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Abstract 

LBL-254 

The deformation energy surfaces of fissioning nuclei have been studied 

to quantitatively interpret the experimentally observed mass asymmetry in 

fission. These studies use the calculated deformation energy surfaces which 

have recently been shown to have reflection asymmetric saddle point shapes in 

the second (outer) fission barriers of actinide nuclei. Quantitative 

estimates of the mass asymmetry in fission, characterized. by the peak-to-valley 

mass yield ratio, have been calculated from an analysis of the fission 

probabilities over the outer barrier. The probability distributions were 

determined using the simple Fermi gas level density and the WKB barrier 

penetration formulae. Good correlations have been: obtained for all known 

radiochemically determinedpeak..,.to-valley ratiQs of even-even fissioning 

nuclei for which deformation energy surface calculations are available. One 

is able to understand by this analysis the recently discovered apparently 

anamolous·results that the. thermal neutron induced fission of 257Fm yields a 

symmetric mass division while the spontaneous fission of 256Fm is fission 

asymmetric •. A possible explan!3.tion for the triple-peaked' mass yield fission 

* Work performed under the auspices oftheU. S. Atomic Energy Commission. 



-2- LBL-254 

of nuclei ne~r 226Ra is proposed based also on the deformation energy 

surfaces. . Fur'~her experiments are s';1ggested to test the present theory, in 

particular, to discriminate between analyses based on the f:tssion barrier in 

the deformation energy surfaces and those based on fragnient shell effects. 
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Intr-oduct ion 

One of the most readily observed experimental properties of the 

fission process has been the determination of the mass dtstribution of the 

resultant fission productsl ). Shortly after the discovery of fission over 

thirty years ago it was determined that low energy neutron-induced fission 
) 

yield,ed a distribution of fission products which were predominantly the result 

of an asymmetric mass division of the fissioning nucleus. Over the years 

many additional experimental studies have been performed to determine mass 

yield distributions of low energy induced fission. Until very recently the 

results of these studies have invariably shown the mass distribution to be 

strongly asymmetric. A typical mass yield distribution is shown in fig. 1. 

A characteristic measurement of the asymmetry is the ratio of the yield of 

fission products corresponding to the peak of the mass distribution to the 

yield of products at the valley. This peak-to-valley ratio has been 

explicitly determined in the case of the spontaneous fission of 252Cf to be 

as large as ~ 150, and for some other spontaneously fissioning nuclei only 

lower limits of this ratio have been found3 ). For all nuclei studied it has 

been found that as the fission-induc~Lng excitation energy is increased, the 

peak,.;.to-valley ratio decreases and eventually the distribution becomes 

symmetric about A /2. In all previous studies symmetric division does not 
o 

occur until some 20-40 MeV of excitation energy is brought into the system. 

However, very recently an apparently anomalous case has been discovered in 

which the thermal neutron"'induced fission of 251Fm has resulted in a strongly 

symmetric mass distribution4). These results are even more striking because 

other current experimental studies have shown that the mass distribution for 

th t ~i' f th dj t . t 256F · t . 5) e spon an eo us ~ SSlon 0 e a acen even-even lS0 ope m 18 a8ymme rlc . 
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Though many attempts have been made to theoretically interpret the 

fission mass distribution, none have been successful for quantitative 

predictions. The liquid-drop model analYSis6) of the system predicts the 

mass distribution to be symmetric in all cases. Very often the asymmetry has f,I • 

been qualitatively explained as the result of strong shell effects in the 

residual fission product nuclei. These theories imply that the mass 

distribution is determined near the s.cission point since this is the region 

where the shell effects of the fragments dominate; Recently a more tractable 

theoretical interpretation of the mass distribution waa proposed bY' Moller 

and Nilsson 7.) in which they have shown that in the actinide region, the 

second fission barrier has a lower total energy for asymmetric mass division. 

This is the first microscopic calculation which has shown a preference for 

asymmetric shapes in the :f'issioning nucleus! Since then, other groups, 

notably Nix et· 801. 
8 ), and Brack et 801. 9) have done somewhat more refined 

i 

calculations with similar results. The MBller ... Nilsaon picture gives us a 

qualitative understanding of the mass asymmetry but no quantitative inter-

pretation was attempted because of the belief that the difficult-to-calculate 

dynamical properties of the division would become important in determining 

the specific division. 

In this paper we present a quantitative interpretation of the experi-

mental fission-product mass yields based only on the calculated properties of 

deformation energy surfaces, without att.empting a microscopic dyna.mic 

calculation. To do this we have used a very simple quasi-static theory to 

correlate all the known radiochemical data. We do riot use mass determinations 

made from electronic measurements since the dispersion introduced by these 

• 
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techniques partially fill the symmetric valley. For example, the peak-to-
I 

valley ratio of the mass yield curve derived for the spontaneous fission of 

252Cf may be off by a factor of 100 due to electronic dispersion effectslO ). 

Specifically, we will try to relate the peak-to-valley ratio of the 
\ 

fission mass distribution to the saddle points of the deformation energy 

surface. Certainly the complete fission process involves not only the 

properties of the deformation energy surface near the saddle point, but also 

the shell effect of the final fission fragments as well as the dynamica~ path 
\ 

from the saddle to the scission point. What we are attempting t,o do in this 

paper is to look at one particular aspect of the problem quantitatively and 

to show how the peak~to-valley ratios can be understood on this basis. Other 

details of the mass yield curve, such as the widths of 'the distribution, may 

depend more strongly on the other aspects. A complete and quantitative 

study of the fission process involving all three aspects will lead to a 

better understanding of fission asymmetry. 

