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Chemical Reaction Rates 

via the 

Flux Correlation Function 

John William Tromp 

ABSTRACI' 

It is shown that the exact thermally averaged quantum mechanical rate constant 

of a chemical reaction can be obtained as the time integral of a reactive flux correla

tion function. This correlation function measures the time dependent correlation of 

reactive flux through a dividing surface separating reactants and products. The pro

perties of the correlation function are then investigated, first for barrier passage 

problems in one dimension. The correlation function is obtained by enclosing the 

reacting system in a finite sized box, and determining the time dependence of the 

quantum operators by using the Heisenberg representation in terms of the discrete 

eigenvalues. All correlation functions have an initial positive lobe of width li~/2 

corresponding to initial direct flux, and may show longer time negative lobes 

corresponding to flux recrossing the dividing surface. Quantum transition state 
\_ 

theory can be defined by using the correlation function to identify the short time 

quantum dynamics through the dividing surface. 

Next the correlation functions are obtained for three different collinear reactions 

(H + H2, .Cl + HCl, and F + H2), both quantum mechanically and classically. The 

features of the correlation functions can be interpreted in terms of the known 

dynamics of these reactions, and show the effects of direct tunneling, classical 

recrossing, and complex formation respectively. 
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Finally, a discrete Feynman path integral method is developed, where the mul

tidimensional nature of the problem is treated through the introduction of an 

influence functional. The path integral is done by Monte Carlo and yields values of 

the correlation function for purely imaginary times. Real time values are obtained 

by analytic continuation. This method is tested on the collinear H + H2 reaction, 

where it yields good results and can be readily extended to multidimensional sys

tems. 
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Chapter 1: Introduction 

Transition state theory is a most useful theory of chemical reaction rates 1. It is 

based on a simple assumption that is usually dynamically correct in the limiting case 

of low temperatures. The assumption is that the rate of a chemical reaction is 

determined entirely by the instantaneous dynamics through the tightest dynamical 

bottleneck separating reactants and products. If this assumption is not true, 

transition state theory still gives an upper bound to the rate constanr.3, since any 

flux that recrosses the transition state region at later times was incorrectly included 

in the· transition state theory prediction of the rate, and hence the latter must be too 

large. 

However, transition state theory is conceptually based on classical mechanics. 

Its fundamental assumption, just outlined above, can only be stated with precision in 

classical mechanics where the concept of a classical trajectory is useful, and one can 

follow a trajectory to see whether or not it connects reactants and products4• The 

same cannot be done in quantum mechanics where the Heisenberg uncertainty 

principle invalidates the concept of a classical trajectory. However, quantum 

mechanics is the most fundamental dynamical theory needed to describe chemical 

phenomena. Moreover, as a practical matter at low temperatures where the 

fundamental assumption is most likely to be true classically, the quantum 

mechanical effect of tunneling through the barrier separating reactants and products 

is largest. Thus, even if the classical transition state theory is an upper bound to the 

exact classical rate, it vastly underestimates the true quantum mechanical rate 

constant. In the past there have been several attempts to put transition state theory 
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on a firm quantum mechanical foundation, but no attempt has been completely 

successful5•6•7• Thus in this thesis one of the principal goals is to understand 

quantum transition state theory: Can one state the assumptions of transition state 

theory with precision in quantum mechanics, and if so what language must be used, 

and what picture of chemical reactions does this lead to? 

Closely related to this first theme is a parallel enterprise, which is the 

development -of an efficient computational scheme for the calculation of ab initio 

chemical reaction rates. We assume the validity of the Born-Oppenheimer 

approximation, and funher assume that quantum chemistry will be able to provide 

points on the electronic energy surface. Any quantum chemistry calculation has a 

finite cost, and so a method that minimizes this cost by only requiring potential 

surface information in the dynamically relevant region is preferred. This is of 

course the connection with transition state theory described above -- if transition 

state theory is correct then knowledge of the potential surface in the transition state 

region coupled with the appropriate dynamical theory yields the reaction rate. 

Such an appropriate dynamical theory is the reactive flux correlation function 

which appears in the title of this thesis. The reactive flux correlation function was 

originally formulated by Miller, Schwartz and Tromp8, who showed that the rate of 

a chemical reaction was given exactly in quantum mechanics by the integral over 

time of this correlation function. Initial calculation on one-dimensional barrier 

passage problems showed that the correlation function decayed to zero very quickly, 

typically in times less than h~ (about 25 femtosec at T=300 K), indicating that 

dynamical methods valid for short times could be used to calculate the rate constant. 

In this thesis two main avenues are explored. In the discrete basis set method 

the reacting system is enclosed in a box, and the resulting discrete eigenvalues and 

eigenvectors are obtained. Time evolution of any operator can then be obtained by 
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using the Heisenberg representation in this eigenstate basis. This is a short time 

method because eventually the presence of the walls starts to interfere with the 

dynamics that we are interested in. In calculations this can easily be separated from 

the "true" dynamics by making the artificial box bigger, and seeing if the correlation 

function is unchanged. Basis set methods have the obvious disadvantage that they 

are limited to systems with a few degrees of freedom, otherwise the basis set size 

becomes overwhelming. This method has been used to investigate the properties of 

the reactive flux correlation function in one-degree-of-freedom model systems, and 

in two-degree-of-freedom collinearly reacting systems. 

A second approach is to use a discrete Feynman path integral representation of 

the l'ropagator9, and to perform the multidimensional path integrals by Monte Carlo. 
/ 

This approach can be extended to multidimensional systems governed by a general 

Hamiltonian where the influence functional for all other degrees of freedom can be 

evaluated exactly, yielding an effective one degree of freedom path integral 

calculation. 

The outline of the thesis is as follows. In Chapter 2, the reactive flux 

correlation function formalism is described and related to the concepts of transition 

state theory by investigating the behavior of the correlation function for various 

one-dimensional potentials. In Chapter 3, three different collinear reactions 

(H + H2, Cl + HCl, and F + H2) are examined. This shows some of the range of 

behavior possible in a reacting system. Chapter 4 outlines the path integral method 

which could prove useful in the investigation of systems with many degrees of 

freedom, but has the limitation that it is accurate only for very short times, and is 

thus very similar in spirit to transition state theory. 
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Chapter 2: Transition State Theory and the 
Reactive Flux Correlation Function 

1. INTRODUCTION 

In this chapter we will discuss the dynamical basis of transition state theory, 

and show how transition state theory can be understood in terms of the reactive flux 

correlation function. The chapter begins with a qualitative introduction to classical 

transition state theory, and emphasizes the dynamical basis of what Wigner called 

the "fundamental assumption" of transition state theory4, i.e. the assumption that the 

dynamics of reactions are direct so that if a trajectory crosses a dividing surface 

separating reactants and products it never returns. The variational aspect of classical 

transition state theory is also discussed2.3. After this general introduction, the 

quantum reactive flux correlation function is derived. The classical reactive flux 

correlation can then be obtained, by taking the classical limit, and the connection to 

transition state theory and the Wigner assumption easily made. The quantum version 

also allows a simple derivation of the usual practical version of quantum transition 

state theory10, and clearly shows the dynamical assumptions involved. Next, some 

calculations of the reactive flux correlation function on a series of one-dimensional 

potentials using the basis set method are performed, and a way of stating the Wigner 

assumption quantum mechanically is proposed, leading to a new version of quantum 

transition state theory. Finally we compare the present reactive flux correlation 

function to alternative formulations, including the Kubo-transform correlation 

function previously obtained by Yamamoto11•12, and we discuss the advantages of 

our formulation. 
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2. A QUAliTATIVE DESCRIPTION OF CLASSICAL TRANSITION STATE 
THEORY 

Aside from the "fundamental assumption" mentioned above, transition state 

theory is based on two other assumptions. These are the assumptions that the 

Born-Oppenheimer approximation is valid and that the reactants are maintained in 

thermal equilibrium. The first assumption, which is generally valid because of the 

mass difference between electrons and nuclei, is one of the basic assumptions of 

theoretical chemistry. It leads to the concept of an electronic potential surface that 

can be calculated by quantum chemistry, and allows us to consider a chemical reac

tion as a problem of only the nuclear dynamics on this potential surface. 

The thermal equilibrium assumption is of a different nature. We can conceive 

of situations where the rate of collisional relaxation among reactants is slow 

compared to the difference in microcanonical rates, so that some reactant states 

become depopulated13• However, in such cases the experimental quantity being 

measured is not the thermal rate constant. Thus, this assumption amounts to 

requiring the experimentalist to guarantee that thermal equilibrium be maintained if a 

thermal rate constant is being measured. 

There are many standard derivations of transition state theory1•10• In what 

follows we present a qualitative description of the principles involved. The 

conceptual assumption behind transition state theory is that for many chemical 

reactions the reaction rate will be determined entirely by the dynamics through a 

tight dynamical bottleneck separating reactants and products. To illustrate this, 

consider a simple model potential for barrier passage in one dimension such as the 

potential depicted in figure 1. 

A chemical reaction occurs when a particle with sufficient energy crosses the 

barrier from left to right. Transition state theory introduces the mental construct of 

the dividing surface, a surface of F-1 dimensions where F is the dimensionality of 
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the system of interest. In our simple one-dimensional system, the dividing surface is 

of zero dimension, and corresponds to a point along the reaction co-ordinate. The 

transition state theory estimate of the rate constant then corresponds to the 

instantaneous flux through this dividing swface. Clearly the transition state theory 

rate constant depends on the dividing surface, as can be seen by considering the two 

different dividing surfaces shown in figure 1. The barrier maximum is at s=O, and 

this dividing surface is denoted by the solid vertical line. Another dividing surface 

denoted by the dashed vertical line is shown at So;t()· At s=O, all points with energy 

greater than V(O) contribute to the rate constant, while at s=s0 all points with energy 

greater than V(s0) contribute. Thus, since V(O) > V(s0), the instantaneous estimate of 

the rate based on s=s0 will be larger than that based on s=O. By considering the time 

evolved dynamics of points originating at s=O and s=s0 we can see how this arises: 

since s=O is at the top of the barrier, all flux through s=O is reactive, and if we 

follow a trajectory forever, it will never recross the dividing surface. On the other 

hand, it is clear that any trajectories originating at s=s0 with energies between V(SQ) 

and V(O) and with initial momenta in the left direction will hit the barrier around 

s=O and at some later time recross the dividing surface at s0• Following the 

trajectory over its entire course indicates its non-reactive nature. 

This discussion illustrates the variational nature of transition state theory. The 

transition state theory estimate of the rate constant must be an upper bound to the 

true rate because if there is no recrossing transition state theory is exact. If 

recrossing occurs, transition state theory overestimates the rate. Thus, by varying the 

dividing surface until the transition state theory rate constant is minimized, the best 

estimate is obtained. The same son of argument applies in the multidimensional 

situation. However, here the flux through a dividing surface depends not only on the 

barrier height, but also on the "width" of the potential in the other degrees of 
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freedom, with floppy onhogonal co-ordinates contributing more flux than tight ones. 

This will be seen more precisely after taking the classical limit of the quantum 

reactive flux correlation function, which is derived in the next section. 

3. THE REACI'IVE FLUX CORRELATION FUNCI'ION 

The original derivation of the reactive flux correlation function formalism was 

presented by Miller, Schwartz and Tromp8, based on a formally exact expression for 

the rate constant derived by Miller7• This derivation is completely rigorous, and 

starts with the well known expression for the rate constant in terms of a sum over 

squares of S-matrix elements between all states in the reactant and product channels. 

In what follows, a more heuristic derivation will be presented based not on the 

specific details of scattering theory, but on more general considerations of the time 

dependence of quantum projection operators which define reactants and products. 

The idea is to obtain an exact quantum expression for the rate of a chemical 

reaction. The expression is to be based on the idea of a dividing surface as in 

transition state theory. In classical transition state theory the dividing surface serves 

to separate space into two regions, one region called reactants and another one 

called products. By simply measuring the instantaneous flux through this surface we 

obtain a zero time estimate of the rate constant. 

The first step in the derivation will be to define two projection operators R and 

P that partition space into reactants and products. Between them, these two operators 

include all space, i.e. P + R = 1. The projector R must include the reactant channel 

out 'to infinite separation (between the reacting fragments), and P the product 

channel out to infinite separation (between the product fragments). Other than this, 

there is some arbitrariness to the definitions, since the concept of a reactant or 

product is not clearly defined in the interaction region. This arbitrariness is 

analogous to the variational nature of classical transition state theory, and so we also 
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expect that different choices of projection operator will be of different utility. 

As an example of the utility of these chosen projection operators, consider a 

one dimensional barrier passage where the top of the barrier is located at s=s0• The 

obvious classical transition state theory choice of dividing surface would be to place 

it at the top of the barrier, since this choice means that classical transition state 

theory is exact. To make the identical choice for our quantum projection operators, 

we can define 

where h is the step function 

Pp = h(s-s0) , 

h(x) = 1, x>O , 

h(x) = 0, x<O . 

(2.1) 

(2.2) 

For the general case it is now useful to define the eigenkets of these two 

operators, and also a Hamiltonian eigenstate basis. For the remainder of this 

discussion we will only use discrete labels in notation with the understanding that 

sums over discrete labels refer to both sums over discrete labels and integrals over 

continuous labels. Thus we define three types of states labelled by I r>, I p>, and 

I a>. The first two are eigenstates of the projection operators, and satisfy 

Rlr> = lr>, 

Rip>= 0, 

Pip>= lp>, 
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Plr>=O, (2.3) 

while the third set are solutions to the time-independent Schrodinger equation 

(2.4) 

From equation (2.3) we can writeR and P solely in terms of their eigenstates as 

R = l:lr><rl , 
r 

p = l:lp><pl 
p 

(2.5) 

Now consider the expression we wish to obtain. We want to find the rate at 

which a thermal distribution of reactants becomes products. The rate is clearly a 

dynamical problem, and will be obtained by considering the time evolution of the 

system, but first we consider how to impose the requirement of thermal equilibrium. 

