the lower CDW state of NbSe3. A threshold field for the onset of nonlinear conduction 
is clearly observed. The solid lines derived from Eq. 5-1 using parameters indicated on the 
figure. (from Ref. 5) 
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T = 52.5 K 

0 100 

Sample 

Fig. 5-3: Current-voltage curves (voltage-driven) for a "switching" crystal of NbSe3 
at selected temperatures. The initial depinning threshold ET is indicated by an arrow for 
temperatures above 42K. Below 40K the I-V curve is hysteretic. (R. P. Hall and A. Zettl, 
Solid State Commun. 50, 813 (1984)) 
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lower critical field ET. At a higher critical field Ec the COW switches abruptly and often 

hysteretically from a nearly ohmic state (cr = O'a in Eq. 5-1) to a state with the high-field 

conductivity (cr = cra + O'b in Eq. 5-1). One or several such "switches" may occur in a 

single sample. At a given temperature the critical fields Ec in switching samples are three 

to ten times higher than the threshold fields ET in nonswitching samples of comparable 

chemical purity7. 

When the threshold field ET is exceeded in both switching and nons witching samples, 

the sample current becomes time-dependent. For E>ET so-called "broad band noise" is 

readily observable in NbSe3 for frequencies less than 1OOkHz. The broad band noise 

follows a 1/f<X frequency distributionS with a =0.8. In addition to the low frequency broad 

band noise, coherent oscillations ("narrow band noise") are observed in NbSe3 and other 

CDW conductors. The frequency of the narrow band noise (NBN) oscillations is directly 

proportional to the current carried by the CDW, and hence to the velocity of the CDW. For 

typical experimental parameters, the NBN frequency in NbSe3 is in the 1MHz-50MHz 

range, though higher and lower NBN frequencies are easily attainable. 

The elastic properties of CDW conductors are also strongly electric field-dependent. As 

first shown by Brill and Roark9, the velocity of sound in a CDW crystal decreases and the 

internal friction increases as the electric field is increased above ET. This phenomenon is 

discussed in more detail in Chapter 8. 

Monceau et. al. to and Zettl and Griiner1 1 first noted that the application of strong 

combined ac and de electric fields leads to a host of phenomena associated with interference 

between the externally applied ac electric field and the internally generated narrow band 

noise frequency. The ac electric field reduces the threshold field for sliding CDW 

conduction. In the sliding state, the narrow band noise frequency is pulled toward rational 

multiples of the applied ac frequency. When the narrow band noise frequency is 

sufficiently near a low order rational multiple of the ac frequency (a rational multiple p/q, 
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where the denominator q is a small integer), the narrow band noise frequency may actually 

lock onto that multiple of the ac frequency. When such mode-locking occurs, the narrow 

band noise frequency is independent of de bias over a small range of de bias. Since the 

CDW current is proportional to the narrow band noise frequency, the CDW current is 

constant during mode-locking. A mode-locked region manifests itself as a step in the I-V 

curve and a peak in the differential resistance. Typical I-V and dV/di curves exhibiting 

mode-locking are shown in Fig. 5-4. 

Finally, we make a note on comparing experiment with theory. A CDW crystal may be 

driven in a voltage-controlled or current-controlled configuration. Theories of CDW 

conduction treat the CDW as driven with a voltage source and calculate the current. 

However, because of the relatively low impedance of many CDW crystals, most 

experiments drive a CDW crystal with a current source and monitor the voltage. In current

controlled experiments the current is divided between the normal electrons (electrons not 

condensed into the CDW) and the CDW. The normal electrons cause the driving condition 

on the CDW itself to be in between current- and voltage-controlled. In nonswitching 

NbSe3, where the conductivity due to the normal electrons is relatively high and the 

depinning transition is gradual, a current-controlled driving condition for the entire crystal 

is close to a voltage-controlled driving condition for the CDW. In nonswitching NbSe3, 

one may thus to good approximation interpret most current-controlled experimental results 

in terms of a voltage-controlled picture. One sirpply treats the CDW as driven by the 

voltage drop across the sample. 
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Fig. 5-4b: dV /dl vs. I for a sample of NbSe3 in the presence of an applied rf field with 
frequency 5 MHz. Both harmonic and subharmonic steps are observed. The inset shows 
the subhannonics in greater detail. (R. P. Hall and A. Zettl, Phys. Rev. B 30, 2279 
(1984)) 
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5. 2. Theoretical models of CDW transport 

Both classical and quantum mechanical models have been proposed to explain the novel 

features of nonlinear CDW transport. The first and simplest model of CDW transport was 

proposed Gruner, Zawadowski and Chaikin12 (GZC). The GZC model is isomorphic to 

the driven damped pendulum, or to the resistively shunted Josephson Junction (RSJ) 

model. The CDW is treated as a rigid particle in a sinusoidal potential caused by 

impurities. Even for randomly distributed impurities, the potential must have the period of 

the CDW wavelength A.: the total energy of the CDW is invariant under a translation by nA.. 

The equation of motion is 

d2x dx . 
m* dt2 + ldt+ eE-rsm(Qx) = eE(t) (5-1) 

where m* is the effective mass of the CDW, xis the position of the CDW center of mass, y 

is a phenomenological damping constant, e is the charge of the CDW, ET is the threshold 

electric field, Q = 2rr.(A. is the wavevector of the CDW, and E(t) is the applied electric field, 

which may depend on time. The CDW is so heavily damped that at the frequencies of 

interest (MHz range), the CDW is treated as massless and the first term on the left hand 

side of Eq. (5-1) is dropped. 

The GZC model qualitatively accounts for many features of the nonlinear behavior of 

CDWs. It predicts nonlinear conduction with a threshold electric field. For E>ET, narrow 

band noise occurs as the particle slides through the periodic potential. For combined ac and 

de electric fields, mode-locking occurs. Mode-locking also occurs in Josephson Junctions, 

which may be quantitatively modeled by the isomorphic RSJ model. In Josephson 

Junctions, mode-locked steps in the I-V curve are called Shapiro steps, and the same name 

has been adopted in the CDW literature. 

. .... 
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The GZC model fails to account for many features of sliding CDW conduction. In a 

current-regulated experiment, the GZC model predicts a differential resistance dV/dl which 

is infinite and negative at threshold. In a real experiment, dV /di is always finite and 

positive in nonswitching samples. The GZC model predicts no broad band noise for a de 

applied electric field. The GZC model with a sinusoidal potential and m*=O predicts only 

harmonic Shapiro steps, where the ratio p/q of the narrow band noise frequency to the ac 

frequency is an integer. In experiments, both harmonic and subharmonic Shapiro steps 

are observed, with p/q not necessarily an integer. The GZC model does not address the 

issue of CDW elasticity af all. Finally, the GZC model fails to account for the low 

frequency ac conductivity and the transient response of CDWs, but these matters are 

beyond the scope of this thesis. 

Agreement between theory and experiment is significantly improved in a class of 

models which treat the CDW as a classical object composed of many degrees of freedom. 

These models are all based on a Hamiltonian proposed by Fukuyama and Lee13. 

r 

H=7!v'Jd{p21 4~2(:.jCl<P)2+ tVjli(r-Rj) cos(Q·r+ <!l(r))J (5-2) 

where <j>(r) is the slowly-varying phase of the CDW, p is the momentum conjugate to <j>, Vj 

is the (random) potential associated with the jth impurity, Rj is the position of the jth 

impurity, v' = v2/vp where vp is the Fermi velocity and 

( 
m )1/2 v= m* vp (5-3) 

where m is the band mass of an electron and m* is the effective mass of an electron 

condensed into the COW. The ratio m/m* for NbSe3 in the lower CDW state is of order 

100, based on microwave conductivity measurements14. 
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An equation of motion derived from a discretized version of the Hamiltonian 5-2, 

assuming only motion in the z-direction a massless CDW, an_d replacing the phase<!> by a 

position r, is 

(5-4) 

where rj is the position of the CDW domain associated with the jth impurity, YO is a 

phenomenological dampling1term, Ki is the spring constant of the spring connecting two 

particles i sites apart, and Vj is the strength of the potential associated with the jth impurity 

site. 

Fisher15 has considered a mean field treatment of a three-dimensional model like (5-4). 

In Fisher's calculation, there is an infinite number of CDW degrees of freedom and the 

interactions between degrees of freedom have infinite range. The Fisher calculation 

predicts no divergence in dV /di at threshold, solving one of the problems that plagues the 

GZC model. Sneddon has solved analytically an infinite range incommensurate model like 

Eq. (5-4) The impurities in Sneddon's model all have the same strength, and the spacing 

between impurities is an irrational multiple of the CDW wavelength. The Sneddon model 

is a dynamnical version of the Frenkel-Kontorova model, orginally developed to study 

twinning dislocations16. Sneddon finds good agreement with the experimentally observed 

field- and frequency-dependent conductivity of static and sliding CDWs1 7. Extensive 

numerical simulations on a one-dimensional model like Eqs. (5-4) have been performed by 

Coppersmith and Littlewood. They find harmonic and subharmonic Shapiro stepsl8. The 

transient response of a CDW to an applied current pulse is also nicely reproduced19, as are 

low-frequency anomalies in the ac conductivity20. 

The above models all predict that narrow-band noise should vanish in the infinite 

volume limit. This prediction_ appears to hold, in that large samples show less noise than 

·-
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small ones. Numerical simulations of Eqs. (5-4) find no steady-state broad band noise 

even for a finite number of panicles21. In the de sliding state, after an initial noisy 

transient, a sliding CDW with average velocity v always settles into a state in which the 

motion of each particle is periodic with frequency eo--Q v. It has been suggested that the 

broad band noise is an amplification by the sliding CDW of ambient fluctuatio_ns22. The 

long noisy transients observed in simulations of Eq. (5-4) provide a natural mechanism for 

the amplification of ambient fluctuations21. However, the origin of broad band noise is not 

well understood. 

The models based on Eqs. (5-4) treat the CDW as an elastic medium, but neglect the 

elasticity of the underlying lattice. The impurities in Eqs. (5-4) are completely rigid, and 

their coordinates Rj are not free to move. Thus none of these equations can address the 

issue of elastic coupling between the CDW and the lattice. 

None of the models discussed in this section are appropriate to switching CDW 

conduction. The single and many degree-of-freedom models discussed above treat the 

CDW amplitude as constant and consider only the dynamics of the CDW phase. Switching 

CDW conduction is associated with a periodic collapse of the CDW amplitude at a phase 

slip center. The phase slip picture of switching is discussed in Chapter 7. 

To conclude this review of the theoretical models .of CDW transport, I will briefly 

discuss the quantum mechanical model of CDW transport championed by Bardeen23 . In 

Bardeen's model, the CDW is treated as a macroscopic particle that does not "slide", but 

tunnels through the impurity pinning potential. This model has been used to successfully 

reproduce the de I-V curve, scaling of field- and frequency-dependent conductivity, and 

harmonic mixing experiments. In many cases, the predictions of the quantum tunneling 

model are very similar to those ofclassical many-degree-of-freedom models, although the 

physics is drastically different. In most of the sections of this thesis on CDW dynamics, 
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phenomena are described in the language of classical mechanics. A similar analysis 

should, however, be possible in the language of quantum tunneling theory. 

5.3. Nonlinear dynamics 

In the past decade, great advances have been made in the study of classical nonlinear 

dynamical. systems24• In addition to considering the specific classical models of CDW 

conduction outlined above, it is fruitful to examine sliding CDW conduction in the context 

of the modern theory of nonlinear dynamical systems. This section first briefly reviews the 

description of general nonlinear dynamical systems in terms of low-dimensional discrete 

mappings. Then the relation between the GZC model of CDW conduction and the sine 

circle map is discussed as a relevant example. Finally, the relevance of the sine circle map 

to CDW dynamics is briefly discussed. 

Classical nonlinear dynamical systems are naturally described by coupled ordinary 

differential equations. In general, these systems may be written as 

dx -== F(x·'l \ dt -~ (5-5) 

where ~ is the state vector of the system and the evolution of the state vector from an initial 

condition ~0 is determined by the vector field F(d). The vector,& is a vector of 

parameters on which the vector field depends. The solution to Eqs. (5-5) is a trajectory 

~(t;~o.hl. If Eqs. (5-5) are dissipative, then the trajectory will in the limit of long times 

approach a trajectory ~(t;A) that is independent of initial conditions. For a dissipative set of 

equations, the trajectory ~(t;A) will lie in a surface of lower dimensionality than the entire 

set of differential equations. All equations of concern to us are dissipative. 

Generating the unique solution ~(t;2._) to Eqs. (5-5) in general is a difficult problem 

requiring lots of computer time. However, it is often the case that knowledge of ~(t;2.,) for 

• 



" 

77 

all time is unnecessary. For many applications only the periodicity of the solution is of 

interest. Eqs. 5-5 may rigorously be replaced by a return map of the form 

where ~ = ~(n't; ~ and 

(n+ l)'t 

F'CAn;hl= ~(t;hl + f.E~(t;~))dt 
n't 

(5-6) 

(5-7) 

If the trajectory ~(t;~ has collapsed onto a low-dimensional surface, then it will in principle 

be possible, by some nonlinear coordinate transformation, to write the return map (5-6) in 

terms of a new coordinate vector ~ which has a lower dimension than the original 

coordinate vector ,K. The advantage of a description in terms of discrete mappings is that it 

is much easier to iterate a map than it is to integrate a differential equation. The Catch-22 is 

that, as illustrated by Eq. (5-7), it is necessary to integrate the differential equation in order 

to determine the exact return map. However, many features of the dynamics of a 

dynamical system may be understood without knowledge of the exact return map. It is 

often sufficient to study a generic map that is a member of the same class of return maps as 

the exact return map. 

For a concrete example, we consider the GZC model. In terms of dimensionless 

variables, Eq. (5-1) for E(t) =Ectc + Eaccosrot may be written in the form of (5-5): 

d<l> 
-='V 
d't 

d'V 1 ( . ):) -=- -'V- sm<l> + edc + eaccos~ 
d't ~ 

(5-8a) 

(5-8 b) 

(5-Sc) 
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where <1> = Qx, dimensionless timet is measured in units of (QeETly)-1, ~= (mQeET/')'), 

edc=EdJET, eac=EaJET, ~=Qt, and i'l=ro/(QeET/')'). The state vector of the system is 

~=(<j>,'Jf,~). and the vector of parameters is A= (~,edc,eac.n). 

For many parameter ranges, the steady state solutions of Eqs. 5-8 alternate between 

free running quasiperiodic states and mode-locked periodic states (limit cycles) as a 

parameter is varied. All trajectories for these parameters are attracted to a two-dimensional 

torus embedded in the three-dimensional phase space, as shown in Fig. 5-5a. The 

trajectories lying on the torus may be parameterized in terms of the angles <1> and ~· A 

return map may then be constructed by slicing the torus with a surface of section of 

constant~· The return map is a relation between successive intersections of the orbit on the 

torus with the surface of section. In this case the return map is a relation between 

successive values of <I> separated by intervals of t=21t/Q. The one-dimensional return map 

for the three-dimensional system of equations (5-8) will, for the appropriate parameters, be 

of the form 

<l>n+ 1 = <l>n + G( <l>n) (5-9) 

where G(<j>+21t) = G(<j>). This is a "circle map", a mapping of the circle onto itself. The 

equivalence of the differential equations (5-8) and the mapping (5-9) has been verified 

numerically by Bak25. A quasi-periodic orbit will, after an infinite number of iterations, 

fill up the entire circle, as shown in Fig. 5- 5b. A periodic orbit will intersect the circle in 

only a finite number of points, as shown in Fig. 5-5c. 

Some solutions of Eqs. (5-8) are neither periodic nor quasi-periodic, but chaotic. A 

chaotic trajectory cannot lie in only two dimensions25. A chaotic trajectory for a 

moderately dissipative version of Eqs. (5-8) lies on a "bumpy torus"26 which is a fractal · 

with a dimension greater than two. To rigorously model a chaotic system, an invertible 

two-dimensional mapping is required. However, if the system is sufficiently dissipative, a 



(b) 

(c) ... --........ ..... ' "' ..... .,"" -- ....... , 
,"' ' 

I • 
I I 

e I 
I I 
\ I 
\ I 
\ I ' / . / 

I / 
I , 
I ; 
I .,," ,._ __ ....... 

79 

p 

p 

Fig. 5-5: (a) Phase space attraction toward an invariant 2-toms; the Poincare section P 
induces an iterative map on the circle. (b) Quasiperiodic dynamics fills in an invariant 
curve (topologically equivalent to a circle) on P (c) An example of period 5 locked 
dynamics on P. (from K. Wiesenfeld and I. Satija, Phys. Rev. B 36, 2483 (1987)) 
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one-dimensional non-invertible map is an approximately correct description. We will 

restrict ourselves to one-dimensional maps. 

The function G(<j>) is difficult to compute. Bohr et. al.26 have argued that the whole 

class of maps (5-9) with G(<j>) = G(<j>+21t) behave similarly. Thus the simplest version of a 

nonlinear circle map, the sine circle map has been studied. The sine circle map is 

Sn+ 1 =Sn + 0 + ~in(21t8n) 
21t 

(5-10) 

where e is a modulo 1 variable and K parameterizes the nonlinearity. 0. is the "bare 

winding number". In the case of the GZC model, 0 is the ratio of the internal "narrow 

band noise" frequency to the frequency of the externally applied ac field. For nonlinearity 

K<l, the solutions alternate between mode-locked and quasi-periodic states. For K>l, 

there are no quasi-periodic solutions, and chaotic solutions are possible. The detailed 

behavior and predictions of the sine circle map will be discussed as needed in Chapters 6 

and 7. 

