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INTRODUCTION 

This report describes' part of the development of an expert 
system in the domain of well-test analysis. This work has been done 
during my final internship, completed at the Lawrence Berkeley 
Laboratory between March' 29 and June 20. This internship is the 
beginning of a longer period of at least six months (and probably two 
years). Therefore the work described in this report must be 
considered as part of a more important project, and not at all as a 
whole entity in itself. 

L· 

This project was six months old when I first began to work on it. 
Therefore the first few weeks were employed to master the existing 
system and the expert system shell it uses. During the same time, 
some bibliographical researches were done about well-test analysis, 
which was a new subject for me too. 

The report is divided In three parts: the first one gives a 
description of the state of the project at the time I first began to 
work on it, and raises some problems that have to be solved. The 
second section shows the results that have been reached, and the last 
one draws conclusions from these results and proposes extensions 
that would be useful in the future. 

I would like to apologize for the poor writing style used in this 
report: I have tried to make my English as understandable as 
possible, therefore repetitions and gallicisms often appear. 
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PART I - DESCRIPTION OF THE 
PROJECT 
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1.1. WELL TEST ANALYSIS 

1.1.1. THEORY 

1.1.1.1. Introduction 

This chapter exposes the main articulations of the reasoning In 

well test interpretation: This could not be considered as the theory of 
well ,test analysis (which is beyond the scope of this report), but 
rather as a ,simplification of this theory that enhances the 
applicability of expert systems in that field. This part is the summary 
of a few papers! to 11 published in specialized publications ("Journal 
of Petroleum Technology", "World Oil") between 1984 and 1988. It 
includes the description of the pressure-derivative approach, the 
most recently developed method2,3,4 (1984) of well test analysis. 

The interpretation of transient test data is the main source of 
information on the hydraulic ,characteristics and the dynamic 
behavior of a reservoir, especially if permeability is high, because a 
test can investigate an appreciable volume of the formation. During 
such tests, the hydrogeologic regime is perturbed by pumping liquid, 
water or oil, in or out of a well, and the response of the underground 
flow system to the perturbation is generally monitored over a long 
length of time, yielding curves of pressure versus time. 

When an expert works on the interpretation of pumping tests, he 
looks for unique characteristics, or "signatures" on one or several 
representations of the pressure-time data. Classical representations 
involve semilog and log-log curves, and a newer method uses a 
pressure-derivative curve. Well-known types of hydrogeologic~ 

systems have differents signatures, on these curves, such as straight 
lines, humps, etc... The task of the expert is therefore to draw the 
curves, recognize those features and draw conclusions from them. 

7 



Conclusions consist of both a conceptual model, which describes the 
nature of the ground water flow system, and an estimate of the 
parameters needed to properly characterize this flow system. In this 
chapter, only a limited set of conceptual models will be considered: 
two general types of reservoir (homogeneous and double porosity), 
two different inner boundaries (wellbore storage effect and fractured 
well effect), and three outer boundaries (no boundary, no-flow 
boundary, pressure-maintenance boundary). 

1.1.1.2. Traditional And Derivative Theories 

In recent years, the science of transient well test interpretation 
has progressed rapidly, most notably through the increased use of 
type curves, the introduction of new reservoir models and the 
advent of computer interpretation packages. The major improvement 
still is the introduction of the pressure-derivative analysis method, 
which deals directly with rate of pressure change, rather than 
absolute pressures. This new method has been allowed by the advent 
of new electronic bottomhole pressure . gauges, which has 
dramatically improved data quality. 

Practical transient test interpretation methods have become 
polarized in recent years between two analysis techniques 
conventional and global. The former basically consists of fitting 
straight lines to data regions, for example on the semilog plot (Horner 
analysis). The latter involves the use of various type curves to 
include the entire data set in the process of reservoir system 
diagnosis, flow regime identification, and evaluation of system 
parameters. It is commonly accepted that great confidence in 
interpreted results is obtained by an iterative combination of the two 
techniques that starts with the global approach. 

The· recently developed pressure-derivative approach has 
combined the most powerful aspects of the two previously separate 
methods into a single-stage interpretative plot. 

8 



Both methods (traditional and derivative) are described in this 
part for the most common model of a well with well bore storage and 
skin in a homogeneous reservoir1,6,8 (the possibility of comparing' 
results obtained by two different approaches could be avery useful 
tool for an expert. system, therefore both methods are kept). 

The most useful traditional type curves depict, on a log-log scale, 
the evolution of the dimensionless pressure, P D, . with the 
dimensionless time group tDICD (CD is the dimensionless wellbore 

storage constant)., For the basic model considered here, the individual 
curves are dependant on the wellbore condition group CD e2S (S is the 

skin factor). 

These curves have two malO drawbacks: 
- first, there is the uniqueness of the diagnosis. The various 

curves have similar shapes, particularly when the effect of 
wellbore storage is very short-lived. The main regime of 
interest,! for the evaluation of reservoir parameters, infinite
acting radial flow, has no characteristic shape on a log-log 
plot. 

- second, late- and intermediate-time deviations from the 
diagnosed trend (Le. outer boundary effects) are compressed 
to the extent that recognition is unlikely. 

Both necessitate the supplementary use of semilog scale plots 
(conventional analysis) to obtain more accurate results and to help 
recognize and improve evaluation of nonhomogeneous behavior. 

In dimensionless terms, infinite-acting radial flow IS 

conventionally written as 

PD = 0.5 (In (tDICD) + 0.80907 + In (CDe2S)). 

This is the "semilog approximation" and is valid only after the 
wellbore storage effect has become negligible. This approximation is 
represented by a straight line on the semilog plot, but, as explained 
above, has no characteristic shape on the log-log plot. 
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When fluid movement IS confined entirely to expansion or 
compression in the wellbore, pure well bore storage is given by 

and is represented by a unit-slope straight line on the log-log 
plot. 

In the pressure-derivative approach, the semilog slope of the 
dimensionless pressure response is plotted on a log-log plot in place 
of the dimensionless pressure. The y axis is the derivative of 
pressure with respect "to the natural log of time: 

dpDldln(tDICD) = (tDICD)p'D (P'D = dpDld(tDICD))· 

When applied to the infinite-acting radial flow equation, for 
which' the slope is constant on a semilog scale, the equation becomes 

(tDICD)p'D = 0.5, 

a more easily diagnosed horizontal line on a log-log plot. 

Pure well bore storage becomes 

this again is a unit-slope line on log-log paper, as was the 
underived form. Hence, the endpoints of all the curves are fixed by 
two common asymptotes with a hump-shaped transition whose 
shape is controlled by the wellbore condition group C De2S• 

The type curves for this model are shown Figure 1-1. 

Several types of heterogeneities commonly are characterized by 
either middle-time or late-time deviations from infinite-acting radial 
flow, represented by a straight line on semilog paper and a 
horizontal line on the log/time derivative form. In general terms, the 
pressure-derivative method can be considered as a normalization of 
a semilog plot. In doing this, other characteristic behaviors that often 
are not easily discernable by traditional methods are accented, 
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facilitating model diagnosis, flow regime identification and parameter 

evaluation. 

One of the most useful characteristics of the pressure-derivative 
approach is the correspondence of the straight lines on the derivative 
plot to the straight lines on the traditional plots: 

- A straight line of slope m on the pressure plot is 
represented by another straight line of similar slope on the 
derivative plot (when both plots are on log-log paper). 
- A straight line on the semilog plot of the pressure is 
represented by a horizontal straight line on the log-log plot 
of the pressure derivative. 

1.1.1.3. Well System Analysis 

. 1.1.1.3.1. DRA WDOWN 

This part describes the most commonly observed well system 
responses for the case of a drawdown from initial conditions (a 
drawdown consists of pumping liquid out of a well with constant 
flow rate). As will be discussed later, the responses obtained during 

buildup can be more complex and can even alter in trend 

HOMOGENEousREsERVO~ 

A homogeneous reservoir is a well in which reserVOIr properties 
can be represented by a single system model. Departure from this 
infinite-acting radial-flow model are caused by inner and outer 
boundary conditions. The most common case (CoLI in Figure 1-2), 
that of wellbore storage and skin (inner boundary effect), was 
described above. 