_It should be emphasized that our analysis does not employ the "two 

mode" hypothesisll ). We use only one potential energy surface for a given 

nucleus. The probability of symmetric_ and asymmetric -fission is based solely, 

in our simple picture, on the available excitation energy in the system as a 

function of deformation. 

In the next section we will give a general discussion of our picture 

of the asymmetric fission process. One point that will come out is, that in 

our analysis, the asymmetric fission process is associated' only with a 

-localized region of large deformations near the second peak of the fission 

barrier. Hence, our study is concerned with properties of nuclei at very 

large deformations. 
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In the following three sections we will discuss in detail three 

possible cases of asymmetric fission depending on the excitation energy. 

·After thes~ ,we will consider the mass yield curve .of proton-induced fission 

of radium, which is one of the. critical tests of any theory explaining fission " 

. asymmetry. A.sunimaryand suggestions for further experiments to test the 

theory will conclude this paper. 
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General Considerations 

A deformation~ energy surface is a surface in a deformation-coordinate 

space that specifies the lowest total energy of a nucleus with a given 

deformation. It is calculated by combining the total energy given by the 

liquid-drop model analysis with shell corrections derived from single-particle 

. ' t' k P . ···t· 9,17,12) spectra uSlng the Stru lns y rescrlp lon . In the Moller-Nilsson 

calculation symmetric deformations described by the Legendre Polynomials P2 (cos8) 

and P
4

(cos6) are considered as well as asymmetric deformations described by 

P
3

(cos8) and P5(co~8). ,A deformation given by Pl(cos8) corresponds only to a 

shift of the center of mass of the whole nucleus. In the calculations by 

Nix ~ ~. 8 ), and Brack et a1. 9 ) symmetric and asymmetric deformations are 

included in better sets of deformation coordinates which are able to describe 

very deformed shapes more adequately. In our analysis, we shall primarily 

employ the deformation energy surfaces calculated by Moller and Nilsson. 

Results obtained using those calculated by Nix et al. and Brack et al. will 

also be presented for comparison. 

A typical deformation energy surface is sketched in fig. 2. The 

multidimensional aspects of the surface are reduced by combining the two 

symmetric coordinates (£2 and £4) and the two asymmetric. coordinates (£3 and £5 )'. 

The surface shows that the ground state, first fission barrier, and secondary 

minimum have their lowest energy along the symmetric axis (labelled SYM). 

However, the calculations show that the saddle point corresponding to the second 

fission barrier is located at. an asymmetric deformation. Also shoWn in fig. 2 

are cross sections of the deformation energy surface through the symmetric 

and asymmetric (labelled ASYM) axes. The cross section through the symmetric 

axis shows the 
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now familiar double-peaked fission barrier and that through the asymmetric 

axis shows that the deformation energy surface clearly prefers an asymmetric 

deformation. 

This asymmetric saddle point indicates that at the outer barrier the 
) 

fissioning nucleus prefers a honsymmetric shape. The simplest picture of the 

fission process based on the deformation energy surface is one in which the 

nuclear deformation follows an adiabatic path of lowest energies from the 

ground state minimum to scission. To obtain sYIllnietric fission, the path is 

restricted to the symmetric axis a.nd it passes over the first peak, then the 

(isomeric) secondary minimum and over the (synunetric) moUntain top to fiss.ion. 

When the restriction to the symmetric axis is relaxed the path will still 

follow the first peak and the secondary minill;lum along the symmetr.ic axis as 

before. But from the secondary minimum, the path will deviate from the 

symmetric axis and seek to climb over the asymmetric saddle point to 

asymmetric fission.· In the niass yield curve (fig. 1) the value at the valley 

correspond~ to symmetric fission while the most probable yield occurs at an 

asymmetric mas.s divisions which corresponds to fission over the asymmetric 
/ 

saddle point. Hence the peak ... to-valley ratio is a comparison of the two paths 

of fission. The portion of path from the ground state minimum, over the 
/ 

first barrier to the secondary minimum, that is common to both fission paths 

will be cancelled out in the peak-to-valley ratio and what needs to be 

studied is the difference in paths after the secondary minimUm. Thus in our 
J 

analysis of peak-to-valley ratios, we are.concerned with properties of a 

nucleus at very large deformations. The nuclear shape at the secondary minimum 

ha.s_ a ratio .ofaxes approximately 1: 2 and the shape at· the symmetric mountain 
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top has a ratio of axes of approximately 1:2.7. At these large deformations, 

the relevant deformation points are the asymmetric saddle point and the 

symmetric mountain top. These are the equilibrium points in the deformation 

energy surface which are invariant under coordinate transformation, whereas 

non~equilibrium points have little physical meaning. We shall make use only 

of these points in the calculated deformation energy surfaces in our attempt 

to quantitatively interpret the peak-to-valley ratios experimentally observed 

in the fission process. 

The deformation energy surface as a function of asymmetry at the 

second fission barrier lends itself to classification into three different 

cases to be considered in the fission process. These cases are shown 'in fig. 3 

and ~re dependent 'on the e,xcitation energy brought into the fissioning nucleus. 