The equivalence of the GZC model to a circle map for certain parameter ranges is well

established. However, the GZC model is only a crude approximation to the dynamics of a 

real COW. The extent to which the sine circle map is relevant to COWs is a controversial 

matter. The success of the many particle models indicates that a one-dimensional mapping 

may yield a simplistic description of COW transport. However, the relevance of a low-

dimensional mapping in some circumstances is not ruled out simply because the underlying 

dynamical system has many degrees of freedom. If for certain parameter ranges the high

dimensional dynamical system collapses onto a low-dimensional subspace, then a low

dimensional mapping may yield useful insights. 
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6. Complete mode-locking and suppression of fluctuations in 

nonswitching NbSe3 

83 

This Chapter investigates further the mode-locking phenomenon in nonswitching 

NbSe3. Under appropriate conditions of applied de and rf currents, we find that the CDW 

phase can be completely mode-locked to the frequency of the external rf drive. The 

locking persists over well-defined ranges of de bias current (or de bias field), and complete 

harmonic and complete subharmonic locking occurs. Relative to the unlocked state, the 

broad-band noise power in the completely mode-locked state is suppressed by a factor 

greater than 400. These observations are discussed in terms of stochastically driven 

models of sliding CDW conduction. 

6.1. Experiment 

A two-probe sample mounting configuration was used exclusively, with conductive 

silver paint contacts. It is easier to achieve complete mode-locking if extremely short 

samples are used. The sample used for this study was 250JJ.m long. The experiments were 

performed in a current-driven configuration. The perturbation applied to the sample was a 

superposition of a de current and two ac currents. One ac current was of very low 

frequency (200Hz) and amplitude, and provided a suitable signal for lock-in detection of 

the differential resistance of the sample. A Wheatstone bridge circuit was used for this 

purpose. The second rf current, typically in the MHz frequency range, was the source of 

the Shapiro step interference. Broad-band noise measurements were obtained by first 

amplifying the voltage across the sample with a low-noise pre-amplifier (bandwidth .03Hz 

to 10kHz, gain 104), followed by detection ~ith either a sensitive nns voltmeter or a low 

frequency spectrum analyzer. 

Fig. 6-la shows the differential resistance dV/dl and broad-band noise of NbSe3 at T = 

45 K, plotted versus de bias current I. The threshold current IT, identified by the sharp 

bend in dV/dJ, also corresponds to the threshold for the onset of broad-band noise. The 
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6-1: a) Differential resistance dV /dl and broad-band noise amplitude vs. bias current in 
NbSe3. The threshold current is indicated with an arrow. b) Same as a), except that an rf 
current at frequency Wrf = 5MHz has been added to the sample. Complete mode-locking is 
evident on the step labeled n= 1 on the upper trace. All broad-band noise vanishes in the 
mode-locked regime. The lettered arrows refer to where the corresponding frequency 
spectra of Fig. 2 were taken. 
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broad band noise amplitude is a strong function of excess CDW current Icow and there 

exists a broad maximum in the noise amplitude for bias currents slightly above IT. The 

measurements of Fig. 6-1a are consistent with earlier studies of differential resistance and 

broad-band noise in NbSe3.1,2 Fig. 6-lb shows the effect of an externally applied rf 

current on the differential resistance and broad-band noise of the same NbSe3 crystal. The 

addition of rf current reduces IT slightly, although the thresholds for CDW conduction 

(break in dV /dl) and onset of broad-band noise remain equivalent. The sharp step structure 

in the upper curve in Fig. 6-1 b corresponds to Shapiro step interference, and both 

harmonic and subharmonic structure is observed. The step labeled n = 1 corresponds to a 

region where the fundamental narrow-band noise frequency ffiNBN equals the externally 

applied rf frequency, Ct>rf. The important features of then= 1 step structure are that the top 

of the step appears flat over a finite range of de bias current, and that over this range dV/di 

corresponds exactly to the low-field (ohmic) differential resistance. Over the finite range 

of bias field comprising a step, the velocity (and hence time derivative of the CDW phase) 

does not change, but remains "locked" to the frequency of the applied rf field. The 

observation that dV /dl attains its ohmic value on the step confirms that the mode-locking is 

complete, and involves the entire CDW condensate. This is the first observation of 

complete mode-locking CDW system. We note that not all interference steps in Fig. 6-1 b 

display complete locking. For example, only one of the subharmonics locks completely (at 

n = 1/2), and although harmonics equal to or greater than n = 2 show some evidence of 

locking, they fail to achieve the ohmic value for dV /dl. 

The fact that the CDW velocity is "fixed" in the mode-locked states suggests that similar 

"plateau" structure might occur in the broad-band CDW conduction noise response. A 

na!ve expectation is that the broad-band noise amplitude should remain constant over the 

whole range of mode-lock, with a value dictated by the (fixed) CDW velocity. This value 

could be extracted from Fig. 6-la. The lower trace of in Fig. 6-1 b shows, however, 

dramatically different results. The observed behavior for NbSe3 is that, on a mode-locked 
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step, the broad band noise power is suppressed by more than a factor of 400, to below our 

instrumental noise level. Our results are thus consistent with the complete suppression of 

the broad-band noise. The complete suppression of noise occurs only for those (harmonic 

or subharmonic) steps which display complete mode-locking; on then= 2 step in Fig. 6-

1 b, for example, which shows incomplete locking, the broad-band noise is significantly 

reduced, but not completely suppressed. 

To investigate further the broad-band noise response in the presence of mode

locking, we have measured the frequency spectrum of the noise in the range of 0 - 25 kHz. 

Fig. 6-2a shows the spectral response for zero applied de and ac current (the spectra shown 

here measure the noise amplitude, which is proportional to the square root of the noise 

power). In this pinned regime, no CDW conduction noise is generated, and only 

instrumental noise is observed. Fig. 6-2b shows the response for applied de and rf 

currents yielding a sliding CDW with incomplete mode-locking. The noise power level 

here follows a 1/fll law, with a. = 1.1 +0.1, consistent with other studies of broad-band 

noise3 in NbSe3. Fig 6-2c demonstrates that when the NbSe3 sample is de and rf driven 

to a completely mode-locked step, the spectral response again becomes identical to that of a 

pinned CDW condensate. At the low frequency end of this figure, the broad-band noise 

power and hence the effective noise temperature have been suppressed by more than two 

orders of magnitude! Complete suppression of broad band noise like that in Fig. 6-2c was 

also observed for the 1:2 mode-locked step. 
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6-2: Broad-band noise spectrum in NbSe3. a) Pinned CDW state; b) a depinned 
CDW in the presence of an external rf current, but without mode-locking; c) in a mode
locked regime. 
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6.2. Analysis 

This section takes the view that the broad-band noise in CDWs is a nonlinear 

amplification of external noise. In relation to our experiments, Wiesenfeld and Satija4 have 

considered the response to external noise of the sine circle map, the simplest model which 

exhibits mode-locking. The section begins with a review of their results. The section 

concludes with a discussion of the extension of the Wiesenfeld and Satija results to many 

degree-of-freedom models of CDW conduction. 

The low value of the noise in the completely mode-locked sliding CDW state indicates 

that the trajectory of the CDW in phase space is close to a one-dimensional limit cycle. 

Thus a low-dimensional description of the mode-locked state should be appropriate. 

Wiesenfeld and Satija have considered the sine circle map driven by external noise. 

en+l =en+ n + K sin (21ten) + ~n 
21t 

(6-1) 

where all variables except ~ are as defined for Eq. (5- ). ~n is a delta-correlated random 

variable. In this model, K is always less than 1 and the solutions for ~=0 are either mode-

locked or quasi-periodic. 

In a mode-locked state, fluctuations will be damped. For simplicity, consider 

parameters for which 1:1 mode-locking occurs. All initial conditions will relax to a unique 

steady state solution en+ 1 =en = eo. A linearized equation may be written for perturbations 

about the steady state solution: 

Tln+l = ATln + ~n (6-2) 

where en = Tln + eo and A is the relaxation rate, which·may be calculated by linearizing Eq. 

( 6-1 ). Stability of the 1: 1 fixed point requires A< 1. The noise ~ is assumed to be small. 

The fluctuations are damped most quickly for A close to zero. 
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In the unlocked case, fluctuations are not damped. If one is only interested in long-

time (low-frequency) behavior, the nonlinearity may be ignored to lowest order in the 

unlocked case. The response of an unlocked state to fluctuations may then be estimated 

from the equation 

(6-3) 

Here p = <(9n+l- 90 )> is the "winding number", the average change in e per iteration of 

the map. In the context of CDWs, the winding number is the ratio of the narrow band 

noise frequency to the external drive frequency. The fluctuations in Eq. 6-3 are not 

damped: the noise kicks provided by ; accumulate over time and result in a random walk 

on the circle. 

Fig. 6-3 shows the power spectra of e calculated from digital computer simulations of 

the nonlinear equations 6-1. The upper trace is the power spectrum for a 1:1 mode-locked 

state. It shows a noise level significantly higher than that of the lower trace, which is the 

power spectrum for an unlocked state. The simulation of the nonlinear equation confirms 

that the approximate predictions of the linear equations (6-2) and (6-3) are correct. Fig. 6-3 

is in qualitative agreement with our experimental results that the noise is reduced during 

mode-locking. However, the 1/f-like behavior of the unlocked power spectrum in Fig. 6-2 

is absent in Fig. 6-3. This is because the input noise in the simulations was white noise. 

The model of Wiesenfeld and Satija attributes the noise suppression during mode

locking to the relatively short relaxation times that occur in the mode-locked state. Similar 

arguments may be made for the many degree-of-freedom models, although none of these 

has been solved in the presence of external noise for the mode-locked case. DC driven 

many degree-of-freedom models of CDW conduction are known to show long transients 

with 1/f-like power spectra that eventually relax to a noiseless steady stateS. In contrast, 

when the many degree-of-freedom models are driven by a train of periodic pulses, the 

solutions relax to a mode-locked steady state after only a short transient6. The relaxation 
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Fig. 6-3: Results of digital simulations of Eq. 6-1. Power spectrum (logarithmic units) 
vs. frequency for unlocked and locked period-1 cases having the same level of input noise. 

K=0.8, !2=0.06 (locked), !2=0.18 (unlocked), <~2>=1.3xl04. (from Ref. 4) 
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times to steady state sliding may be orders of magnitude shorter for a train of pulses than 

for a de driving configuration. A suppression of noise in the mode-locked state relative to 
/ 

the de sliding state is plausibly attributed to the vast difference in the relevant relaxation 

times. Since the length of a transient to the de sliding state grows with the number of 

degrees of freedom used, noise suppression in the many degree-of-freedom case is 

expected to be much larger than in the few degree-of-freedom models, or in the sine circle 

map. 

In summary, we have demonstrated complete mode-locking in the CDW state of 

NbSe3. The mode-locked state is highly coherent and well-described by a single 

coordinate. In the language of dynamical systems, the phase space trajectory of a mode

locked CDW lies in a nearly one-dimensional subspace of a high-dimensional phase space. 

The unlocked or de sliding trajectories lie in higher-dimensional subspaces. The low 

dimension of the mode-locked trajectories is attributed to an insensitivity to external noise 

caused by short relaxation times to the steady state. 
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7 • Mode-locking and chaos in switching NbSe3. 

7 .1. Introduction 

In typical crystals, CDWs depin smoothly as the electric field is increased above a 

threshold fieldl. Successful models of such "nonswitching" CDW conduction treat the 

amplitude of the CDW as rigid and assign degrees of freedom only to the phase of the 

CDW. However, some CDWs "switch" abruptly and hysteretically from a low 

conductivity pinned state to a high conductivity depinned state. To successfully model 

switching CDW conduction, it is necessary to include degrees of freedom for both the 

amplitude and the phase of the CDW2. Switching CDW crystals are thus a unique system 

in which to study the amplitude dynamics of CDWs. This chapter explores the response of 

switching CDW s to combined ac and de electric fields. Recent advances in the theory of 

nonlinear dynamical systems are essential to understanding the highly nonlinear dynamics 

of switching CDW s. 

Experimental2,3 and theoretical4 studies of the response of switching crystals of NbSe3 

to de and small amplitude ac electric fields have been reported elsewhere. The de response 

of switching crystals is distinguished from that of nonswitching crystals by the presence of 

bulk discontinuities in CDW current5 and by large amounts of CDW polarization below the 

switching threshold. A CDW velocity discontinuity implies a local, periodic collapse of the 

CDW amplitude at a phase slip center. It is suggested that switching CDWs are pinned by 

a sparse distribution of "ultrastrong" impurity pinning centers in addition to the usual weak 

impurities found in nonswitching crystals. 

The small amplitude ac response of switching CDW s is distinguished from that of 

nonswitching crystals by "motion-dependent inertia." Like the ac conductivity of pinned 

nonswitching CDWs, the ac conductivity of pinned switching CDWs is overdamped6. 

However, in contrast to the ac conductivity of depinned nonswitching CDWs, the ac 

conductivity of depinned switching CDWs is underdamped4. The underdamped nature of 
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the sliding state of switching CDW conduction implies a motion-dependent inertia. It is 

argued that such pseudo-inertia arises naturally in a phase slip model of switching CDW 

conduction. 

This chapter shall explore a series of electronic instabilities that occur only in switching 

CDW s in the presence of strong combined ac and de electric fields. The response of 

nonswitching CDWs to combined ac and de electric fields has in recent years been the 

subject of many experimenta17-12 and theoretical13,14 investigations. The external ac 

electric field interferes with an internal frequency generated by a CDW as it slides through a 

periodic impurity pinning potential. When the internal frequency locks to the external 

frequency (mode-locking), CDW transport becomes highly coherentlO. The number of 

degrees of freedom active in nonswitching CDW transport is reduced during mode-locking. 

The response of switching CDWs to combined ac and de electric fields is more 

complex. For driving frequencies less than 1 MHz, we report the first observation of a 

characteristic power spectrum which we call "ac switching noise". The power spectrum of 

ac switching noise consists of a broad band component which is superimposed on sharp 

peaks at the drive frequency and its harmonics. The broad band component decreases 

monotonically as a func~ion of increasing frequency and is as much as 10 dB larger than the 

broad band noise associated with sliding CDW conduction in the same sample. AC 

switching noise occurs when a sample is driven at low frequency repeatedly through the 

switch in the I-V curve. No comparable instability is observed in nonswitching samples. 

AC switching noise is attributed to the unpredictability of the depinning process in 

switching samples. 

For driving frequencies greater than 5 MHz, the phase slip centers2,5 created during 

switching CDW conduction appear to synchronize and a qualitatively different regime 

occurs. The switching CDW mode locks to the radio frequency field, and on each mode

locked step a period doubling route to chaos 15 or related instability is observed. No 

compamble instabilities are observed in nonswitching CDWs. The period doubling route to 

·, 
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chaos is viewed as the frustrated response of a pseudo-inertial switching CDW which is 

strongly entrained by the radio frequency electric field. 

The period doubling route to chaos is characteristic of systems with few active degrees 

of freedoml6. Thus it is reasonable to compare experimental results for mode-locked 

switching CDWs with the behavior of low-dimensional nonlinear dynamical systems 

(nonlinear mathematical models with few degrees of freedom). The structure of mode

locking and assoc~ated instabilities in switching CDW s are in qualitative and quantitative 

agreement with the predictions of the one-dimensional sine circle mapl7,18. The period 

doubling route to chaos in switching CDWs is consistent with the predictions of the logistic 

map with added noisel9. Other instabilities are consistent with the theory of "noisy 

precursors" of dynamical instabilities20,21. The agreement between the mode-locking 

behavior of switching CDWs and the behavior of low-dimensional nonlinear dynamical 

systems indicates that, as in nonswitching CDWs, the mode-locked state in switching 

CDWs involves few active degrees of freedom. 

The remainder of the chapter is organized as follows. Section 7.2 describes 

experimental techniques. Section 7.3 describes experimental results on the response of 

switching CDWs to combined large amplitude ac and de electric fields. Section 7.4 

analyzes the experimental results in terms of the phase slip picture of switching and the 

modem theory of nonlinear dynamical systems. The chapter concludes in section 7.5 and 

future directions for this work are discussed. 

7. 2. Experimental techniques 

Three different samples of undoped NbSe3 were used in this study. The samples are 

numbered #1-#3 The samples were grown by direct reaction of the elements. Samples #2 

and #3 were virgin samples which switched without any treatment. Switching was induced 

in sample #1 by etching in hot, concentrated sulfuric acid2. 
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Samples were mounted in a standard two probe configuration with silver paint contacts. 

Sample #3 was driven in a standard constant-current configuration. Samples #1 and #2 

were driven in a constant voltage configuration as shown in Fig. 7-1. In the constant-

voltage configuration, all voltages to the sample were buffered by a high-speed voltage 

follower (Burr-Brown 3553) with a bandwidth of 300 MHz and an output impedance of 

less than 1 Ohm. The sample response was determined by measuring the voltage across a 

small resistor Rr in series with the sample (Rr < Rs/20, where Rs is the de resistance of 

the sample). In all measurements, combined de and rfvoltages were applied to the sample. 

For differential conductance measurements, a small, low-frequency (=200Hz) modulation 

was added to the de and rf voltages, and detected with a lock-in amplifier. The differential 

conductance d.I/dV was proportional to the output of the lock-in amplifier. Power spectra 

for frequencies less than 25 kHz were measured with a HP 3582A (FFT) spectrum 

analyzer. Power spectra for frequencies greater than 0.5 MHz were measured with a HP 

8558B (sweeping filter) spectrum analyzer. 
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Fig. 7-1- Experimental arrangement for performing a voltage-controlled experiment on 
NbSe3. The de resistance of the sample is Rs. The voltage across the small resistor R1 
(==10 Ohms) is proportional to the current through the sample. High-frequency signals are 
amplified by feeding the voltage across R1 through a short cable directly into a 50 Ohm rf 
amplifier. Low frequency signals (<100kHz) are buffered by a 10 K resistor before being 
fed into a high-impedance lock-in amplifier (for di/dV measurements) or into a spectrum 
analyzer through high-impedance preamplifier. 
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7. 3. Experimental results 

This section describes the response of switching CDWs to combined ac and de electric 

fields. Unless otherwise noted, experiments were performed in a voltage-driven 

configuration. Section 7 .3.1 describes the ac switching noise which occurs for drive 

frequencies less than 1 MHz. AC switching noise is attributed to an avalanche depinning 

process. For rf driving frequencies between 1 MHz and 5 MHz, a crossover takes place to 

a qualitatively different regime of switching CDW dynamics. Section 7.3.2 describes the 

high frequency regime in which the dynamics are dominated by mode-locking and 

associated period doubling instabilities. The dynamics in the high frequency regime are 

attributed to the phase slip process. 