- Hydraulically fractured wells4 •11 (Col. 3 in figure 1-2). This is 
. another inner boundary effect. Unless obscured by wellbore storage, 
the half-slope line characteristic of fracture linear flow initially IS 

observed on a traditional log-log plot. In dimensionless terms, this is 
given by 

1 2 
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When differentiated with respect to the log of time function, this 

becomes 

agam giving a half-slope line on log-log. 

In radial flow, a difference between two types. of fracture 
appears: the pressure response is approximated. by 

pD = 0.5 (In(tDf) + 2.2) for infinite conductivity 

and 

pD = 0.5 (In(tDf) + 2.81) for uniform flux. 

The difference in the constant term manifests itself on log-log 
paper by the stabilization of the final curves at different levels. 

On the derivative plot, radial flow again is represented by a 
horizontal straight line: 

tDjP'D = 0.5. 

The two models differ only in the transitional period and give 
different curves that are analogous to different skin (C De2S ) on the 

well bore storage and skin type curves. 

- Bounded systems (Col. 1 in figure 1-2). The two most common 
outer boundaries are barriers to flow, such as faults and pinchouts, 
and pressure maintenance from a gas cap or aquifer. Neither of these 
has an easily observable characteristic form on a log-log scale. A 
semilog plot normally is used for conventional or type-curve 
analysis. 

A single no-flow boundary 
semiradial flow regime with an 
semilog plots this produces a 

14 

results m the establishment of a 
increased rate of pressure change. On 
doubling of the' slope. Consequently, 
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after a transition -period, the boundary, appears on the derivative plot 

as a -horizontal line: 

(tDICD)p'D = 1. 

A further no-flow boundary can double this to 2. 

Pressure-maintenance boundaries, on the other hand, result in a 
reduction in the pressure changes at late times. This manifests itself 

as a flattening on the semilog plot as the maximum pressure 
differential is attained; on the - derivative plot, the curve slopes 

downward to zero. 

In a closed system (Col. 2 in - figure 1-2), the late time 

pseudosteady-state response can be written as: 

PD = a(tDICD) + b, 

where a and b are constants dependent on reservoir size, shape, 

and properties. On the log-log plot, the curve tends asymptotically to 
a unit slope: 

When the derivative with respect to the log of time is taken, the 
second constant is lost: 

(tDICD)p'D = a(tDICD), 

which gives a unit-slope straight line on a log-log scale. 

HETEROGENEOUSRESERVO~ 

There are many reservoirs where the pressure response is the 
product of the interplay of more than one conductive medium. Most 

current models are composed of two homogeneous media dispersed 
throughout the reservoir, with a large permeability contrast between 
themS,7. 

The models currently used most extensively are the two 

considered for double-porosity systems. Here the observed response 
is the result of two media, usually considered as fissures and blocks 
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in naturally fractured reservoirs. For simplicity, this terminology is 
often extended to represent the high- and low-permeability layers, 

I 

respectively, in multilayered reservoirs. Initially, flow is almost 
entirely from the high-permeability, low-storativity fissure system. 
Eventually, there is pressure support from the high-storativity block 
system before the two systems finally stabilize; the subsequent 
response is that of the total system. This behavior has been best 
described with component type curves that use the concept of two 
homogeneous system responses (fissure and total), with a transition 
regime during the period of pressure support. Two main flow types 
between blocks and fissures (interporosity flow), pseudosteady-state 
(CoLI in Figure 1-3) and transient (Col.2 in Figure 1-3), with 
different transition responses have been envisaged. 

As both double-porosity models are based on two infinite, 
homogeneous systems with a reduction in the rate of pressure 
change during transition, the ideal result on a semilog plot shows two 
parallel lines (Top illustrations in Figure 1-3), with a transition 
portion of smaller slope. (a half-slope region theoret~cally can be 
observed with transient interporosity flow). The existence of the first 
straight line, however, is often shadowed by wellbore storage. 

When the derivative is taken with respect to the log of time, the 
main trend is the same as that of the infinite, homogeneous system, 
with a drop in the derivative when the rate of pressure change 
decreases during transition. In that region, the response is similar to 
that produced by pressure-maintenance boundaries, in the case of 
pseudosteady-state interporosity flow. Radial flow is again 
characterized by a horizontal straight line at 

The position 
interporosity flow 
transition period are 

I 6 

(tDle D)P'D = 0.5. 

of the transition dip IS controlled by the 
coefficient, A, and the depth and length of the 
dictated by the storativity ratio, ro. 
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The transition period is usually longer with transient 
interporosity flow than with pseudosteady-state interporosity flow, 
with the theoretical possibility for the development of a straight line 
with a slope equalling half of that which corresponds to radial flow in 
the total system. When viewed in the derivative format, the half 
slope would be represented by a horizontal line at 

(tDICD)p'D = 0.25. 

The derivative plot gives much more distinctive shapes for the 
different double-porosity models although the pseudosteady-state 
model with large m values still can be confused with the transient 

model. In most cases, if the transition drops below 0.25, then a 
pseudosteady-state model can be inferred. 

1.1.1.3.2. BUILDUP 

Up to this point, the models and type curves have been for an 
initial drawdown from static conditions at a constant rate. The 
production rate generally is not sufficiently stable for analysis of the 
drawdown. Consequently, most transient test analysis is focused on 
the buildup when the rate, at the surface at least, is well-defined and 
constant -that is, zero (a buildup consists of closing a well after a 
production period and letting it reattain its natural hydrogeologic 
static regime). 

For conventional analysis methods to be useful for buildups, 
they must be modified to account for preceding flow periods. The 
most commonly used plot, semilog, IS thus replaced by a 
superposition plot, where the log of time function [nLlt is replaced by 
the superposition function 1 

where to = time at start of flow-test, Liti = elapsed time when 
the ith flow ra.te (qi) stopped and Lit".] = elapsed time at shut-in. 
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The superposition plot restitutes the semilog straight line 
resulting from infinite-acting radial flow by compressing the later 
section of the time axis. 

For the global approach of type curve matching, the problem of 
buildup analysis is more difficult to overcome, as the response IS 

restricted in magnitude to the final flowing-pressure difference of 
the previous flow period. Therefore, the buildup response 
asymptotically approaches this level, resulting in a flattening of the 
trend at late times. This flattening means that matching buildup data 
on drawdown type curves is a very risky process. Although it is 
time-consuming, the best method to overcome that problem is the 
generation of the appropriate multirate type curves for each. buildup, 
thus accounting for the preceding changes in flow rate. 

If the derivative of the pressure is taken with respect to the 
superposition function, then the normalizing effect, which restitutes 
the radial-flow straight line, will also reproduces the characteristic 
horizontal line of the derivative plot. More precisely, if the preceding 
drawdown is sufficiently long for the complete combinations of 
conditions and boundaries to have been encountered, then the 
buildup data can be matched successfully on drawdown type curves. 

1.1.2. ApPLICABILITY OF EXPERT SYSTEMS 

As seen above, the process of reasoning in well-test analysis can 
be summed up in two main steps: first, reservoir· system diagnosis 
from the characteristic patterns on the different plots, and second, 
estimation of system parameters using the appropriate set of type 
curves. A human expert is able to select at first time a small set of 
models to which the considered well could be relevant. this first 
analysis is improved by the use of the various type curves, which 
yields parameters and model for the well. 

An expert system will have more difficulties to determine the 
appropriate model for a well: first, it will have to recogmze the 
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characteristic. shapes on the plots, second, it will have to infer the 
right model from these shapes. As the different models are not too 
numerous and have sufficiently characteristic shapes (except for one 
or two, which will need more specific analysis involving quantitative 
evaluations), this second part should not be too difficult for an expert 
system: it would be relatively easy to build a knowledge base which 
contains the rules to extract the system model from the patterns, as 
soon as those patterns are well-defined. One typical rule could be: 

"If there is a hump at the beginning of the derivative plot 
followed by a horizontal straight line, then the model of 
the well is homogeneous with infinite-acting radial flow 
and wellbore storage and skin." 