If we were starting from a scattering theory expression this would be easy, since the 

asymptotic states have a clearly defined energy, so the S-matrix square is just 

weighted by the Boltzmann distribution ( exp( -~Er)). In our present notation the 

states I r> are clearly not eigenstates of the Hamiltonian --if they were they would 

display no time dependence, and there would be no rate to measure. 

First consider the determination of the Boltzmann average of some observable. 

In the eigenstate basis, this is given by 

<O>p = l:exp( -~Ea)<a I 0 I a> . 
a 

Making use of the Schrodinger equation, this can be rewritten as 

<O>p = L <a I exp( -I.H)Oexp( -(~-A.)H) I a> , 
a 

(2.6) 

(2.7) 
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where O<A<~. The choice of A is arbitrary, however it is convenient to make the 

choice A = ~/2, which gives the result 

<0>~ = l:,«x I exp(-~HI2)0exp(-~H/2) I a> 
a 

= tr[exp(-~HI2)0exp(-~H/2)] , (2.8) 

where "tr" denotes a quantum mechanical trace 

The reason for the symmetric choice is clear. By considering the Boltzmann 

probability operator to be divided into two equal Boltzmann amplitude operators, we 

can calculate quantum mechanical thermal amplitudes by including the operator 

exp( -~H/2). Any expectation value taken will be correctly weighted for a 

Boltzmann average, since the Boltzmann amplitude squared is the Boltzmann 

probability. 

Thus, a thermalized reactant state is defined by 

I r~> = exp( -~H/2) I r> . ·~····-·-·· ......... -(2.9) 

Now consider the dynamical evolution of the thermalized reactant states. The time 

evolution of any state is given by the propagator (from the time-dependent 

Schrodinger equation), so the thermalized ket at some timet is given by 

I r(~,t)> = exp( -iHt/t'i)exp( -~H/2) I r> . (2.10) 

Defining the complex time variable tc by 

tc = t-il'I~/2 

allows the previous. equation to be written as 

I r(~,t)> = exp( -iHt/h) I r> . (2.11) 
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The reaction amplitude at some time from the initial state I r> to some product state 

I p> is then simply obtained by the overlap with <p I 

a!:,< t) = <p I exp( -iHtclh) I r> . (2.12) 

Now we want to obtain the time dependent probability of overlap of any initial 

reactant state with any final product state, so we square and sum over reactant and 

product states to obtain 

PRp(t) = LL I a!:,(t) 12 

p r 

= l:l: <p I exp( -iHtc) I r><r I exp(iHt;) I p> . 
p r 

(2.13) 

Finally, insertion of the resolution of the identity in terms of the eigenstate ~asis 

(l=l:, I a><cx I) and rearrangement yields 
a 

Pt,(t) = .LLL<p I a.><cx I exp(-iHtc) I r><r I exp(iHt;) I p> 
a p r 

= l: <ex I exp( -iHtJ(L, I r><r I )exp(iHt;)(l: I p><p I ) I a> 
a r p 

= tr[ exp( -iHtc)Rexp(iHt;)P] , (2.14) 

where we have made use of the definition of a quantum mechanical trace, and the 

definitions of R and P given by eqn (2.5). 

This equation gives the time dependent conversion from reactant into product. 

The rate of conversion of reactant into product is related to the derivative of this 

expression. Recall earlier that the definition of reactant projection operator extended 

asymptotically to infinity in the reactant channel. Thus, after some initial transient, 

the expression defined by eqn (2.14) will attain a constant slope with time, 
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corresponding to a steady state flux of conversion from reactants to products. Thus 

except for a normalization factor, the rate is given by the long time limit of the time 

derivative of eqn (2.14 ). 

Now consider the evaluation of the normalization factor. The expression just 

given is a generalized rate for conversion from reactants to products in terms of 

quantum number density. To obtain the chemical rate constant, we want the rate in 

reactant particle density. The reactant partition function Q is by definition the 

number of quantum states per particle, so its inverse is the correct normalization 

factor. A different approach is to compare the present expression with separable 

quantum transition state theory where it is exact, and the same normalization factor 

is obtained. (This is discussed more completely later in the chapter.) Thus, the 

expression for the rate is 

k = Ql lim J!. PIP(t) . 
t-+- dt 

(2.15) 

At this point it may appear that not much has been accomplished. The original goal 

was to obtain an expression that had some conceptual relationship to transition state 

theory, and we do have an expression that contains the concept of reactive flux 

through a dividing surface. However, unlike transition state theory where the rate is 

obtained as a zero time limit, the present expression requires the evaluation of the 

dynamics out to infinite time. The connection arises from the actual time behavior 

of eqn (2.15) where in practice the limiting slope is attained in short time. To see 

this we will finally derive the expression in terms of the reactive flux correlation 

function. Taking the explicit time derivative of eqn (2.15), we obtain 

k = lim ke(f{t) , (2.16) 
t-+-

where 
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kerr(t) = ~ tr[exp(-iHtclli)! [H,R]exp(iHt;'lli)P] . 

For t = 0, the trace in eqn (2.16) is identically zero. This can be seen most easily 

by substituting P = 1 - R, and expanding the commutator. Cyclic permutation of 

one of the trace expressions leads to exact cancellation of all four terms. Thus eqn 

(2.16) can be written as 

-
= f Ct<t) dt, (2.17) 

0 

where 

Ct(t) = :t tr[exp(iHtJn)! [H,R]exp(-iHt;')P] . 

Taking the time derivative of the propagator as before leads to the final expression 

for Ct{t) : 

Ct{t) = tr[exp(iHtJn)FRexp(-iHt;')Fp] , (2.18) 

where FR , and Fp are defined by 

i 
Fp = h[H,P] , 

i 
FR = h [H,R] . (2.19) 

Now in eqn (2.1) a coordinate representation of the operators P and R was 

introduced. This selection corresponds to the concept of the dividing surface in 

transition state theory. Thus it is useful to explicitly evaluate the commutator for 
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this choice of projection operator. Since the potential is a function of only the 

coordinate s, it commutes with the step function, so we have 

. 2 
Fp = ..!..[ L,h(S-SQ)] 

li 2m 

i 1 = --{p[p,h(s-SQ)] + [p,h(s-s0)]p} 
li 2m 

= FR =F. (2.20) 

The reason for the notation is clear. The operator F measures the flux ~ through a 
m 

dividing surface located at s = s0 • Thus we see that we have obtained an 

expression for the rate constant of a reaction as the time integral of a flux 

autocorrelation function. 

Yarnomoto11 has previously obtained an expression for the rate constant in 

terms of the time integral of a correlation function. His correlation function 

corresponds to performing an integral over all A. as defined in eqn(2. 7) instead of 

just making the symmetric choice. The actual time behavior of these two correlation 

functions is different, although their integrals must agree. The advantages of the 

present formulation will be outlined in more detail in section 8. 
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4. THE CLASSICAL REACTIVE FLUX CORRELATION FUNCTION 

At this point, it is useful to consider the classical limit of the reactive flux 

correlation function. The reason for this is that, as stated in the introduction, transi

tion state theory is inherently based in classical mechanics. Thus, by taking the 

classical limit, we can identify precisely the correspondence between transition state 

theory and the reactive flux correlation function, at least in classical mechanics. 

Later this correspondence will be generalized to include the quantum situation as 

well. The classical expression is obtained from the corresponding quantum expres

sion by replacing all operators with classical functions, and by replacing the quan

tum trace with a phase space average. 

At this point we note that classical reactive flux correlation functions have been 

derived previously14•15, and are especially useful in the study of reactions in 

solution. Trajectories that start in the reactant configuration rarely make it to the 

transition state region due to the high dimensionality of phase space. However, by 

starting trajectories in the transition state region they can be followed long enough to 

determine their reactive or nonreactive nature. 

For convenience, we consider a situation where there are only two degrees of 

freedom. The extension to the multidimensional case is made by considering many 

degrees of freedom orthogonal to the reaction co-ordinate instead of the single one 

considered here. If s is the reaction coordinate and Q the coordinate orthogonal to it, 

then the classical expression for the reactive flux correlation function for a dividing 

surface at s = s0 is 
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P1 n(t) 
- o(scSo) o(s(t)-s0) ~ , 
m m 

(2.21) 

where (p,P) are the momenta conjugate to (s,Q), and s(t) and p(t) are the values of s 

and p that have evolved classically from the initial conditions (s1,p1,Q1,P1). The 

presence of the delta function allows the integral over s1 to be done immediately, 

giving 

2 
-1 J Pt P1 .Effi. (27th) dp1 - exp[-(3-

2 
] O(s(t)-s0) • 

m m m 
(2.22) 

It is illustrative to consider this equation in the short time limit In this limit s(t) 

and p(t) are given by a free particle trajectory (independent of Q1 and P1 ), 

Pt 
s(t) = s0 + - t, 

m 

p(t) = P1 • 

so that eqn (2.22) becomes 

- 2 2 
CL ± -1 f P1 P1 P1 Cr (t) = QcL (21th) dp1exp[-J3-](-)o(-t) , __ 2m m m 

(2.23) 

(2.24) 

where Q~L is the classical partition function of the activated complex on the 

dividing surface, 

(2.25) 
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Since 

Pt m 
o(-t) = 1-lo(t) 

m Pt 

and 

00 2 
1 f Pt 1_Pt kT 

(21tli)- dp1 exp(-f3 Zm) m I = 2h , -
eqn (2.24) becomes 

CrCL(t) = k~ ~L 2 O(t) . (2.26) 

The analysis in the above paragraph shows that the classical correlation 

function will always have a short time, free-particle delta function at t = 0. If s(t) is 

never equal to So for t > 0, then eqn (2.26) is the complete classical correlation 

function -- which is just the statement that classical transition state theory is exact if 

no trajectories re-cross the dividing surface. If s(t) does equal So at some later time 

t > 0 , then p(t) will have the opposite sign of p1 if this is the first recrossing time 

for this trajectory; if it is the second recrossing, p(t) and p1 will have the same sign, 

and so forth. Thus negative and the positive regions of Ct{t) are identified as 

classical recrossing effects. In section 7 we will show how the quantum correlation 

function can be interpreted the same way. 
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5. THE FREE PARTICLE CORRELATION FUNCTION 

Before continuing the general one dimensional result, one specific and impor

tant result will be obtained: that of Ct(t) for a free particle in one dimension. It is 

most convenient to do this in a coordinate representation, where matrix elements of 

the flux operator and complex time propagator can be obtained explicitly. 

Thus, using the fact that it can readily be shown that the coordinate 

representation of the flux operator (with dividing surface chosen at s = 0) is given 

by 

I li I I I I 

<s IF Is> = -
2

. [o (s)o(s )--O(s)o (s )] , 
1m 

(2.27) 

where o'(s) is the derivative of the delta function allows ( with some algebra ) one 

to obtain the coordinate representation of the reactive flux correlation function: 

li a2 , 
Ct(t) = (-)2(--, l<s lexp(-iHt/h)ls>l 2 

2m asas 

a , 2 
-4 I as' <s I exp( -iHtJli) I s> I ) I s'=s=O • (2.28) 

Note that if the potential is symmetric about s=O, the second term of this equation is 

zero. This can be seen most easily by insetting an eigenstate basis resolution of the 

identity into this term: 

a , r a , 
-, <s I exp(-iHtJil) Is> = JdE-, <s I E><E I s>exp(-iEtJll) . 
as as 

(2.29) 

The wavefunctions <s IE> are of either g or u symmetry, so either the wavefunction 

or its derivative is zero at s = 0. 

Now we know the explicit form of the free particle complex time propagator 

•. . 
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' . m 112 im '2 <s I exp(1Htclli I s> = ( 
2 

ih ) exp[ 
2
• (s-s ) ] , 

1t tc utc 
(2.30) 

so substitution and evaluation of the partial derivative immediately gives the result 

(2.31) 

The integral of this correiation function can be done immediately, to give the 

rate and the result is kT/h. This is the same as the classical result, which is of course 

expected for the free particle situation. This function decays monotonically to zero 

with a width proportional to 11~/2. Thus, in the classical limit obtained either by 

letting b~O. or by letting ~~ (infinite temperature), the width becomes zero, and 

the delta function at the origin described in the last section is recovered. 

In quantum mechanics, 11 is finite, and so the correlation function does have a 

finite width. Thus, it is clear that in quantum mechanics transition state theory 

cannot be obtained by taking the zero time limit of the dynamics. However, the 

fundamental assumption of classical transition state theory, i.e. that no trajectories 

recross the divide surface for t > 0 can be restated to say that the assumption is that 

the dynamics are direct. In the quantum correlation function, this direct dynamics 

can be associated with the. positive lobe of Cr(t) about t = 0. However we see 

already that defining a version of transition state theory in quantum mechanics will 

be less obvious than in classical mechanics. 

The broadening of the free particle correlation function in quantum mechanics 

is due to the uncertainty principle. A simple argument to show this is based on the 

energy-time uncertainty principle 

The Boltzmann distribution implies a finite energy distribution of the order of 1/~ so 
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the time distribution is of the order of t1I3. 

6. THE BASIS SET METHOD FOR ONE-DIMENSIONAL ANALYSIS 

In this section the behavior of the one dimensional reactive flux correlation 

function will be presented for various one dimensional potentials. In one dimension 

the numerical evaluation of the correlation function can be done routinely, and so in

sight into the behavior of the correlation function can be developed. 