7. 3 .1. AC switching noise 

A characteristic power spectrum which we call "ac switching noise" occurs when de 

electric fields are combined with low frequency ( < 1MHz) ac electric fields to drive a sample 

repeatedly through the switch in the de 1-V curve (The ac and de electric fields must satisfy 

the condition V ac-V ctc< V c < V ac+ V dd· The power spectrum defined as ac switching noise 

consists of a broad band component superimposed on sharp peaks which appear at the 

driving frequency and its harmonics. The broad band component decreases monotonically 

as a function of increasing frequency. At a given frequency, the noise power of the ac 

switching noise is as much as 10 dB larger than the noise power of the conventional broad 

band noise associated with de sliding CDW conduction in the same sample. The transition 

from the quiet state to the noisy state is abrupt. There are no precursors such as the period 

doubling cascade that occurs at higher frequencies in switching NbSe3. AC switching 

noise is seen for driving frequencies as low as 100Hz. AC switching noise disappears 

above the switching onset temperature. Details of the power spectrum of the ac switching 

noise are shown in Figs. 7-2 and 7-3. 
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Fig. 7-2 compares on a log-log plot the power spectra of the ac switching noise (top 

trace) and the conventional broad band noise (bottom trace) in the frequency range 25 Hz to 

25kHz. The traces are not offset. The top trace was recorded for Vdc=Vc, Vac=0.37Vc 

and f=0.5 MHz. The noise power in the top trace decreases with increasing frequency. 

These data are not well fit by a power law. For frequencies between 25Hz and 250Hz, 

the noise power decreases as roughly 1/£0.6, while between 2.5 kHz and 25kHz, the noise 

power decreases more steeply, roughly as 1/f. The bottom trace was recorded under 

identical conditions as the top trace, except that V ac was set to 0 and V de was increased 10 

% to 1.1 V C· The ac switching noise in this frequency range is on the average 5 dB larger 

than the conventional broad band noise for this set of parameters. 

Fig. 7-3 compares on a log-linear plot the ac switching noise and the conventional 

broad band noise between 0.5 MHz to 2 MHz, frequencies comparable to the rf drive 

frequency. The experimental conditions are identical to those for the power spectra in Fig. 

7-2. The magnitude of the noise in the rf driven state is roughly 10 dB higher than 

conventional broad band noise in this frequency range for this set of parameters. 
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7. 3. 2. Mode-locking in switching CDWs 

This section describes mode-locking and associated instabilities which occur for driving 

frequencies greater than 1 .!.\1Hz. Section 7.3.2.1 describes the structure of mode-locking. 

Section 7.3.2.2 describes the instabilities that occur during mode-locking at temperatures 

well below the switching transition temperature. Section 7.3.2.3 describes the location of 

the instabilities in parameter space. Section 7 .3.2.4 describes the evolution of the 

instabilities and of the structure of mode-locking as the temperature rises above the 

switching transition. 

7. 3. 2 .1. The structure of mode-locking 

The structure of mode-locking in switching samples is radically different from that of 

rionswitching samples. In CDW systems driven by combined rf and de electric fields, 

mode-locking occurs when the "washboard" frequency (generated as the CDW slides 

through the periodic impurity pinning potential) is a rational multiple of the rf frequency 7-

12. When a CDW is mode-locked, the 1-V curve shows a step, and the dV/dl curve shows 

a peak. The structure of mode-locking in nonswitching CDWs is illustrated in Ref. 11. 

For low rf driving amplitudes, the mode-locked steps in nonswitching CDWs are relatively 

narrow. As the rf amplitude is increased, the width of the mode-locked regions first 

increases, and then decreases. For any value of rf amplitude, mode-locked peaks in the 

graph of dV/di vs. I are separated by wide regions in which the CDW is unlocked and 

dV/dl is low. 

Fig. 7-4 shows a series of 1-V curves for a switching CDW sample with a clean, strong 

switch. As the ac amplitude is increased, steps appear in the 1-V curve. On each step, the 

slope of the curve is approximately equal to the slope of the 1-Y curve below the switching 

threshold, indicating that the CDW phase velocity is locked to the frequency of the ac drive 

and the CDW is on a Shapiro step. For instance, the decreasing de bias curve for Y rF21 

mY shows that the CDW is always mode-locked in the region from about 15 to 30 mY of 

de bias. When the de bias reaches the end of a Shapiro step, the system jumps to the next 

·, 
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step. The jump is hysteretic--it occurs at different values of the de bias for sweeps of 

increasing or decreasing de bias. For a range of values of rf and de bias, there are no 

values of de bias for which the CDW is not locked. This is even more clear in the top 

traces of Fig. 7-5, in which the (voltage driven) differential conductance is plotted for a 

different sample in a similar region of parameter space. Mode-locked regions correspond 

to peaks in differential resistance and hence to troughs in differential conductance. In Fig. 

7-5, sharp spikes in the differential conductance curves mark the boundaries between 

Shapiro steps. However, except for the spikes, the differential conductance for moderate 

de bias values above the switching threshold field is always close to the differential 

conductance for a pinned CDW indicating that the system is always at least partially mode

locked22. 

The lower traces of Fig. 7-4 show that the mode-locked steps take up a smaller fraction 

of parameter space as rf amplitude or de bias are increased sufficiently. The Shapiro steps 

(regions of low differential conductance) are clearly separated by regions in which the 

CDW is not mode-locked and the differential conductance is higher. The structure of 

mode-locking in Fig. 7-5 at high values of rf amplitude is reminiscent of that seen in non

switching CDWs at higher temperatures, in which Shapiro steps are always separated by 

unlocked states. The similarity with higher temperature data is not a heating effect since the 

average differential conductance is independent of de bias for all but the highest rf 

amplitudes. 
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Fig. 7-5- Differential conductance for sample #1 in the switching regime. Arrows 
parallel to the differential conductance curves indicate the directions of the voltage sweeps. 
For low rf electric fields, the differential conductance is always close to the V dc=O value, 
indicating that the most of the sample is mode-locked for all values of V de· Sharp spikes 
indicate transitions from one mode-locked region to the next. For high rf electric fields, 
mode-locked regions of low differential conductance are separated by unlocked regions of 
high differential conductance. 
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7 .3.2.2. Instabilities in mode-locking for switching CDWs 

In mode-locked nonswitching CDWs, velocity fluctuations with frequency much less 

than the rf frequency are frozen out during mode-lockinglO. The broad band noise level at 

frequencies between harmonics of the rf frequency differs little in mode-locked and 

unlocked cases12. In mode-locked switching COWs, the power spectrum of the COW 

velocity for a constant de bias may show unusual structure between harmonics of the rf 

frequency. Section 7.3.2.2.1 describes a sequence of power spectra which occur as de 

bias is swept along n: 1 mode-locked steps. This sequence is interpreted as a period 

doubling route to chaos. The sequence is nearly periodic in de bias. Section 7.3.2.2.2 

describes other sequences of power spectra, which are also nearly periodic in de bias. The 

latter sequences are explained in section IV in terms of the theory of noisy precursors. 

Section 7 .3.2.2.3 describes power spectra characteristic of simple mixing between the rf 

frequency and the narrow band noise. 

7. 3. 2. 2 .1. Period doubling route to chaos 

The sequence of power spectra identified as a period doubling route to chaos is shown 

in figure 7a. The temperature, rf frequency and rf amplitude are identical in all these 

spectra. Only the de bias was changed within a single Shapiro step. The first spectrum 

shows only the fundamental of the rf drive frequency f, and harmonics due to the 

nonlinearity of the system. In the second spectrum, peaks appear at f/2 and its odd 

harmonics, indicating the first period doubling bifurcation in the period doubling cascade. 

The third spectrum shows a generally elevated noise level with additional peaks at f/4 and 

its odd harmonics. In the final spectrum broad peaks centered at f/2 and odd harmonics 

are 20 dB above the original noise baseline. We identify the latter spectrum as chaos. 

In Fig. 7-6b the de bias dependence of the power spectrum is mapped out for constant 

rf amplitude and frequency. Near the end of a given Shapiro step the signal is periodic as 

in Fig. 7 -6a.l (Since there is essentially no space between Shapiro steps and the periodic 
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spectrum occurs over only a small range of de bias, it was difficult to determine whether 

this spectrum occurred at the end of one step or the beginning of the next). The periodic 

spectrum was followed by relatively narrow regions of period-2 and period-4 spectra and a 

broad region of chaotic spectra as shown in Fig. 7-6a.4. At the end of a chaotic region, 

the spectrum again became periodic and the entire sequence repeated itself on the next 

Shapiro step. The period doubling cascade is thus periodic in de bias over a large range of 

de bias. If the de bias is increased sufficiently, the mode-locking and period doubling 

cascades become weaker and eventually evolve into different spectra presented below. The 

period doubling route to chaos can also be achieved by varying rf amplitude for fixed rf 

frequency and de bias. 

Not all switching samples exhibit the period doubling route to chaos as clearly as the 

one shown in Fig. 7-6 (sample #2). For instance, in sample #1, a period 1 spectrum (Fig. 

7 -6a.l) was unattainable in the range of parameters in which period doubling cascades 

occurred. At the beginning of a Shapiro step the power spectrum was biperiodic as in Fig. 

7-6a.2 and evolved into chaos as de bias was increased. As de bias was increased further, 

the system jumped onto the next step where the spectrum was again period two. 

Apparently, the hysteretic jump always bypassed the region in which the system was 

period one. 
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Fig. 7-6. (a)- Power spectra of the current response in the Shapiro step region of 
sample #2. External rf drive frequency and amplitude as in (b). (i) Y ctc=25 mY, period 1; 
(ii) Ydc=25.1 mY, period 2; (iii) Ydc=25.2 mY, period 4; (iv) Yctc=25.5 mY, chaos.(b)
Schematic representation of the periodicity of the current response in the Shapiro-step 
region for sample #2, for forward- and reverse-bias voltage sweeps. 
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7.3.2.2.2. Noisy precursors 

In addition to the familiar period doubling route to chaos, a number of more unusual 

sequences of power spectra also occur in switching NbSe3 crystals. In all spectra shown 

here the de bias exceeds the switching threshold, and the rf frequency and amplitude are 

fixed. One characteristic sequence is shown in Fig. 7-7. We identify this sequence as an 

example of the Virtual Hopf Phenomenon21 (see Section 7.4.2.1.3). For the lowest de 

bias shown (top trace) the spectrum is relatively featureless. As de bias is increased broad 

"bumps" appear symmetrically about f/2=10 MHz. These bumps move symmetrically 

toward 10 MHz, until they become sharp peaks located at approximately f/3 and 2f/3. 

These peaks broaden again as they move closer to f/2 and finally coalesce into a sharp peak 

at f/2. For a finite range of de bias, the power spectrum does not change. Then the f/2 

peak suddenly jumps to a lower amplitude and again bumps appear symmetrically about 

f/2. These bumps now move symmetrically away from f/2 and eventually disappear. As 

de bias is increased further, the identical sequence repeats itself. As in the period doubling 

cascade, the sequence of power spectra is nearly periodic in de bias. 

A related sequence of power spectra is shown in Fig. 7-8. We call this sequence 

"period two with excess noise". In this series the bottom trace represents the smallest 

value of de bias. The spectrum for the bottom trace shows only a sharp peak at f/2=10 

MHz. As de bias is increased, the amplitude of this peak shrinks continuously until the 

spectrum changes discontinuously to that shown in the third trace from the bottom, where 

the peak at f/2 has grown by 23 dB and broad symmetric structure appears on the flanks of 

the f/2 peak as well as near the sides of the trace. As the de bias is increased further, the 

symmetric structure first smoothly increases and then decreases in magnitude while 

remaining at the same frequency. Finally, the spectrum changes discontinuously to that of 

the top trace of Fig. 7-8, which is virtually identical to the bottom trace. Like the sequence 

in Fig. 7-7, this sequence is nearly periodic in de bias over a broad range of de bias for 

constant rf amplitude and frequency. 
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In the course of sweeping through the large parameter space available in this 

experiment, spectra such as those depicted in Fig. 7-9 occurred occasionally. Fig. 7-9a 

shows a power spectrum with a sharp peak at f/2=5 MHz and broad peaks symmetrically 

located at intervals of f/8 about the central peak. Fig. 7 -9b shows a power spectrum with 

broad peaks at intervals of f/6. 

7.3.2.2.3. Mixing 

There are also V re-f combinations for which none of the above instabilities occur. In 

these regions of parameter space, only a weak mixing between the narrow band noise and 

the rf field is observed. At a given de bias, peaks occur at the narrow band noise frequency 

fnbn· at the rf frequency f and its harmonics, and at the sum and difference frequencies nf± 

fnbn (n an integer). As de bias is swept, the narrow band noise and sum and difference 

frequencies move through the spectrum but no behavior obviously different than simple 

mixing is observed. (For a more extensive description of mixing in CDWs, see Ref. 23) 
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Fig. 7-7- Sequence of power spectra of the current response of sample #1 for different 
·de biases at fixed rf amplitude and frequency. The de bias increases from the top trace to 
the bottom trace. This sequence is nearly periodic in de bias. This sequence is identified as 
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7 .3.2.3. Location of the period doubling and noisy precursor 

instabilities in parameter space. 

This section describes the location in parameter space of the period doubling and noisy 

precursor phenomena. The boundaries of the instabilities described above are convoluted 

two-dimensional surfaces in a three dimensional parameter space. We present projections 

of these surfaces into three different two dimensional parameter planes. 

Fig. 7-10 maps out a region in which period doubling occurs in the rf amplitude-de bias 

plane. For these experiments, sample #3 was current-driven and the driving frequency was 

held constant at 35 l\1Hz. The boundaries of this plot were determined by sweeping de bias 

at constant rf frequency and amplitude and marking the onset and disappearance of the first 

period doubling instability . Because of the relatively high temperature at which these 

experiments were conducted, the period doubling cascade never developed into chaos. 

Fig. 7-10 shows a threshold rf amplitude above which period doubling is possible. As rf 

amplitude is increased, the de threshold for the first period doubling instability decreases. 

On application of a strong rf electric field, a similar suppression of the CDW depinning 

threshold occurs in nonswitching samples24. A substantial suppression of Vc is also 

evident in Figs. 5, 6 and 15. The shape of boundary in Fig. 7-10 is similar for all of the 

instabilities that are periodic in V de (i. e. , the instabilities described in Section 7.3.2.2). 

The only qualitative difference is that for some parameter ranges there is an attainable upper 

Vrf threshold above which the instability no longer occurs. The shape of the boundary is 

also similar for voltage and current driven cases. 

Fig. 7-11 maps out a region in which period doubling occurs (again, in current-driven 

experiments on sample #3) in the rf frequency-de bias plane. Fig. 7-11 was constructed in 

exactly the same manner as Fig. 7-10, except that here the rf amplitude was held constant at 

Irc/Ic = 0. 71 Ic. In this case the period doubling boundary closes on itself, and there are 

upper and lower limits in de bias arid rf frequency for the first period doubling instability. 

As the rf frequency is increased, the lower de bias threshold for period doubling increases. 

~· 
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A similar trend is also seen in the study of ac-dc interference in nonswitching CDWs. As 

the rf frequency increases for constant rf amplitude, higher narrow band noise frequencies 

are required for mode-locking to occur and a given n:m mode-locked step moves to higher 

de bias values. 

' The most revealing way in which to map the parameter dependence of the instabilities in 

mode-locking is as a function ofrf amplitude and frequency, as is done in Fig. 7-12. By 

varying the de bias at fixed rf amplitude and frequency it is possible to observe a number of 

different power spectra, as shown in section 7 .3.2.2. We define a ranking of the observed 

power spectra in order of proximity to the chaotic state: 

1) mixing 

2) Virtual Hopf (Fig. 7 -7) 

3) period two (Fig. 7-6a.2) 

4) period two with excess noise (Fig. 7-8) 

5) period four (Fig. 7 -6a.iii) 

6) chaos (Fig. 7-6a.iv).' 

In order to generate Fig. 7-12, rffrequency and amplitude were fixed and de bias was 

swept until the power spectrum closest to chaos (as defined in the above ranking scheme) 

was observed. Consider the system at a point in the frequency-amplitude plane such that 

the period doubling route to chaos depicted in Fig. 7-6 is possible. That point is marked 

chaotic in Fig. 7-12, even though period one, two and four behavior as well as chaos are 

observed for some values of de bias. The boundaries drawn in this plot are only 

approximate, as the instabilities evolve continuously from one type to another. 

The behavior of switching COWs at low temperatures may be summarized using Fig. 

7-12 as a guide. 

1. For driving frequencies less than 1 MHz, on the left-hand edge of the figure, ac 

switching noise occurs for V de-V ae<Y c<Y de+ V ae· Note the power spectrum we call ac 

switching noise (Fig. 7-3) is qualitatively different than the power spectrum we call 
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chaos (Fig. 7-6a.iv). The power spectrum of ac switching noise decreases 

monotonically between harmonics of the ac driving frequency. The power spectrum of 

chaos shows broad bumps centered half way between harmonics of the ac driving 

frequency. 

2. For frequencies between 1 MHz and 5 MHz ac switching noise becomes mixed 

with a period doubling route to chaos. AC switching noise is not observed for 

frequencies greater than 5 MHz. 

3. For frequencies between 5 MHz and 30 MHz, a full period doubling route to 

chaos may occur for sufficient rf amplitude. The first simple period doubling instability 

occurs for rf amplitudes greater than approximately V c/1 0. As rf amplitude is 

increased further, period two with excess noise (Fig. 7-8) occurs. For yet higher rf 

amplitude a period 4 instability occurs. Finally, for rf amplitudes greater than 0.4Vc 

the full period doubling route to chaos is observed. For frequencies between 5 and 15 

MHz, a period doubling route to chaos is observed for the highest rf amplitudes that 

will not damage the sample. For frequencies between 15 MHz and 30 MHz, increasing 

the rf amplitude causes the system to exit the region in which the full period doubling 

route to chaos occurs. As rf amplitude is increased further, the system first enters a 

region with only a Virtual Hopf sequence. Finally, the system enters a region where 

only mixing occurs. 