As the data are often very noisy, the mam difficulty will 
probably appear during the shapes recognition. Two different 
approaches can be used to solve this problem: the first one· consists 

. of having different numerical algorithms to filter, then compute 
derivative and patterns, as precisely as possible; the second basically 
uses the same algorithms, but with larger error bounds, to be sure to 
extract all the characteristic shapes from the curves.· A second step 
consists of checking the patterils on the different plots, to get rid of 
the wrong ones. This second method involves more expertise, and an 
expert system could probably deal very well with it. 

The second part of the analysis, the one which uses type curves, 
has been developed in recent years with the help of computer 
packages. These numerical tools lO work very well with data not too 
far from the analytical models, but give poor results when . abnormal 
shapes appear on the curves (for instance, in the case of atmospheric 
pressure changes during the well-test). An expert system ~ould be 
able to select the significant parts of the curves before trying to 
match them on the type curves, as a human expert would do. 

In a domain like well-test analysis, where the input of the 
problem (the patterns on the different plots) can not be exactly 
defined, expert systems are probably able to do much better than 
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classical programs, because they can deal much more easily with 
symbolic knowledge (as a hump or a straight line on a plot), and 
therefore reproduce part of the human reasoning. 
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1.2. THE EXISTING SYSTEM, WES 

1.2.1 INTRODUCTION 

WES, Well-test analysis Expert System, was designed at the 
beginning to work in the field of nuclear waste disposal. This narrow 
field has been extended now to the more general domain of well-test 
analysis, method involved not only in waste storage problems, but 
also in oil reservoir exploitation. 

The following description represents the· state of the program at 
the beginning of my internship. Although the current version is very 
different in its form, the main architecture remains the same. 
Therefore this architecture must be described. In the following 
sections, each time the text will refer to the "current state of the 
program", the original state must be considered. The differences 
between the original and current versions will be explained in parts 
II and III. 

In its current state, the prototype is by no means a finished 
system, and solves only a small part of the different kinds of 
problems for which it is conceived. However, it can be useful to give 
a quick description of this prototype, to discuss what should be 
improved and what should be added to the existing program. 

The system is based on the theory described in, the preceding 
parts, the guiding principle in its design has been not only to try. to 
reproduce the results obtained by the expert, but also to try to mimic 
the way the expert reaches a conclusion. 

In its present state the system can accommodate only a single 
testing well, and. this test must be a drawdown. It possesses 
knowledge about only a limited set of conceptual models, more or 
less the ones which have been described in the. first section of this 
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report. However, it underlines the difficulties encountered during the 

realization of what has been called in the theory "the first part of the 
analysis", i.e. the identification of the model. 

The system is written in ART (Automated Reasoning Tool, from 

Inference Corp., Clayton, 1984). ART provides an easy interface to 
LISP, so part of the system is written in LISP. 

The following sections describe the data structure, the 
architecture of the system, the various algorithms used for 

computing derivatives or eX,tract. global characteristics of the curves 
and the ways the system uses . to deal with the different conclusions 
he reaches during the run. 

1.2.2 DATA STRUCTURE 

The system uses a frame-oriented approach to structure its data 
and results obtained during execution. The basic architecture of 
objects refers to wells and characteristics of wells, but objects are 

also used for graphics and user interface (ART allows windows, 
curves and mouse-sensitive icons to be represented as objects) .. 

The object architecture relative to wells (Figure 1-4) is slightly 
different before and during execution. Before execution, only generic 

objects (we 11 and its four children, we II· s e m ilo g, we II· 10 g log, 
well·derivative and well-model) are defined, along with all the 
slots that may be used to characterize these· objects. These generic 
objects are basically empty structures that reproduce the relational 
knowledge .. 

At execution time, any well-test the program studies (i.e. Lm40) 
is viewed by the program as a specified instance of the generic 
parent object well. When needed during the run, the system also 

creates instances of the four children objects (i.e. Lm40-semilog, 
Lm40-loglog, Lm40-derivative and Lm40-model).· These different 
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instances· are 'replica of the generic objects, but the empty slots are 
replaced by the characteristics of the well (i.e; Lm40). 

The generic objects may have several different instances 
. simultaneously during the run: eac,h time a new well is considered 
for analysis, a ~ew set of specific objects is created. Knowledge is 
kept in these specific objects, therefore avoiding any confusion 
between the different well-tests. 

The main slots of the five generic objects are shown In the table 
below: 

Well 'well-semilog Well-Ioglog Well-derivative Well-model 

initial-time semilog-of loglog-of derivative-of model-of 
initial-pressure straight-lines straight-lines model reservoir 
time semilog-curve 10 gl 0 g-curve time boundary 
pressure semilog-icons loglog-icons p-derivative wellbore-storage 
semilog 

~ 
p-d-derivative fractured 

log log straight-lines early 
derivative humps intermediate 
model deri v ati ve-curve late 
x-scale deri vati ve-icons 
y-scale 
ini tial-curve 
filtered-curve 
common-icons 
window 

Table 1-1: Main slots of the generic objects. 

Initial knowledge is stored in the parent object (instance of the 
generic parent object well) for a given well. It consists of the initial 
and filtered time and pressure data, the links to the four children 
objects and other objects such as the dimensions of the window 
associated with this particular well. 

Well-semilog contains knowledge about the semilog curve, 
such as straight lines. Well-Ioglog contains the same knowledge for 
the log-log curve. We 11- d e r i vat i v e contains the pressure 
derivative, the' second order derivative, and characteristics of the 
pressure derivative curve such as straight lines and humps. 
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We 11- mod e I is the object that contains symbolic assertions 
about the well, that is, deductions reached by the system according 
to the different characteristics of the semilog, log-log and derivative 
plots. Reservoir describes the overall behavior of the medium. It 

can take the values homogeneous or double-porosity. Boundary 
describes the boundary behavior of the system. Its values can be no
flow, infinite or pressure-maintenance. The attributes wellbore
storage and fractured contain only true or false depending on the 
occurrence of such phenomena. 

These five objects contain also graphic-related attributes. In 
ART, all graphics (windows, lines, rectangles, text, etc ... ) are also 
represented by objects and attributes. For example, a line object will 
have attributes such as origin, endpoint or thickness. The attributes 
in the table ending in -curve or -icons point to such objects. 

1.2.3. RULE ARCHITECTURE 

Even though WES is. a rule-based system, in which the flow of 
control should be by nature opportunistic, the system always 
proceeds sequentially through a number of steps. Within each of 
these steps, several rules are executable at the same time, depending 
on whether their left-hand-side (or 'if part) conditions are satisfied 
by facts in the current state of the system or not. The rules do not 
refer to a specific well, but rather can be executed "simultaneously" 
for more than one well so that parallel analysis of many wells is 
possible. 

The differents steps of the execution are: 
- Data extraction and initial curve display. 
- Data filtering and curves computation. 
- Curve characteristics extraction on semilog, log-log and 

derivative plots. 
- Generation of hypotheses. 
- Selection of one or more possible models. 
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1.2.3.1. Data Extraction - Initial Curve Drawing. 

The initial data (readings of pressure at different times) IS read 
from a file when a well is selected for analysis. This data can be 
stored in different units (hours, seconds for time, psi, pascal for 
pressure), but will always be converted to seconds and psi. 

The initial curve, which represents exactly the data read from 
the file, is then drawn in a window, which also contains five mouse
clickable icons (initial, filtered, semilog, loglog, and derivative). 
The reasoning process on a specific well is started by clicking on the 
filtered icon. After that, the five icons have the same function of 
displaying the corresponding curve (and its characteristics, such as 
straight lines or humps) into the window. 

1.2.3.2. Data Filtering - Curves Computation 

Since data sets can be very different. in size and may sometimes 
contain a lot of data points, the system -first filters the initial data set 
and selects a specified number of data points (sixty in the present 
state). The time scale is then divided in sixty constant intervals (on a 
log scale, since the abscissa for all the curves used in the analysis in 
the log of time): one data point on the filtered plot is the result of the 
averaging of all the data points which are in the corresponding 
interval on the initial plot. 