Case I represents the situation when the excitation energy brought into the 

system is above both the symmetric and asymmetric fission barriers. Case II 

is when the energy is above the asymmetric barrier but below the symmetric 

barrier. Case III is when the energy is below both barriers. We will divide 

all of the experimental data into their appropriate cases and attempt to 

quantitatively interpret the observed peak-to-valley ratios . 
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Case l: EnerQ' Above BOth Barriers 

For this case we propose that the probabilities of fissioning into 

symmetric and asymmetric products are proportional to the number of levels 

available at the symmetric and asymmetric barriers. Td evaluate the number of 'i 

levelsi:oreach case we use the s:i:m,ple Fe!1mi-gas, level-densityf'ormalism 

p 
s 

p 
a 

= ce 

= ce 

2/a(ET-Es ) 

2/a I (E -E ) '. T a 

where P and P are the probability for symmetric and asymmetric division 
s .a 

respectively;'~ is the excitation energy; Es and Ea are the energies of the 

symmetric and asym:iUetric barriers; and a and a' are the level density parameters 

for the symmetric and aSytmnetric cases respectively. The height of the 

symmetric barrier.aoove the asymmetric barrier is designated -h, that is, 

11 = E E a s 

In the Fermi-gas model the ,level-density parameters are proportional to the 
/ 

number of particles (A) and can therefore be written as 
I 

. a = XA 

a' = X'A 

Making these substitutions and taking the ratio of the probability of asymmetric 

to symmetric- fissio;n yields, we get 

p 

In P a = 2/X IA(ET-Ea ) - ?v'xACET-Es) 
s 
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It can be easily seen that this equation has the correct asymptotic properties. 

If h goes to zero (i.e. the difference between the symmetric and asymmetric 

barrier disappears), then X and X' become equal and the right-hand portion of 

the equation goes to zero; and, therefore, the probability ratio of asymmetric 

to symmetric fission goes tel one. Wh.en ET (the excitation energy) becomes very 

large relative to h, X and X I become equal and the right.-hand side of the 

equation again becomes zero, which again predicts symmetric fission. 

Equation (1) may be written as 

1 2/X' 
IA?ET-Ea ~ - 2/X 

IA?ET-Es ) (2) = p p 
ln a ln a 

p p 
s s 

if X and X' are constant. To make such a plot, it is necessary to evaluate 

the var'ious quantities in the ordinate and abscissa. The ratio of probabilities, 

p/p , of asymmetric to symmetric fission is taken to be the experimentally 
a s 

observed3 ) peak-to-va11ey ratio (p/v); 

The excitation energy ET is given for neutron-induced fission by the sum of the 

kinetic energy of the incident neutron and the experimental neutron binding 

energy of the compound nucleus. The energy of the asymmetric saddle point is 

identified as the empirical barrier height of the second (outer) fission barrier. 

These empirical values were derived from the analysis of experimental data by 

13. 14. 15 Bj¢rnholm ), Brltt etal. ), and Back et al. ). In cases where empirical 
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values are not available we have used the semi ... empirical values of Pauli and 
16 '" 

Ledergerber), who also tabul,ated the. values of h = E - E from calculations a s 
. . 9 

based on the work of Brack et al. ). 
, 

The values for E are obtained by adding 
s 

the energy difference, h, between the asymmetric saddle and the symmetric 

mountain top to the ,height of the outer fission barrier, E. Thus h is the 
a 

only riumber we get from the theory and in this way we hope to be free,as much 

as possible, from all the uncertainties of the theory. 

Table 1 presents the values used in calculating the ordinate and 

abscissa for eq.: (2) and fig .. 4 presents a plot of these data based on the' 

MOller-Nilsson deformation energy surfaces (using surface-dependent pairing 
I 

strengths). The data at'large excitation energies correspond to large values 

on the ordinate and abscissa. As can be seen, these data define a reasonable 

straight line, with some deviat:t.on at the low-energy end. The magnitudes of 

X and X' are determined irem. the line. They are found to be equal (which is 

reasonable, since for high energies, the effect of h is unimportant) .and of 

the value 1/10. '. This gives for the level density parameter in the Fermi-gas 

model, a = A/10, which is in good agreement with the value obtained from an 

analysis of ne1,ltron-capture resonances and of other nuclear reactions where a 

is typically determined to be between A/B t9 A/12. For low-energy points, both' 

X and X' are seen to be no longer constant as a function of energy. Their 

values at any point may be determined from the tangent to a smooth curve passing 

through the data points. Since the smooth curve bends up from the straight 

/ 
line as one goes to decreasing values on the abscissa, this means the value of 

x' is decreasi,ng (the tang~nt intercept" on the .ordinate is a larger number ) 

implying a decrease in the number of levels when the energy is close to the 

deformation energy surface. 
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Figure 5 displays the same plot for other calculations of deforma-

tion energy surfaces. Good correlations of all experimental data are obtained 

in all versions, and the various versions lie very close to each other. The 

values of X determined from lines corresponding to the Nix and Pauli-

Ledergerber calculations are smaller, X ~ 1/36, which shows that the present 
/ 

analysis is not a sensitive method to obtain the value of the level density 

parameter. Small shifts of the lines will result in large changes in the value 

of X. 