4. Above 30 MHz, the period doubling route to chaos is no longer observed 

for any rf amplitude. Between 30 and 70 MHz, the most nonlinear behavior is the 

Virtual Hopf behavior sequence of Fig. 7-7. 

5. Above 70 MHz, only mixing observed. 

Fig. 7-12 was constructed for sample #1, but the shape of this plot is similar for 

different switching CDW samples. 
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Fig. 7-10- First period doubling region in the de bias- rf amplitude plane for sample #3. 
The figure was constructed by sweeping de bias forward for rf frequency f=35 MHz and 
various rf amplitudes. The filled circles mark the sudden appearance and disappearance of 
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7. 3. 3. Instabilities for T> Tswitch 

Just above the switching onset temperature, a number of instabilities disappear. The ac 

switching noise, which is directly associated with a low frequency rf field driving the CDW 

repeatedly through the switch, is no longer present Neither is a full period doubling route 

to chaos observed. However, period 2 and period 4 instabilities, as well as the virtual 

Hopf (Fig. 7 -7) and period two with excess noise (Fig. 7 -8) are still observed. Fig. 7-13 

locates these instabilities in rf frequency-rf amplitude space. Fig. 7-13 was constructed in 

the same manner as Fig. 7-12, but forT= 37K instead ofT= 19K. The boundaries in 

Fig. 7-13 are similar to those in Fig. 7-12, except that certain instabilities no longer appear. 

The differential conductance at 37K for a series of rf amplitudes for rf frequency 50 

MHz is shown in Fig. 7-14. This figure should be compared with Fig. 7-5. For VrFO, 

simple CDW depinning is observed. As V rf is increased, troughs develop in the differential 

conductance, signifying the onset of mode-locking. As V rf is increased further, period 

doubling instabilities are observed. The mode-locked regions become broad for 

intermediate values of V rf• filling most of the available range of de bias at V rFO.l V C· As 

· V rf is increased further, the mode-locked regions become narrower and period doubling 

occurs less frequently. Finally, for Vrr =0.4V c. the differential conductance is high over 

most of the available range of de bias, and period doubling occurs not at all. There are two 

sets of interference troughs in this sample (most clearly visible in the high V rf data), 

indicating the presence of two domains with different velocities. 

.. 
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7.4. Analysis 

The Results section of this chapter has described a number of unusual instabilities that 

occur only in switching crystals of NbSe3. In this section these instabilities are analyzed in 

terms of the phase slip picture of switching, using simple mathematical models borrowed 

from the modern theory of nonlinear dynamical systems. A phase slip model of switching 

was proposed in Ref. 2. Anomalies in the. ac conductivity of switching CDWs are 

explained in terms of a phase slip model in Ref. 3. Theoretical details of a phase slip 
I 

model, and extensive simulations of a differential equation proposed to describe the phase 

slip process, are to be found in Ref. 4. 

According to the phase slip picture of switchingl.4,25, in crystals which show 

switching at low temperatures, the CDW is pinned by sparsely distributed ultrastrong

pinning centers as well as conventional, weaker impurities. For electric fields below a 

critical electric field Ec, the CDW becomes heavily polarized, but the ultrastrong-pinning 

centers prevent it from sliding . The CDW switches and begins to slide only when the 

polarization energy is sufficiently large to cause the CDW amplitude to collapse at the 

strongest pinning centers. When the amplitude collapses, the CDW phase advances by a 

multiple of 21t, partially relieving the CDW polarization and allowing the CDW amplitude 

to increase again from zero. However, the CDW polarization rapidly builds up again, 

causing another amplitude collapse and phase slip. Once the critical field has been 

exceeded, the CDW advances by periodic slips of the CDW phase. The average pinning 

force due to the ultrastrong pinning centers collapses as the electric field is increased above 

the critical value. Thus, once it depins, the CDW slides with a rapid velocity, comparable 

to that it would have for the same electric field in the absence of strong pinning centers. 

The instabilities observed in switching samples of NbSe3 can be divided into low- and 

high-frequency categories. The low-frequency instabilities are the large 1/f noise and 

intermittency <tssociated with negative differential resistance 26,27, and ac switching noise 
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(analyzed in section 7.4.1). The low frequency instabilities are attributed not to the details 

of the phase slip process, but to the complex dynamics of many asynchronous phase

slipping domains. The high-frequency instabilities are the period doubling and related 

instabilities associated with mode-locking (analyzed in section 7.4.2). The high frequency 

instabilities are attributed to the dynamics of synchronized phase-slipping domains. The 

mathematical formalism used to describe the instabilities in mode-locking is the sine circle 

map, which has been used in recent years as a paradigm of mode-locked systems (Section 

7.4.2.1). The physical basis for the observation of period doubling and related 

instabilities in mode-locked switching CDWs is the motion-dependent inertia associated 

with the phase slip process (Section 7.4.2.2). 

7. 4 .1. AC switching noise 

AC switching noise occurs when a sample is driven through the switch in the de 1-V 

curve at frequencies less than 1 MHz. These frequencies are low on the scale of typical 

narrow band noise frequencies (1-100 MHz), and on the scale of the crossover frequency 

in the ac conductivity (50 MHz). It is thus reasonable to model ac switching noise in the de 

limit, ignoring dynamical effects such as entrainment or motion-dependent inertia. In the 

de limit, there are two possible contributions to an increase in the broad band noise level 

when the sample is repeatedly driven through the switch in the 1-V curve. If the sample is 

repeatedly depinned by a sinusoidal voltage, the power spectrum of the CDW current must 

include a broad band component due to the ordinary broad band noise associated with 

sliding CDW conduction. However, the ac switching noise of Fig. 7-3 is as much as 10 

dB larger than the broad band noise associated with sliding CDW conduction. We propose 

that ac switching noise arises because the switching process itself is unpredictable. 

Consider the current through a switching sample driven by a sinusoidal voltage. If the 

switch occurs instantaneously at exactly the same voltage for each cycle of the sinusoidal 

drive, then (ignoring broad band noise associated with sliding CDW conduction) the CDW 

current will be a perfectly periodic function of time. Only harmonics will appear in the 
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power spectrum of the CDW current. However, if the switch occurs at a slightly different 

voltage each cycle of the ac drive, or if the switch itself takes finite time to occur and is 

irregular, then the CDW current will not be a perfectly periodic function of time. The 

power spectrum of the CDW current will contain harmonics plus a broad band component. 

Thus the observation of ac switching noise supports the notion that switching is an 

unpredictable process. 

The conclusion that switching is unpredictable is consistent with previous observations 

of Zettl and Griiner28. Current pulses with I>Ic were applied to a switching sample. The 

CDW remained pinned for a time 'twait after the beginning of the pulse and then depinned in 

a shorter time tswitch. The waiting time was a random variable, distributed about its mean 

with a Lorentzian probability distribution. The mean 'twait and the width of the distribution 

were found to decrease as the height of the pulse I above threshold increased. For pulse 

height 1=1.01 lc, the average 'twait was 100 J.l.Sec. The switching time tswitch was of the 

order of 1 J.l.Sec. 

For a switch to occur, a large fraction of the CDW must depin. This means that the 

domains associated with many ultra-strong pinning centers must begin to slide at nearly the 

same time. An appealing picture of the onset of CDW conduction in a switching sample is 

that, when a critical electric field is exceeded, an avalanche of the ultra-strongly pinned 

domains occurs. The results of Zettl and GrUner have been modeled by Joos and Murray29 

as arising from such an avalanche-like process. The CDW is treated as a two-dimensional 

ribbon of identical domains (the physical origins of the domains and their couplings are not 

specified in this model). When an electric field exceeding threshold is applied to the 

crystal, each domain is assigned a probability per unit time of depinning. Once a single 

domain is depinned, it can trigger depinning of neighboring domains, thus setting off a 

"depinning wave", or avalanche. The model reproduces the waiting and switching times 

reported by Zettl and Grtiner28. It is likely that the Joos-Murray model sinusoidally driven 

through threshold at frequencies less than 1/tswitch will result in power spectra similar to 
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those for ac switching noise (a broad band component plus spikes at the drive frequency 

-and its harmonics). 

In attributing ac switching noise to a repeated avalanche process, we are invoking a 

many-degree of freedom explanation. An avalanche takes a finite amount of time to occur, 

as observed in switching COWs by Zettl and Griiner. When a switching COW is driven at 

frequencies greater than 1/'tswitch (=lMHz), the avalanche will not have time to occur. A 

qualitatively different regime of switching COW dynamics ensues, and is described in the 

next section 

7 .4.2. Mode-locking 

It is crucial to include many degrees of freedom in order to understand most aspects of 

the dynamics of nonswitching samples 14,15,34,35. In switching samples, many degree of 

freedom pictures have been invoked to explain depinning, the instabilities associated with 

negative differential resistance, and ac switching noise. Thus it is surprising that the 

simplest route to chaos, the period doubling route, occurs in switching CDWs. This route 

to chaos occurs in systems with a small number of active degrees of freedom. Evidently, 

the many-body dynamics of switching CDWs "collapses" during mode-locking to a state in 

which only a few degrees of freedom are important. This collapse is similar to the broad 

band noise suppression observed during mode-locking in nonswitching CDWslO. Thus, 

even though the dynamics of the mode-locked states in switching CDWs are more 

complicated than those of nonswitching COWs, in both cases the dynamics are 

characterized by few degrees of freedom 

Given the low-dimensional dynamics of the mode-locked switching CDW system, it is 

appropriate to analyze our results mathematically in terms of low-dimensional maps and 

differential equations. In section 7.4.2.1, mode-locking in switching CDWs is examined 

in light of dynamical systems theory. In 7.4.2.1.1 the structure of mode-locking in 

switching CDWs is shown to be consistent with the simplest mathematical realization of a 

mode-locking system, the two-parameter sine circle map. For parameters appropriate to 
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our experiments, the sine circle map predicts a period doubling route to chaos which may 

I 

be modeled by the even simpler one-parameter logistic map. In 7 .4.2.1.2, the period 

doubling route to chaos is compared to the period doubling cascade in the presence of noise 

studied by Huberman and Crutchfield20. In 7.4.2.1.3, the instabilities of Figs. 8-10 are 

compared with predictions of Wiesenfeld20,21 for noisy precursors of co-dimension one 

bifurcations. In section 7.4.2.2 the physical mechanisms for mode-locking in switching 

CDWs are explored 

7. 4. 2 .1. Dynamical systems analysis 

7 .4.2.1.1. The sine circle map and the structure of mode-locking 

The sine circle map is a discrete mapping that has been studied extensively as a 

paradigm of natural systems with two competing periodicities17,18,32-34. Natural systems 

evolve in continuous time. However, all the information contained in continuous time 

orbits is superfluous to an understanding of many aspects of the dynamics. Consider a 