Since pressure data is generally recorded at fairly constant time 
intervals, the density of data points on a log scale increases 
dramatically with the time. The filtering process thus results often in 
a drastic reduction of the number of late data points, whereas the 
system keeps most the data points in the early part of the initial 
curve . 

Besides discarding too numerous data points the filtering phase 
smooths the data in order to avoid undesirable and meaningless 
noise. 
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The system then computes the curves used in the analysis, i.e. 
the semilog, the log-log and the derivative curve. The program also 
checks the validity of the latter curve: since the test under analysis is 
a dra\ydown, the pressure is always diminishing, thus the derivative 
must always be negative. In case the systeI? finds a positive 
pressure derivative at some particular time, a warning message is 
displayed and the value is set to 0, or rather -0.01, which. is the 
biggest number that the system can admit (All negative numbers 
with an absolute value lower than 0.01 are also set back to -0.01). 

In order to achieve the shapes extraction from the curves, the 
system will need the slope at each point on the different plots. Thus 
the second order derivative (slope of the first order pressure 
derivative, i.e. d(ln(dp/dlnt»/dlnt) is computed, as well as the 
derivative of the log-log curve (dlnp/dlnt). The slopes on the semilog 
plot are already known, since they correspond to the values on the 
derivative plot. 

One of the main inconveniences of· the pressure derivative 
approach is that it cannot be measured directly but rather must be 
computed from discrete data. The algorithm that is used currently to 
compute the various derivatives is inspired from the one described 
in Bourdet et al. It may still be improved but gives acceptable 
results, that is, it preserves most of the meaningful response of the 
system while removing most of the noisy parts. 

The algorithm computes the weighted mean of the slopes 
between the point under study and a point preceding it, and between 
the point under study and a point following it. The two points are not 
the points closest to the point of interest, but instead are defined by 
skipping several points to go from the point under study to the two 
points where the slope will be taken. Since in WES all the points are 
equally spaced on a log scale, this amounts to using points at constant 
intervals from the point of interest. The current number of intervals 
used by the system is 3. 

With the notations of Figure 1-5, the slope p' IS gIVen by: 
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humps is symmetrical to this one and the two are actually 
implemented as one LISP function, which return' whether the hump 
identified is a' hill or' a valley' hump. 

Since the extremum computed by this algorithm IS not 
necessarily the ~eal extremum on the curve (the second order 
derivative" is often very nois'y), the program' then looks for an 
extremum on the derivative plot in the neighborhood of the 
computed one. 

~ ,1 

2 

3 
,'-

" , 

, c 

i=O 
if p"i ~ 0 then goto 2 else i· = i+l; goto 1 ' 

J = . J •• 

noise = [tj, tj] '. . 
if tj+l exists and length(noise) ~ significant-length 
then' if pili ~ p"j ~ p"j + 1 . 

, then before-noise = tj 
noise = [tj, tj] 
hump =" [ti, tj] 
if p"jp"j+l < '0 then top ,= tj 

els~ noise = [before-noise, tj] 
, j = j+l 

goto 3 . 
else -if length(hump) ~ 3 significant-Ierigth 

and length([ti, top]) ~. significant-length 
and length([top, tjD ~ significant-length 
then return hump: ti, tj, top 
if tj+l does notrexist then stop 

i = j 
goto 1 

. , 

with the same notations as the ones used for the preceding 
algorithm. 

1
, . . . 

. \ 

32 

;,? 



1.2.3.4. Generation Of Possible Models 

Partial conceptual models are generated from the descriptions of 
the curve in terms of straight lines and humps. Rules try to represent 
the decision criteria used by the expert. An example of such a rule is: 

"If there is a hill hump followed by a horizontal straight line on 
the derivative plot, then generate the hypothesis of a homogeneous 
and infinite system." 

These rules can generate hypotheses based on small parts of the 
pressure versus time curves, for example wellbore storage from 
early time data, or the type of boundary from the late part of the 
curves. Those partial hypotheses can then be grouped together to 
form a complete model, such as wellbore storage in a homogeneous 
medium with a no flow boundary. The program can only group 
compatible partial model. For example, grouping an infinite system 
with a no-flow boundary is not allowed. These incompatible 
hypotheses are to be kept separate in different hypothetical worlds. 

This concept of hypothetical worlds is one of the most interesting 
features of the system and should be examined with more details. 
During the analysis, an expert is likely to follow several alternative 
interpretations, until he is eventually convinced that one IS more 
likely than the others. The analysis may also end-up with a dead
lock, the expert concluding that more information is needed to reach 
a reliable conclusion. 

WES models this kind of behavior by generating hypotheses 
about the actual model. These different hypotheses are kept in 
separate "worlds". Each of these hypothetical worlds is the state of 
the data base resulting from one hypothesis, or one group of 
compatible hypotheses. The program maintains these worlds 
simultaneously, and rules of inference can be activated 
independently in each of them depending on the facts present in the 
particular state of the data base. The rules generating hypotheses are 
fairly weak, and as soon as there is a slight chance for a particular 
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model to be true, the corresponding hypothesis is generated. This is 
the way the system takes care of the inherent imprecision of the 

theory. 

Note that the basic data architecture described in 1.2.2. is 
common to all the subsequent hypothetical worlds generated by the 
system. The "raw" data, that is, the time and pressure data and the 
different curves are also common to all the hypothetical worlds. The 
distinction between these worlds appears for the well-model object. 

This concept of hypothetical world is achieved by making use of 
the more general concept of viewpoints available in ART. The system 
uses one level of viewpoints, and each viewpoint represents one 
hypothetical world. 

1.2.3.5. Selection Of One Or More Models 

In the present state of the program, all possible complete models 
are simply printed on the screen. A complete model is a model which 
gives at least the type of medium (homogeneous or double porosity) 
and the kind of boundary (infinite, no flow or pressure maintenance). 
The early time characteristics wellbore storage or fractured 
formation near the well, are optional. In the current implementation 
of WES, the same model may be printed more than once in some 
instances. It means that the system reached the same conclusion by 
two or "more paths of reasoning. A model that appears more than 
once is thus more likely to be true than a model printed only once. 

In some case, for some data sets, no models are proposed. It 
means either that the expertise present in the system is not 
sufficient to analyze this particular case or that this data set has 
some abnormal shape, due to some external event. 
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1.3. PROBLEMS 

1.3.1. GENERAL DESCRIPTION 

The different problems that are to be solved can be divided in 
two parts: the first one consists of improving the solutions that have 
been used in the prototype described in the preceding section, and, 
for some of these solutions, trying to propose new possibilities. The 
second kind of problems is related of the part of the analysis that is 
not taken" in account in the present state of the program, that is, 
introduction of new models and use of the different sets of type 
curves essentially. 

In an other field, the translation of the program written in ART 
In a lower level language, such as LISP or C, will have to be studied 
in the future. ART is a. very powerful tool to build an expert system, 
but still has two main drawbacks: first its price ($50000 for private 
companies), and second its performances and the environment it 
needs. ARTis very slow and needs to be run on a SUN. If the 
program has to be used in the future in real-time conditions, that is, 
if the well-test has to be analyzed during its execution, those 
drawbacks would become real problems. As will be seen below, this 
problem of translation has appeared sooner than expected. 

The following sections describe respectively the work that has to 
be done in the numerical field, the well-test analysis field and about 
the conversion problem . 

1.3.2. NUMERICAL PROBLEMS 

During the first part of the analysis, the system has to compute 
the curves that will be used for the analysis, and then tries to extract 
the signatures of these curves using several algorithms. This is 
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already done in the existing program, but it appears that the results 
are not always as good as expected. Since the following of the 
analysis depends heavily on this part, it could be worth studying 
with more accuracy this question. 

Since the derivative plot takes a large importance in the 
analysis, the first thing to do is to try different algorithms and figure 
out which is the best in the particular case of well-test analysis: this 
algorithm will have to keep the meaningful response of the reservoir 
while removing the noisy parts. The algorithm in use presently is 
certainly one of the best, but may still be improved, especially for 
the points in the early and late parts of the curve (these parts are 
very important to determine inner and outer boundary effects). 