To make predictions of the peak-to-valley ratio of thermal neutron­

induced fission of 257Fm , we modify eq. (2): 

1 J$i:-E 
ln E.. = 2/X' T a - 2v'X 

v E -E 

P 
E.. = a 
v P 

s T s 

The plot of the left-hand side agaimct v'(ET-E )/ (~-E ) is shown in fig. 6 a -T' s 

using Mbller and Nilsson's deformation energy surfaces. From the calculated 

abscissa value for the thermal neutron induced fission of 257Fm we predict 

its peak-to-valley ratio to be 1·8. This compares well with the experimental 

value of 1 (Le. symmetric fission) Eince the range of values we are talking 

about is from 1 to about 750. The uncertainties in theory are more than 

enough to account for the difference of 1· 8 from 1. The physical reason why, 

we have close-to-symmetric fission in this case is that the energy difference, 

h, between asymmetric saddle point aud the symmetric mountain top is small 

(only 0.2 MeV) so that at the neutron binding energy, 3.2 MeV above the 

barrier, its effect is not large. In other cases such as U and Pu, h is about 

2 MeV and haS a significant effect for excitation energies corresponding to 

thermal neutron fission. 
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When we carry out a similar calculation with Nix's or Pauli-Ledergerber's 

deformation energy surfaces~ we obtain a mueh larger value of peak-to-valley 

ratio for the prediction: 3600 and 60, respectively. The main reason is 

that, Nix's and Pauli-Ledergerber's calculations give a very lar'ge value of h 
258 '~' , 

for Fm (2.2 MeV and 1.9 MeV respectively). These very large values of h 

may be due to the fact that Nix and Pauli-Leder gerber do not use enough shells 

in the calculation basis 'for such large asymme~ric deformations.t'The 

inclusion of.many shells may lower the value of h which would thus tend to 

make :it consistent with the experimental results. At the moment we also have 

some reservations about the Nix value since this model also predicts a large 

value of h f9r Po where no asymmetr.ic fission is obser:ved. 

tAs a technical point , we Would like to point out that it i,s not true that an 

increase ,in size of the basis will always bring down the total energy of the 

nucleus. Wh,at is decreased i,s the sunnnation of energies of the occupied 

single-particle levels,but the shell correction can be either larger or smaller. 
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Case II; Intermediate 

In this case the input energy is above the asymmetric barrier but 

below the symmetric barrier. The probability of asymmetric fission will still 

be taken as proportional to the number of levels available for 

the fission process. 

.p 
a 

= ce 
2/x' A(ET-Ea ) 

where the symbols have the same meaning as in the previous case. For symmetric 

fission, however, the excitation energy is below the barrier, and therefore 

the probability for symmetric fission .vill be dependent on the probability that 

the barrier can be penetrated. The standard WKBbarrier penetration formalism 

is used and yields the probability for symmetric fission to be 

1-There BA5/3 is the inertial parameter of the fissioning nucleus and the integral 

is evaluated over the penetration path. 

For continuity with Case I, Le. P should be the same in value 
s 

whether the Fermi-gas level density formula or the penetrability formula is 

used for the case ET = Es' it is seen that 

c' = 2c 
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It turps out that for the data available, it is a very gopd approxima-

tion to assume that the'exponential term in the denominator of the expression 

for P . to be large so that s 

-'2!V26 
A5/3(E -E ) dE 

= c'e 
h2 . s T 

p 
s 

Using a parabolic approximation for the barrier 'shape to be penetrated 

we may write P in terms of a quantity.hw. 
s 

P 
s 

, 

= c'e 
"7 21T (E -E ) 

hw . s T 

The quantity hw is sometimes known as the transparency and~t is 

dependent' on both the inertia parameter and the curvature of the barrier, and 

is proportional to A -5/6 in the simple irrotationalflow model. 

obtain 

As in case I, we take the ratio P Ip and after a little algebra, 've 
a s 

2P -
1 a 

. 16 In-p = 
--- A5 (E -E )s 

s T 

+ 21T . 

hwA5/6 
(4 ) 

In the last term we have tried to take the A-dependence of hw out by 

multiplying it by A5/6 so that it is a constant term if the inertia and curva-

ture of barrier stay about the same. 

against 

In fig. 7 the left-hand side of the above equation is plotted 

A-1/3/ET-E ItE -ET) based on Holler and Nilsson's deformation energy as, 

surfaces .. The data are shown in Table 1. There are only four experimental 
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pbints that fall into this present case and they show very' good correlation. 

The slope gives a value for X' = fa. This is much smaller than the value 

obtained for high energies from Case T. One possible explanation is that at 

the asymmetric saddle point one is experiencing a shell effect in the Strutirisky 

sense9) relative,to the symmetric mountain top. and a shell effect implies a 

low.,.level density. When one refers to the single-particle level diagrams 

calculated by Nilsson et al. lB ,12), and counts the levels in a given energy 

range about the Fermi level. it is found that at two deformations whose shell 

energy differs by 2 MeV, the single-particle level densities may differ by a 

factor of three. The ordinate-intercept of the plot gives for the transparency 

hw = 3.3 MeV for A = 23B. This number is much too large when compared with 

the usually accepted empirical values that range from 0.5 to 1.5 MeV. The 

reason is unclear. It may be due to zero-point-energy effects which are 

important in this present case because the excitation energy is within two 

MeV of the barrier. ,It ma,y also be due to the very approximate but simple 

formulas that we have used for evaluating the fission probabilities. 