periodically driven system like the ac+dc driven damped pendulum31 

~~~~ + ~~ + sin(9) = fdc + fac sin(rot) (7-1) 

The equation is written in dimensionless form. e is the phase of the pendulum, ~ is a 

parameter quantifying the inertia of the pendulum, fdc and fac are respectively the de and ac 

torque on the pendulum, and ro is the dimensionless frequency of the ac torque. To 

determine the time average phase velocity d9/dt or the frequency of the pendulum's orbit 

relative to the frequency of the ac drive, it is necessary to sample the phase only once each 

cycle of the ac drive at 90 =9(t=nT), where n is an integer and T=21t/ro. It has been shown 

for certain parameter values that Eq. 7-1 may be modeled by a one-dimensional mapping of 

the circle (9) onto itself'32. The most studied member of this class of mappings is the sine 

circle map 

9n+l = 90 + Q + 2K sin(27t90 ) (7-2) . 1t 
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The solutions to Eq. 7-2 have a rich structure which has been investigated in detail by many 

authorsl7,18,32-34. Particular attention has been devoted to the universal scaling behavior 

of high order mode-locked states near the quasiperiodic transition to chaos at K=l. We 

find that, for switching CDWs, Eq. 7-2 has predictive power for even the low order 0:1, 

1:2 and 1:1 mode-locked states. 

The structure of mode-locking predicted by the circle map for the 0:1, 1:1 and 1:2 

mode-locked steps is shown in Fig. 7-15, for 0<K<3.5. Since a is a mod 1 variable, the 

structure of mode-locking is perfectly periodic in Q, repeating itself with a periodicity 1. A 

detailed calculation of the structure of mode-locking for 0<K<1.5 has been performed33. 

We have added a calculation of the boundaries of the 0: 1, 1 :2 and 1: 1 mode-locked regions 

for values of K up to 3.5. The boundaries of the 0:1 and 1:1 steps were determined by a 

simple linear stability analysis. The boundaries of the 1:2 step were calculated by iterating 

the circle map on a computer iR the neighborhood of the boundary until the 1:2 behavior 

lost stability to an unlocked state. 

For K<1, the sine circle map is a monotonically increasing function of a. The fraction 

of the n axis occupied by mode-locked regions is a small but increasing function of K for 

K < 1. When the solution is inside the 0:1 or 1:1 region, 9 is at a period 1 fixed point and 

returns to the same value each iteration of the map. The winding number W= lim (aN-

9o)/N is O(mod 1), independent of n. If the solution is in the 1:2 region, the winding 

number is 1/2 independent of n and q is at a period 2 fixed point. In between the 0: 1 and 

1:1 steps the system alternates between higher order mode-locked states and unlocked 

(quasiperiodic) states. 

At K=1, the sine circle map develops an inflection point and the power spectrum 

develops broad band noise. This is the quasi periodic transition to chaos, which is distinct 

from the period doubling route to chaos we have observed. At K= 1, it has been shown for 

the sine circle map that the space between mode-locked steps is a fractal with dimension 

0.8717. This prediction has been verified in several physical systems35. 

.. 
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Above K= 1, the circle map has a local maximum, and the possible states of the system 

are different33,34. At the edges the (n:1, n:2) regions shown in Fig. 7-15, the solutions 

are mode-locked as for K<1, with W=(0,1/2) and periodicity (1,2). As n is swept toward 

the center of the mode-locked regions, the solutions maintain their winding number but 

undergo period doubling instabilities18. For sufficiently high K, the solutions near the 

centers of the mode-locked regions become unlocked and chaotic. The first period doubled 

states occur inside the n: 1 locked regions for K> 2 18, and at lower values of K for higher 

order mode-locked states. For K>1t, the 0:1 and 1:1 steps begin to overlap. As n is 

swept, the system jumps hysteretically from one step to the next. For K near 7t, as n is 

swept from the edge of a step towards the middle, a period doubling route to chaos is 

observed36. This is consistent with experiment (see Fig. 7-6). 

It is not straightforward to make a one-to-one correspondence between the parameters 

of our experiment and the parameters of the circle map. The winding number W is defined 

as the large N limit of (9N - 9o)/N. W is proportional to the average phase velocity of the 

pendulum, or in our experiment to the de velocity of the CDW. In the absence of 

nonlinearity (K=O), W=!l. In the high de field limit, V de is proportional to the CDW 

velocity. Since depinned switching CDWs are in the high field limit2, it is reasonable to 

make a correspondence between W and V de over small ranges of de bias. The strength of 

the nonlinearity K is most closely related to the experimental parameter V rf· However, 

changing V rf changes both the strength of the nonlinearity and the threshold for depinning a 

CDW. Thus changing Yrr in an experiment corresponds to changing both nand Kin the 

circle map. In our comparison with the circle map, we assume that, for fixed V rf, changing 

the de bias between the Oth and 1st mode-locked steps corresponds to changing n at 

constant K in the circle map. 

Fig. 7-16 shows the structure of mode-locking for sample #1 at T=19K driven by a 30 

MHz rf field. The regions of 0:1 (pinned), 1:2 and 1: 1 mode-locking are plotted in the V de

y rf plane37. At the lowest values of V rf ( top of this figure), there is a hysteretic transition 
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between the 0:1 and 1: 1 steps, and the 1:2 step is eclipsed. There is no space between the 

0:1 and 1:1 steps. The period doubling route to chaos is most strongly developed in this 

region of most hysteretic mode-locking. For higher values of V rf (lower in the figure) the 

1:2 step emerges and a smaller fraction of parameter space is occupied by the mode-locked 

regions shown. Period doubling instabilities persist, but the period doubling cascade is not 

so fully developed as in the highly hysteretic region. Below the critical line drawn in this 

figure, the period doubling and other instabilities are no longer observed, and the 1:2 

mode-locked region takes up a smaller and smaller fraction of the space between the 0:1 

and 1:1 mode-locked regions. 

Fig. 7-17 shows the 0:1, 1:1 and 1:2 mode-locked steps (also for sample #1) for f=50 

MHz and T=37K, just above the switching onset temperature. For these parameters, 

period two, period four, and Virtual Hopf behavior were observed, but fully developed 

chaos was not observed. Unlike in the low temperature case, the 1:2 mode-locked step is 

always visible for this set of parameters. For low values of V rf, no period doubling 

instabilities are observed and the 1:2 step occupies a relatively small fraction of the space 

between the 0: 1 and 1: 1 steps. As V rf is increased, the fraction first increases and then 

decreases. Period doubling instabilities are observed in the intermediate range of V rf· For 

the highest values of V rf, the fraction occupied by the 1:2 step shrinks to a very small value 

and no period doubling instabilities are observed. 

Figs. 16 and 17 demonstrate that the fraction of parameter space which is mode-locked 

is positively correlated with the presence of dynamical instabilities. This behavior is 

consistent with Fig. 7-15, calculated from the sine circle map. However, Figs. 16 and 17 

show a surprising correspondence between the parameter K in the circle map and the 

experimental parameter Vrr. At T=19K, Vrf is negatively correlated with K: small (large) 

values of Vrf correspond to large (small) values of K. At T=37K, K appears to first 

increase and then decrease as V rf is monotonically increased. The dependence of the 

strength of the nonlinearity on Vrf will be discussed in section 7.4.2.2. 
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Fig. 7-15- 0:1, 1:2 and 1:1 mode-locked regions for the sine circle map (After Refs. 
18,19 ,35,40). Period doubling and chaos are observed only above the solid line. 
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Fig. 7-16- 0:1, 1:1 and 1:2 mode-locked regions of sample #1 for a temperature well 
below the switching transition temperature. Period doubling and chaos are observed only 
above the solid line. 

J 



0 

::P ......... 

't:0.2 
> 

0.3 

~ 

-
~ 

some 
period 
doubling 

0:1 

1 :2 

1 :1 

no period 
doubling 

0 0.2 . 0.4 0.6 0.8 1.0 
V de /Vc 

133 

Fig. 7-11- 0:1, .:..: and l:l mode-locked regions of sample #l fortempera.urc it:~r 
above the switching temperature. Period doubling is observed only between Lhc ::,ul~~ 
lines. 
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The period doubling route to chaos and the structure of mode-locking are both nearly 

periodic in de bias over a certain range of de bias. For instance, the 1: 1, 3:2, and 2: 1 

mode-locked regions could have been plotted in Figs. 15-17 instead of the 0:1, 1:2 and 1:1 

regions. The dependence of the widths of the mode-locked regions on V rf is similar. The 

major difference is that the 1:1 region is narrower than the 0:1 region. 

The circle map's best known prediction 17 is that the fractal dimension of the space 

between mode-locked steps is 0.87 at the critical line K=l. The critical line is usually 

identified in physical systems by a sudden onset of broad band noise signalling the 

quasiperiodic transition to chaos. An attempt was made to verify this prediction in 

nonswitching CDWs, but the critical line was not located9. The fractal dimension of the 

space between mode-locked steps in nonswitching COWs has been measured for various rf 

amplitudes, and it was found that the fractal dimension was less than 0.87 for all values of 

the applied rf amplitude38. Thus it appears that, in the language of the circle map, mode

locking in nonswitching COWs is always subcritical (described by the circle map with 

K<1)39. 

The observation of period doubling in mode-locked switching COWs indicates that 

·mode-locking in this system can be supercritical (period doubling occurs in the sine circle 

map for K> 1 ). Thus it is possible to test some scaling predictions of the circle map. The 

critical lines in Figs. 16 and 17 separate regions in which period doubling is and is not 

observed in a switching COW sample. The "dimension" of the unlocked space along these 

lines should be a lower bound40 to the dimension predicted by the circle map at the 

quasiperiodic transition to chaos. We find40 d=0.85±.05 at the lower critical lines in Figs. 

16 and 17. This lower bound on d is in agreement with the predictions of the circle map. 

The structure of mode-locking in switching COWs is seen to be consistent with the 

predictions of the circle map in nontrivial ways. 1) The presence of dynamical instabilities 

is correlated with the width of mode-locked steps. 2) The structure of mode-locking and 

the period doubling route to chaos are periodic in de bias. 3) The period doubling cascade 

.. 
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occurs as the system is pushed from the edge of mode-locked regions toward the middle. 

4) The dimension of the space between mode-locked steps at the critical line is within 

experimental error of the prediction of the circle map. 

7 .4.2.1.2. Period doubling route to chaos 

The circle map has a quadratic local maximum for K> 1. The presence of the local 

maximum leads to the period doubling route to chaos, which may be described in terms of 

an even simpler discrete map, the 1-parameter logistic map16,41 

(7-3) 

X is between 0 and 1 and b is between 0 and 4. As the bifurcation parameter b is increased 

from 0, the steady state orbits undergo an infinite sequence of period doubling bifurcations 

which accumulate geometrically at some critical parameter be. For b>be, the orbits are 

chaotic and fall in attractors with zm bands. As b is increased beyond be, these bands 

merge pairwise until there is only a single chaotic band. Hence there is an apparent 

symmetry about b=be: for b<be, the orbits are periodic with period 2°. For b>bc, the 

orbits are chaotic but they lie in attractors with zm bands and hence their power spectra look 

like noisy versions of zm periodic orbits. Huberman and Crutchfield19 studied Eq. 7-3 in 

the presence of external noise. They showed that for a given noise level, the period 

doubling cascade is truncated at some zm periodic orbit and the system goes into a 2m band 

attractor. All the states with period greater than zm and all the attractors with more than 2m 

bands are washed out by the noise. The absence of high order periodic orbits in the 

presence of noise has been called the "bifurcation gap". 

The bifurcation gap is evident in the sequence of power spectra in Fig. 7-6. The period 

doubling sequence is truncated at period 4. The spectrum in Fig. 7-6a.iii has significant 

noisy flanks on the sides of the period 4 subharmonics, indicating that this spectrum is 

between period 4 and a 4 band attractor. Fig. 7-6a.iv, with its noise peak centered around 

f/2, is the spectrum of a 2-band attractor. This sequence of spectra is a period doubling 
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route to chaos with all of the states between the period 4 orbit and the 4 band attractor 

removed. 

7 .4.2.1.3. Noisy precursors 

The observation of the bifurcation gap dramatizes the importance of taking into account 

the effects of noise in explaining our experimental results. An elegant theory of the effect 

of noise on codimension one bifurcations of dynamical systems has been developed by K. 

Wiesenfeld20. The theory is based on the fact that a dynamical system that is near a 

bifurcation is almost unstable and hence is more susceptible to noise than one that is far 

from a bifurcation. Thus power spectra of dynamical systems near codimension one 

bifurcations exhibit bumps near the frequency at which an instability is about to occur. For 

instance, when a system driven at frequency f is near a period doubling bifurcation, the 

theory of noisy precursors predicts that a broad bump at f/2 will appear before one actually 

observes the sharp peak at f/2 that signifies that the peri~ doubling bifurcation is complete. 

Another type of codimension one bifurcation of a periodic orbit is a Hopf bifurcation. In a 

Hopf bifurcation, a periodic orbit whose power spectrum has only a single frequency and 

its harmonics becomes unstable to a quasiperiodic orbit in which two incommensurate 

frequencies appear. 

The noisy precursor phenomenon most closely related to our observations is the Virtual 

Hopf Phenomenon21. The sequence of power spectra characteristic of this phenomenon is 

shown in Fig. 7-18. In the top trace of Fig. 7-18, the power spectra show bumps 

symmetrically located about half the driving frequency. These are the precursors to a Hopf 

bifurcation. However, as the bifurcation parameter is tuned,the bumps move towards f/2 

and the spectra evolve into the precursors for a period doubling instability. In the third 
< 

trace of Fig. 7-18, the system has undergone a period doubling bifurcation. The height and 

width of the noisy precursor peaks are related to the rate at which the system relaxes to a 

limit cycle after it has been kicked off the limit cycle by a perturbation. The width of the 

noisy precursor peak is a measure of the longest relaxation time of the system. It has been 

• 
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argued that this phenomenon should be common in dynamical systems exhibiting a period 

doubling instability. 

Sequence of power spectra presented in Fig. 7-7 resembles very closely the sequence 

characteristic of the virtual Hopf phenomenon. Fig. 7-8 is not identical to the Virtual Hopf 

Phenomenon, but the appearance and disappearance of broad bumps in the power spectrum 

is strongly suggestive of a noisy precursor explanation. From the 1 MHz width of the 

broad bumps.in both figs. 8 and 9, we extract a relaxation time of the order of 1 J.Lsec. The 

spectra in Fig. 7-9 may also have a noisy precursor explanation. 

An alternate explanation of the spectra in Fig. 7-7 is possible. The spectra in this figure 

look very much like spectra observed during mode-locking of ordinary nonwswitching 

samplesl2. The broad bumps that travel through the spectrum could be interpreted as 

narrow band noise peaks which become mode-locked on subhannonic steps when the 

peaks sharpen into period three and period two. This explanation is problematic because 

the appearance of a strong peak at f/2 did not necessarily coincide with the observation of a 

n:2 step in the differential resistance. This matter requires further investigation. There is 

no easy explanation for the spectra in Fig. 7-8 as arising from narrow band noise in 

conventional mode-locking. 
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Fig. 7-18- Sequence of power spectra characteristic of the Vinual Hopf Phenomenon 
(Reprinted from ref. 21 ). 
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7 .4.2.2. Physical mechanisms of mode-locking and period doubling 

Section 7.4.2.1 classified certain aspects of mode-locking in switching CDWs as 

manifestations of behavior common in simple nonlinear dynamical systems. This section 

examines mode-locking in ac-dc driven switching CDW s in terms of the underlying 

physical processes. Period doubling and chaos in switching CDWs are explained as the 

frustrated response of a strongly entrained system with a motion-dependent inertia3.4. 

Period doubling and chaos occur over a limited range of driving frequencies, driving 

amplitudes and de biases. These boundaries for nonlinear behavior are qualitatively 

explained and it is suggested that switching CDWs depolarize on a time of the order of 1 

JlSec. The physical relevance of the circle map nonlinearity parameter K is discussed. 

Inertia does not appear to play any role in nonswitching CDW transport I. In contrast, 

mode-locking in switching CDWs has many characteristics of an inertial, underdamped 

response IS. The symptoms of nonnegligible inertia are hysteresis in the de 1-V curve, and 

the inductive ac conductivity observed in switching CDWs biased past threshold3,6. The 

simplest differential equation which incorporates inertia and exhibits mode-locking is the 

much studied pendulum equation (Eq. 7-1). The solutions to this equation share many of 

the features of the experimentally observed behavior of mode-locked switching CDWs. 

For b> 1 ( underdamped), the solutions to the pendulum equation exhibit hysteretic Shapiro 

steps, and a period doubling route to chaos is observed on some of these Shapiro steps43-

45. We conclude that some "pseudo-inertia" plays a significant role in switching CDW 