The computation of the main shapes, such as straight lines and 
humps, is also achieved by the present system, but suffers of a kind 
of rigidity, since the different algorithms use absolute error bounds 
to determine whether a point belongs or not to a straight line or a 
hump. This first possibility, the easiest one, would be to modify the 
existing algorithms (described in section 1.2.3) and introduce more 
relative error bounds. A more important modification would be to 
introduce more expertise during the pattern recognition, that is, to 
combine this recognition with the well model extraction. In the 
present state of the program, these two steps are totally distinct, and 
this does not correspond to the way a human expert works. 

The present description of the curves uses the concepts of 
straight lines and humps, which are in turn based on the value of the 
second order derivative. This is an other drawback of this method, 
because this derivative is often extremely noisy, and sometimes 
totally unusable. This difficulty could probably be solved by the 
introduction of a slightly different description of the curves that will 
be based on straight lines only. 

An other numerical problem that has to be studied is the 
generation of the different sets of type curves. Since this question is 
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more directly relevant to the well-test analysis field, it will be 
described in the following part. 

1.3.3. IMPROVEMENT OF THE ANALYSIS 

In its present state, the system possesses knowledge about only 
a limited set of models, which represents the most general types of 
wells that can be found. These models will have to be refined by 
introducing new properties that will be able to describe 
characteristics such as shape or size of the reservoir. This is certainly 
a very important thing to be done in the long term, but the current 
state .of the program needs a different kind of work, since even the 
basic models are ·not always recognized. The first difficulty to 
overcome is then to try to obtain a reliable response for the models 
the system is able to handle actually before thinking of increasing 
the number of these models. 

This can be achieved using three different ways: first, improve 
the pattern recognition part using either better algorithms or more 
expertise; this possibility has been discussed in the preceding section. 
Second, introduce type curves for the different models the program 
has selected for the well under study to refine the analysis (this will 
work only if the right model belongs to the set of selected models; 
what is not always true in the present state). Third, use more 
analytical sets of data to build the knowledge base (the data the 
program uses now are often very noisy, sometimes even too noisy to 
be usable by a human expert !), and then introduce some specific 
noises in these analytical data to see how the rules react. As ever in 
similar cases, a combination of these three methods will probably 
lead to the best results. 

The generation of type curves and analytical solutions will 
probably need a lot of bibliography researches, to find the equations 
for the different kinds of behavior a well is able to have. The second 
step will be a numerical one, since some of these equations (for 
example, the one that models well bore storage effects) are given in 
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an integral form. The use of tables could also be an acceptable 
solution for some of these type curves. The introduction of different 
sorts of noise in the curves will need more help from the expert, 
since there are few chances to find something about this problem in 
the existing papers. 

The introduction of the first set of type curves in the eXIstmg 
program, written in ART, had an important "side effect": the ART 
expert system shell was not able to handle the quantity of facts that 
have been introduced, and the execution speed was dramatically 
slowed down (Since the system is written in LISP, he uses the 
"Garbage Collector" to manage the memory space. This tool is called 
automatically when needed. The introduction of the new facts 
resulted in an important rise of the number of calls to GC). This 
problem leads to the more general question of the translation of the 
system, or at least part of the system, in a lower level language, such 
as LISP orC. 

1.3.4. TRANSLATION OF THE PROGRAM 

The problem of the conversion of the eXIstmg program, written 
in AR T and LISP, to an other language was considered at the 
beginning in the 101)g term, but the difficulties that appeared with 
the introduction of type curves in the ART program give to this 
problem a higher priority, and even the highest. The facts present in 
the database during the run are obviously too numerous in the 
present state of the system, and the important thing to consider is 
that only few of these facts are directly useful for the analysis. In 
fact, a large majority of them, such as window descriptors or mouse
sensitive icons, is used for graphics and for the user interface. This 
part of the program' is an important one, and have to be kept, 
because it gives to the system a lot of flexibility, and therefore 
mimic, in one way, the behavior of a human expert. In the other 
hand, there is no real need to keep it in ART, since graphics are not 
directly used for the expertise. Although this interface is excellent, it 
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should be possible to translate at least part of it in an other language, 
to save the memory space for the facts used for the analysis, such as 
straight lines or humps. 

The question of the final conversion of the system will appear in 
the long term, but will concern only the "expert" part, since the 
graphic interface will already be in a low-level language. Once the 
structure of the system is well-defined, this part might be rewritten, 
even if it would probably take a lot of time. 
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2.1. NUMERICAL ALGORITHMS 

2.1.1. INTRODUCTION 

This chapter- describes the research that has been done in the 
field of numerical algorithm improvement. This is not directly 
related to Artificial Intelligence and Expert Systems, but is still an 
important problem in the particular case of WES: since all the 
analysis is dependent on this first step, the results it gives must be 
reliable enough. 

The two major problems are derivative computation and shapes 
recognit~on (since the _ shapes are computed with numerical 
algorithms in the present state of the system). As explained in the 
first section, both are actually linked together, since the straight lines 
and humps are computed from the slopes of the different curves, 
which are in turn given by the derivatives. The different results 
obtained for these two problems are given in the two following 
sections. The possibility of using more expertise In the pattern 
recognition part has not been studied yet, but will be discussed in 
the last part of this report. 

IIi the existing program, the initial data is filtered at the 
beginning of the run. This filtering has an interesting smoothing 
eff,ect, but also represents a loss of information. As will be seen 
below, the different differentiation algorithms - alSo include a 
smoothing effect, and thus the initial filtering of the data is no longer 
useful (Since all the programs used for testing these algorithms are 
written in C, the problem of speed that appeared in ART with 
numerous data sets is also solved). 
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2.1.2. DERIVATIVE COMPUTATION 

The problem of derivative computation is not generally 
considered as a major difficulty in applied mathematics. In the 
domain of well-test analysis, this derivative has to be computed from 
real discrete data that is often very noisy. The algorithm should be 
therefore able to smooth enough the' curve to remove the 
meaningless noise while keeping its characteristic shapes. Since the 
values of slopes in the early and late parts of the curves are highly 
useful in well-test analysis, this particular problem must also be 
considered with extreme attention. 

The following sections describe respectively the selection of the 
algorithm, the estimation of parameter influence, such as the length 
of the differentiation interval, and other less general problems, such 
as introduction of the superposition function in the case of a buildup. 
The validity of the second order derivative (in terms of errors) IS 

also checked. 

2.1.2.1. Algorithm Selection' 

Three methods were basically tested, each of them using two 
different ways. Method 1 is the one in use in the existing program 
(cf 1.2.3.2.), with some modification in the way the preceding and 
following points are computed: instead of choosing these points as 
the third from the point of interest in each direction, the program 
takes the first point outside of a given interval in each direction. The 
main inconvenience of the method based on a fixed number of points 
appears when the points are not regularly spaced on the log of time 
scale. It was assumed in the design of WES that all the filtered data 
points were at fairly consta~t distances, since each of them was in a 
different interval of constant length (cf 1.2.3.2). Problems appear 
with data sets that contains less than sixty points (number of filtered 
data points currently used by the program): in that case some of the 
intervals are empty, especially in the first part of the curve, and this 
can lead to important errors in the estimation of the derivative. 
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Method 2 is based on the same principle of computing the 
weighted average of two slopes, but the program takes the 
geometrical weighted average instead of the classical arithmetical 
one. This "exotic" method was successfully used in one particular case 
(computation of the wellbore storage type curve derivatives, where 
the type curves were given by tables - cf 2.2.), this is why it is 
described here. 

Method 3 uses a least-squares algorithm. An interval of given 
length is chosen on each' side of the point under study, yielding a 
subset of data points. The "best" straight line, according to the least
squares criteria, is then computed for this subset of points: the slope 
of the straight line represents the derivative at the point under 
study. 

These three methods compute derivatives with respect to the log 
of time function, that is, all the interval lengths are given on a log 
scale. 

Methods 4, 5 and 6 are respectively the same as methods 1, 
2 and 3, but the derivative is computed with respect to the time 
function, and then multiplied by the time at the point of interest 
(according to the formula: dp/dlnt = t.dp/dt). 

These different methods are summarized in Figure 2-1. 