For general one dimensional potentials explicit analytic results are not possible, 

so instead the correlation function is obtained using a basis set method. If { <l>n(s)} is 

some finite set of square integrable basis functions, the Hamiltonian can be 

diagonalized in this basis set to yield a set of eigenvalues {Ed and eigenfunctions 

{'l'i(s)}. In this representation the trace becomes a sum over all eigenstates, and the 

expression for Cf(t) can be written as 

where 

G(t) = ~exp[-I3(Ei+Ej)/2]cos[(&-Ej)tlti] I <i IF lj> 12 , 
ij 

The expression for Cf(t) can be directly integrated to yield kert<t) 

(2.32) 

(2.33) 

(2.34) 

Although the formal limit is k = lim kerc(t), this limit does not exist as can be seen 
t-+oo 

by noting the identity 

v • 
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sin[(E·-E·)tlh] 
lim 

1 1 = 1tO(Ei -E-) . 
t.........., E·-E· J 

1 ] 

(2.35) 

Thus, any discrete basis set can never give the infinite time limit correctly. This is 

not a problem in practice because we do not want to take the infinite time limit of 

the expression, instead we want to follow the dynamics for only a short time, the 

duration for which y(t) is non-zero. We want to use as small a basis as possible so 

the choice of basis set is very important. In initial calculations on one dimensional 

barrier problems a basis set of 1-d harmonic oscillator eigenfunctions centered ·on 

the top of the barrier was used. This basis set worked well for high temperatures 

where the tunneling correction was small, but low temperature results could not be 

obtained even with very large basis sets. Alternatively, excellent results were 

obtained by using a particle-in-a-box basis set, with very few basis functions needed 

to obtain excellent results. The basis set is defined by 

(2.36) 

where L=Smax-smin, and Smax• and Smm are the limits of the box. 

This difference in the utility of the basis functions was initially surprising, but 

can be rationalized. By using a particle-in-a-box basis set we are in effect solving a 

different dynamical problem --that of a panicle confined to a box with a barrier in 

the middle. The true eigenstates of this problem are discrete since it is a bound 

state problem, and the basis set used is very efficient for solving the problem. 

Clearly the walls must have an effect on the correlation function because after a 

long enough time flux which originated at the dividing surface location must reflect 

off the walls of the box, and lead to a long time spurious contribution to C{'(t). This 

recrossing has a well defined physical origin (the walls), and so its effect can be 

separated from the dynamics due to the potential of interest by simply moving the 



22 

walls further out. This leads to the reflection off the walls occurring at a longer 

time. This simple physical interpretation of the effect of the basis set is not clear 

when a harmonic oscillator basis set is used, since one cannot visualise physically 

what the long time behavior of Cf(t) is due to. 

Now consider specific examples of calculations for one dimensional systems. 

We first calculate Ct{t) for the symmetrical Eckart barrier shown in figure 1, defined 

by 

(2.37) 

where V 0 is the barrier height and a is the width of the barrier. The behavior of the 

tunneling correction r with respect to barrier height, barrier width, and temperature_... 

is a function of only two dimensionless parameters defined by 

(2.38a) 

(2.38b) 

with r defined implicitly as a correction to classical transition state theory by 

(2.39a) 

Rearranging eqn (2.39a) and making use of eqn (2.16) which defines ketJ<t) allows 

us to define r(t) 

r(t) = exp(~Vo) ~~ kect<t) . (2.39b) 

Johnston16 has tabulated values of r for different values of u and a. In figure 2, 

Ct{t) is displayed for a = 12, and values of u of 2, 6 and 10 corresponding to 

tunneling corrections of 1.2, 5.2 and 162 respectively. The tunneling corrections r 
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can be obtained from the long time plateaus of f(t), which are displayed in figure 3. 

The results can be compared to Johnston's values, and agree to the precision of his 

calculations. 

Aside from the accuracy and economy of this calculation method, it is 

interesting to note the behavior of Ct{t) for different u. As noted previously, the 

free particle correlation function has a width proportional to n~/2. To be more 

precise, the time for it to drop to half its initial value (denoted by t112) is given by 

t112 = (2213-1)112 ti~/2 = .77ti~/2. At high temperatures where the dynamics is 

classically dominated we expect the half time of the correlation function for any 

potential to be given by the free particle value. It is interesting to see how this 

width changes with temperature. To this end we have calculated C£(t) for the Eckart 

barrier described above over a range of u from u=2 to u=400, and determined t112 

and t112/(h~/2) for each calculation. These results are displayed in Table 1 where we 

have used units so that u =h~. As expected, for the lowest u (corresponding to the 

highest temperature), the free particle ratio is obtained. Then as temperature 

decreases, the width narrows to a minimum, and finally at even lower temperatures 

it asymptotically approaches the free particle width again. 

This behavior can be rationalized in terms of a simple uncertainty principle 

argument. At high temperature the Boltzmann distribution implies a large 

momentum distribution, so position can be localized precisely. Thus, the dynamics 

determining the correlation function shape are determined by the flat top of the 

barrier, and the result is free particle like. As temperature is lowered, the positional 

uncertainty increases and the dynamics probe more of the non constant part of the 

potential. Finally at very low temperatures the spreading due to temperature is 

much greater than the barrier width, so that the initial time evolution is determined 

by the flat asymptotic tails of the potential, leading to a free paticle like shape again. 
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7. QUANTUM TRANSITION STATE THEORY IN ONE DIMENSION 

The reason that the transition state theory assumption is so useful in classical 

mechanics is that it is based on zero time dynamics (i.e. no dynamics). The results 

of the last two sections have shown that this cannot be true in quantum mechanics 

where the uncertainty principle broadens the correlation function about the time ori-

gin. However, the quantum Ct(t) still allows us to identify "direct" dynamics on 

which transition state theory is conceptually based. Thus in the discussion that fol

lows we show how this can be done by comparing the quanta! and classical correla-

tion functions for barrier problems. 

To motivate our basic idea, consider the symmetrical one-dimensional Eckart 

barrier potential shown in figure 1. Figure 4 shows a sketch of classical and 

quantum flux correlation functions for a this potential, for the case that the dividing 

surface is chosen at the top of the barrier (SQ=O) or displaced from it (s0;tO). The 

classical flux correlation functions of figure 4 have a delta function at t=O, and it is 

the integral over this delta function which gives classical transition state theory, i.e., 

£ 

kcLTST = (1/Q) lim f dt C{L(t) . 
£-+0 0 

(2.40) 

For the case that the dividing surface is chosen at the top of the barrier (s0=0), 

classical transition state theory gives the correct classical rate because there is no 

contribution to the time integral of Ct(t) for t > 0. If the dividing surface is not 

chosen· at the top of the barrier, eqn (2.40) does not give the correct rate because it 

omits the (negative) contribution to the integral of Ct(t) for t > 0. (Keep in mind 

that the integral of Ct(t) from 0 to oo is invariant to where the dividing surface is 

located, even though Ct(t) itself is not.) That is, transition state theory neglects the 

effect of trajectories that re-cross the dividing surface, as some obviously do if the 

- . 
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dividing surface is not chosen at the top of the barrier. This also illustrates the 

variational aspect of classical transition state theory: The effect of re-crossing 

trajectories -- i.e., the negative lobe of Cr(t) -- gives a negative contribution to the 

rate constant, so omitting them gives an upper bound to the rate. For transition state 

theory to give the best approximation to the rate one thus varies the location of the 

dividing surface to minimize this upper bound, i.e., to minimize the effect of re

crossing trajectories. In the present example this is accomplished quite trivially by 

choosing sa=O. 

Figure 4 also shows that quantum mechanics broadens the classical delta 

function at t=O to a positive lobe of finite width (of order bj3/2). If the dividing 

surface is located at the top of the barrier, then the Cf(t) has only this positive lobe, 

whereas it also has a negative lobe (corresponding to re- crossing flux) if the 

dividing surface is displaced from s0=0. The definition of quantum mechanical 

transition state theory that we propose is 

to 

~MTST = (1/Q) J dt cpM(t), 
0 

(2.41) 

where to is the first zero of Cf(t). That is, we identify the positive lobe of the 

quantum Cr(t) with the classical delta function at t=O, and define the quantum 

mechanical transition state theory rate as the area under it. It is clear that for the 

quantum mechanical correlation functions in figure 4 this gives an upper bound to 

the correct quantum mechanical rate constant because the omitted integral from 

to-+oo gives a negative contribution. Thus, just as in the classical case, one should 

vary the location of the dividing surface to minimize the rate constant given by eqn 

(2.41). 

This quantum mechanical transition state theory requires more "work" than 

classical transition state theory in that it is necessary to determine the. dynamics, 
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i.e.,Cr(t) for some finite amount of time, up to to· This is a short time, though, of 

order 1'1~/2. If there is no re-crossing flux--i.e., Cr(t) has no negative lobe, as in 

figure 4 with sa=O--then tQ~. but even here Cr(t) falls to zero sufficiently rapidly 

that as a practical matter it is still necessary to determine it only for times of order 

1'1~/2. The quantum mechanical transition state theory rate is thus determined by the 

short time dynamics, analogous to the classical situation where it is determined by 

the zero time dynamics. 

Consider now the unsymmetrical Eckart barrier shown in figure 5; this 

describes an exothermic reaction if reactants are to the left (s~-oo) and products to 

the right (s~oo). Figures 6a and 6b show quantum flux correlation functions like 

those of figure 4 for this unsymmetrical barrier. Here things look strange. With the 

dividing surface located at the top of the barrier (SQ=O, figure 6a ) --for which there 

would no re-crossing effects classically--the quantum correlation function shows 

pronounced oscillations for t > 0, symptomatic of quantum re-crossing effects. If 

the dividing surface is moved toward reactants the oscillations are diminished [figure 

6b], but in this case eqn (2.41) does not give an upper bound to the correct quantum 

rate constant, which violates our notion of what a transition state theory should be. 

Fortunately, these deficiencies are eliminated in the following way. 

To see the origin of the oscillations in Cr(t) for s0=0, it is useful to recall the 

explicit expressions for Cr(t) in a basis set (eqn (2.32)) 

Cr(t) = L exp[-~(Ei+Ej)/2] cos[(EcEj)tlh] I <i IF lj> 12 • 

iJ 
(2.42) 

The sums in eqn (2.42) are over all such eigenstates and thus include terms for 

which Ei<V r cf. figure 7 - i.e., whose energies are less than the asymptotic energy of 

reactants. The wavefunctions corresponding to these energy levels ~<V r are non

zero predominantly on the product side of the barrier, but they do have tunneling 

- . 
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"tails" that are non-zero at the dividing surface s=s0=0 and thus contribute to the 

flux there. Such states will not contribute to the net flux, though, for all the system 

can do at an energy less than Vr is to tunnel into the barrier region and tunnel back 

out; i.e., such states contribute to re-crossing flux but not any net reactive flux. 

It thus seems intuitively clear that this undesired oscillatory contribution to Cr(t) 

can be eliminated--without changing the rate constant, the integral of Cr(t) --by 

dropping from eqn (2.42) all terms for which Ei or Ej are less than Yr. Doing so 

yields the correlation function in figure 6c, which has the anticipated behavior: 

there is now no negative lobe to Ct(t) if the dividing surface is chosen at the top of 

the barrier. This modification of eqn (2.42) thus eliminates the "spurious" re

crossing flux in Ct(t) so that eqn (2.41) once again gives a well-behaved quantum 

transition state theory. 

To justify the above modification we note that the flux correlation function can 

be written in terms of any projector. So far we have chosen one that only operates 

on coordinate space, but now it is convenient to make a more general choice given 

by 

(2.43) 

where H is the Hamiltonian. This choice of projector requires the energy of the 

system to be greater than V ~" as well as requiring the system to be on the left side of 

the dividing surface; it is clearly an acceptable definition of the projector onto all 

reactant states. The symmetrical form of eqn (2.43) insures that R is hermitian. It 

is easy to show that the generalized flux Fl" which results from this choice of R is 

(2.44) 

where F on the right hand side is the ordinary flux operator, eqn (2.20). Eqn (2.42) 

thus becomes 



Ct<t) = L exp[-~(Ei+Ej)/2] cos[~-Ej)t/11] l<i1Fij>l 2h(EcVr)h(Ej-Vr), 
i,j 
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(2.45) 

which is the desired result; i.e., one simply omits from the sum over states all terms 

for which Ei or Ej are less than V r> and the correlation function in figure 6a becomes 

that in figure 6c. 

The aim of this section has been to show that by identifying the direct flux 

from the behavior of the quantum correlation function we can approach a definition 

of quantum transition state theory. The major new idea introduced in order that this 

be feasible is that for asymmetric reactions we must project out flux from 

energetically forbidden processes to be able to retain our physical interpretation of 

the meaning of the correlation function. 

8. COMPARISON WITH OTHER CORRELATION FUNCTION EXPRESSIONS 

In section 3 of this chapter, the reactive flux correlation function was derived, 

and in the subsequent sections we have found this correlation function to be ex

tremely useful in conceptualizing the ideas of transition state theory. In section 3 it 

was stated that the present formulation had advantages over alternate ways of 

defining the correlation function, for example by choosing A.#~/2 in equation 2. 7, or 

Yamamoto's Kubo transforms-based expression. 

To summarize these three expressions, which we denote as y(t), Cl"(t), and 

CrK(t), respectively, we give their defining expressions below 

Ct<t) = tr{F exp(-~H/2) F(t) exp(-~H/2)} , (2.46a) 

Cl·(t) = tr { Fexp(-A.H) F(t) exp(-[~-A.]H) } , (2.46b) 

1 p 
Cf(t) = J3l dA. tr { Fexp(-A.H) F(t) exp(-[~A.]H) } , (2.46c) 

. . 

.. 
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where in all cases F(t) = exp(-iHtlh) F exp(iHtlh). 

Both y(t) and CrK(t) are real and even functions of time, while Cr;..(t) is 

complex. To show that both Cf(t) and CrK(t) are even in time we make the 

substitution t ~ -t. Then cyclic permutation of the operators yields y(t) again, 

while cyclic permutation and the replacement A.~ (3-A. in the integral yields CrK(t) 

again. The correlation function Cf(t) can be shown to be real by noting that both F 

and exp(-J3H) are Hermitian operators, so 

F* =F 

and 

exp( -J3H) • = exp( -J3H) . 