For comparison with calculations based on deformation energy surfaces 

of Nix, and Pauli-Ledergerber. similar ,plots are shown in fig. 8. There are 

more experimental points falling into case IT with Nix's and Pauli-Ledergerber's 

results. Each set of data still lie on very reasonable straight lines. The 

values of the transparency hw based on Nix's and Pauli-Ledergerber's results 

remain approximately the same. The value of X is even smaller (X~ 1/100)., 
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Case III: Energy Below Both Barriers 

In this case the energy is below both the symmetric mountain top and 

the asymmetric saddle. All the data we have found that fall into this category 

are obtained by spontaneous fission studies.(i.e. ET = 0). Both the probability 

of symmetric fission and the probability of .asymmetric fission are given by 

the standard WKB formula 

p 
a 

p 
s 

-2' (V282' A5/ 3 ' (E E ) d J' . a- T E: 
, . h. = c e 

. -~ 
= c'e 

where B'A5/ 3 is the inertia parameter of penetrating through the asymmetric 
. J 

saddle, and 8A5i.3 is that through the symmetric mountain top. On taking the 

ratio of probabilities" the penetraticn path from the ground state to the 

secondary minimum that is common to both cancel out, and we need only consider 

the !penetration from the secondary 'minimum to the emerging point out of the 

barrier by way of the asymmetric saddle or the symmetric mountain top. We 

approximate the barrier shape for such penetration by a parabola that passes 

through the secondary minimum and the emerging point with the top of the parabola 

at the same energy as the asymmetric saddle (or the symmetric mountaintop) 

(see fig. 9). The result is the following: 

In P
a ='l~ga p. h 2 s . 

IE f(E -E., E ) - V28 2' IE"! (E ~E., Ea) I A5/6 d 
s Sl S. h a al 

where 

. I, 
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and d is the penetration path length from the secondary minimum to the emerging 

point and its values (assumed to be the same for both the symmetric and asymmetric 

fission paths) were obtained from bar'rier shapes calculated by Nilsson 

12 ' et al. ). Ei is the energy of the secondary minimum above the ground state, 

which we take from the empirical values of isomeric threshold energies (Table 1). 

In this equation there are two .parameters to be determined. Up until 

recently there has been only one radiochemical result of the peak-to-valley 

ratio for sporitaneous fission, which is the case of 252Cf (p/v ~ 750). The 

other spontaneous fission results are given only as lower limits. As a 

reas~nable number we have taken an empirical value for f3' from fitting 

spontaneous i'isr;;ion half,..liv'es to the barrier shapes calculated by Nilsson 

12 
et al. ) • This value turns out to be given by 
~- . 

y213' = 0.3390 MeV-1/2 ' (6a) 
h2 

with reference to Nilsson's deformation coordinates. Then the i3 value is 

obtained by fitting the 252Cf p. eak-to-valley ratio as given by P IPin the 
a s 

above equation: 

V!J. = 0.3747 MeV-
1/2 (6b) 

It is to be noted that 13.' is smaller than i3 but only' slightly. It is reasonable 

that i3' is smaller th.an 13 since the level density at the symmetric mountain top 

is larger than that at the asymmetric saddle, and tieoretical calculations 

indicate that themertial parameter should increase with increasing level 

density9). However, the finding that i3 and 13' are approximately equal may 
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appear to be in contradiction with calculations that show that inertia 
\ ' 

par'ameters at the barriers and the minima may differ by a factor of ;three. 

,With the values of 8 and S' thus determined, the peak-to-valley ratios 

can be calculated. The results are tabulated in Table 2. Thus the mass yield .. , 

of the spontaneous fission of 256Fm is calculated to have peak-to-valley ratio 

of 43.whi.ch compares r'easonably well with the e:xperiment~l number of 12 5). The 

physical reason why the fission of 256m is asymmetric is that even though the 

energy difference, h, between the asymmetric saddle and the symmetric 

mountain top is small, in the case of tunnelling under the barrier, it is felt 

quite strongly. ,This is to be contrasted with the case of the thermal neutron-' 

induced fi.ssion of 257Fm , whereh is just as small, but its effect is very 

little when the excit,ation energy is substantially above the barrier. A 

critical test of the present theory wHl~ be to measure the peak-to-valley 

t · f th th 1 t . d d .. f' 255Fm ( h'· h d' t t ra 10 0 eerma neu ron ;t.n uce j'lSSlon 0 . w 1C we pre 1C 0 

fission s~etrically) or of the spontaneous fission ·of 258Fm (which we predict 

to fission asymmetrically). 

" 

'>. 
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The Radium Region 

It is well-known that the mass yield curve of proton-induced fission 

of 226Rahas three peaks19 ,20); that is to say, the probability of fission is 

large for both symmetric and asymmetric fission. In our picture this requires , 

three minimum-energy paths across the outer barrier, one at the symmetric axis, 

one at an asymmetric configuration and the third at a shape corresponding to 

the mirror image of the asymmetric configuration. Moller and Nilsson7) 

recently calculated the deformati.on energy surface of a nearby nucleus 222Ra , 

(in contrast to their previous calculations, they have used in this case a 

surface-independent pairing strength) which displays such a feature. Their 

results are shown in fig. 10. In the figure, beyond the secondary minimum, in 

the outer barrier region, one finds two mountains situated at some asymmetric 

deformation. Between the two mountaiIls is the symmetric path which is 

energetically favorable. On further sides of the two mountains are the 

asymmetric paths which are also favored. Such a structure would produce a 

triple peaked mass yield curve for the fissioning nucleus'. Similar calculations 

by Nix do not show this triple valley feature and therefore in our model 

cannot be used to interpret this particular experimental mass distribution. 