The algorithms were tested on an imalytical function, to compare 
the results obtained from discrete derivation with the theoretical 
one. The function used is an approximation of the type curve for 
double porosity reservoir modelS (see 2.2. for more details) and is 
gIven by 

/('r:) = 112 (In-r; + 0.80908 + Ed -/..,-r;1 ro(l-ro)j - Ed -/"'-r;I(l-ro)J) 

where A. = 5.1 0-6 and ro = 0.1. E i is given by 
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This type curve is by no means the most characteristic one (one 
including well bore storage would have been better), but is the only 
one which is given by a simple equation: the others type curves are 
often given in the Laplace domain or by integral equations. 

Results for real data sets are shown in Appendix A. 

Random noise of different ranges has been added to the 
theoretical curve to study the responses of the algorithms. The 
results are given either on plots or in tables. The tables give for a 
given range of noise and for each method the maximum deviation 
and the average deviation from the theoretical derivative (computed 
without noise). These deviations are given in percentage of the 
theoretical curve maximum range. The length of the derivation 
interval used for all the methods is one half of a natural log cycle, i.e. 
0.215 decimal log cycle. 

On Figure 2-2, the curves corresponding to the SIX different 
methods for an initial curve without· noise have been plotted: it is 
obvious that the three algorithms based on the derivative with 
respect to the time function give important systematical errors 
Moreover, the values given for the early and late parts of the curve 
are very bad too. Methods 1, 2 and 3 give very similar results, 
smoothing the peak of the analytical derivative. These three methods 
are obviously better than methods 4, 5 and 6, and are the ones that 
will be considered in the remainder of this study. 

On Figure 2-3, the range of the random noise IS equal to 2% of 
the maximum range of the initial data. It shows that method 2 seems 
to give worse results than the two others ones. This is confirmed by 
Table 2-1, where the results are summarized for the six methods. 
When the rang~ of noise increases to 5% of the initial data range, 
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Figure 2-4 is obtained. It shows that the computed derivative is 
hardly usable, at least with the derivation interval that has been 
used in this example. A more complete set of curves (with more 
values for the range of noise) is given in Appendix A. 

Noise (%) 0.0 1.0 2.0 5.0 10.0 

Deviation Max D Av. D MaxD Av.D MaxD Av. D Max D Av.D MaxD Av. D 

Method 1 3.4 0.8 17.6 5.6 35.2 10.9 88.0 27.2 176.0 54.3 
Method 2 3.3 1.0 24.9 6.4 68.8 14.5 883.3 66.6 ----- ----
Method 3 2.4 0.6 53.4 4.9 107.1 9.4 267.7 23.2 535.4 52.3 
Method 4 43.8 12.6 43.3 13.5 52.2 18.7 108.6 40.4 202.5 79.5 
Method 5 43.8 4.1 43.3 7.4 69.0 14.7 906.3 66.8 ----- ----
Method 6 10.1 6.7 42.7 8.0 93.2 11.2 244.8 23.8 497.4 46.2 

Noise given in percent of Prnax - Prnin. Deviation given in percent of P'rnax - P'rnin. 

Table 2-1: Results for methods 1 to 6. 

There is little difference between the average error ranges given 
by method 1 and method 3 (cf Table 2-1). In the other hand, method 
1 gives better results in terms of maximum error ranges, and this is 
confirmed by the plots" which show that the deviation for the early 
and late parts of the curves is more important with method 3. Thus 
the first method seems to be the best (among the ones considered in 
this report). Method 3 has also a particular characteristic: it gives 
more continuous curves than method 1 (the derivative is computed 
on an interval, instead of being' computed on three points), and this 

,leads to some kind of periodical behavior (Figure 2-3 and 2-5). This 
could become a real drawback for wells that have a real periodical 
trend (for example tidal effects), because the two periodical effects 
could interfere. 

The next section will discuss the effect of the derivation interval 
length on the computed derivatives. Results will be given for both 
methods 1 and 3, although method 1 has been described as the best. 

2.1.2.2. Derivation Interval Length 

The derivatives have been computed, for 'several ranges of noise, 
with five different interval lengths: 0, 0.2, 0.5, 1 and 2 decimal log 
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cycles. Figure 2-5 shows the results for both methods 1 and 3, with a 
range of noise equal· to 5% of the initial data range. Only curves 
corresponding to the intervals of 0.2, 0.5 and I log cycle have been 
plotted, because the other ones have too important errors (see Table 
2-2 and 2-3). The results for large intervals (0.5 and 1 log cycle) 
could be considered as acceptable, even if the points obtained with 
method 1 and an interval of 0.5 are very dispersed: the main trend 
still appears. Here again, the curves obtained with method 3 are by 
far more continuous than the ones obtained with method 1. This does 
not mean that the results obtained with this method are better, since 
the deviation is still very important at the ends of the curves. The 
pseudo-periodical trend is still present too. 

Noise (%) 0.0 1.0 2.0 5.0 10.0 

Deviation MaxD Av. D MaxD Av. D MaxD Av.D MaxD Av. D Max D Av. D 

1=0.0 0.1 0.0 71.1 24.4 142.1 48.9 355.1 122.2 710.1 244.5 
1=0.2 3.4 0.8 14.6 5.4 28.7 10.6 71.9 26.3 143.8 52.5 
1=0.5 13.1 3.4 15.8 5.1 20.3 7.3 39.3 14.9 72.0 28.0 
1=1.0 35.6 10.4 35.3 10.8 37.9 11.6 45.9 14.5 59.2 20.9 
1=2.0 59.4 23.6 58.3 23.8 57.4 23.9 56.5 24.6 63.4 25.2 

Noise given in percent of Pmax - Pmin. Deviation given in percent of P'max - P'min. 
I given in decimal log cycle. 

Table 2-2: Different interval lengths used with method 1. 

Noise (%) 0.0 1.0 2.0 5.0 10.0 

Deviation Max D Av. D MaxD Av.D Max D Av.D MaxD Av. D Max D Av.D 

1=0.0 0.5 0.1 71.5 24.9 144.3 51.7 ----- 170.4 ----- -- ---
1=0.2 3.4 0.7 53.4 5.0 107.1 9.5 267.7 23.5 535.4 53.7 
1=0.5 9.3 2.2 53.4 4.4 107.1 6.7 267.7 14.0 535.4 29.0 
1= 1.0 25.6 6.5 53.4 8.6 107.1 10.7 267.7 16.7 535.4 29.3 
1=2.0 48.2 11.5 53.4 13.7 107.1 15.7 267.7 21.6 535.4 33.0 

Noise given in percent of Pmax - Pmin. Deviation given in percent of P'max - P'min. 
I given in decimal log cycle. 

Table 2-3: Different interval lengths used with method 3. 

One can draw an other interesting conclusion from the different 
tables: for a given interval length, the error range seems to be 
directly proportional to the noise range. This is obvious for small 
intervals, and it is probably the same for larger ones, but the ranges 
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of noise are not enough big to show it. For large intervals, the error 
range is almost constant for small values of noise, and then begins to 
increase when the noise range reaches a given value. This could be a 
very interesting characteristic to use in WES: if one can estimate the 
noise range for the curve under study, one might be able to find the 
best interval length for computing the derivative of this curve. 

All the graphic results obtained for this problem are shown in 
Appendix A. 

2.1.2.3. Methods For Computing Early And Late Values 

The values of the derivative corresponding to the early and late 
parts of the data set are very important for the analysis. Therefore 
these values must be computed in a way that minimizes error 
ranges. Two algorithms have been tested to study this problem. Both 
of them use a derivation interval of 0.5 natural log cycle (0.21 
decimal log cycle) and are based on Method 1 (see 2.1.2.1.). The only 
difference appears in the way the derivation interval is computed: in 
the first algorithm, the length of the interval is reduced when the 
point under study is near the extremity. Basically, on one side of the 
point of interest, the interval is defined by this point and the first (or 
last) point, and on the other side, the symmetrical interval is taken. 
In the second method, the length of the interval is kept constant: on 
the internal side of the point of interest, the interval is computed as 
usual, and on the other side, the interval is defined by the first (or 
last) point, and by the first point farther than the given length. 
Graphic explanation and results are shown on Figure 2-6. 