transport. 

The underdamped pendulum equation does not agree in detail with the behavior of 

switching CDWs3.4,6. The ac conductivity of a switching CDW with no applied de field 

appears overdamped. This is contrary to the prediction of Eq. 7-1, and indicates that the 

pseudo-inertia is only effective when the CDW is in motion 3.4. Equation 6 predicts a 

chaotic response43 only for drive frequencies P-1 <w<P-1/2 . This is a much narrower 

range than observed in switching CDWs. Finally, the period doubling route to chaos in 
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Eq. 7-1 is not periodic in de bias as it is in CDWs43. The period doubling route may occur 

on one step, then skip the next step. In fact, as de bias is increased in Eq. 7-1, mode

locked steps are not necessarily visited in order of increasing winding number43. In 

switching CDWs, these steps are always visited in order of increasing winding number (e. 

g., the CDW current increases monotonically with de bias). 

The phase slip process gives rise to a motion dependent inertia which can qualitatively 

account for the chaotic response of a switching CDW3.4. The phase slip process requires a 

macroscopic polarization of the CDW prior to the collapse of the CDW amplitude. After 

the amplitude collapse, it takes a finite time t for the CDW to depolarize and slide. This lag 

in the response is equivalent to inertia (in inertial systems, the response lags the force). 

When the phase slip process is entrained at a frequency of order 1/t, the CDW s tendency to 

follow the external forcing may compete with its requirement to "remember" its previous 

polarization state. This competition leads to a frustrated subharmonic or chaotic response. 

Period doubling occurs both just above and below the switching onset temperature. The 

period doubling observed just above the switching onset temperature can also be attributed 

to the polarization-induced inertia, because at these temperatures significant polarization 

may occur without a hysteretic switch. 

The longest depolarization time provides a natural lower bound on the rf frequency 

required to produce a frustrated response (There may in principle be many depolarization 

times in a given sample, and the distribution of these times may depend on driving 

conditions). Period doubling and chaos occurred in our measurements on sample #1 only 

for driving frequencies greater than 1 MHz, suggesting that the longest depolarization time 

in this sample was of the order of 1 ~sec. Other experimental results also suggest that the 

longest depolarization times t in switching samples are of the order of 1 ~sec. The width 

of a noisy precursor reflects the longest relaxation time of a system. The noisy precursors 

shown in Figs. 7 and 8 for sample #1 have widths of order 1/1 ~sec. The switching time 

tswitch ascertained from pulsed experiments is also likely related to the depolarization time. 

• 
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Measurements on a different sample by Zettl and Griiner28 found 'tswitch of the order of 

1J.Lsec. There are also upper bounds in parameter space for the observability of period 

doubling and related instabilities. The disappearance of these frustrated responses for large 

rf amplitude, de bias or rf frequency can be attributed to a suppression of motion-dependent 

inertia. If the CDW is forced to move too rapidly, the polarization and depolarization 

which are inherent to the phase slip process do not have time to occur. The motion-

dependent inertia is suppressed. In the absence of motion-dependent inertia, the switching 

samples should behave like nonswitching samples. This similarity is borne out in Figs. 5 

and 14. For the rf amplitudes above which period doubling instabilities are observed, the 

differential conductance curves look similar to those for nonswitching CDWs. As a 

function of de l)ias, there is a relatively small ratio of locked to unlocked space these high rf 

amplitudes. 

It is now possible to make a physical interpretation of the nonlinearity parameter K in 

the circle map, at least for switching samples. Period doubling and chaos in switching 

CDWs occur for large values of K (small space between mode-locked steps). However, K 

decreases as rf amplitude is increased to large values. It was argued above that motion-

dependent inertia also should decrease as rf amplitude is increased. Thus it appears that K 

is correlated with the motion-dependent inertia of the switching CDW system. 

There is a more general mathematical argument for the presence of an upper boundary 

on the region in which period doubling instabilities are observed. When a nonlinear 

differential equation is forced sufficiently strongly, the nonlinearity becomes a mere 

penurbation on a linear system 13,14. The dimensionless overdamped pendulum equation 

(Equation 6 with p = O)illustrates the reduction of the effective nonlinearity of a system by 

strong forcing. 

cte . e . c crt+ sm = edc + eac sm rot) (7-4) 
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Consider the limits: edc>>1, erFl, eo=1, erf>>1, edc=1, ro=1 and edc=1, erF1 and ro>>l. 

In the limit of large (edc· eac. ro), d9/dt is of the order of (edc, eac, ro), while the nonlinear 

term sin9 is much smaller, of order 1. For large driving parameters, the effective 

nonlinearity of the overdamped pendulum equation becomes small. A similar analysis for 

the pendulum equation with finite mass is more complicated. However, it is expected that 

for large driving parameters, the effective nonlinearity of underdamped pendulum equation 

will also be reduced. The upper boundaries in V de· Yrr and ro can be attributed to the 

decreased effective nonlinearity of the switching CDW system for large driving parameters. 

The argument also explains why the widths of Shapiro steps in nonswitching samples 

decreases at high values of V rf14. 

7. S. Conclusion 

The dynamical instabilities observed in switching CDWs can be divided into two 

categories. Instabilities in the first category occur for low driving frequencies. These 

instabilities include the 1/f noise and intermittency observed for current driven switching 

CDW's in an NOR region, and the ac switching noise observed for combined low 

frequency de and ac electric fields. The low frequency instabilities are attributed to the 

many degree-cf-freedom dynamics many phase-slipping domains. The instabilities in the 

second category occur for high frequency (> 1 MHz) driving electric fields. The high 

frequency instabilities are the period doubling route to chaos and related instabilities. For 

high driving frequencies, the independent switching CDW domains are synchronized by 

the rf electric field, causing the many-degree of freedom dynamics of the switching CDW 

system to collapse onto a subsystem with few dynamical variables. The collapsed 

dynamical system undergoes the period doubling route to chaos, which is characteristic of 

systems with few degrees of freedom. The one-dimensional circle map, the logistic map 

and the theory of noisy precursors explain many details of the second category of 

instabilities. Physically, period doubling in this case may be viewed as the frustrated 
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response of an inertial CDW which is strongly entrained by a radio frequency electric field. 

The CDW inertia arises naturally from the phase slip process. 

This chapter has for the first time presented and classified a rich and varied assortment 

of instabilities observed in switching CDWs. This chapter represents the most successful 

application of the modem theory of nonlinear dynamical systems to the study of CDW 

systems. There is much room for further application of the tools of nonlinear dynamics to 

the study of this rich system. For instance, the theory of nonlinear dynamical systems 

provides a quantitative method for estimating the number of degrees of freedom involved in 

a chaotic process. The required procedure is to calculate the Hausdorff dimension of a 

chaotic attractor from a chaotic time series. This procedure is difficult to implement in 

switching CDWs because of the high frequencies involved. It would be useful to directly 

determine the number of degrees of freedom involved in the chaotic dynamics of switching 

CDWs by measuring the Hausdorf dimension of the instabilities of switching CDWs. 
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8.1. Introduction 
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Chapters 6 and 7 explored some aspects of mode-locking between the electronic 

degrees of freedom in a COW and externally applied ac and de electric fields. One 

conclusion of chapters 6 and 7 is that the number of electronic degrees of freedom active in 

CDW transport is drastically reduced during mode-lockingl. This chapter explores the 

effect of mode-locking on the elastic properties of CDW conductors. A model of COW 

elasticity is presented and solved for the cases of a CDW driven by de, ac and combined ac 

and de electric fields2. It is shown that mode-locking stiffens a COW crystal by freezing 

out some of the degrees of freedom in the coupled lattice-COW system. 

Brill and Roark3, and Mozurkewich et al.4, first demonstrated that the elastic response 

of CDW crystals is highly sensitive to applied electric fields. In particular, the crystal 

Young's modulus Y strongly decreases and internal friction o strongly increases when the 

COW is depinned by a de electric field Edc exceeding the threshold field ET. More recent 

experiments by Bourne et al.5 show striking anomalies in Y and o when the COW is 

excited by combined de and ac electric fields which induce electronic mode-locking. 

The single- and many-degree-of-freedom models 6-9 reviewed in Chapter 5 assign 

degrees of freedom only to the COW phase and not to the impurities or the lattice. Thus 

these models make no predictions about the response of the lattice to a sliding COW. In the 

first attempt to calculate the elastic properties of COW crystals, Coppersmith and Varma 10 

considered a rigid COW sliding through a deformable lattice. Although an anisotropy was 

found for the velocity of sound, the predicted effects were orders of magnitude smaller than 

the experimentally observed changes in Y and o due to COW depinning. 

8.2. The model 

This chapter proposes a model for COW dynamics and elasticity in which degrees of 

freedom are assigned to both the lattice and the COW. The model is an extension of 

'-
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models based on the Fukuyama-Lee Hamiltonian Eq. 5-2. Elasticity is incorporated into 

the underlying lattice by a discretization which breaks the lattice and associated pinning 

potential into rigid units of mass M coupled harmonically by springs with spring constant 

K. The CDW is represented by discrete particles of mass m coupled harmonically to 

nearest neighbors by spring constant K. The mechanical analog of this model is shown 

schematically in Fig. 1. The model can describe both commensurate and incommensurate 

cases, and it can also be extended to the random pinning case. Eqs. 8-1 to 8-3 are for the 

commensurate case, in which the wavelength of the sinusoidal potential is equal to the 

equilibrium length of the springs connecting adjacent lattice or CDW particles. 

Assuming only nearest neighbor interactions, the potential energy function is 

(8-1) 

where rj and Xj are respectively the (laboratory frame) positions of the jth CDW mass and 

jth lattice unit, Vis the strength of the impurity pinning potential, and Q = 21t/A. with A. the 

CDW wavelength, and N the total number of lattice (and CDW mass) units. Applying 

Lagrange's equations (and adding internal friction and external forcing) yields equations of 

motion 

(8-2) 

A+rd(2x;-x;-t-Xj+t) +.,.d(x;-r;) +K(2x·-x· 1-x· t)+QVsin[Q(x·-r)] = F·(t) (8-3) 
dt2 dt f dt . J J+ J- J J J 

where r is the internal friction of the lattice andy is a frictional coupling between the CDW 

and lattice. fj(t) is the force applied to the jth charged CDW particles by external electric 

fields, and Fj(t) is the external mechanical force applied to the jth lattice unit. In the limit 
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K--> oo (rigid pinning potential), Eqs. 8-3 become trivial and Eqs. 8-2 reduce to the driven 

Frenkel-Kontorova model9. 

In a typical experimental situation, screening by normal (uncondensed) electrons in the 

CDW crystal insures a relative uniformity of the applied field E throughout the crystal. 

Thus, in Eq. 8-2, we set fj(t) = f(t). For a general forcing term f(t) = Edc + Eaccos(wt), 

with Eac the ac electric field amplitude, Eqs. 8-2 and 8-3 are analytically intractable, except 

if one considers small amplitude excitations and linearizes them. We here reduce the 

infinite set of equations 8-2 and 8-3 to the smallest set of equations that retain the essential 

physics of an elastic CDW interacting with an elastic lattice. The infinite chain of lattice 

units and CDW particles is truncated to three units. With clamped-clamped boundary 

conditions, the lattice is reduced to a single (renormalized) unit with its nearest neighbors 

fixed to the laboratory frame. The CDW is represented by a single (renormalized) particle 

whose neighbors are fixed to the CDW center of mass frame. The resulting equations of 

motion are 

d2r d(r-x) 
m* dt2 + YC dt + kc(r-vcomt) + eETsin[2kF(r-x)] = e[Edc+Eaccos(rot)] (8-4) 

__ d2x d(x-r) dx 
Mctr2+ YC dt + rL'dt'+ KLX + eETsin[2kp(x-r)] = Fcos(rort) (8-5) 

where r and x are respectively the laboratory positions of the CDW center of mass and 

lattice. m* is the total CDW effective mass in the crystal, e the total charge of the CDW, 

ML the lattice mass, Yc and rL respectively the total CDW damping and internal lattice 

friction, and kp is the Fermi wavevector. kc and KL parameterize respectively the total 

elasticity of the CDW and underlying lattice. Fcos(rort) is the mechanical force applied to 

the lattice, the response to which determines the elastic properties of the system. The de 

velocity of the CDW center of mass is Vcom· Subtracting the position of the CDW center of 

mass Vcomt from the variable r in the third term of Eq. 8-4 ensures that the CDW may slide 
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continuously through the lattice, with kc responding only to ac excitations (see Appendix C 

for details). 



152 

a. 

b. 

Fixed in COW de comoving frame 

Fixed in 1 frame X 

Fig. 8-1: Mechanical analog of the model of CDW elasticity, (a) for the infinite case 
(Equations 8-2 and 8-3), and (b) showing the boundary conditions applied to reduce the 
infinite case to equations 8-4 and 8-5. The "walls" to which the CDW spring is attached in 
(b) move with the steady state (de) velocity of the CDW center of mass. Y and 8 are 
determined from the resonant frequency and amplitude of the response of x to the 
mechanical force F. 
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8.3. Solution 

We have solved Eqs. 8-4 and 8-5, for a variety of de and/or ac electric field drives, on 

an analog electronic computer built in our laboratory (see Appendix C). The mechanical 

force F in Eq. 8-5 was kept small. The Young's modulus and internal friction are 

determined from the resonant frequency and amplitude of the response of x to the 

mechanical force F (Y a ( eor)2 and o a o-1( COr)). This procedure for determining Y and o 
is analogous to that used in the actual vibrating reed experiments3-5. For all calculations 

discussed here, the parameters used are (in relative units) eET=0.76xlQ-3, 2kp=6.28xl04, 

kc=2.85, KL=29.4, Yc=0.95xl0-3, rL=lQ-3, m*=4x1Q-11, ML=2x1Q-5, and C.Or/21t=200. 

We consider separately three different electric field drive situations: Edc=finite with 

Eac=O; Eac=finite with Edc=O, and combined finite Edc and Eac· Fig. 8-2a shows the results 

of our simulation with Eac=O. For Edc < ET, Y and o are only weakly field dependent. For 

Edc >> ET, Y saturates at a value smaller that that corresponding to the pinned state, and 8 

saturates at a value larger than that corresponding to the pinned state. The bottom trace in 

Fig. 8-2a corresponds to the differential resistance dV /di of the system, where an ohmic 

resistance representing normal carriers is assumed in parallel with the CDW condensate. 

With notable exception to the divergent behavior near threshold, the calculated behaviors of 

Y, o, and dV/di are in agreement with experimental results on NbSe3 and TaS3 in the 

presence of de electric fields (Fig. 8-2b). Furthermore, the model predicts a "tracking" 

between the Y and dV /di behavior (i.e. the Y and dV /di curves are nearly identical in form); 

similar tracking is observed experimentally in NbSe3 and TaS3 3-5. The divergence in 

dV/di near threshold (not observed experimentally) is endemic to finite-size classical 

models 11; it is thus not surprising that Y and y display similar divergent critical behavior 

near ET. In the thermodynamic limit (e.g. Eqs. 8-2 and 8-3, with large N), we expect such 

divergences to be removed in dV/di, and similarly in Y and (512. 



154 
In the range of finite Eac, with Edc=O, we have solved Eqs. 8-4 and 8-5 with OJ/ffir= 20. 

The results are displayed in the inset to Fig. 8-2a. Increasing Eac from zero results in a 

smooth decrease in Y, and, within computational resolution, no detectable change in 8 for 

very low Eac· These results are in agreement with experimental results for TaS3 under 

similar drive conditions, shown in the inset to Fig. 8-2b. In TaS3, the crystal lattice was 

found to soften under application of ac electric fields, even with Eac< ET. 

In the presence of combined de and ac electric fields, CDW conductors display 

electronic "Shapiro step" mode-locking, where the internal narrow-band noise frequency 

OJNBN of the CDW (proportional to CDW drift velocity) interferes with the external ac 

frequency ro. Such interference occurs in general whenever OJNBNI ro = p/q = n, with p and 

q integers. Experiments on NbSe3 and TaS3 have demonstrated that, in the electronically 

mode-locked regions, both Y and 8 tend to values characteristic of the pinned, Edc=O state. 

As shown in the lower dV/dl trace of Fig. 8-3a, Eqs. 8-4 and 8-5 predict, in the 

presence of combined de and ac electric fields, complete Shapiro step electronic lockingl3. 

The steps are identified with corresponding values of n. These calculations were 

performed with EaciET = 3. Also shown in Fig. 8-3a are Y and 8, calculated for the same 

set of drive parameters. It is clear that Shapiro step in the electronic response corresponds 

in the model to striking anomalies in the elastic constants. In the Shapiro step region, both 