However, even the Moller-Nilsson picture is unable to account for the observation 

that at low energies, the asymmetric peaks of the mass yield curve are much 

higher than the symmetric peak but at high energies they are lower, and at some 

intermediate energy (- 11 MeV bombarding energy in case of'proton-induced 

fission of 226Ra ) the three peaks are about equal 20). The failure of our 

picture to understand such a switching-over of the highest peak may be 

illustrated in fig. 11, which shows that as the excitation energy is increased, 
') 
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the three peaks will smear out into a flat-top mass yield curve without. the 

switch-over occurring at'any energy. 

One way to account for the switch-over is to realize that the shell 

effect can be a function of exeitation energy. The energy of symmetric path 

above the asymmetric paths in the outer barrier is verY,small according to 

Moller and Nilsson. Actually in our estimation, to cause the peak-to-valley 

ratio of mass yields to be 2, one needs only an energy difference of about 

0.2 MeV. It is perhaps not inconceivable th.at as the excitation energy is 

increased, the shell effects are altered such that the eqergy difference' 

is changed f:rom+O.2MeV to -0.2 MeV, thus effecting a switch-over in the mass-

yi eld pe~aks. 

Another possible explanation may be that the ;"switch-over is to a l~rge 

extent due to the presence of a higher chance fission (i.e. the fission of the 

compound nucleus after one or more neutrons are evaporated). It has recently 

been 'found by Perry and Fairhal121 ) that the first chance fission of 228Ac at 
-

18 MeV excitation energy is symmetric. This is a surprising result since it 

has been long established that for a vide range of energies the fission yield 

of 227Ac is triple-peaked. The sudden change to symmetric fission of the 

adjacent isotope is not understood as yet. It may be due to the fact that 

228Ac is an odd-odd nucleus. If 226Ac , the adjacent odd-odd nucleus, is also 

, 226 . 
fission symmetric, then we suggest that the proton-induced fission of Ra is ;.. 

composed of the fission of 227Ac and ~he second chance fission of 226Ac : 
:1, 

p + 226Ra ,.. 227Ac ~ 
226

Ac + n 

! ~ 
fission fission 

-, 
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At low excitation energies, only first chance fission is energetically 

possible, and one se~s .only 227Ac fissioning and this gives generally a triple-

peaked mass yield curve with asymmetric peaks much higher than the sYmmetric 

peak. As one increases the energy, the second chance ~ission (226Ac ) sets in 

and its symmetric mass yie1dis also present in the final mass yield measure-

ment. 

Using the liquid drop barriers of 227Ac and 226Ac as given by Myers and 

Swiatecki
22

), Gatti23) finds that the second chance fission sets in at about 

10 MeV of bombarding energy and the second chance fission yield stays about 

constant [at 17-50% corresponding to the value of aF/an , (the ratio of the 

Fermi level density parameter at the saddle and at the ground state) equal to 

1. 2 or 1. 0 respectively] relative to the first chance fission until the third 

chance fission sets in at about 18 MeV proton bombarding energy. The effect 

of the second chance fission on the final mass yield is shown schematically 

:i:n fig. 12. This figure shows the mass yield for the first chance fission 

(227Ac), th.e second chance fission (226Ac ), ~nd the cumulative mass yield (SUM) 

which is what is ob.served experimentally. These yields are shown at five 

proton bombarding energies (E). This shows a plausible explanation for the p 

experimentally observed switch-over of the symmetry and asymmetry mass yield 

peaks at about E = 11 MeV. 
p 
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sUmmary and Conclusion 

In this study it is shown that a quantitative interpretation of all 

available peak-to-valley ratios in the fission mass yield curve can be obtained 

based on the deformation energy surface. Furthermore, some information con-

cerning level density parameters and inertia parameters are obtained in the 

region around the second barrier. The analysis has been performed using three 

different sets of deformation energy surface calculations (Moller-Nilsson, Nix, 

and Pauli-Ledergerber). All three have been successful in predicting the 

general trends of' the mass distributi.on as a function of' the energetics of the 

fissioning nucleus. However, the results of Moller-Nilsson yield the 

best <luant±tat±ve agreement with experime~t. From the satisfactory correlatipns 

that come out of the present analysi.s, it may appear that before a good and 

realistic dynamic calculation, is done on fission asymmetry, it is perhaps 

-
prOfitable to look at the problem from a quasi-static point of view with more 

sophisticated fission probability formulae than those employed in this paper. 

The two most important physical quantities that affect the mass yield 

curve are first, the excitation energy above the outer barrier and secondly, 

the energy difference, h, between the symmetric mountain top and the asymmetric 

saddle. When h is zero or small, there is little difference between the 

symmetric fission path and asymmetric fission path, and the peak-to-valley 

~atio is expected to approach one. When h is large, of course, asymmetric 

fission prevails. The mass yield curve is also quite a strong function of the 

e_xc i tation energy. As the energy is well above the barrier, the effect of h 

is not seen and syinmetric fission is observed. But as the energy is decreased, 

the effect of h becomes more significant and causes asymmetric fission. 