The second algorithm seems to give the best results, and is the 
method that will be used in the future (in its present state, the 
system uses the first algorithm). 

2.1.2.4. Influence Of The Superposition Function 

As explained in the first part, the superposition function is used 
In the case of a buildup. It is a modification of the log of time 
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function, which is used to keep in consideration the flow history of 
the welL Its main advantage is to restore the semilog straight line for 
a homogeneous model. When computed with respect to the 
superposition function, the derivative also keeps its characteristic 
horizontal straight line. This is shown on Figure 2-7 for a real data 
set that is. currently used by the system. The time axis would have 
been modified in real analysis, but in the present· case it makes no 
difference, since the straight line is horizontal (the superposition 
function compresses the late part of the time axis). 

2.1.2.5. Validity Of The Second Order Derivative 

In the current state of the program, the second order derivative 
IS used to compute the slopes on the derivative plot. These slopes are 
then used by the program during the patterns recognition process. 
As seen above, the derivative algorithms are very sensitive to 
random noise. The different tables show that for a noise on the initial 
data of 2% range, errors of 10% range are usually obtained. This 
means that computing the second order derivative could lead to huge 
error ranges (50%, according to the tables). 

The second order derivative has thus been studied for the 
curves that have been used in the preceding parts. The curve 
obtained for an interval length of 0.5 natural log cycle and a noise 
range of 2% is given in Figure 2-8. The three methods used here 
were the ones described in section 2.1.2.1. The results are not as bad 
as expected, but are still hardly usable. Moreover, second order 
derivatives computed for different kinds of curves show much more 
important error ranges. Note that the pseudo-periodical trend 
obtained with method 3 is obvious on this plot. 

The second order derivative seems to be very noisy, as soon as 
small random noises appear on the initial data. This means that using 
it in the program is a very risky method, and should be avoided if 
possible. Since the shapes recognition algorithms are based on this 
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second order derivative, new algorithms have to be proposed to 
overcome this difficulty. Next section describes these algorithms. 

2.1.3. SHAPES RECOGNITION 

In the current state of the system, two mam sorts of shapes are 
looked for: humps and straight lines (See 1.2.3.3.). The concept of 
hump is heavily based on the second order derivative, since humps 
describe the curvature of the curves. In the other hand, humps could 
be represented in first approximation by two straight lines, one going 
up followed by another one going down (for a hill hump). 

The advantage of using only straight lines is that straight lines 
can be computed without the need of the second order derivative: 
least-squares methods (or linear regression) give good results using 
only points, and not the slopes at those points. These methods have 
been studied with the real data sets presently in use in the system, 
and the results are given in the following sections. 

2.1.3.1. Algorithms 

The algorithm described above explains how the straight lines 
are computed with the least-squares approach. Basically, two 
different methods can be used: the first is the real least-squares 
method, where distances from points to lines are computed using the 
euclidian way. The second is a linear regression method, where 
distances are considered on the y axis only. This difference does not 
appear in the main algorithm, since only values are modified. More 
details about the difference between these two methods are given in 
Appendix B. In the description of the algorithm, some formal 
functions are used: inte rval() returns the interval I defined by the 
first points on both sides of the point of interest which are at least at 
length log cycle from this point. Line() returns the values of the 
slope, the intercept and the quality factor (which is the length of the 
line over the standard deviation) of the computed straight line. This 
straight line is computed from all the points that are in the interval I. 
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The values of the straight line characteristics is the only part of the 
algorithm which is dependant on the method (least-squares or linear 
regression). The notations are [ ] for an interval, and {a, b, q} for a 
straight line, where a is the slope, b the intercept and q the quality 
factor. i is the initial point for the computation of each straight line. 

i = 1 

1 if i = end then stop 
I = interval(i, length) (= [tii, tfi]) 
line = line (I) (= {a, b, q}) 

2 11 = [tii, tfi+I1 
linel = line(Il) 
if ql > q then I = 11 (i.e. fi = fi+l) 

line = linel (Le. a = al ; b = bl ; q = qd 
12 = [tii-l, tfi] 
line2 = line(I2) 
if q2 > q then I = h 

line =line2 
if q > ql and q > q2 then 

return line 
i = fi 
goto 1 

else goto 2 

Basically, this algorithm selects an interval (/) of a given length 
and computes the straight line corresponding to this interval. Then it 
extends the interval to the right (/1) and to the left (/2) and 
compares the new quality factors with the old one. While at least one 
of them is better, the algorithm repeats this step. When the quality 
factor decreases for both sides, the program returns the lines. The 
new point of interest, that is, the central point of the new interval, is 
defined as the last point of the preceding interval. This means that 
two consecutive straight lines are defined on overlapping intervals: 
this characteristic gives a good continuity to the straight lines 
computed by this method. 

Once the lines are computed, the graphic representation is 
obtained by computing the intersection points for each group of two 
consecutive straight lines. Figure 2-9 shows examples of the results. 
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Advantages of this method are: 
- No use of the second order derivative. 
- No use of arbitrary error bounds. 
- Smoothing of the curve (least-squares methods are well-

known for their smoothing effects). 
- Obtainment of a quality factor for each straight line. This 

quality factor might be used in the following of the analysis. 

The main drawback is that this method does not allow to 
describe curves in terms of humps. Thus a new knowledge base will 
have to be built to deal with the new description of the curve. 

2.1.3.2. Results 

Two main aspects are studied in this section: one is the selection 
of the best method (either real least-squares or linear regression), 
the other is the influence of the computation interval length (Ie ng th 
in the algorithm above) on the results. The combination of derivative 
smoothing and least-squares smoothing is also described. 

Figure 2-9a shows the straight lines that have been computed 
for a real data set. The derivative is here extremely noisy, but it 
shows that the smoothing effect of the linear regreSSIOn method is by 
far more important than the one obtained with real least-squares. 
This is still true with less extreme cases. 

In the data set in use here, the late part of the curve can be 
considered as bad data (the pressure derivative becomes positive, 

. what is theoretically impossible). The linear regression method gives 
for the few last straight lines very bad quality factors: this is a very 
interesting point and could probably be used in the analysis to give 
less importance to that part of the data. Note that the difference 
between quality factors for good and bad data is less important with 
the real least-squares method. 

Figure 2-9b and 2-9c show the influence of the length of the 
computation interval on the straight lines. This influence is obvious 
when the curve is very noisy (Figure 2-9b). In that particular case 
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the derivative was computed with a small interval (0.05 decimal log 
cycle). When the same derivative is computed with an interval of 0.2, 
Figure 2-9c is obtained. It shows that the interval length has by far 
less importance when the curve is regular enough. More curves 
about this problem are given in Appendix A. 

The interval length for straight lines computation seems to have 
less influence than the derivation interval length. Obviously, too 
large intervals can lead to a loss of information, and too small 
intervals give too numerous straight lines that are hardly usable. An 
average length of 0.2 decimal log cycle (on each side of the initial 
point) seems to give good results for the data sets currently used by 
the program. 

2.1.3.3. Possible Use Of Expertise In Shapes Recognition 

Until now, all that has been described in ~he field of shapes 
recognition has been purely numerical. This numerical part is 
essential, since the initial data is numerical too. The method 
described above returns a small number of straight lines (usually 
between ten and twenty lines). An expert system can deal much 
more easily with these "symbolic" informations than with a data set 
of two hundreds points. Moreover, the linear regression gives a 
quality factor for each straight line. This quality factor could be used 
by the system to give more or less importance to such and. such 
straight line. 

Nothing has been really done in that field for the moment. 
Moreover, use of expertise in shapes recognition must be in relation 
with the real expert part of the system. Basically, once a part of the 
analysis has been done (for instance, for the early part of the data), 
the system might be able to decide if a specific straight line (found 
either in the same part or in the other part of the curve) is 
compatible or not with' the analysis already done. 
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2.2. WELL-TEST ANALYSIS IMPROVEMENT 

2.2.1. INTRODUCTION 

This part has been almost not developed during the last two 
months (Le. the period of my internship), since a lot of things had to 
be fixed in the numerical field (see 2.1.) and since part of the. system 
has been translated in C (see 2.3.) during this period. Thus this 
chapter describes only type curves computation and some problems 
that appear with the data sets currently in use by the program. 