Thus, 

y(t)* = C£(-t) = y(t) . 

The same arguement can be applied to CrK(t) to show that it is real as well. Finally, 

using the same type of analysis on Cr;..(t), one can show that 

Cr'A.(-t)* = Cf(t) , 

which means that the real part of Cht) is even and the imaginary part is odd. The 

time dependence of each of these correlation functions is different, but the real part 

of the integrals from 0 to oo are indentical and give the rate constant. 

The differences between these correlation function expressions can be 

illustrated by calculating values using the basis set method. We have already 

discussed the basis set evaluation of eqn (2.46a). The basis set expression for eqn 

(2.46b) is similar and yields the expression 
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Cl"(t) = l:exp(-A.~-((3-A.)En') cos[ <En- ~,)tfh] I <n IF In'> 12 
, (2.47) 

nn' 

while the basis set evaluation of eqn (2.46c) is accomplished by integrating the 

above expression from A.=O to A.=~. and is 

(2.48) 

Similarly, we can obtain ke£I<t) for each of these expressions (analogous to eqn 

(2.34)) by integrating the expression from 0 tot. This makes the change 

In figures 7 and 8 we show the correlation funtions and effective rates for these 

three types of correlation function calculated by the basis set method. The 

symmetrical eckart barrier described in section 6, with u = 8, a=12 is used. This 

yields a tunneling correlation r of 22. The first correlation function in the figure is 

our now familiar result. For the correlation function of equation 2.46b a very 

nonsymmetric choice of A/~ = 7/8 was used. This introduces oscillatory behavior in 

the correlation function. Finally, unlike the first two correlation functions, the 

Yamamoto correlation· function does not behave smoothly. Costley and Pechukas17 

have shown that the Yamamoto correlation function behaves as I t 1- 112 around t=O, 

and so has an integrable singularity. Thus, its behavior cannot be exactly 

represented by a finite-sized discrete basis set expansion. For that case 

t 
kect<t) = 

112 
(i.e. is nonsingular), and so may be better described by a basis set 

It I 

expansion. The point to note from figure 8 is that even though these correlation 

functions behave very differently, they all give the correct rate in a reasonably short 

time. (Note that all calculations used the same basis set and box size.) Considering 
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figure 7 again, the advantages of the symmetric choice of Ct<t) are obvious. It is the 

only correlation function that allows us interpretation of its behavior in a physically 

meaninful way, which is of course what we need to do when considering transition 

state theory. The second correlation introduces spurious recrossings, and if a 

transition state rate constant were determined by the area before the first zero, it 

would vastly overestimate the rate (i.e. see the first peak in figure 7b). 

The behavior of the Yamamoto expression merits further discussion. As 

discussed by Costley and Pechukas, any finite basis set evaluation of it cannot be 

correct near zero time, since high energy terms in eqn (2.48) are responsible for the 

singularity. However, the other two correlation function expressions are well 

behaved at the time origin. The origins of the singularity in the Yamamoto 

expression are the endpoints in the integral over A.. This can be inferred from the 

difference in behavior between figure 7a and figure 7b, but can also be shown 

directly by again considering the free particle correlation function expression for 

A#~/2. The expression can be obtained in the same way as the symmetric A. 

expression was obtained in section 5, and is 

(2.49) 

Note that A.=~/2 gives the previous result. Now consider the behavior of this 

expression when t=O. We have 

(2.50) 

This expression is finite for all O<A.<~, but diverges at the endpoints of the range. 

Thus the Kubo expression 

(2.51) 
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has nonintegrable singularities at the endpoints of the integral going as A. -3' 2 as 

A.~o. and (j3-A.)-312 as A.~j3. and so is singular at the origin of time. That the 

singularity goes as ltl-112 was shown previously17• 

We can also obtain the explicit time dependence of Cf(t) by integrating eqn 

(2.49) over A., since the integral can be done analytically18: 

(2.52) 

The result is a purely real number, as it is the sum of a complex number and its 

complex conjugate. Eliminating the explicit imaginary terms yields the purely real 

expression 

(2.53) 

Finally, taking the limit as t -+ 0 yields 

(2.54) 

which goes as It 1-112, the correct result. 

Finally, consider the integral over time from 0 to oo of eqn (2.49). This 

integral is the same form as the one just done, and the result is 

(2.55) 

Thus the real pan yields the correct rate constant, while the imaginary pan 
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disappears if A. = ~/2. 

It now seems clear why the choice A.=~/2 is optimal. It chooses the single value 

of A. farthest away from any singularity, and this choice leads to the best behaved 

correlation function. We note also how the idea of a Boltzmann amplitude operator 

as defined in section 3 (instead of a Boltzmann probability operator) makes this 

choice naturally, and wonder if this concept has wider applicability. 

9. SEPARABLE QUANTUM TRANSITION STATE THEORY 

Transition state theory is useful in chemistry because it yields a simple expres

sion for the rate constant that can be easily evaluated. This expression indicates the 

rate in terms of the ratio of the quantum partition functions for the activated com

plex, and the reactant. The usual derivation of this expression involves deriving the 

classical expression, and then replacing the classical partition functions with quan

tum ones, and assuming that motion along the reaction co-ordinate can be treated 

classically10• 

The expression is 

(2.56) 

However, using the reactive flux correlation function we can derive this expression 

correctly, and show the separable approximation explicitly. We assume that the 

Hamiltonian is separable in the transition state region, i.e., that 

P2 p2 
s k 

=- + Vo(s) + L- + Vk(~) , 
2m k 2m 

(2.57) 

where s is the reaction coordinate, and where Q is a set of coordinates orthogonal to 
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the reaction coordinate. In this coordinate system the dividing surface is chosen to 

include only the s-degree of freedom, so the flux operator is a function of s and Ps 

only. Thus the rate can be written as 

00 

k = ...!._ J Cf(t)dt 
Qo 

00 

= ...!._ J dt tr[F(s,p5)exp(i[h5+~]tft)F(s,p5)exp( -i[h5+hQ]t; /h)] 
Qo 

00 

= ~ trQ[exp(-13hQ)]! dt tr5[F(s,p5)exp(ih5tJli)F(s,ps)exp(-ih5t;lli)] . (2.58) 

where tr5 and trQ denote traces over these degrees of freedom, and the trQ factor is 

obtained since F is independent of the Q variables, and 13 = (itc - it;)/h. The 

integral over time of the s dependant part gives the one dimensional rate, which can 

be written as a quantum correction times the classical rate (passage over the top of 

the barrier) i.e. r k: exp( -I3V 0), while the trace over Q gives the partition function 

for the orthogonal degrees of freedom, typically labelled as Qt. Thus the practical 

version of transition state theory is recovered. Of course for cases where the 

dynamics are not separable, this formula will can no longer be interpreted this way. 

However, r can still be defined as the ratio of the exact rate constant to the ld 

separable transition state theory estimate (with classical reaction coordinate 

dynamics), it then includes corrections for nonseparable tunneling dynamics and 

dividing surface recrossing as well. The separable approximation for direct 

dynamics will be correct when the thermal de Broglie wavelength for motion along 

the reaction coordinate is shon compared to changes in the Hamiltionian describing 

the Q degrees of freedom, and this limit is obtained at high temperatures. However, 

it is also at high temperatures where dividing surface recrossing is expected. 
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10. CONCLUSIONS 

In this chapter, we have derived a general formalism that allows a new concep

tual approach to the problem of chemical reaction rates. Instead of thinking of a 

rate in terms of transitions between asymptotic scattering states, we borrow some of 

the concepts of transition state theory, and define the rate in terms of quantum flux 

through a dividing surface. This allows us to understand quantum transition state 

theory in terms of direct flux identified from the reactive flux correlation functions. 

Another advantage of this formalism is that it allows a more unified picture of 

chemical reactions. Gas phase reactions are the focus of theoretical and 

experimental interest because they have the hope of being treated in a completely 

rigorous way. However, ultimately theoretical chemistry must deal with reactions in 

solutions and on surfaces. The scattering theory formalism is not appropriate for 

such situations, while the reactive flux correlation function formalism can be readily 

applied to these cases, and in fact much work is being done using classical 

mechanics in this area14•15• If quantum effects are important they can be treated 

with the present formulation, although the basis set method described in this chapter 

is inappropriate. In Chapter 4 a path integral method applicable to multidimensional 

sysyems will be outlined that has some hope of being applied to these situations. 
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Chapter 3: Collinear Reactions 

1. INTRODUCTION 

In the previous chapter, the behavior of the reactive flux correlation function 

has been investigated for various one-dimensional potentials, and some 

correspondence with the ideas of transition state theory established. The connection 

between the reactive flux correlation function, and the typical version of separable 

quantum transition state theory has also been established. However, one of the 

~whacks of the use of separable transition state theory is that the transition state 

dynamics are typically not separable, so inaccurate results can be obtained even if 

the assumptions of transition state theory are valid19• This effect cannot be 

investigated in one-dimensional systems, and so a two- dimensional model must be 

considered. In this chapter, we study three reactions of the type 

- A+ BC ~ AB + C 

where all the atoms are constrained to lie on the same line. Elimination of centre of 

mass motion reduces this to a two-dimensional problem. The collinear problem is 

the simplest system that can be considered a realistic model for a chemically 

reacting system. Different regions on the potential surface can be identified as 

reactant and product, consisting of one internal degree of freedom (the BC or AB 

stretch), and a translational degree of freedom that brings the reacting fragments 

closer together or farther apart. Also, in the interaction region (the region where 

A,B, and C are all close together) the reaction co-ordinate can be strongly coupled 

to the other degree of freedom. In a reaction path Hamiltonian picture20 , this 



37 

coupling can take two forms: curvature of the reaction path, and variation of the 

frequency of the degree of freedom orthogonal to the reaction path along the 

reaction path. 

Thus, in this chapter calculations of the quantum reactive flux correlation 

function for three different collinear atom-diatom reactions over a range of 

temperatures will be described. The three systems studied are the H + H2 reaction 

on the Porter-Karplus surface21•22.23, the Cl + HCl reaction on a LEPS surface24, and 

the F + H2 reaction on the Muckerman-5 surface25•26.27• The purpose of this chapter 

is to illustrate the generic behavior of the quantum correlation function for different 

kinds of reaction dynamics. We also calculate the classical reactive flux correlation 

functions for the same potential surfaces. This allows us to interpret features in the 

quantum correlation function in terms of classical features that can be explained in 

terms of individual trajectories. 

2. THEORY AND METHOD 

a. Quantum Calculations 

For the quantum calculations we use the basis set method that was described in 

the previous chapter. However, the work in the present chapter deals with a two

degree-of-freedom system, demanding the use of a different basis set. The next part 

of the chapter contains a description of the Hamiltonian for the system and of the 

basis set used, as well as some of the details of the calculation of the Hamiltonian 

and flux operator matrix elements. 

For these calculations we have found it convenient to work in hyperspherical 

(i.e. polar) co-ordinates. There are several reasons for this choice. First of all, it is 

well known that for collinear systems the Hamiltonian in terms of r AB and r8c 

contains cross terms between these co-ordinates in the kinetic energy operator. The 

kinetic energy can be easily made diagonal by making a co-ordinate change 
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(described below) that leads to the skewed co-ordinate system28
• 

Now we need a basis set that confines the system to the interaction region in 

the potential. This is most easily done in terms of polar co-ordinates, by confining 

the system to p=Pmax by placing a wall at Pmax· Finally, previous work has shown 

that the vibrationally adiabatic approximation works well in hyperspherical co

ordinates29·30, and the basis set we use will be based on this. 

In hyperspherical coordinates, the Hamiltonian is given by 

112 1a a 1a2 · 
H = -(--p- + --) + V(p,a), 

2JJ. p ap ap p2 aa2 (3.1) 

where the reduced mass J.1 is defined in terms of the masses of the three particles by 

(3.2) 

The coordinates p and a can be related to r AB and rBc in the following way: 

x = p cos(a), 

y = p sin(a) , 

rBc = Ay' (3.3) 

The coordinate p varies from zero to infinity, with p = 0 corresponding to the 

three particle coincidence, and p = oo corresponding to the particles being infinitely 

separated. The coordinate a ranges from a = 0 to a = am the skew angle defin~ in 

terms of the masses by 



39 

(3.4) 

The potential surfaces are defined in terms of r AB and rae· 

The vibrationally adiabatic approximation works well for collinear systems in 

hyperspherical coordinates, when 9 is treated as the fast coordinate, and p as the 

slow coordinate. Thus, in the present work we chose a vibrationally adiabatic basis 

set: 

(3.5) 

The radial basis function Xn<P) is defined as a particle in a box function: 

2 112 • p-pmin 
X0 (p)=[L) sm[mt L ], (3.6) 

where L = Pma.x -Pmin• and Pmin and Pma.x are chosen to be small enough and large 

enough respectively that the walls do not interfere with the dynamics over the time 

scale that the correlation function is nonzero. The vibrational basis functions 

fm(9;p) depend parametrically on p, and are obtained by numerically solving the one 

dimensional Schrodinger equation31 that results upon fixing p 

-n2 1 a2 
[-

2 
2-

2 
+ V(p,9) - Ero(p)) fm(9;p) = 0 . 

J.L p ae (3.7) 

We now obtain matrix elements of the Hamiltonian in this basis set, by first 

operating on a basis function to the right with the Hamiltonian to obtain 
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(3.8) 

Now we operate from the left with a different basis function, and perform the 

integrals over e and p to obtain 

, , li2 n7t 2 
<nmiHinm>=--(-) o ·O · 2J.L L nun rm 

(3.9) 

where the new coupling functions are defined by 

(3.10a) 

(3.10b) 

These terms correspond to non-adiabatic couplings which are an important 

contribution whenever the vibrationally adiabatic approximation breaks down. In 

our calculations they are computed by finite differences over the same grid as the 

numerical integrals over p. 