II. 
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In this picture it is possible to explain the recent data of the 

f " f 256fu d th t 'd d f" f 257Fm spontaneous J..ssJ.on 0 . an e neu ron-J.n uce J.ssJ.on 0 • For the 

latter case, h is small, and even at the energy of thermal neutrons, one is suf-

fidently a.bove the outer ba.rrier not to feel too much the effect of hand 

hence the peak-to-valley ratio is close to unity. In the same way, our analysis 

would predict the fission of thermal neutron-induced fission of 255Fm to be 

symmetric. For the case of the spontaneous fission of 256Fm , even though h 

is small, the excitation energy is zero, i.e. the fission is a penetration 

process through the barrier, which can feel even the small value of hand thus 

asymmetric fission is observed. In the same way, our analysis would predict 

the spontaneous fission of 258Fm to be asymmetric. 

Experiments to measure mass yields of the spontaneous fission of 

258Fm and the thermal neutron-induced fission of 255Fm would be strong tests 

of our theory . They will also help to differentiate between our the'ory which 

is based 'on a quasi-static analysis in the region of the second barrier and 

the theory often advocated that the fission asymmetry is due to fragment shell 

effects, determined predominantly neal' the scission point. In the later theory, 

258 256' 
the mass yield curve of spontaneous fission of Fm (and of Fm) would be 

very similar to the thermal neutron-induced fission of 257Fm (and of,255Fm ). 

Other very crucial experiments in the further understanding of fission 

asymmetry are those measuring the mass yield of nuclei in the radium region, 

in particular, the low energy fission yield of polonium isotopes. This region 

provides critical test of any theory of fission. Further experiments, 

especially those in which higher chance fission can be substracted will be 

extremely'valuabie. 

, " 
I 
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Table 1. Quantities used in eq. (2-5) for determining peak-to-valley ratios. 
Incident 

Nucleus P Ip a neutron B b 
E.r

c E d E e E f 
a s energy N 1 a s 

(MeV) (MeV) (MeV) (MeV) (MeV) Nil-Ig(case) Nil_IIh (case) Paulii(case) 

234u 390 0 6.9 6.9 2.f 6.0R- 8.24 (II) 9.1 (II) 9.1(II) . 
120 2.5 9.4 (I) (I) (I) 

5 14. 20.9 (I) (I) (I) 

236u 600 0 6.6 6.6 2.4m 6.0R- 8.48(II) 9.3(II) 9.7(II) 
150 2.5 9.1 (I) (II ) (II ) 

73 5. 11.6 (I) (I) (I) 
21 8. 14.6 (r) ( I) (I) 
7 14. 20.6 (I) (I) (I) 

238U >500 S.F. 6.8 0 2.0 k 5.8R- 8.43(II1) 9.1(1II) 10.0(111) 

24°Pu >270 S.F. 6.8 ., 0 2.6n 5.4n 
7.3 (III) 7.9(III) 9.1(II1) 

235 0 6.8 (II ) (II ) (II) 
""' 90 2.5 9.3 (I) (1) (1) 

6 14. 20.8 (I) (I) (1) 

242Pu 290 0 6.5 6.5 2.2R- 5.3R- 7.2 (II ) 7.7(II) 9.0(II) 

242 . . Cm >700 S.F. 6.9 0 3.2n 5.1 R- 6.4 (III) 7.0(1II) 8.1(1II) 

244 3(0) 
S.F. 6.7 -0 2.6k 

5.3
k 6.6 (III) 7.0(1~I) 8 .-3(II1) Cm > 5xl0 

Nixj(case) 

8.5(II) 
(I) 

(I) 

9.4(11) 

(II ) 

(I) 
(I) 

(I) 

9.9(1II) 

8.8(III) 

(II ) 

I (1) 
(I) 

8.8(II) 

8.0(III) 

8.2(III) 
(continued ) 

I 
r\) 
\0 
I 



Table 1 (continued) 

Incident 

Nucleus P Ip a neutron B b E c E d E e E f 
a s energy N T 1. a s 

(MeV) (MeV) ~(MeV ) (MeV) (MeV) Nil-Ig(case) h' Nil-II (case) Paulii(case) Nixj(case 

246Cm 140 0 6.6 6.6 3.1
k 

5.4
k 6.6 (I) 7.0(II) B.5(II) 8.0(II) 

250Cf ' > 60 0 6.7 6.7 3.1
k 

4.5
k 

5.1 (I) 5.3(1) .7.3(II) 7.3 (;1:1) 

252Cf '" 750 S.F. 6.0 0 2.f 4.0k 4.5 (III) 4.4(III) 6.5(III) 6.5(III) 

258Fm '" 12(0) S.F. 6.aP 0 2.0k 
3.4

k 3.6Q(III) 5.3(III) 5.6(III) 

258Fm Sym r 0 6.5P 6.5 2.0
k J 3.3

k 3.5Q(III) 4.5(1) 5.3(1) 

aThe ratio of peak-to-valley yields of fission product mass distribution taken from von Gunten (ref. 3»,unless 
otherwise noted. 

b~ is experimental neutron binding energies calculated from the experimental masses tabulated by Myers and 
Swiatecki (ref. 22». 

c .. 
Compound nucleus excitation energy(Er = incident neutron energy + neutron binding energy). 

dEi is the energy of the secondary minimum in the deformation energy surface relative to the ground state. 

is the energy of the asymmetric second saddle point relative ~o the ground state. . , 

is the energy of the symmetric second saddle point relative to the ground state. 

gNil-I ...;. calculated values of h are taken from ref. 7) (the case where surface'dependent pairing strengths 
are used), and added to E to give E . . a s 

hNil-II - calculated values of h ar~ taken from ref. 7) (the case where constant pairing strengths are used), 
and added to E to give E . 

a s 

(continued) .. \., 

I 
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Table 1 (continued) 

16 calculated values of h are taken from ref. ) and added to Ea to give Es' 

JNix - calculated values of h are taken from ref. 8) andad~ed to E~ to give Es' 

kReference 16). 