Y and o tend to their respective values measured with Edc = 0, as observed in the 

experimental data of Fig. 8-3b. We also note the presence of harmonic (n = 2,3, ... ) and 

subharmonic (non-integral n) structure in the calculated and experimentally measured Y and 

0. 

.. 
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THEORY EXPERIMENT 

(a) (b) 
TaS3 I T=152K 

>- f/=-05 tJ/ =3X 10-3 

I 6
8
8 =·1 

It.Y=2X104 

y~ .0 It.b=.1 
b M -3 

s Ib~ 

I~.~~ =.5 
dV/dl ~00 ~y [1000 

i3 0 1 2 ..... . ~~ET I 2 
~ EaeiET > 

"0 

0 1 2 3 
de bias E/ET de bias current 1/lr 

Fig. 8-2: Y, 8 and dV/dl as functions of de bias for Eac=O. Insets: Y, 8 and dV/dl as 
functions of ac amplitude for Ectc=O. (a) calculated from Eqs. 8-4 and 8-5. (b) measured 
in experiments5. 
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THEORY EXPERIMENT 

>-

(b) NbSe3 
T=135K I11

/=2x 1 o-
4 

n=1/2 

n=1 n=2 n=3 I11~=2X 10
2 

~ Ij_dV =.5 
~ R dl 

0 

+n=1 

I1on 

0 1 2 3 0 30 60 

de bias E/ET de bias current (JJA) 

Fig. 8-3: Y, o and dV/dl as functions of de bias, (a) as calculated from Eqs. 8-4 and 

8-5 with EacfET=3, w/wr=20, and (b) measured in experiments5. The arrows identify 
interference structure. 
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8.4. Analytic treatment and quantitative comparison with experiment 

The parameters used in the simulation are a compromise between those appropriate for 

a real CDW md those accessible to the analog computer. An analytic treatment of 

linearized versions of Eqs. 8-4 and 8-5 in low- and high-field limits facilitates intuitive 

understanding and enables quantitative comparison of the predictions of the model with 

experimental results. This section shows that, for Edc=O, the sinusoidal potential in Eqs. 8-

4 and 8-5 is sufficiently strong to freeze the lattice and CDW coordinates into a single 

effective degree of freedom. The effective stiffness in this case is the sum of the CDW and 

lattice stiffnesses. It is argued that mode-locking also freezes the lattice and CDW degrees 

of freedom into one. However, it is shown that in case of a sliding CDW which is not 

mode-locked, the CDW and lattice degrees of freedom are independent and the effective 

stiffness is the stiffness of the lattice alone. The difference between the stiffness in the 

pinned and sliding cases predicted by the model is roughly consistent with experiment. 

To determine the elastic constants in the pinned case, the equations of motion 8-4 and 

8-5 are linearized about the state x=O, r=O. A mechanical analog of this linearized system is 

shown in Fig. 8-4. By inspection, the effective spring constant felt by the mechanical 

force F in this mechanical analog is 

1 
Kerr= KL + 1 1 (8-6) 

-+-
kpin kc 

where Kerr is the effective spring constant, KL is the lattice spring constant, kpin = 2kFeET 

is the spring constant that arises from the restoring force of the sinusoidal potential, and kc 

is the CDW spring constant. 

When the CDW is sliding with rapid velocity (Edc>>ET, Eac=O), the sinusoidal 

coupling between the CDW coordinate rand the lattice coordinate x averages to zero (see 

appendix C). Thus the effective spring constant for the rapidly sliding case is Kerr= KL. 

The difference between the stiffnesses in the pinned and rapidly sliding cases is then 
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~Kerr= 1 1 (8-7) 
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kpin kc 

We now make the connection between the parameters of the model and the physical 

constants of the CDW crystal. Eqs. 8-4 and 8-5 describe the dynamics of a macroscopic 

crystal. In computing kpin=2kpeET, the total charge of e the CDW in the crystal must be 

used. Thus kpin=2kpeelPetLAET where eel is the electronic charge, 2kp=108cm-I, 

Pet=5x1Q21cm-3 [ref. 6-1] is the density of condensed electrons, L=O.lcm is the l~ngth of 

the crystal, A is the cross-sectional area and ET=O.l V /em. The spring constant K is related 

to the Young's modulus Y roughly by the relation Y =kL/ A. From mean field theory, the 

contribution toY of the CDW3,4 has been estimated to be 109dynes/cm2 = kcL/A. Using 

these parameters, we find the ratio kkc_ -10-8. For the above (typical) parameters, the 
pm 

coupling between the CDW and the lattice for Edc=O is so strong that the CDW and lattice 

truly act as a single degree of freedom for low frequency mechanical forcing. To a very 

good approximation, for parameters appropriate to a real CDW, Kerr(Ectc=O) -

Fig. 8-3 demonstrates that the elastic constants predicted by Eqs. 8-4 and 8-5 are 

virtually identical in the pinned and mode-locked cases. In the pinned case, the CDW 

phase is constrained at low frequencies to follow the minimum of the pinning potential . In 

the mode-locked case, the CDW phase is constrained to move at a fixed de velocity relative 

to the pinning potential. In both pinned and mode-locked cases, the CDW and lattice 

degrees of freedom are nearly frozen together for low frequency excitations and the 

stiffness of the CDW adds to that of the lattice. In both pinned and mode-locked cases, the 

constraint on the CDW phase also precludes any friction at low frequencies between CDW 

and lattice. 

Mozurkewich et al.4 and Brill et al.3 have demonstrated for several CDW materials that 

the changes in Y due to CDW depinning are of order YcowiYTotat=I0-2-IQ-3, where 
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Y cow and Y Total are respectively the CDW and total crystal Young's moduli. In the 

calculations of Mozurkewich et. al. and Brill et. al., the phase elasticity in the Fukuyama

Lee Hamiltonian IS (Eq. 5-2) is used to estimate the CDW elasticity, and experimentally 

determined values are used for the lattice elasticity. Our model predicts changes of order 

kJ(kc+KL) = Y cnwiYTotal· This is the first dynamical model of CDW elasticity to 

correctly predict the magnitude of the elasticity changes. 

The interaction of the CDW with the lattice is an area that requires further investigation. 

In our model the electronically induced mode-locking strongly couples all the internal 

degrees of freedom. This may have implications for other coupled systems which exhibit 

mode-locking. Finally, the Frenkel-Kontorova model has been applied to many condensed 

matter systems, notably superionic conductors, adsorbates on surfaces, and 1-D 

magnetism16. In all of these systems, the assumption of a fully rigid substrate potential is 

unrealistic. Our extension of the Frenkel-Kontorova model or discretized Sine-Gordon 

equation is thus relevant to a wide variety of systemsl7. 
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in kc 
m 

F-. KL 
M 

Fig. 8-4: Mechanical analog of equations 8-4 and 8-5 linearized about the Edc=O 
equilibrium. kc and KL are respectively the CDW and lattice spring constants, and kpin 
=2kFeET represents the restoring force due to the sinusoidal potential. F is a mechanical 
force applied to the lattice. 
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Appendix A: Numerical integration of the Mattis-Bardeen equations for 

the temperature-dependent conductivity of a weak-coupling superconductor. 

The original Bardeen-Cooper-Schrieffer (BCS) paperl, published in 1957, discussed 

the thermodynamics and de electrodynamics of weak-coupling, phonon-mediated 

superconductivity. In 1958, D. C. Mattis and J. Bardeen2 developed a theory of the high-

frequency electrodynamics of BCS superconductors. The most important result of MB 

theory is an integral expression for the finite temperature, complex frequency-dependent 

conductivity of a BCS superconductor. This appendix first discusses the limits of validity 

for MB theory. Then a method for numerically evaluating the MB integrals is discussed. 

The real and imaginary parts of the conductivity of a superconductor at various 

temperatures for frequencies below 4~ are graphed and tabulated. Finally, a listing of the 

program used to evaluate the MB integrals is included. 

Although MB theory is an extension of the BCS model, it is valid for a whole class of 

models. The BCS model was formulated assuming that phonons mediate the weak

coupling between electron pairs in a superconductor. However, the BCS results also hold 

assuming that non-phonon excitations mediate weak-coupling. The form of the 

temperature dependence of the order parameter in BCS theory (and hence in MB theory) is 

entirely a result of the mean field approximation. Thus the MB results are valid for any 

weak-coupling, pairing theory of superconductivity in the mean field approximation. 

In general, the conductivity of a metal (or a superconductor) is a function of both 

frequency and wave-vector3. There are two limits in which the dependences on wave-

vector become simple. If the electron mean free path in the normal state and the coherence 

length in the superconducting state are both very long compared to the penetration depth of 

the electromagnetic field (called the extreme anomalous limit, or Pippard limit) the 

conductivity cr(q,w) a. 1/q for both the superconducting and normal states. If the electron 

mean free path in the normal state and the coherence length in the superconducting state are 

both short compared with the penetration depth of the electromagnetic field (London limit), 
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then the q-dependence of the conductivity becomes negligible. In both the London and 

Pippard limits, the ratio of the conductivity in the superconducting state to the conductivity 

in the normal state is independent of wave-vector. MB was calculated for the Pippard limit, 

but the results are also valid in the London limir4. High-Tc superconductors have low 

conductivities, extremely short coherence lengths, and long electromagnetic field 

penetration depths, so the London limit is appropriate. 

Mattis and Bardeen expressed the ratio of the superconducting to normal state 

conductivity in terms of the following integrals. 

~ -~ 

~ = 2. J[f(E)-f(E+hro)]g(E)dE + _!_ J[l-2f(E+hro)]g(E)dE (A-1) 
ON hro ~ hro ~-hro 

and 

CJ2 1 -=-

~ 

r1-2f(E+hro)](E2+~+ hroE) 

J (r,i- E2)li2[(E+hro)2-~l/2 dE 

~-hro;-~ 

(E2+~+hroE) 
g(E)=----

f(E) is the Fermi function 

f(E) = 1 +eEikT 

(A-2) 

(A-3) 

(A-4) 

(A-5) 

where E=O is at the Fermi level. The notation is that of MB. EO is the energy gap .1(T) 

(NOT 2.1(T)). The second term of Eq. A-1 does not appear unless hro > 2Eo, in which 
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case the lower limit of the integral in Eq. A-2 is -Eo instead of eo-hro. Signs of the square 

roots are such that g(E) is positive in both integrals of Eq. A-1. It is possible to express 

Eqs. 1 and 2 in dimensionless form if the BCS relation ~(T=O) = 1.76kBTc is used. 

These integrals have a closed form solution only for T=O. At finite temperature, the 

integrals must be performed numerically. The integrals are resistant to simple numerical 

integration (using, for instance, the trapezoidal rule). The upper limit of the first integral in 

equation 1 is infinite, and the integrand is singular at the lower limit The integrands of the 

other two integrals have a square root singularities at each of their four limits of integration. 

There exist extremely efficient techniques for performing integrals with square root 

singularities at the endpoints, and we have used these. Useful discussions of numerical 

integration techniques are to be found in Numerical Recipes4. Many formulas are to be 

found in Abramowitz and Stegun, Handbook of Mathematical Functions5, pp. 886 ff. 

Eq. 1 was integrated using Gaussian quadrature. Eq. 25.4.37 in Ref. 5 enables 

efficient evaluation of integrals with a square root singularity at the upper boundary: 

b 

f f(y) n 
(b-y)l/2 dy = (b-a)112 i~iif(yi) + Rn (A-6) 

a 

where 

Yi = a + (b-a)xi (A-7) 

Rn is the remainder of the series summed to order n, and Xi= 1-~i2 where ~i is the ith 

positive zero of the Legendre polynomial P20 (x). The weights Wi are the Gaussian weights 

of order 2n. The zeroes ~i and weights Wi are tabulated to 20 digit accuracy on pp. 916 ff. 

of Ref. 5. Eq. (A-1) was put into the form of Eq. (A-6) by using the identity 

b 1/a 

lf(y)dy = J(~~)Gf~ (A-8) 
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The utility of Eq. (A-6) comes from two sources. One is that the square root 

singularity at the upper limit of integration is removed. The other is that the method is 

computationally extremely efficient Because of the high degree of accuracy with which the 

Gaussian weights and zeroes are tabulated, highly accurate evaluations of the integral are 

obtained with only a few terms in the series. Thus a Macintosh running a relatively slow, 

interpreted Basic was able to perform the computations listed in tables A-1 and A-2 in about 

2 hours. 

The second term of Eq. 1 and the integral in Eq. 2 both have square root singularities at 

both endpoints. These integrals were evaluated using Eq. 25.4.39 of Ref. 5. The formula 

IS 

b 

f f(y) - n . ·. 
(y-a)ll2(b-y)l/2dy- i~i~f(yi) + Rn (A-9) 

a 

where 

(
2i-1\r 

Xi= cos 2n }" (A-10) 

and Wi=1t/n. Rn is the remainder of the series summed to order n. 

The integration routines were all checked by performing integrals with analytic 

solutions, and checking the numerical results against the analytic solutions. The T = 0 

result was checked by comparing it with values calculated for Prof. P. L. Richards by J. 

Swihart. The finite temperature results show the correct limiting behavior at high and low 

temperatures. 

The real and imaginary parts of the conductivity <rt /aN and a2faN are graphed in Fig. 

A-1 and tabulated in Tables A-1 and A-2 for various values of the reduced temperature 

T!fc. For a given value of the reduced temperature, the relative accuracy of values of the 

conductivity calculated for different frequencies (limited by computational errors) is better 



• 

• 

167 
than 0.5%. The absolute accuracy is difficult to gauge. It is limited by the 1% accuracy of 

the values used for the temperature-dependent energy gap ~(T). Since MB theory is based 

on a mean field approximation, it will not be valid near the phase transition where 

fluctuations become important 
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Table A-1: Real part of the frequency-dependent conductivity of a 

superconductor at selected temperatures: cr 1 ( ro )/crN( ro) 

Ttrc: 0.95 0.9 0.8 0.6 0.2 0.01 
~(T)/~(0): 0.38 0.53 0.7 0.91 1 1 .. 
0>/2~(0) 

0.025 1.6347 1.7709 1.6903 0.9885 4.595E-03 0 
0.05 1.4148 1.4907 1.3793 0.7670 2.966E-03 0 
0.075 1.2833 1.3250 1.1972 0.6397 2.134E-03 0 
0.1 1.1877 1.2060 1.0681 0.5513 1.624E-03 0 
0.125 1.1116 1.1127 0.9682 0.4846 1.283E-03 0 
0.15 1.0478 1.0357 0.8870 0.4318 1.043E-03 0 
0.175 0.9926 0.9700 0.8187 0.3885 8.675E-04 0 
0.2 0.9437 0.9127 0.7601 0.3523 7.352E-04 0 
0.225 0.8996 0.8619 0.7089 0.3215 6.330E-04 0 
0.25 0.8596 0.8163 0.6637 0.2950 5.524E-04 0 
0.275 0.8227 0.7750 0.6233 0.2719 4.877E-04 0 
0.3 0.7887 0.7373 0.5871 0.2517 4.349E-04 0 
0.325 0.7570 0.7027 0.5543 0.2338 3.913E-04 0 
0.350 0.7274 0.6708 0.5244 0.2179 3.548E-04 0 
0.375 0.6997 0.6413 0.4972 0.2037 3.239E-04 0 
0.400 0. 7011 0.6138 0.4722 0.1910 2.974E-04 0 
0.425 0.7097 0.5883 0.4492 0.1795 2.746E-04 0 
0.450 0.7183 0.5644 0.4280 0.1691 2.547E-04 0 
0.475 0.7268 0.5421 0.4084 0.1597 2.373E-04 0 
0.500 0.7354 0.5212 0.3903 0.1511 2.219E-04 0 
0.525 0.7438 0.5015 0.3734 0.1433 2.082E-04 0 
0.550 0.7521 0.5108 0.3577 0.1362 1.960E-04 0 
0.575 0.7603 0.5270 0.3431 0.1296 1.851E-04 0 
0.600 0.7683 0.5429 0.3294 0.1235 1.752E-04 0 
0.625 0.7762 0.5584 0.3167 0.1179 1.662E-04 0 
0.650 0.7838 0.5735 0.3047 0.1128 1.580E-04 0 
0.675 0.7912 0.5882 0.2935 0.1080 1.506E-04 0 
0.700 0.7984 0.6025 0.2829 0.1036 1.438E-04 0 
0.725 0.8054 0.6163 0.3086 0.0994 1.375E-04 0 
0.750 0.8121 0.6297 0.3334 0.0956 1.317E-04 0 
0.775 0.8186 0.6426 0.3574 0.0920 1.264E-04 0 
0.800 0.8248 0.6550 0.3804 0.0886 1.214E-04 0 
0.825 0.8309 0.6670 0.4026 0.0855 1.168E-04 0 
0.850 0.8366 0.6785 0.4239 0.0826 1.125E-04 0 
0.875 0.8422 0.6896 0.4444 0.0798 1.085E-04 0 
0.900 0.8475 0.7002 0.4640 0.0772 1.048E-04 0 
0.925 0.8527 0.7104 0.4827 0.0970 1.013E-04 0 
0.950 0.8576 0.7202 0.5007 0.1302 9.796E-05 0 
0.975 0.8623 0.7295 0.5179 0.1620 9.486E-05 0 
1.000 0.8668 0.7385 0.5343 0.1921 9.194E-05 0 
1.025 0.8711 0.7471 0.5500 0.2209 3.816E-02 3.808E-02 
1.050 0.8753 0.7553 0.5650 0.2482 7.397E-02 7.390E-02 
1.075 0.8792 0.7631 0.5794 0.2742 0.1077 0.1076 
1.100 0.8830 0.7707 0.5931 0.2989 0.1395 0.1395 
1.125 0.8867 0.7779 0.6061 0.3224 0.1696 0.1695 
1.150 0.8902 0.7848 0.6186 0.3448 0.1980 0.1980 
1.175 0.8935 0.7914 0.6306 0.3661 0.2249 0.2249 
1.200 0.8967 0.7977 0.6420 0.3864 0.2505 0.2504 
1.225 0.8998 0.8037 0.6529 0.4057 0.2747 0.2746 
1.250 0.9027 0.8095 0.6634 0.4242 0.2976 0.2976 
1.275 0.9055 0. 8151 0.6734 0.4417 0.3195 0.3195 
1.300 0.9082 0.8204 0.6829 0.4585 0.3403 0.3403 
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0'1 (ro)I<JN(ro) 
T/fc: 0.95 0.9 0.8 0.6 0.2 0.01 

6(T}/6(0): 0.38 0.53 0.7 0.91 1 1 
(1)/26(0) 

1.325 0.9108 0.8255 0.6921 0.4745 0.3601 0.3601 
1.350 0.9133 0.8304 0.7008 0.4898 0.3790 0.3789 
1.375 0.9157 0.8351 0.7092 0.5044 0.3970 0.3970 

'¥ 

1.400 0.9179 0.8396 0.7173 0.5184 0.4142 0.4142 -

1.425 0.9201 0.8439 0.7250 0.5318 0.4306 0.4306 
1.450 0.9223 0.8481 0.7324 0.5446 0.4464 0.4463 
1.475 0.9243 0.8520 0.7395 0.5569 0.4614 0.4614 
1.500 0.9262 0.8559 0.7463 0.5687 0.4758 0.4758 
1.525 0.9281 0.8596 0.7529 0.5799 0.4896 0.4896 
1.550 0.9299 0.8631 0. 7591 0.5908 0.5029 0.5028 
1.575 0.9317 0.8665 0.7652 0.6012 0.5156 0.5156 
1.600 0.9333 0.8698 0.7710 0.6112 0.5278 0.5278 
1.625 0.9349 0.8729 0.7763 0.6208 0.5395 0.5395 
1.650 0.9365 0.8760 0.7820 0.6300 0.5508 0.5508 
1.675 0.9380 0.8789 0.7872 0.6389 0.5616 0.5616 
1.700 0.9394 0.8817 0.7922 0.6474 0.5721 0.5720 
1.725 0.9408 0.8845 0. 7970 0.6557 0.5821 0.5821 
1.750 0.9422 0.8871 0.8017 0.6636 0.5918 0.5918 
1.775 0.9435 0.8896 0.8061 0.6713 0.6011 0.6011 
1.800 0.9447 0.8911 0.8105 0.6787 0.6101 0.6101 
1.825 0.9459 0.8945 0.8147 0.6858 0.6188 0.6188 
1.850 0.9471 0.8967 0.8187 0.6927 0.6272 0.6272 
1.875 0.9482 0.8990 0.8226 0.6993 0.6353 0.6353 
1.900 0.9493 0.9011 0.8264 0.7058 0.6431 0.6431 
1.925 0.9504 0.9032 0.8300 0.7120 0.6507 0.6507 
1.950 0.9514 0.9052 0.8336 0.7180 0.6580 0.6580 
1.975 0.9524 0.9071 0.8370 0.7238 0.6651 0.6651 
2.000 0.9534 0.9090 0.8403 0.7294 0.6719 0.6719 
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Table A-2: Imaginary part of the frequency-dependent conductivity of a 

superconductor at selected temperatures: cr2 ( ro )ION( ro) 

Ttrc: 0.95 0.9 0.8 0.6 0.2 0.01 
~(1')/~(0): 0.38 0.53 0.7 0.91 1 1 

~2~(0) 

0.025 8.5561 16.4784 29.1349 50.2444 62.8067 62.8220 
0.050 4.5105 8.5332 14.8857 25.3324 31.3899 31.3963 