The Hamiltonian can then be d.iagonalized to produce eigenvalues { Ek} and 

eigenvectors { umn.k}. The flux correlation function is given by the familiar 

expression 
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Cr(t) =I', I', exp[-j3(Ek + Ek')/2]cos[(Ek- Ek'tll'I] l<k1Fik'>l 2 • (3.11) 
k k' 

For symmetric reactions the matrix elements of the flux operator are given by 

<kIF I k'> = I', I', Un'm',k' <n'm' IF I nm>Unm.k , (3.12) 
nm n'm' 

since, for these reactions the dividing surface is a straight line through the symmetry 

axis and it is convenient to obtain matrix elements of the flux operator directly in 

the basis set: 

<n'm' IF I run>=...!... I dp Xn(P)Xn'(p) 
2m 

where 80 = Sm/2, half the skew angle. For the F + H2 reaction there is no 

symmetrically defined dividing surface, so we take the dividing surface to be defined 

by 

80 (p) = 1128d{ 1 + tanh[(p - p0)/.1p]} • (3.14) 

where the parameters ed , Po , and .1p are chosen so that the dividing surface 

coincides to the variational transition state theory dividing surface. Matrix elements 

of the step function are obtained in the basis set 

aiD 
<n'm'lh(8- 8o(P)Inm> =I dp Xn(P) Xn'(P) I d8 fm(8;p) fm'(8;p), (3.15) 

9o(P) 

and transformed to the eigenstate basis as in eqn (3.12). Then the eigenstate basis 

matrix element is given by 
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<k I F I k'> = <k I ! [H,h(9--90 (p))] I k'> (3.16) 

= ~ (Ek- Ek')<klh(9--90 (p)) lk'>. 

b. Classical Calculations 

We wish to compare the quantum correlation functions with classical correla

tion functions to determine which of the features observed have a classical explana

tion, and which are quantum effects. The first problem that arises in this comparison 

is the fact that the true classical correlation function has a delta function at the ori-

gin, the size of which is given by classical transition state theory (see discussion in 

Chapter 2, section 4). The quantum correlation function is spread out by the uncer

tainty principle, and instead has a width _of about b~/2. 

To minimize this well understood difference between the classical and quantum 

correlation functions we have therefore chosen to "smear out" the classical delta 

function by averaging the classical correlation function over a time interval of order 

l'i~/2. Specifically, we define the quasi-classical expression according to 

-
cp<=L(t) = 2

--/1[ f dt' exp[-(t-t)2/(n~/2)2]CfL(t') , 
l'i~ 1t -

(3.17) 

where cfL(t) was defined in eqn (2.22). The primary effect of this averaging is to 

replace the delta function in the classical correlation function by a peak whose width 

is about b(3/2 . 

Another source of disagreement of the purely classical correlation function 

from its quantum counter part is the quantization of the "activated complex"; eg. 

within the short time approximation Qt is a quantum vibrational partition function in 

the quantum case, and a classical one for the classical case, and these can differ 

substantially in their numerical values. To patch up this defect we have used the 

·-
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often-applied quasi-classical model. Thus the initial values (P1,Q1) are specified in 

terms of the action-angle variables for this degree of freedom. For a harmonic 

oscillator, for example, 

(2n1 + l)li 112 . 
Ql = ( ) sm ql, 

mro 
(3.18a) 

(3.18b) 

(In the applications presented herein the Q-oscillator is taken to be a Morse 

oscillator, for which equation analogous to eqn (3.18) are more complicated, but still 

known.32) The (P1,Q1)~~(nl>q1) transformation is canonical, so an integral over 

P1 and Q1 is identical to an integral over n1 and q1 , but the quasi-classical model is 

to sum over integer values of n1; thus eqn (2.22) for cfL(t) is modified as follows, 

21t 

(27tlir1 fd.Pt JdQ• ~ I: (27tr1 f dq1 . 
n1=0 0 

(3.19) 

(It should be noted that this same type of quasi-classical initial condition for the 

activated complex has also been used for full classical trajectory calculations for 

reactive scattering33/.) For the temperature range of our calculations, essentially 

only the n1=0 -i.e. the ground state of the activated complex - contributes 

signifigantly. Also, by definition of the action angle variables, one has 

(3.20) 

where fn
1 

is the vibrational energy level of the activated complex. 

In summary, then, with the modifications implied by eqns (3.17) - (3.20), and 

with the choice s0=0, the quasi-classical expression for the reactive flux correlation 

function is 
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2n - 2 

CfJ.CL(t) = l: exp(-j3fn) (21tr1 J dql J dpl exp(-j3 ~~ (p1/m) 
n1=0 0 --

(3.21) 

where s(t) and p(t) are the classical trajectories determined by the initial conditions 

(nl,ql,p1,s1=0) , and {tk} are the times for which s(t)=O. 

3. RESULTS 

.. 
In this section we compare the quantum and classical correlation functions for 

the three reactions to see to what extant the various dynamical features observed in 

the quantum correlation functions can be understood classically. To this end we 

display the correlation functions all normalized to their value at t=O; i.e. the quanti

ties plotted are Ct{t)/Ct-{0). We note that the integrals of the quantum correlation 

functions yield the correct quantum rate constants in all cases. 

Table 2 gives various quantities which characterize the quantum correlation 

functions, and also gives (in the last column) the ratio of the correct quantum rate to 

the non-tunnelling, conventional transition state theory rate (with quantum Q:l: ). 

This ratio is the historical1 " K " which corrects all the defects of conventional 

transition state theory ( i.e. neglect of tunnelling and re-crossing). 
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This is the simplest known chemical reaction, and it has been studied exten

sively. In classical mechanics it is known that microcanonical transition state theory 

is exact for energies up to approximately 0.4 eV above the reaction threshold34• 

Since the thermal energy at 1000 K, the highest temperature considered, is only 0.09 

e V, one would not expect to see any effects of recrossing dynamics. That this is 

true can be seen by noting that none of the H+H2 correlation· functions, quantum or 

classical, displayed in figures 9 and 10 are ever negative; i.e. all reactive dynamics 

is "direct". 

The differences between the classical and quantum correlation functions in 

figures 9 and 10 are therefore due solely to tunnelling effects. To quantify the 

discussion somewhat, we define t112 as the time at which Ct(t) has fallen to half its 

value at t=O. H the behavior is free particle-like - as all of the classical correlation 

functions are for short times because of the averaging done by eqn (3.17) - then this 

half time would be (2213-1)1!2ti~/2 = .77(h~/2). Free particle, non-tunnelling short 

time behavior is characterized by the ratio t112/(b~/2) = 0.77. Table 2 lists these 

values for all the reactions. 

At the highest temperature, 1000 K, the effect of tunnelling is small (K=1.5), 

and the half time for the decay or the quantum correlation function is essentially the 

classical value. (cf. Table 2a). The half-time increases with decreasing temperature, 

but not as fast as 11~, and appears to be reaching a limit; i.e. the width of Cf{t) in 

figure 9 is essentially the same for T=200 K and T=300 K. This can be understood 

because the reaction is dominated by tunnelling at T=200 K (1C=46), and it has been 

shown previously8 that the correlation function for a parabolic barrier, the generic 

tunnelling system, decays as exp(-2COJ,t), where COJ, is the imaginary frequency of the 

barrier; i.e. the decay is temperature independent ·when tunnelling dominates. For 
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this system COt, = 200 au, which is seen to be the order of magnitude observed for 

the decay of Cr(t) in the low temperature limit. 

One notes therefore, that when tunnelling effects dominate, the time averaging 

of the classical correlation function, eqn (3.17), does not describe the quantum short 

time dependence correctly. 

b. Cl + HCl ~ ClH + Cl 

The Cl + HCI example is a typical example of a heavy-light-heavy system 

where a small mass is transferred between two large ones. The quantum and classi

cal correlation functions for this system are shown in figures 11 and 12. Classically 

such a system can exhibit multiple recrossings, since motion through the dividing 

surface is in the same direction as vibrational motion of the reactants and products. 

Quantum mechanically such recrossing is indeed observed at higher temperatures. 

First consider the quantum correlation function at T=200 K. It shows almost 

no recrossing so that any discrepancy between conventional transition state theory 

and the exact quantum rate must be due to tunneling. From Table 2b one sees that 

there is indeed signifigant tunneling at T=200 K. 

As temperature increases, the recrossing becomes much more pronounced, and 

the importance of tunneling decreases. Thus the transition state theory rate - which 

omits the effects of recrossing - begins to overestimate the rate constant; cf. the last 

column in Table 2b. For a system such as Cl+HCl with a high skew angle the best 

classical variational dividing surface occurs at the symmetric location only for low 

energies. Above a certain critical energy, the symmetric periodic orbit dividing 

surface surface becomes unstable and bifurcates into two symmetrically equivalent 

dividing surfaces35•36• From the point of view of transition state theory, it is clear 

that a better short time estimate of the rate constant can be obtained by moving the 
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dividing surface to the variational location. However, since we are interested in 

obtaining the exact rate in the shortest possible time, it is more advantageous to 

place the dividing surface in the symmetric location. It is clear that this should give 

the quickest convergence, since the rate is determined by the dynamics through both 

bottlenecks, and the symmetric location treats them equivalently. We note also that 

the classical correlation function accurately mimics the oscillatory features of the 

quantum function at temperatures where recrossing occurs. 

c. F + H2 -+ f1i + H 

Finally we consider a more realistic example of a chemical reaction. This po

tential is no longer symmetric, so chemical change occurs during the reaction. The 

·· FH molecule is much more strongly bound than the H2 molecule, and so F + H2 

(v=O) can react at thermal energies to produce products in any of the four lowest 

states of FH. The probabilities of forming HF (v=O) and HF (v=l) are almost negli

gible, but HF (v=2) and HF (v=3) are both produced at thermal energies26• 

The quantum and classical correlation functions for this system are displayed in 

figures 13 and 14, and the half-times for the decay of the correlation functions and 

the comparison to transition state theory are shown in Table 2c. We note at this 

point that in order to obtain the quantum results shown, it was necessary to change 

the definition of the flux operator as discussed in Chapter 2 section 7 so that states 

that lack sufficient energy to exist asymptotically as reactants are not included in the 

trace. The only change from a computational point of view is that in eqn (3.11) the 

sum is restricted to eigenvalues with energies greater than the zero point energy of 

H2. 

Note first in figures 13 and 14 (and from Table 2c) that the short time decay of 

the quantum and classical correlation functions is essentially the same, indicating 
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that tunneling has a minor effect for this reaction. This is expected, of course, 

because the barrier is quite low and flat The next most obvious feature is that there 

are significant re-crossing effects in the correlataion functions at all temperatures, 

both quantally and classically. At low enough temperature one knows that transition 

state theory must become exact classically6, so that re-crossing effects must 

disappear; it is apparent in this case that 200 K is not yet low enough. 

Though the classical re-crossing effects seen in figure 14 are in rough 

agreement with the quantum behavior in figure 13, there are differences: the 

quantum correlation function appears to oscillate about the classical value. This is 

most apparent at T = 1000 K, though also recognizable at other temperatures, and 

the spacing between minima is .6.t - 500 au. This behavior can be understood by 

noting that there is a scattering resonance, i.e., a short-lived collision complex, for 

this system at a collision energy of 0.015 ev37• The Boltzmann population will thus 

access this resonance at all the temperatures considered here. Since the dividing 

surface in this case is in the entrance valley, the part of the collision complex that 

breaks-up non-reactively will re-cross the dividing surface on its way back to 

reactants. This will lead to negative contributions to y(t) spaced by time intervals 

that roughly correspond to the vibrational period of the classical motion of the 

collision complex. I.e., the complex can break-up non-reactively, with various 

probabilities, after one oscillation in the complex, after two oscillations in the 

complex, etc.; cf. the semiclassical description of this by Waite and Mille~8. One 

thus identifies the spacing .6.t with 27t/ro, where ro is the vibrational frequency of the 

collision complex. The observed value .6.t - 500 au gives ro - 2800 cm-1, a sensible 

value. 
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4. CONCLUDING REMARKS 

The reactive flux correlation function is a useful way to characterize chemical 

reaction rates since it bridges the gap between transition state theory (through its 

short time behavior) and the dynamically exact rate constant. This chapter has con

sidered three different A + BC reactions to illustrate the way various dynamical 

phenomena are manifest in this correlation function. 

H + H2 shows the simplest, transition state theory-like dynamics, its only 

complicating factor being quantum tunneling at the lower temperatures. 0 + HCl 

shows transition state theory - violating dynamics, i.e., re-crossing flux, but this is 

well-described within classical mechanics. Finally, F + H2 shows non-classical re

crossing effects that one can identify with the formation of a short-lived collision 

complex, i.e., a scattering resonance. 

These results show clearly the range of utility of the transition state idea. In 

the reactions where the dynamics is direct, the correlation function decays to zero 

quickly and the transition state theory rate estimated from its behavior is correct. In 

more complicated reactions, the dynamics must be followed for times long enough 

for the reacting system to decide on its reactive or nonreactive nature. For systems 

where complex formation occurs this time can be very much longer than the direct 

reaction time. 
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Chapter 4: Path Integral Calculation of the 
Reactive Flux Correlation Function for Systems 
with Many Degrees of Freedom 

1. INTRODUCTION 

As has been emphasized throughout this thesis, the reactive flux correlation 

function can be used as a bridge between the exact rate constant and attempts at the 

definition of a quantum transition state theory. The previous two chapters have taken 

the approach of examining the detailed behavior of the correlation function for some 

systems where it can be calculated exactly using the basis set approach. This 

method will not be useful for systems with many degrees of freedom 

Thus, in this chapter we describe a method of calculation that has the 

advantage over basis set methods in that it is not limited to small dimensionality 

systems. This method is based upon the numerical evaluation of a discretized 

version of the Feynman path integral expression for the complex time propagator 

that occurs in a co-ordinate representation of the reaction flux correlation function. 