Q.Reference 13). 

IlL. 15) . .t{eference 

~eference 
o . 
Reference 

p 22 Calculated value- from ref. .) . 

7 <i.rhe value of h is estimated from deformation energy surface plots provided by Mbller and Nilsson (ref. )). 

r Reference 4). 
I 

W 
f-J 
I 
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Table 2. Experimental and calculated ~alues of peak-to-valley ratios for 
spontaneously fissioning riucleia . 

Nucleus 

238U 

240
Pu 

242 , Cm 

244
Cm 

;;52Cf 

256 ' 
~ 'Fm 

aCalcillations 
,eq. (6a;b). 

bReference 3). 

cRef~rence 5). 

Peak Yield/Valley Yield 

Experimental 

> 500b 

> 270b 

> 700b 

> 5 x 103 c 

'" 750b 

'" 12c , 

Calculated 

8 x 106 

7 x 105 

2.4 x 104 ' 

2 x 104 

, fitted 

43 

were performed using eq. (5) with values of a and 13' given by 
Experimental parameters used ~n eq. (5) are presented in Table 1. 

==============~==================~========================.======~======= 
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Figure Captions 

Fig. 1. A typical mass yield curve. 2 The data ) is presented for the neutron 

induced fission of 235U at two neutron energies: thermal and 14 MeV. 

Fig. 2. Schematic representation of a deformation energy surface as a function 

of.symmetric and asymmetric deformations. For details see text. 

Fig. 3. Classification of cases for study of mass asymmetry. Case I corresponds 

to the situation where the excitation energy ET is above both the symmetric 

mountain top; E , and the asymmetric saddle point, E. Case II corresponds 
s - a 

to the situation where ET is above E , but below E. Case III corresponds a s 

to the situation where ET is below both Es and Ea. 

Fig. 4. Correlation given by eq. (2) for Case I data using the Moller-Nilsson 7 ) 

theoretical barriers. The line is drawn in to smoothly join experimental 

. data points. 

Fig. 5. Same as fig. 4 but using four sets of theoretical fission barriers: 

b. -+ Maller and Nilss~n7) using a surface dependent pairing strength (this 

is the same data used in fig. 4); + -+ Moller and Nilsson 7 ) 

pairing strength; 0 -+ Nix8); • -+ :Pauli and Ledergerber16 ) . 

are drawn to bracket the experimental data. 

using a constant 

The two lines 

Fig. 6. Correlation given by eq. (3) for Case I data. This graph is used for 

prediction of the (257Fm, nthf) peak-to-valley ratio. Maller and Nilsson's 

theoretical barriers are used. 

Fig. 7. Correlation given by eq. (4) for Case II data using Moller and Nilsson 

theoretical barriers. The line b drawn through the experimental data points. 

Fig. 8. Same as fig. 7 but using four sets of theoretical fission barriers: 

b. - Maller and Nilsson7 ) with surface dependent pairing strength (this is the 

same data used in fig. 7), +- Maller and Nilsson 7 ) with a constant pairing 
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strength, 0 - Pauli and Leder:.gerber
I6

) , • - Nix 
8). Th.e lines are drawn 

joining the, various sets of d'ata. 

Fig. 9. The dark line is a schematic representation of the fission barrier 

" 

along symmetric deforDlB.tions. The outer barrier is approximated by a 

parabola (dashed' line) which passes through the, secondary minimum and 

spontaneous fission ~~rging point and has the same maximum as the outer 

fission barrier. The ',penetration path (d) is from the second minimum to point 

of emergence. A similar approximation is applied for the asymmetric barrier. 

Fig., IO.Deformation energy surface of 22~a in the region of the second saddle 

... 7) point a,s calculated by Moller and Nilsson using a constant pairing strength. 

Fig. 11. A h~othetical r.epresentation of the triple peaked fission mass yields 

of nuclei in the r.adium region. The left-hand curve gives the cross-section 

of deformation energy surface near the outer peak as a function of shape 

asymmetry. The right-hand curves. give the mass 'yields at various excitation 

energies indicated. 

Fig. 12. A pOssible expl~a.tion of the experimentally observed mass yield distri­

butions in the proton induced fission of 226Ra . The mass. yields of first 

..J, 

( 227Ac ) ,(226 ) and second Ac chance fissions. are indicated along 'with the cumulat'i ve 

fission mass ,yield. These yields are presented schematically for f~ve dif-

fe~ent bomb~ding energies (Ep). The considerations of both the 'first and the 

second chance fission are necessary to explain the variation of the symmetric 

.-' 
fission yield peak relative to the asymmetric yield peak. 

'.' 
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