0.075 3.1546 5.8742 10.1205 17.0099 20.9109 20.9145 
0.100 2.4699 4.5360 7.7260 12.8353 15.6663 15.6686 
0.125 2.0529 3.7256 6.2797 10.3204 12.5155 12.5171 
0.150 1.7689 3.1786 5.3073 8.6356 10.4116 10.4128 
0.175 1.5603 2.7817 4.6056 7.4256 8.9059 8.9069 
0.200 1.3982 2.4784 4.0731 6.5124 7.7741 7.7748 
0.225 1.2665 2.2372 3.6533 5.7973 6.8915 6.8921 
0.250 1.1553 2.0392 3.3125 5.2210 6.1833 6.1838 
0.275 1.0584 1.8724 3.0290 4.7459 5.6020 5.6024 
0.300 0.9714 1. 7288 2.7885 4.3466 5.1158 5.1161 
0.325 0.8905 1.6028 2.5811 4.0058 4.7026 4.7029 
0.350 0.8124 1.4903 2.3996 3.7109 4.3469 4.3472 
0.375 0.7302 1.3884 2.2387 3.4529 4.0372 4.0374 
0.400 0.6430 1.2946 2.0946 3.2248 3.7646 3.7649 
0.425 0.5800 1.2071 1.9643 3.0214 3.5228 3.5230 
0.450 0.5274 1.1240 1.8453 2.8385 3.3064 3.3066 
0.475 0.4821 1.0438 1. 7357 2.6729 3.1115 3.1117 
0.500 0.4424 0.9638 1.6340 2.5220 2.9348 2.9349 
0.525 0.4072 0.8781 1.5388 2.3837 2.7736 2.7737 
0.550 0.3759 0.7863 1.4490 2.2562 2.6258 2.6259 
0.515 0.3478 0.7183 1.3636 2.1379 2.4895 2.4896 
0.600 0.3225 0.6605 1.2816 2.0278 2.3634 2.3635 
0.625 0.2996 0.6099 1.2019 1.9247 2.2460 2.2461 
0.650 0.2788 0.5653 1.1231 1.8278 2.1364 2.1364 
0.675 0.2600 0.5247 1.0428 1.7362 2.0335 2.0336 
0.700 0.2428 0.4885 0.9511 1.6492 1.9366 1.9367 
0.725 0.2272 0.4557 0.8643 1.5662 1.8449 1.8450 
0.750 0.2128 0.4259 0.7973 1.4865 1.7579 1.7580 
0.775 0.1997 0.3987 0.7397 1.4096 1.6749 1.6749 
0.800 0.1876 0.3739 0.6887 1.3348 1.5954 1.5954 
0.825 0.1766 0.3512 0.6432 1.2613 1.5189 1.5189 
0.850 0.1664 0.3304 0.6022 1.1882 1.4448 1.4448 
0.875 0.1570 0.3113 0.5650 1.1137 1.3727 1.3727 
0.900 0.1483 0.2937 0.5312 1.0336 1.3019 1.3019 
0.925 0.1402 0.2775 0.5003 0.9402 1.2316 1.2316 
0.950 0.1328 0.2625 0.4720 0.8747 1.1607 1.1607 
0.975 0.1259 0.2486 0.4460 0.8132 1.0869 1.0870 
1.000 0.1196 0.2358 0.4220 0.7625 0.9999 0.9999 
1.025 0.1136 0.2239 0.4000 0. 7174 0.9178 0.9178 
1.050 0.1081 0.2129 0.3796 0.6768 0.8561 0.8561 
1.075 0.1030 0.2026 0.3607 0.6399 0.8036 0.8036 
1.100 9.815E-02 0.1930 0.3432 0.6063 0.7573 0. 7573 
1.125 9.367E-02 0.1841 0.3269 0.5754 0. 7160 0.7160 
1.150 8.949E-02 0.1758 0.3118 0.5471 0.6786 0.6786 
1.175 8.557E-02 0.1680 0.2977 0.5209 0.6445 0.6445 
1.200 8:190E-02 0.1607 0.2845 0.4967 0.6133 0.6133 
1.225 7.845E-02 0.1539 0.2722 0.4743 0.5846 0.5846 
1.250 7.522E-02 0.1475 0.2607 0.4534 0.5580 0.5580 
1.275 7.218E-02 0.1415 0.2499 0.4339 0.5334 0.5334 
1.300 6.932E-02 0.1358 0.2398 0.4157 0.5105 0.5105 
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T/fc: 0.95 0.9 0.8 0.6 0.2 0.01 
6(T)/6(0): 0.38 0.53 0.7 0.91 1 1 
ro/26(0) 

1.325 6.663E-02 0.1305 0.2303 0.3987 0.4892 0.4892 
1.350 6.409E-02 0.1255 0.2213 0.3828 0.4693 0.4693 
1.375 6.169E-02 0.1208 0.2129 0.3678 0.4506 0.4506 
1.400 5.942E-02 0.1163 0.2050 0.3538 0.4331 0.4331 
1.425 5.728E-02 0.1121 0.1975 0.3405 0.4166 0.4166 
1.450 5.525E-02 0.1081 0.1904 0.3280 0.4011 0.4011 
1.475 5.333E-02 0.1043 0.1836 0.3162 0.3865 0.3865 
1.500 5.151E-02 0.1007 0.1773 0.3051 0.3727 0.3727 
1.525 4.978E-02 9.735E-02 0.1713 0.2946 0.3597 0.3597 
1.550 4.814E-02 9.412E-02 0.1655 0.2846 0.3474 0.3474 
1.575 4.657E-02 9.106E-02 0.1601 0.2751 0.3357 0.3357 
1.600 4.509E-02 8.814E-02 0.1550 0.2661 0.3246 0.3246 
1.625 4.367E-02 8.536E-02 0.1500 0.2575 0.3140 0.3140 
1.650 4.232E-02 8.271E-02 0.1454 0.2494 0.3040 0.3040 
1.675 4.104E-02 8.019E-02 0.1409 0.2417 0.2945 0.2945 
1.700 3.981E-02 7.778E-02 0.1367 0.2343 0.2854 0.2854 
1.725 3.863E-02 7.548E-02 0.1326 0.2272 0.2767 0.2767 
1.750 3.751E-02 7.329E-02 0.1287 0.2205 0.2685 0.2685 
1.775 3.644E-02 7.118E-02 0.1250 0.2141 0.2606 0.2606 
1.800 3.541E-02 6.917E-02 0.1215 0.2079 0.2531 0.2531 
1.825 3.443E-02 6.725E-02 0.1181 0.2021 0.2459 0.2459 
1.850 3.349E-02 6.540E-02 0.1148 0.1964 0.2390 0.2390 
1.875 3.258E-02 6.363E-02 0.1117 0.1910 0.2323 0.2323 
1.900 3.172E-02 6.193E-02 0.1087 0.1859 0.2260 0.2260 
1.925 3.089E-02 6.031E-02 0.1058 0.1809 0.2199 0.2199 
1.950 3.009E-02 5.874E-02 0.1031 0.1762 0.2141 0.2141 
1.975 2.932E-02 5.724E-02 0.1004 0.1716 0.2085 0.2085 
2.000 2.858E-02 5.579E-02 0.0979 0.1672 0.2031 0.2031 
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Computer program 

This program calculates the real and imaginary parts of the temperature 

dependent conductivity of a weak-coupling superconductor. The program is 

written in Microsoft Basic and runs on a Macintosh computer. The program 

integrates the formulas derived by D. C. Mattis and J. Bardeen (formulas 3.9 

and 3.10, Phys. Rev. 111, p. 412 (1958)) There are four subroutines and a 

driver. Each subroutine calculates one term of Eqs. 3.9 and 3.10. 

DRIVER PROGRAM 

DIM TARRA Y(6),DEL(6) 

The reduced temperature T!Tc is stored in the array TARRAY.The reduced 

gap L1(T)IL1(T=O) is stored in the array DEL. L1(T) was determined to within 

1% from the graph of L1(T) vs. Tin Kittel's !SSP, p. 367. 

TARRA Y(1)=.95:TARRAY(2)=.9:TARRAY(3)=.8:TARRAY(4)=.6: 

TARRA Y(5)=.2: TARRA Y(6)=.01 

DEL(1)=.38:DEL(2)=.53:DEL(3)=.7:DEL(4)=.91:DEL(5)=1:DEL(6)=1 

FOR NUM=l TO 6 

T=TARRA Y(NUM) 

EO=DEL(NUM) 

LPRINT "REDUCED TEMPERATURE",T 

LPRINT"REDU CI;:D GAP" ,EO 
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LPRINT "Freq. ", "SIG 1/SIGN"," SIG2/SIGN" 

SIGJ is the real part of the conductivity in the superconducting state.SIG2 

is the imaginary part of the conductivity in the superconducting state. SIGN is 

the real part of the frequency dependent conductivity in the normal state HW is 

the energy divided by the energy gap DEL (not 2DEL) 

FOR HW=.05 TO 4 STEP .05 

S11=0:S12=0:S2=0 

IF HW<2*EO THEN CALL MATBA3(S2,EO,HW,T) ELSE CALL 

MA TBA4(S2,EO,HW,T) 

CALL MATBA1(S11,EO,HW,T) 

IF HW>2*EO THEN CALL MATBA2(S12,EO,HW,T) 

LPRINT .5*HW,(2*S 11 +S 12)/HW,S2/HW 

NEXTHW 

NEXT NUM 

END 

SUBROUTINES 

SUB MATBAl(S,EO,HW,T) STATIC 

This subroutine computes the first integral in formula 3.9 of Mattis

Bardeen. The upper bound of this integral is infinite. In order to handle this 
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with Gaussian quadrature, it is necessary to change variables. The 

identiry:integral from a to b of f(x)= integral from 1 lb to 1 Ia of 

((lftA2)f(llt))was used. (See William H. Press, Brian P. Flannery, Saul A. 

Teukolsky and William Vetterling, Numerical Recipes, p. 118). 

A=EO 

S=1E+20 

ST=lE-20 

FOR B=lOO*T TO 500*T STEP 50*T 

This loop calls the integrating routine SQRT1. The upper limit (infinite in 

the formula of Mattis and Bardeen) is increased with each subroutine call until 

the difference between the evaluation of the integral on successive calls is less 

than 0.01%, or until the upper limit reaches 500 times the reduced temperature 

(reduced temperature and energy gap are related by the BCS relation .1(0)=1.76 

kBTc) 

CALL SQRTl(A,B,S,EO,HW,n 

IF ABS(S-ST)<.OOOl *ABS(S) THEN GOTO 10 

ST=S 

NEXTB 

10 END SUB 

SUB SQRTl(AA,BB,S,EO,HW,T) STATIC 



This subroutine integrates a function with a square root singularity at its 

upper endpoint by formula 25.4.37 of Abramowitz and Stegun with n=lO. 

The data statement is a tabulation of the 10 positive zeroes and weights (the 

zeroes and weights alternate) of a n=20 Legendre polynomial (Ibid, p. 916). 

DATA 7.652652110-02, .1527533871#, .2277858511#, .1491729864#, 

.3737060887#, .1420961093#, .51086700 19#, .13168863 84#, 

.6360536807#, .1181945319# 

DATA .7463319064#, .1019301198, .8391169718#, .0832767415, 

.9122344282#, .0626720483, .9639719272#, .0406014298, .9931285991#, 

.0176140071 

RESTORE 

B=l/AA 

A=l/BB 

S=O 

FOR 1=1 TO 10 

READ XI 

READ WI 

X=l-XIA2 

W=2*WI 

Y=A+(B-A)*X 

F=SQR(B*Y)*( lfYA2)*( 1/(EXP( 1.76/(T*Y))+ 1 )-

1/(EXP( 1.76*(1/Y +HW)(f)+ 1))*(1/YA2+EOA2+HW /Y)/(ABS((1/Y +EO)*((l/ 

Y +HW)A2-E0A2)))A.5 

S=S+(B-A)A.5*W*F 

NEXT I 

END SUB 
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SUB MA TBA2(S,EO,HW,T) STATIC 

This subroutine computes the second integral of formula 3.9 of Mattis and 

Bardeen 's paper. 

S returns the value of the integral. 

A=EO-HW 

B=-l*EO 

NMAX=lO 

S=1E+20 

ST=-1E+20 

FOR N=l TO NMAX 

CALL DBLSQ2(A,B,S,N,T,HW,EO) 

IF ABS(S-ST)<(.OOOl)*ABS(S) THEN GOTO 20 

ST=S 

NEXTN 

20 END SUB 

SUB DBLSQ2(A,B,S,N,T,HW,EO) STATIC 

This subroutine integrates a function with a square root singularity at both 

the lower and upper bounds, as described in Abramowitz and Stegun, p. 889, 

formula 25.4.39 

int(f(y )lsqrt((y-a)*(b-y ))dy )=sum(wi*J(yi)) 
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S=O 

FORI=1 TON 

Yl=(B+A)/2+((B-A)/2)*COS((2*1-1)*3.14159265#/(2*N)) 

S=S + (3.141593/N) * (1-2*(1/(EXP(l.76*(YI+HW)/T)+1))) 

*ABS(YI"2+E0"2+HW*YI)/(ABS((YI-EO)*(YI+HW+E0)))".5 

NEXT I 

END SUB 

SUB MA TBA3(S,EO,HW,T) STATIC 

This subroutine computes the integral of formula 3.10 of Mattis and 

Bardeen's paper for hw<2EO.(frequency<L1(T)). S returns the value of the 

integral. 

A=EO-HW 

B=EO 

NMAX=10 

S=1E+20 

ST=-1E+20 

FOR N=l TO NMAX 

This loop calls the integrating subroutine. The order of the integration 

routine is increased until successive calculations of the integral are closer than 

0.01%, or until NMAX iterations are performed 

CALL DBLSQ3(A,B,S,N,T,HW,EO) 
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IF ABS(S-ST)<(.0001)* ABS(S) THEN GOTO 30 

ST=S 

NEXTN 

30 END SUB 

SUB DBLSQ3(A,B,S,N,T,HW,EO) STATIC 

S=O 

This subroutine integrates a function with a square root singularity at both 

the lower and upper bounds, as described in Abramowitz and Stegun, p. 889, 

formula 25.4.39 

int(j(y )lsqrt((y-a)*(b-y ))dy )=sum(wi*f(yi)) 

FOR 1=1 TON 

YI=(B+A)/2+((B-A)/2)*COS((2*1-1)*3.14159265#/(2*N)) 

S=S + (3.141593/N) * (1-2*(1!(EXP(1.76*(YI+HW)/T)+1))) 

*(YI"2+E0"2+HW*YD/(ABS((Yl+EO)*(Yl+HW+E0)))".5 

NEXT I 

END SUB 

SUB MATBA4(S,EO,HW,T) STATIC 

This subroutine computes the integral of formula 3.10 of Mattis and 

Bardeen's paper for hw>2EO.(frequency>2.1) S returns the value of the 

integral. 
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A=-l*EO 

B=EO 

NMAX=lO 

S=1E+20 

ST=-1E+20 

FOR N=l TO NMAX 

CALL DBLSQ4(A,B,S,N,T,HW ,EO) 

IF ABS(S-ST)<(.0001)* ABS(S) THEN GOTO 40 

ST=S 

NEXTN 

40 END SUB 

SUB DBLSQ4(A,B,S,N,T,HW,EO) STATIC 

This subroutine integrates a function with a square root singularity at both 

the lower and upper bounds, as described in Abramowitz and Stegun, p. 889, 

formula 25.4.39 

int(j(y )lsqrt((y-a)*(b-y ))dy )=sum(wi*f(yi)) 

S=O 

FOR I=l TON 

YI=(B+A)/2+((B-A)/2)*COS((2*I-1 )*3.14159265#/(2*N)) 

S=S + (3.141593/N)* (1-2*(1/(EXP(1.76*(YI+HW)/T)+l))) 

*(YI"2+E0"2+HW*YI)/(ABS((YI+HW)"2-E0"2))".5 

NEXT I 

END SUB 
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Appendix B: Analog simulations of and analytic approximations to a 

model of charge-density-wave elasticity 

B -1. Analog simulator 

We constructed an electronic circuit which has equations of motion isomorphic to Eqs. 

8-4 and 8-5. The circuit diagram is shown in Fig. B-1. At the heart of this analog 

simulator is a circuit that simulates a Josephson Junction (the x in the circuit diagram, a 

Walker-Gillette Model JA-100). The details of the operation of this kind of Josephson 

Junction analog simulator are to be found in the Ph. D thesis of Dr. Qing Hu (Harvard, 

1986). For our purposes, the JA-100 is a black box which is a perfect analog for a 

Josephson weak link. The voltage between the two terminals of the JA-100 is given by the 

equation 

(B-1) 

The current through the JA-100 is 

(B-2) 

In the language of Josephson Junctions, <1>1 and <1>2 are the phases of the superconducting 

wavefunctions on either side of a weak link and ic is the critical current (variable, <1 rnA, 

in the JA-100). Vis the voltage across the JA-100, and~ is the proportionality factor 

relating V to the time derivative of the superconducting phase difference (1/21t~ =104Hz/\' 

in the JA-100). 

The equations of motion for the circuit pictured in Fig. B-1 are determined by applying 

Kirchoffs laws. Since the JA-100 is designed to be operated current-biased, the entire 

circuit is current-biased. 

it= ict + iRt + iu + iR2 + iJJ (B-3) 
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i2 = ic2 + iL2 - iR2 - iu (B-4) 

1L2 = lC3 (B-5) 

it and i2 are the currents supplied,by current sources 1 and 2, and the other currents in eqs. 

B-3 to B-5 are the currents flowing through the components identified by their subscripts. 

Expressing the currents flowing through the components in terms of the phase difference 

across the Josephson Junction simulator (using eqs. B-1 and B-2), we find the following 

equations of motion: 

(B-6) 

1 . . d~ 1 d($2-<l>t) 1 ic . 
~ (ldc+Iaccos(rot))=C2 dt2 1 R

2 
dt I L

2 
(<1>2-<1>3)+ ?m(<l>2-<l>t) (B-7) 

1 d2<1>3 
[2<<1>2-<1>3) = c~ (B-8) 

The components are all defined in Fig. B-1. Eq. B-6 is isomorphic to the lattice equation 

Eq. 8-5, and B-7 is isomorphic to the COW equation 8-4. The correspondences between 

electrical and mechanical components, and the values of the components used in the 

simulations described in Chapter 8, are listed in Table B-1. 

Eq. (B-8) does not appear explicitly in chapter 8. The role of the very large capacitor 

C3 is to act as a high pass filter (the heavy wall in fig. 8-1 that moves at the velocity of the 

COW center of mass) and thus enforce the boundary condition that the spring kc CL2 in the 

simulator) responds only to ac excitations. The ratio of the impedance of the inductor L2 to 

the impedance of the capacitor C3 goes as (14 Hz1f)2, where f is the excitation frequency. 

The mechanical resonant frequency <Or in our simulation was roughly 200Hz. C3 exerted a 

negligible influence at this frequency. However, at frequencies much less than 14Hz, the 
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impedance of C3 dominated. The spring kc CL2) was not stretched, allowing the CDW to 

slide. 
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cj)2 

i2 

cpl 

JJ C2 

R2 L2 C3 

L1 

C1 

R1 

i 1 

Fig. B-1: Circuit diagram of the analog computer used to model Equations 8-4 and 8-
5. The values of the components and the corresponding constants from the CDW 
equations are listed in Table B-1 
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B-2. ' Analytic calculation of Ketr in the Edc>>ET limit 

To determine the elastic constants in the high field limit <Edc>>ET, Eac=O), we linearize 

the equations of motion about a state of rapid de velocity. We will show that the 

sinusoidal coupling between the CDW and the lattice averages to zero for a rapidly moving 

CDW. For this calculation, we make the common approximation that the CDW is 

massless. The equation of motion for the CDW is then 

d(r-x) . 
e~c = "{ dt + kc(r- Vcomt) + eETsm(2kF(r-x)) (B-10) 

where Vcom is the de velocity of the CDW center of mass. For Edc>>ET, the terms eEdc 

and ~dominate. The other terms may be treated as perturbations. The solution to the 

unperturbed equation is then 

dro eEoc 
-=-=vcom 
dt 'Y 

(B-11) 

where ro is the unperturbed CDW position. 

There is a natural separation of time scales in this problem. The period of a narrow 

band noise oscillation (A.cow/vcom )is much faster than the period of the mechanical 

resonance (2rc/wr). Thus, in order to determine the effective spring constant felt by a 

mechanical force acting on the system at frequency OJr, we may average the equations over 

the fast time scale. We define dimensionless variables p = 2kFr and ~ = 2kFx. We then 

separate the variables p and ~ into fast and slow components as follows: 

p(t) = Po+ Pslow(t) + Pfast(t) (B-12) 

(B-13) 
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where Pslow and ~slow vary on the time scale of the mechanical resonance and Pfas~ and 

~fast vary on the time scale of the narrow band noise frequency. In terms of these fast and 

slow variables, the equation of motion for the lattice is 

L(~.p)+FT'sin(~slow+~fasrOlnbnt- Pslow- PfasV = F'cos(O>rt) (B-14) 

where FT' = eET/2kp, F' = eE/2kp, Olnbn=2kpvcom is the narrow band noise frequency, 

and L(~.p) represents the linear part of the equation, 

(B-15) 

We now concentrate on the nonlinear term in Eq. B-14 and show that it averages to 

zero in the limit of infinite Ectc· The forces acting on the variable ~ are due to the small 

applied mechanical force F'cos( O>rt) and the small amplitude oscillations of p as it slides 

through the sinusoidal pinning potential. Thus it is safe to assume that~ is small and go 

only to linear order in~. The variable Pslow is parametrically excited by the already small 

~slow• so we may neglect Pslow altogether if we are only carrying out the calculation to first 

order in ~slow· Expanding to linear order in~. the nonlinear term in Eq. B-14 is 

-FT'sin( Pfast + Olnbnt) + FT' (~fast+ ~slow) cos(Olnbnt + Pras0 (B-16) 

We now assume the following form for Pfast and ~fast: 

· Pfast = Accos(O>nbnt + 8c) (B-17) 

~fast= ALCOS(Olnbnt + 8L) (B-18) 

Pfast and ~fast oscillate with frequency Olnbn. the washboard frequency. We assume that 

higher harmonics of the oscillation frequency are unimportant (reasonable for a high-field 
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limit calculation). AL and Ac are the amplitudes of the oscillations, and 9L and Sc are the 

phases. Without loss of generality, we may set Sc=O (we are free to choose the point t=O). 

The equation of motion for the lattice may now be written 

L(~slow) + FT' ~slow cos(ronbnt +Pras0 = F' cos (COrt) + 

L(~fast.PfasU -FT' sin (Pfast + ronbnt) + FT' ~fast cos(ronbnt + Prasu (B-19) 

All the terms on the right hand side now appear as driving terms for the linearized 

differential equation for ~low . Only the terms on the left hand side determine the effective 

spring constant. Expanding the sinusoidal term on the LHS ofB-19, 

cos(O>nbnt + Accos(O>nbnt)) = cos(ronbnt)cos(Accos(ronbnt))-

sin(O>nbnt)sin(Accos(O>nbnt)) = cos(O>nbnt)- Acsin(O>nbnt)cos(O>nbnt) (B-20) 

We now perform the average over the fast time scale and Poof! It all goes to zero. We are 

left with the equation for the slow variable 

d2~ d~slow J: , 
~+ r dt + KL~slow = F cos(rort) (B-21) 

As advertised, the effective spring constant goes to KL and the effect of the sinusoidal 

potential averages to zero. 
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CDW Simulator Value (in simulator) 

X 4>1 variable 

r 4>2 variable 

Vcomt 4>3 variable 

F iF/~ small 

COr COr =200Hz 

ro ro 5KHz 

eEac iac/~ 3ic;O 

e:Ea: ide!~ varied 
eET ic 0.76mA 
2lq; 1/~ 27tX-l ()4 Hz/V 
KL liLt 29.4 Henry-1 

kc 1/Lz 2.85 Henry-1 

M C1 20J.J.F 
m Cz 40pF 

YL 1/Rt IQ-3 mho 

'Yc 11R2 0.95xi0-3 mho 

C3 4000 J.J.F 

Table B-1: Correspondence between components in the electronic analog computer and 
constants in Equations 8-4 and 8-5. The values of the components used in the simulation 
are listed in the third column. 
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