The integral over all possible Feynman paths is done by a Monte Carlo procedure, 

the convergence of which requires that the integrand be a positive definite quantity. 

This is achieved by making the substitution t=it and performing the calculation over 

the range -liJ3!2 < 't < hJ3!2. 

However, the rate constant is obtained by taking the integral of the correlation 

function over real values of time. We give up on the goal of being able to obtain 

Ct{t) for all times, and obtain it out to r-1'1J3 by analytic continuation of a function fit 

to the imaginary time values. This approach is thus similar in spirit to our previous 

definition of quantum transition state theory as the area under the first positive lobe 

. . 
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of C£{t), but implements it in a practical (although approximate) fashion. In principle 

this approach can be extended to arbitrary multidimensional potentials, since the 

success of Monte Carlo integration does not depend on the dimensionality of the 

resultant integral. However, for reasons that are not well understood, this approach 

never seemed to work. An approach that was successful, and that will be described 

in the following sections, was to approximate the multidimensional nature of the 

problem as a reaction co-ordinate coupled to a multidimensional variable frequency 

harmonic bath with reaction co-ordinate dependent coupling. A numerical method 

can be developed to do the path integral over these degrees of freedom exactly, 

yielding a one dimensional path integral calculation in terms of an influence 

functional. 

This work is related to other work done by Jacquet and Millei39, and 

Yamashita and Miller40• The major advances introduced here are the form of the 

Hamiltonian, the exact calculation of the influence functional, and the analytic 

continuation procedure. 

In section 2 of the chapter, a complete description of the path integral 

calculation, and potential approximation will be provided with an analysis of the 

restrictions inherent in the potential approximation. The analytic continuation method 

is also discussed. The methodology is applied to the collinear H + H2 reaction in 

section 3, where its accuracy can be detennined by comparison to the basis set 

calculations. Finally in section 4 the applicability of this method to different 

systems is discussed . 
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2. THEORY AND COMPUTATIONAL METHOD 

a. Path Integral Expression for the Flux Correlation Function 

It is convenient to evaluate the reactive flux correlation function in the coordi-

nate representation since the coordinate representation matrix elements of the ima-

ginary time propagator can ·be obtained by Feynman path integration. For a sym

metric potential the expression is a multidimensional generalization of eqn (2.28) 

J J 
, ()2 , , 2 

Ct(t) = dQ dQ ----;- l<s Q I exp[-(~/2 + itlli) H] Is Q >I , asas (4.1) 

with s=s' ::::0, and where s is the reaction coordinate, Q are the orthogonal degrees of 

freedom, and the dividing surface is located at s=O, and is independent of Q. 

Straight forward Monte Carlo evaluation of the path integral representation of 

eqn ( 4.1) is not feasible because the complex exponential makes the. integrand 

oscillatory. We thus make the substitution t =it, and evaluate eqn (4.1) for values 

of t between -tt~/2 and lt~/2. This yields a positive definite integrand which can be 

evaluated by a Monte Carlo procedure described below. To obtain values of Ct(t) 

for real times, we fit the values of Ct(t) to a function based on the known analytic 

form of the free particle correlation function. Making this replacement to eqn (4.1) 

yields 
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<so Q0 I exp[ -(~/2 - 'tin) H] I SnQn> 

<Sn Qn I exp[ -(~/2 + 'tilt) H] I SoQo> , (4.2) 

with s0 = Sn = 0 after differentiation. 

As will be shown in later discussion, the multidimensional nature of these 

coordinate representations of the Boltzmann operator will be included through an 

influence functional, yielding an effective one dimensional path integral expression 

Thus consider first the Feynman path integral expression for a one-dimensional 

Hamiltonian of the form 

2 
H = ...E:.. + V(x) 

2m 

for co-ordinate matrix elements of the Boltzmann operator: 

-

-mN N R N Xj+Xi-1 
exp[ ~ l:<xi - xi-1)2 - L l:V( )] . 

2b ~ i=1 N i=l 2 

(4.3) 

(4.4) 

We want to perform this integral by Monte Carlo, and so the question is how to 

choose the points in path space to sample over. For this expression it is convenient 

to make use of the fact that the kinetic energy part of the expression leads to 

Gaussian integrals which can be done. First we introduce the notation 
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I = <xN I exp( -~H) I xo> 

00 00 

(4.5) 
- -

where W(x) corresponds to the kinetic energy part, and f(x) to the potential part (or 

influence functional in the multidimensional case). We want to rewrite the integral in 

terms of new integration variables w which range between zero and one (f9r 

convenience in generating random variables for Monte Carlo integration). For 

efficiency, we want all sampled points to be equally important, i.e. we want to be 

able to write 

1 1 1 

I= C Jdw1Jdw2 • • • JdwN_1f(x(w)) , 
0 0 0 

(4.6) 

where x(w) and the normalization constant C are to be determined. If we do this, 

then a new path can be sampled by generating N-1 random numbers between 0 and 

1 corresponding to each integral variable. The constant C is easy to determine by 

considering the case where f(x)=l. Comparing eqns (4.5) and (4.6) immediately 

yields 

00 00 

(4.7) - -
This integral can easily be done following the procedure outlined by Feynman41 and 

yields the free particle propagator, as it must if f=l (V=O), so explicitly we have 

(4.8) 

Determining the co-ordinate transformation is more involved. It can be done by 

defining the notation 
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(4.9) 

where the unsubscripted W was defined previously, and denoting the rest of a series 

of functions {Wd, i = 1, ... ,N-1, where each function depends only on the variables 

{xk}, k =1, ... ,i. Then we can write the identity 

WN-2(Xt ••• XN-V 

WN-3(Xt •.. XN-3) 

Keeping track of the variables that Wi depends on allows us to write 

Comparing eqn ( 4.11) with eqn ( 4.6), we make the identification 

(4.10) 

(4.11) 

(4.12) 

Now when wk = 1, xk = -. so we immediately obtain the definition of Wk-l m 

terms of Wk: 

-
(4.13) -

Thus, we can write the expression for wk in explicit form where we use the notation 

dt = bJ31N (as before) 

(4.14) 
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All of the integrals in the denominator can be done, and all in the numerator except 

the one over x~ by the procedure described by Feynman41 since they are Gaussian 

integrals. Finally, making a change of variables for the last integration variable xk 

as 

m (N-k+1) 112 XN + (N-k)xk-1 
zk = [ 27tMt (N-k) 1 [xk- (N-k+1) 1 ' (4.15) 

allows us to write 

Zt 

wk = J dz exp( -1tz2) • (4.16) -
Formally inverting this finally yields the expression for xk: 

(N-k)xk-1 + xN + [ 27tMt (N-k) 1112 z(w ) 
xk = N-k+l N-k+l m (N-k+l) k ' 

(4.17) 

where z(w) is the inverse of w(z), the error function defined above. While there is 

no analytic expression for z(w), accurate rational approximations exist42, so it can be 

considered a known function for computational purposes. 

We have just demonstrated how to generate random paths in the one 

dimensional Feynman path integral expression for the imaginary time propagator. 

We now show how this methodology can lead to an expression for the imaginary 

time reactive flux correlation function that can be directly evaluated by Monte Carlo. 

The two Boltzmann operators in the eqn (4.2) are written as a discretized Feynman 

path integral where the same imaginary time increment 6t = li(3/N is used in both 

path integrals. For this to be true, t must be chosen as one of the values 'tn 

.. 
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n 1 
tn = n~< N" - 2) · 

n = 1 , ... , N-1 . (4.18) 

This leads to the following expression for the correlation function 

1l:v< ~+~-~ , Qi+Qi-t ) 1 . 
N i=l 2 2 

(4.19) 

where QN=Qo and F-1 is the number of Q degrees of freedom. It is useful to define 

the partition functional for the Q degrees of freedom, 

(4.20) 

which allows the correlation function expression to be written as 



mN N .. 
exp[---"t"'(s·-S· 1)2]7-[s('t)] . 

21'I2J3 :I 1 1- -,z 
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(4.21) 

In the next section of the chapter we describe how to obtain the partition functional 

~[s('t)] for an arbitrary path s('t) in the potential approximation that we introduce. 

The correlation function expression that we desire can be obtained immediately 

from eqn (4.21) by applying the random walk procedure described above twice, once 

for the path from s1~5n-1 , and again for the path from Sn+1~sN_1 . This yields the 

explicit result 

(4.22) 

with 

~ (Sn-So)2 1 
f(s0,5n) = exp[-

2 2 2
] J dw ~[s('t)] . 

(l'IJ3/2) -tn 0 
(4.23) 

The path {sj} is given in terms of the Monte Carlo integration variables { wj}, 

i=l, ... ,n-1, n+1, ... ,N-1 by 

(n-i)Si-t+Sn 27tl'I2J3 n-i 112 si . 
1 

+ ( mN . 
1 

) z(wi) 
n -1- n-1+ 

(4.24a) 

for i=1 ..... n-1, and 

(N-i)si-l+so 27tl12J3 N-i 112 
si N- i -1 + ( mN N-i+1) z(wi) (4.24b) 
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for i=n+1, ... ,N-1; So and Sn are specified values chosen so that the second partial 

derivitive with respect s is calculated by finite differences, i.e. 

a2 1 a a f(SQ,Sn) = 2 [f(E,E) - f(-E,E) - f(E,-E) + f(-E,-E)] . 
so Sn 4£ 

(4.25) 

where each of the four terms are calculated using the same set of random numbers 

{ wi}. Thus, if M is the total number of Monte Carlo walks, and the value of Ct< 'tn) 

generated by a single walk is denoted as Ct< 'tn)m, then the Monte Carlo estimate 

<Ct< 'tn)> is given by 

and the Monte Carlo estimate of the error Bet<'tn) is given by 

1 M 
{ _ ~ [ Ct<'tn>m _ <C£<'tn)>]2 }112 

M m=l 
~Ct<'tn)=-------------------M-1-,2--------------

(4.26) 

(4.27) 

Note that the numerator of this expression becomes constant for large M, so the 

error decreases as M 112 for large M, a well known property of Monte Carlo 

integration. 

b. The Canesian Reaction Hamiltonian and Influence Functional 

We now introduce a "cartesian reaction path Hamiltonian," that is closely relat

ed to a model Hamiltonian that has recently been developed and applied to hydrogen 

atom transfer reactions43• It permits an efficient evaluation of the Feynman 

influence functional. The form of the Hamiltonian is 

P2 p2 
5 k 

H = T(p5,(Pk}) + V(s,(~}) = -
2 

+ ~-2 + V(s,(~}), 
m k m 

(4.28) 



where the potential energy function is 

V(s,{OJc}) = V0(s}+:l: ~ V~(s)[OJc- Qf(s)]2 • 
.k 
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(4.29) 

This model for the potential energy function is that of a harmonic valley (in F-1 

dimensions) about a curved reaction path in the F dimensional space, much in the 

spirit of the reaction path Hamiltonian. The principle difference with the latter is 

that here the coupling between the reaction coordinate s and the "bath" modes { ~} 

is via cross terms in the potential energy in eqn ( 4.29), rather than in the kinetic 

energy as for the reaction path Hamiltonian. 

In order that this model of the potential energy be able to represent the 

dynamics of a gas phase bimolecular reaction certain constraints must be imposed on 

the functions. These constraints are that V0(s) and V~(s) must become constant 

asymptotically, and ~(s) must attain constant slope. Thus in the reactant/product 

regions of the potential surface there is no coupling between the internal degrees of 

freedom, and the translational degree of freedom. To illustrate this point more 

clearly, consider the potential for one orthogonal degree of freedom for large s, 

which can be represented as 

V(s,Q) = ~ V 2(Q - a s)2 

(4.30) 

where a is the asymptotic slope of Q0(s). This quadratic form in s and Q can be 

diagonalized to yield two eigenvalues and eigenvectors. There will be one 

eigenvalue of frequency zero pointing along the valley of V(s,Q), i.e. with a slope of 

a, and another eigenvalue with vf/r = V2(l+a2) which is the frequency of the 

internal mode at the reactant/product geometry. · When there is more than one 

. . 

.. 
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orthogonal degree of freedom the diagonalization will lead to a more complex set of 

eigenvalues and eigenvectors, but there will always be one eigenvalue of zero 

frequency pointing along the reaction path valley. Thus constant asymptotic slope 

of ~ guarantees a translational degree of freedom for separation of reacting 

fragments. 

This Hamiltonian does not incorporate the Coriolis-like coupling between the 

orthogonal modes and the reaction coordinate that would be present if the frequency 

matrix Vf(s) were not constrained to be diagonal. However, the influence functional 

calculation would be more complicated if this constraint was not imposed. 

Next, we will show how the influence functional can be obtained in an efficient 

procedure. The notation in the next section will be more complicated than 

previously, since the coordinates Q are labelled by both path step (i) and degree of 

·- freedom (k). To keep these labels separate, we denote k as a superscript and i as a 

subscript. 

We now substitute the potential defined in eqn (4.29) into the expression for 

the influence functional given by eqn (4.20), yielding 

N F-1 
~[s('t)] = exp[-~/Nl:Vo(si)] ll jdQ~ · · · fd~-1 

i=l k=l 

mN~ k k2R~ k 0 2 exp[ 2 """'I Qi -Qi-11 - ... IN"""' (112)V 2(~)[Qi --Qk (~)] , 
27th ~ i=l i=l 

(4.31) 

where we have changed from the rectangular rule to the trapezoid rule in the 

integration of the potential term. 

Note that when F=1 (i.e. when there is only one degree of freedom, that being 

the reaction coordinate) the one dimensional expression is recovered. Now we need 

to perform the integrals over the Qk variables. Since the path si is given, this is a 
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gaussian integral, i.e. the exponential factor is of degree two or less in Qt In 

general any multidimensional gaussian integral can be evaluated using the formula 

rr!f12 b·A-1·b 
f · · · J dx exp{ -(x·A·x + b·x)} = exp[ ] . 

(detA)<112> 4 
(4.32) 

Straight forward application of the integral formula will not yield an efficient 

computational scheme. To see this, consider the quantitues that must be computed, 

and the schemes available for their computation. The matrix A is of rank M where 

M = (F-1)·(N-1). The most efficient way to obtain the determinent of a general 

large matrix is to diagonalize it to obtain its eigenvalues, and then to take their 

product The computational time taken to diagonalize a matrix scales as M3• 

Similiarly, the most efficient way to obtain the term b·A-l.b is to first solve the M 

~ensional system of linear equations A·c = b for c, which gives c = A-1·b. For 

an arbitrary matrix A, this procedure also scales as M3• Thus since 30 path steps 

are typically needed in the path discretization, the calculation cost would scale as 

[30(F-1)]3• This becomes large rapidly with F and even for F=2 this scheme is 

impractical. 

Progress can be made if we consider the structure of the matrix A. The first 

thing to notice is that it is block diagonal in k. This is a consequence of the 

constraint that the frequency matrix remain diagonal. This helps since it allows us 

to treat each degree of freedom independantly. The determinant of a block diagonal 

matrix is the product of the determinants of each block, and the term b·A -l.b 

becomes a sum of the contributions from each block independently. Since the 

b·A-1·b factor occurs inside an exponent, we see that both of these contributions 

take the form of the product of contributions from each degree of freedom. This is 

also indicated by the way that eqn (4.31) has been written as a product of factors. 
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Rewriting eqn (4.31) we have 

N F-1 
~[s('t)l = exp[ -~!NI,V o<si)l II Y k[s('t)l • (4.33) 

i=1 k=1 

with 

(4.34) 

Now we consider the evaluation of a single term Yk[s('t)]. We can drop the label k 

for convenience. Recalling that QN = Q0, we see that the quadratic form in the 

exponent of the integral over the variables Q0-+~_1 is tridiagonal except for the 

terms in Q00N_1• Since, as will be outlined below, there exist efficient numerical 

algorithms that scale linearly with size to handle tridiagonal matrices, we want to 

take advantage or them. The most obvious way to do this is to first perform the 

integrals over Q1-+0N_1 (but not Qo), since the quadratic form involving these 

coordinates is tridiagonal. This leaves an integral over Q0 which is again gaussian, 

and so can be done explicitly. Thus we have 

Y[s('t)] = JdQojdqexp(-[q·A·q+b·q+C+Q0d·q+fQJ+gQo]) , (4.35) 

where q=(Q1 , .•• , QN_1) and all the other new quantities are defined by 

mN JL mN A·=[-+ V2(sk)]B··- -(B· 11 + B· 1 1), 
lJ tt2~ 2N IJ 2tt2~ t+ • 1- • 

(4.36a) 

(4.36b) 

(4.36c) 
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(4.36d) 

(4.36e) 

(4.36f) 

Performing the integral over q yields 

7t(N-1)12 
Y = 

1 2 
jdQoexp[(b + Qod)A - 1(b + Qod)/4 - c-fqcr-gQo] . (4.37) 

[detA] 1 

This expression is quadratic in Qo, and can be integrated to yield 

7t(N-1)12 1 2 
Y = -....;..._-:-11~2112-::- exp[ (bA- b + k lh )14 -c ] , 

[detA] h 
(4.38) 

where hand k are defined by 

h = f - dA - 1d/4 , (4.39a) 

(4.39b) 

Finally we show how to obtain det A, and terms like A - 1b efficiently, making 

use of the fact that A is a tridiagonal matrix. All of the off-diagonal elements of A 

are identical, and so will be denoted as a. Now denoting as Di the determinant of 

the submatrix of rank i, it is easy to see that 

(4.40a) 

(4.40b) 

and for i>2, 
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D. = A·D· 1 - ,2o. 2 1 U I- v. I- • (4.40c) 

Thus, in a number of operations linear with N, the determinent is obtained. For 

large N this step can involve computer overflow errors, but this is easily handled by 

renormalizing the terms and absorbing the renormalization factor as it logarithm in 

the exponent. 

Finally, as discussed previously, terms such as A-1b are obtained by solving 

the system of linear equations Ac = b for c. For a tridiagonal A, this is done easily 

by gaussian elimination of the off diagonal elements sequentially. First Ai+l,i is 

eliminated using row i from i=l, · · · ,N-2, leaving each row with two elements ( 

Aii,Ai,i+l ) except for row N-1 which now contains only the diagonal element. Then 

~i+l is eliminated using row i+l from i=n-2, · · · ,1. This procedure is again linear 

with N. 

Thus we can obtain the influence functional for arbitrary dimensionality and 

number of path discretizations in a numerical procedure that scales linearly with 

both of these variables. 

c. Utility of the Influence Functional 

In the previous section an efficient method of obtaining the influence functional 

within the framework of the cartesian reaction path Hamiltonian has been developed. 

However, it was noted that a restriction on the form of the potential (neglect of the 

off diagonal terms in the potential expansion) had to be imposed in order to obtain 

an efficient calculational method. 

There may be situations where this approximation is not justified, which raises 

the question of whether an influence functional approach is appropriate in such 

situations, or whether it would be better to evaluate the entire integral by the Monte 

Carlo procedure. Although this question cannot be answered in general, some of the 
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considerations involved will be briefly discussed. 

Consider a general integral that we wish to evaluate by Monte Carlo, which 

will be written as 

I = J dx J dy f(x,y) , (4.41) 

and assume that at some computational cost we can do the integral over y, i.e. we 

can obtain 

g(x) = J dy f(x,y) . (4.42) 

We now have two possible stategies for the Monte Carlo evaluation of I: we could 

evaluate eqn ( 4.41) directly by sampling in both x and y space, or we could make us 

of eqn ( 4.42), and obtain I as 

I= J dx g(x) (4.43) 

by sampling only in x space. Influence functional approaches correspond to making 

the second choice. It seems clear that if the computational cost of obtaining g(x) is 

not prohibitive, the second approach would be preferred. This is the situation 

described in the previous section. 

Now we consider the case where the evaluation of g(x) is computationally 

expensive. The Monte Carlo error in the evaluation of I by the two methods is 

given by 

(4.44) 



\ 

67 

where Nr and Ng are the number of Monte Carlo samples, and the intrinsic variance 

is defined by 

< < g2 > > = Jdx g(x)2 - I Jdx g(x) 12 , (4.45) 

and similiarily for<< f2 > >, except the integrals range over both x, and y for this 

case. 

Now in general < < f2 > >;;::: < < g2 > >, so that if g costs the same to 

evaluate as f, making use of g is preferred. However, if g is expensive to compute 

this may no longer be true. Thus, depending on the intrinsic variance of f and g and 

the computational cost of obtaining g, either method may be preferred. 

d. Analytic Continuation Methods 

To this point in the chapter we have described a procedure that allows us to 

obtain values of the reactive flux correlation function for purely imaginary times, but 

of course the rate constant is given as the integral of the correlation function over 

_ purely real times from zero to infinity. Thus, some method of analytically continu

ing from imaginary to real time values of Cr{t) must be developed. 

·In past work in this group8.39•40, this was accomplished by using 

Schlessinger' s44 point method which generates a continued fraction that reproduces 

all the imaginary time values of the correlation function exactly. Then making the 

replacement t = i't generates the real time values. 

This procedure does not correctly account for the finite Monte Carlo error in 

the values of Cr('t). Thus, below we will describe two methods that we have found 

to be useful analytic continuation procedures. These methods differ from the 

previous approach in that instead of reproducing the imaginary time Monte Carlo 

estimates exactly, they are represented to within the accuracy justified by their 
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statistical uncertainty. 

The first method is very much in the spirit of a minimal transition state theory. 

As we have seen from previous calculations where the dynamics is direct (one 

dimensional eckart barrier and collinear H+H2 examples), the correlation function 

decays to zero very quickly, and in times of less than (li(3/2) where tunneling is 

important. Thus, a very good estimate of the rate constant could be obtained by 

considering only the value of c;<t) at time zero, and its decay width. (This contrasts 

with classical transition state theory, where the correlation function has no width, so 

that only the zero time value is required.) 

Another consideration that must be included is the known structure of Ct(t) in 

the complex plane. The continuation function must incorporate the singular 

behavior at t = ±li(3/2. The first function we used is 

(4.46) 

The parameters C and b are obtained by fitting the analytically continued version of 

this expression (obtained by the substitution t = i't ) to the values of Ct('t) obtained 

by the Monte Carlo procedure described previously, i.e. we fit to the expression 

(4.47) 

We note that the first factor correctly incorporates the singularities at 't = ±l'i(3/2 , 

while the gaussian is an entire function, and so has no poles anywhere. The 

advantage of the gaussian is that for positive exponent b (an essential restriction), 

the real time behavior is guaranteed to decay faster than the free particle result. 

Thus, we have a functional form characterized by two parameters which yields a 

valid approximation to the short time behavior of Ct(t). The parameters are 
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determined by weighted least squares fitting to the Monte Carlo values of Ct{t) 

(with the weights determined by the Monte Carlo error). Finally the rate is 

determined by numerically integrating the fitting function out tot= 5hr3, where Cf(t) 

is negligible for the free particle reference. 

The second method is quite similiar .. to the first one, but can be used when the 

Monte Carlo error is small enough to justify a more precise fit. In this method we 

assume that Ct{t) can be described by 

(4.48) 

The two parameter version of this is similiar to the exponential described above, 

while additional parameters can lead to a more accurate representation if justified by 

the Monte Carlo error. In using this method we increase the number of parameters 

until the average deviation between the fined expression and calcutated expression is 

within the Monte Carlo error bars. To be more precise, denoting the Monte Carlo 

value by <Ct{tn)>, and the fitted value by Ct<tn), the average deviation is defined by 

1 N [<Cf{tn)>- Cf(tn)]2 

d=-1: . 
N n=l [0Ct{tn)]2 

(4.49) 

The number of fitting parameters is increased until d < 1. This second method is 

similiar to Schlessinger's point method except that the number of parameters is 

determined by the precision of the Monte Carlo estimates, instead of the number of 

t values for which Ct{t) was obtained . 
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3. APPliCATION TO THE COUNEAR H+H2 SYSTEM 

In this section the methods developed in the last section will be applied to the 

collinear H + H2 reaction to test the various approximations. There are three new 

methods described is the previous section. In what follows we will demonstrate the 

validity of the cartesian reacton path Hamiltonian approximation, the accuracy or the 

influence functional calculation, and the analytic continuation method. 

Consider now the cartesian reaction path approximation to the potential for 

collinear H + H2• For this reaction, two symmetrically identical H + H2 channels 

move away from the transition state at an angle of 60° to each other (recall eqn 

(3.4): Sm = tan-1[3 112] = 60°). The cartesian reaction coordinates are defined by the 

transition state geometry, i.e. the coordinate s is the reaction coordinate and 

corresponds to the asymmetric stretch, while Q is the orthogonal coordinate and 

corresponds to the symmetric stretch. The situation is depicted in figure 15, where 

the H + H2 surface is shown in relation to the coordinate system (s,Q). Using figure 

15 we can also see how the cartesian reaction potential functions V0(s), V 2(s), and 

Q0(s) are obtained. At any given s =so. V(s0,Q) is minimized with respect to Q, to 

obtain Qo(SQ). Doing this for all So yields the function Q0(s). Then V0(s) and V 2(s) 

are given by: 

V0(s) = V(s,Q0(s)) • 

a2 
V 2(s) = a<f V(s,Q) I Q = Qo(s) • (4.50) 

The cartesian reaction path potential functions are shown in figure 16. 

Note that although the frequency at the transition state is much lower than the 

asymptotic frequency (2813 cm-1 vs 4395 cm-1), the function V2(s) does not vary 
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by nearly as much. This is because the asymptotic frequency is given by 

V 2(1 + a2) where a is the slope of Q0(s). (In this case a= 3112.) The function 

Q0(s) shows the reaction path curvature through the interaction region. 

At this point it is useful to mention the role of anharmonicities in the potential. 

Our model assumes that the potential can be expanded as a harmonic valley about 

the reaction path. This is of course an approxination. For example for H + H2 at 

200 K, the transition state theory rate constant obtained using the Porter-Karplus 

surface with Morse oscillator panition functions for the activated complex and 

reactant oscillator is 2.03·1(}2 em/sec, while the transition state theory rate obtained 

using harmonic oscillator panition functions is 2.42·10-2 em/sec, i.e. the harmonic 

approximation overestimates the rate by 20%. The origin of this error is simple to 

understand. At low temperature an oscillator panition function is given by 

exp( -J3eo) where eo is the zero point motion energy. Both reactant and activated 

complex zero point motion energies are too high in the harmonic approxination, 

since anharmonicity lowers zero point energy. However, since the reactant 

frequency is higher than the transition state frequency, the error is higher there. 

Thus, the effective barrier to reaction ({bare barrier} + {transitiuon state zero point 

motion} - {reactant zero point motion}) is too low in the harmonic approximation, 

so the rate constant is overestimated. This problem can be avoided if the transition 

state expression is calculated using accurate partition functions that use the correct 

zero point motion motion, and only the correction to transition state theory "lC" is 

calculated in the harmonic approximation. 

In Chapter 3, the basis set method for collinear reactions was described. We 

used this method to calculate 1C for both the Porter-Karplus surface, and the cartesian 

reaction path approximation to it at several temperatures. Using the cartesian 

reaction path potential, the values of 1C obtained for the temperatures 200 K, 300 K, 
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600 K, and 1000 K were respectively 48, 9.0, 2.5, and 1.6. This compares with the 

values obtained in Chapter 3 which were 46, 8.7, 2.5, and 1.5. Thus, in this case 

the harmonic approximation to the potential is very accurate for the purpose of 

calculating the correction to transition state theory. It is worth noting that the 

differences between the correct quantum correction factors and the ones obtained 

using the harmonic approximation to the potential are less than the differences in the 

transition state theory rates between the two potentials. 

Next the accuracy of the path integral calculation in the calculation of 

imaginary time values of the reactive flux correlation function is demonstrated. 

Again we can compare the path integral method with the basis set method by using 

the latter method to calculate correct valus of Ct{'t). The basis set expression is 

Ct('t) = 1: exp[(-~/2 + 'tlli) En] exp[(-~/2 - 'tlli) Enl I <n IF In'> 12 . (4.51) 
:nn' 

For -li~/2 < 't < li~/2 this expression converges for finite basis sets. Outside of this 

range the expression is not well behaved (since one of the exponential terms 

diverges). This corresponds to the real behavior of Ct('t). 

In the discussion of the basis set method for real time calculations (Chapter 2 

section 3) we pointed out the fact that this method could never be accurate out to 

infinite time. However, by using a particle in a box basis set, accurate results could 

be obtained for progressively longer times by increasing the box size. Similiarly, 

the accuracy of the imaginary time values is related to the length of real time over 

which the correlation function behaves correctly, i.e. the best values of Cf{'t) are 

obtained from a basis set calculation where Cf{'t) goes to zero and stays there for a 

long time before the wall recrossing occurs. This makes sense, and can be shown to 

be true for the one-dimensional free particle correlation function where the (analytic) 

basis set expression for Ct{'t) can be compared to the analytic functional form. 

,. 
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We have thus calculated the imaginary time values of the reactive flux 

correlation function for the range of temperatures used above, and compared them 

with the basis set results. At high temperatures (T=600 K,1000 K), where the 

quantum correction is close to 1, we can obtain accurate results with 30 path 

discretization steps, and 1000 Monte Carlo integration points. In fact for these cases 

it is easier to obtain the imaginary time correlation function with the path integral 

method than the basis set method because of reflecti<;>n of flux off the walls in the 

basis set method. This flux reflection occurs earlier at higher temperatures because 

the average kinetic energy is higher. To obtain accurate results at T=300 K, 60 path 

steps, and 10,000 Monte Carlo walks were used, while at T=200 K these numbers 

were 90, and 30,000 respectively. In Table 3 we present results of the path integral 

influence functional calculations of C£(t) for the lowest temperature used above 

(T=200 K) for various values of t. Also listed in Table 3 are the Monte Carlo error 

estimates, and the values of C£( t) obtained using the basis set method. The Monte 

Carlo estimates agree with the basis set results within the error bars (i.e. 68% of the 

Monte Carlo results should be within one error bar of the basis set results), but also 

systematically slightly overestimate the basis set results. This effect increases with 

t, and so may also be an artifact of flux recrossing in the basis set calculation. 

The increased variance at low temperatures can be understood in terms of the 

random walk algorithm described in section 2 (eqn (4.24)). The average size of step 

taken increases as temperature decreases. Since all walks begin and end on the 

dividing surface which was chosen to be at the maximum of V0(s), small excursions 

sample a region that is roughly constant. As temperature decreases the walks probe 

a larger region of the potential, and so the sampled region is much less constant, 

requiring more Monte Carlo points to obtain the same error. The reason for the 

increase in the number of path discretization steps is similiar. By increasing the 

number of points, the step size decreases, so that the trapezoid rule integration of the 
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potential term becomes more accurate. 

Finally, for the calculations discussed above, the results of the analytic 

continuation procedure are shown in Table 4. The two methods described in section 

2.c are used. While the simple gaussian method works for high temperatures where 

the fit results in b=O (since the correlation function shape is well approximated by 

the free particle reference), it overestimates the rate for low temperatures. Even in 

these cases it may be useful since the lack of flexibility also gives increased 

stability, so that while the rate may not be precisely correct, it is also bounded in its 

deviation from the correct value. The inverse polynomial method generates more 

accurate results for the low temperature cases and gives the quantum correction to 

within 10% of the basis set value. Thus, when the accuracy of the Monte estimates 

justify more than two parameters this method should be used. 

4. DISCUSSION 

We have developed a path integral influence functional method for calculating 

imaginary time values of the flux correlation function, and a consistent method of 

analytically continuing the correlation function to real times to obtain the correction 

to transition state theory. Application of this method to the colinear H +Hz reaction 

gave good results. The utility of the method lies in the· fact that the cost of calcula

tions for multidimensional systems scales linearly with the number of dimensions, so 

that these calculation are feasible. 

However, the method has some obvious limitations. In Chapter 3 we 

performed basis set calculations on three different collinear reactions. Of these three 

only the H +Hz reaction could be treated by the method of this chapter. This is 

because the correction to transition state theory for this reaction is entirely due to 

tunneling. Direct tunneling through a barrier happens in a short time, and thus is 
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incorporated in the initial, lobe of Cf{t), which the present method estimates. 

For the Cl + HCl reaction, the major correction to transition state theory is due 

to classical recrossing, a long time phenomenon not treated correctly by the present 

procedure. Note however, that since this recrossing is a classical effect it can be 

treated in a classical trajectory calculation as in Chapter 3. 

For the F + F2 reaction the limitations of the present approach are more severe, 

and are due to the fact that the potential surface is not symmetric. First of all, the 

nonsymmetric version of the coordinate representation of the flux correlation 

function must be used, a minor change. The second point is concerned with the fact 

that to obtain the results in Chapter 3 it was necessary to project out eigenstates that 

could not exist asymptotically as reactant states from the correlation function 

expression. This projection is natural in a basis set calculation, but cannot be done 

in a path integral calculation. Since this projection may be necessary for any non 

symmetric reaction, this severely limits the utility of path integral approachs to these 

problems. 

Another problem with treating the F + H2 reaction using the cartesian reaction 

path Hamiltonian is the geometry of the potential surface. The transition state 

occurs early in the entrance channel, and a cartesian coordinate system based on the 

transition state cannot follow the reaction path without the function Q0(s) attaining 

infinite slope and turning back upon itself. 

Before making too much of these problems we must recall the purpose of 

developing the method. We were interested in developing a method to calculate 

tunneling corrections to transition state theory. This presupposes that the quantum 

version of the transition state theory assumption be valid, i.e. that the dynamics be 

direct. For the reaction where the assumption held we were able to obtain accurate 

results. The discussion of the other two reactions then shows the limitations of 



76 

applicability of the transition state theory idea. 

In conclusion we can state that this is probably as close to a practical version 

of transition state theory that one is likely to achieve in quantum mechanics. In 

classical mechanics transition state theory is a zero time (i.e. no dynamics) theory. 

The best we can do in quantum mechanics is to obtain a purely imaginary time 

theory, which can give accurate values of the correlation functio11 for times that 

correspond to the quantum spreading of the classical delta function. 

-. 
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TABLE 1 

A comparison of the width of one dimensional Eckart barrier correlation functions at 

different temperatures. 

1 .75 .75 
3 1.41 .47 
5 1.53 .30 

10 3.7 .37 
20 9.8 .49 
50 32 .64 

100 67 .67 
200 144 .72 
400 290 .73 
800 600 .75 
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TABLE 2 

Comparison of the initial decay of the different collinear reaction quantum correla
tion functions. 

T tl/2 liPI2 t1d<liPI2) K = kQM/kTST 

(a) H + H2 ~ H2 + H 

200 410 790 .52 46. 
300 '345 526 .66 8.7 
600 210 263 .80 2.5 

1000 125 158 .79 1.5 

(b) Cl + HCl ~ ClH + Cl 

200 630 790 .80 5.3 
300 420 526 .80 2.0 
600 210 263 .80 .62 

1000 120 158 .76 .33 

(c) F + H2 ~ FH + H 

200 590 790 .75 .81 
300 390 526 .74 .57 
600 220 263 .84 .43 

1000 160 158 1.01 .40 
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TABLE 3 

Comparison of the Monte Carlo (MC) path integral influence functional calculations 
of the imaginary time flux correlation function for the collinear H + H2 reaction with 
Basis Set (BS) calculations at 200 K (1$/2=789.4). The displayed results were 
obtained using 90 path discretization steps and 30,000 Monte Carlo random walks . 

52.6 .1123 . 23x1o-2 .1115 
157.9 .1227 .25x1o-2 .1222 
263.1 .1481 .29x1o-2 .1472 
368.4 .1978 .41x1o-2 .1961 
473.7 .3010 .63x1o-2 .2942 
578.9 .5434 .12x1o-1 .5253 
684.2 1.429 .32xl0-1 1.404 
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TABLE 4 

The values of the quantum correction " x: " for the collinear H + H2 reaction 
obtained by the analytic continuation methods. The methods compared are the 
inverse polynomial (IP) method and the gaussian (G) method. Also shown are the 
correct values for this potential surface obtained by the basis set (BS) method. 

T 

200 
300 

600 
1000 

IP 

53. 
9.0 
2.4 
1.7 

G 

56. 
10.4 
2.6 
1.6 

BS 

48. 
9.0 
2.5 
1.6 
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FIGURE CAPTIONS 

1. A typical one dimensional potential curve (the symmetrical Eckart barrier), with 

reactants to the left and products to the right. Two different choices of transition 

state theory dividing surface, s=O (solid vertical line) and s=s0 (dotted vertical line) 

are shown. 

2. The reactive flux correlation function for the one dimensional Eckart barrier with 

a=12. The values of u are indicated on the figure. 

3. The time dependent quantum correction r(t) defined by eqn (2.39b) for the three 

correlation functions of figure 2. The quantum correction r is given by the long 

time limit of r(t). 

4. The classical (CL) and quantum mechanical (QM) flux correlation functions are 

shown for the potential of figure 1 for the case that the dividing surface is chosen at 

the top of the barrier (s0=0) or displaced from it (SQ¢0). The shaded regions in the 

classical (CL) case indicate delta functions at t=O. 
i 

5. Same as figure 1, except for an unsymmetrical Eckart potential. 

6. (a) and (b) show the quantum flux correlation functions for the potential of figure 

5 for the case that 5o=O and So;eO, respectively, where the flux operator F is the nor

mal one, eqn (2.20). (c) shows the flux correlation function for the potential of 

figure 5 for the modified flux operator Fr of eqn (2.44), for the case s0 = 0. 

7. A comparison of alternate versions of the reactive flux correlation function for 

the symmetrical Eckart barrier with u=8, a=12. (a) The Miller, Schwartz and 

Tromp correlation function Ct{t) defined by eqn (2.46a). (b) The unsymmetric 

Boltzmann operator correlation function Cl'"(t) defiined by eqn (2.46b). (c) The 
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Yamamoto correlation function Cf(t) defined by eqn (2.46c ). 

8. The time dependent effective quantum correction factor r(t) corresponding to 

each of the correlation functions displayed in figure 7. 

9. The quantum mechanical reactive flux correlation function for the H + H2 ~ H2 

+ H reaction, at the indicated temperatures. The displayed correlation functions are 

all normalized to unity at t=O; i.e., the quantities shown are actually Ct{t)/<;{0). 

Note that 1000 atomic units of time- 24 femtoseconds. 

10. The classical correlation functions for H + H2; see also notes for figure 9. 

11. The quantum mechanical correlation functions for the Cl + HCI ~ CIH + Cl 

reaction; see also notes for figure 9. 

12. The classical correlation functions for Cl + HCI; see also notes for figure 9. 

13. The quantum mechanical correlation functions for the F + H2 ~ FH + H reac

tion; see also notes for figure 9. 

14. The classical correlation functions for F + H2; see also notes for figure 9. 

15. The cartesian reaction coordinates (s,Q) in relation to equipotential contours of 

the collinear H + H2 potential surface. 

16. The cartesian reaction Hamiltonian functions V0(s), V2(s), and Q0(s) for the 

Porter-Karplus H + H2 potential. 



86 

FIGURE l 

s 



87 

FIGURE 2 

0 

0~--------------------------------. ...-...-

u=10 

0 
0 ......................................... ~ .. ~ ... ,...... ---------~ 
...-~----------r----------r----------1 I 

0 2 4 6 

0 
v~--------------------------------. 

Q' 
u=6 ~ 

'+-u 
v 
0 
I 

0 2 4 6 

11') 
...-

u=2 

...-0 ............................ ~ .. '7':': ••• :"':":' •• ":":" ............ ________ ~ 

I 
0 2 4 6 

t 



FIGURE 3 

0 

0~------------------------------~ co ..---

0 
0 

u=10 

~ ................................................................................. . 
I 

0 2 4 6 

0 
~~------------------------------~ 

u=6 

L{) 
0 .............................................................................. . 

I 
0 2 4 6 

"'d" 
..---~------------------------------~ 

u=2 

0 .............................................................................. . 

I 
0 2 4 6 

t 

88 



89 

FIGURE 4 

¢ 

.......-.... 

rt') ~IC\J ...__ 
~ Q) 

0 C\J 
E -

0 
0 10 0 0 10 0 

d 
. d - -- -- -- -(.) (.) 

I 

- v 
.......-.... 

1- - rt') ~~N 
............. 

_J Cl) 
(.) E 

~ - C\J -
- -.. 

_jJ 
0 

0 0 - -- -- -- -(.) (.) 

0 0 
II .... 

0 0 
Vt 

., 



90 

FIGURE 5 

.. 

V(s) 

I 

.. 



91 

FIGURE 6 
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FIGURE 7 
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FIGURE 8 
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FIGURE 9 
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FIGURE tO 
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FIGURE 11 
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FIGURE 12 
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FIGURE 13 
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