This part is the . one that is directly relevant to expert systems. 
In that way, this is probably the most interesting part of the whole 
project. It will probably become in the future the most important 
part of the system. The following sections describe some "tools" that 
will be useful for improving the analysis. 

2.2.2. TYPE CURVES GENERATION 

Type curves are used by human experts to refine their analysis, 
once they have found a first estimate of the reservoir model. Since 
this step is not already done in the present state of the system (the 
system gives sometimes the right result, but this is not always true), 
type curves will not be useful in the near future. However,. two sets 
of type curves have been generated, using two different ways. The 
methods and results are described in the following sections. A third 
section will describe an other way to compute type curves. 

The different· tables and equations used In type curves 
generation have been found in different papers on well-test analysis, 
most of them published in the "Journal of Petroleum Technology" and 
in "World Oil". 
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2.2.2.1. Wellbore Storage Type Curves - Use Of Tables 

The wellbore storage type curves are probably the most useful 
type curves used in well-test analysis, since well bore storage 
appears in the large majority of the test. The curves actually 
generated depend on only one parameter, the wellbore storage 
group, CDe2S• 

Exact solution for these curves is known in the Laplace domain, 
but there is no valid approximation in the real domain. Therefore the 
curves have been generated from tables found in a technical paper6. 
Since this paper has been published in 1970, the derivative type 
curves are not described in it. The discrete method to compute these 
derivative curves is method 5, with the notations of 2.1.2.1. It gives 
the most regular results for the curves (Method 1, which is usually 
used to compute derivatives, gives small periodical oscillations at the 
beginning of the curves). 

The tables used yield, for a gIven value of the skin factor S, the 
dimensionless pressure P D as a function of the dimensionless time tD 

and of the wellbore storage constant CD. It means that the tables 
depend on two parameters, Sand CD. The theory shows that these 

two parameters can be grouped in only one, the wellbore storage 
group CD e2S • Thus a new table has been computed from the five 

initial tables, and yields the dimensionless pressure as a function of 
tDICD and CDe2S • Since the values of the well bore storage group were 
not round values, interpolation has been used to obtain CD e2S as 
powers of ten. 

The table· finally contains pressure versus time values for 
thirteen values of CD e2S . The main drawback is the too small number 

of time values, that is, the points are not numerous enough to give a 
regular aspect to the curves. The same problem appears for the 
derivative type curves. Polynomial interpolation has been used to 
smooth these curves. 
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Figure 2-10: Combined derivative and pressure type curves. 
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Figure 2-10 shows the combined log-log and derivative plots of 

the type curves. 

2.2.2.2. Double Porosity Type Curves • Use Of The 
Asymptotic Solution 

The generation of double porosity type curves uses an other 
technic and is based on the asymptotic solution given for these 
curve s5. Here again, the exact solution is known in the Laplace 
domain, but in the present case the real approximation is valid on a 
large interval. The asymptotic solution is given by 

p( 1:) = 112 (ln1: + 0.80908 + Ed -A, 1:1 ())(l-()))] - Ed -A,1:I(l-()))J) 

where p is the dimensionless pressure, 1: the dimensionless time, 
A, the interporosity flow coefficient, and ()) the storativity ratio. E i is 

given by 

j oo. _ u 

- Ei (-x) = ~du 
x 

In this case, the analytical solution for the derivative type 
curves is easily obtained from the asymptotic solution. However, the 
type curves shown in Figure 2-11 b have been computed from a 
discrete set of points on the semilog type curves using Method 1 (see 
notations in 2.1.2.1.). It seems better to use the same method to 
compute real and type curves, to reproduce the systematical error 
that appears using discrete derivation. This is true only if the 
systematical error always gives the same distortion. Analytical type 
curves could be very easily computed if needed. 

Figure 2-11a shows the semilog type curves (in this case, the 
log-log type curves have no characteristic shapes) and Figure 2-11 b 
the log-log plot of the derivative type curves. 
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curves for the double porosity model. 
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2.2.2.3. Use Of The Laplace Inversion 

As seen above, results given by use of tables are not excellent. 
Since the exact solution is known for a large majority of type curves 
in the Laplace domain, use of Laplace inversion algorithms should be 
considered. This has not been done yet, but the algorithm that will be 
probably used in the future is the one described by H. Stehfest12 , 

which is based on a probabilistic approach. A more complicated one,· 
using complex numbers, will also be studied. 

This method is certainly time-consuming, but will probably lead 
to better results. Moreover, some modifications could be added in the 
Laplace equations to model different variations from the basic model, 
such as buildup analysis or atmospheric pressure changes. Using the 
inversion algorithm, type curves corresponding to these variations 
might be easily computed. 

2.2.3. REAL DATA SETS 

The characteristics of the data sets used by the program during 
its development have a considerable importance: the rules are 
created and modified to give the right results for at least the facts 
contained in the database. In the case of well-test analysis, some of 
the initial data sets must have at least enough characteristic shapes 
to be easily recognize by an expert. 

This is not true for the data sets used by the system until now. 
Many of the well-tests show huge variations from the basic model to 
which they belong: geothermal effects, atmospheric 'pressure 
changes, bad data, etc ... often appear for most of the well-tests. Thus 
recognition needs a lot of very specific rules to be achieved. This is 
probably not the right method to build a knowledge base: it is widely 
accepted that expert systems should be developed going from the 
general to the specific. 
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Therefore a new method is proposed: first, generation of ideal 
solutions for the different models, using type curves equations or 
tables. A first very simple knowledge base will be created using 
these ideal solutions. Second, superposition of different kinds of noise 
on the ideal solutions, to model the different problems that can be 
encountered during a well-test (random noise, flow rate changes, 
atmospheric pressure changes, geothermal effects, tidal effects, etc ... ). 
The knowledge base will be modified to take care of these different 
noises. Third and last, real data sets will be introduced to test the 
validity of the knowledge base. The different noises that will appear 
on these well-tests might be diagnosed, and perhaps corrected, with 
the help of the preceding step. 

This method has not been used yet. The very next step that will 
be done in the development of the system will be the generation of' 
the ideal curves for the different models. This needs a lot of 
bibliography research, and' therefore takes a lot of time. 

Few things have been done in the field of well-test analysis, 
which is the real expert part of the system. The main reason is that 
most of the time has been spent to improve. the numerical algorithms 
and to translate the graphic interface from ART and LISP to C. This 
particular part is described in the next section. 
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2.3. CONVERSION OF THE PROGRAM 

2.3.1. INTRODUCTION 

The problem of the translation of the system from the ART 
language to a lower level language such as LISP or C was first 
considered in the long term. But the limits of the expert system shell 
has appeared sooner than expected: the system is dramatically 
slowed down when too many facts are present in the database. Since 
most of the facts used by WES are not directly relevant to the expert 
part of the system, one can think of keeping the memory space for 
facts used in the analysis and using other means to program the user 
interface and the numerical part of the program. 

The main problem is to realize a good interface between the ART 
shell and the program that will be used for the user .interface (since 
the user must have access to the facts and results contained in the 
knowledge base). The first possibility is to use LISP, since ART and 
LISP are very close to each other CART is written in LISP). In the 
other hand, ART provides the possibility of running a program 
through the Unix shelL Moreover, a data stream can be opened 
between the ART shell and the Unix program, so both programs can 
exchange informations, while they are running in paralleL 

This part of the project represents at least two thirds of the 
work that has already been done, but is very difficult to comment 
without getting into programming details. Therefore only a quick 
overview of the program will be given in the next sections. 

2.3.2. THE C PROGRAM 

C has been chosen for two mam reasons: first it is faster than 
LISP for con:putation and screen management, second window-
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oriented C libraries are provided for the SUN (WES is run on a SUN 
workstation). The main drawback of C is that it is more difficult to 
interface with ART than LISP. 

The program is written to reproduce exactly the behavior of the 
version of WES that has been described in section 1.2. Therefore it 
still uses the concept of hump and the second order derivative (the 
conversion of the program is the very first thing that has been done). 
It can be divided in three parts: the first one is the graphic-oriented 
user interface, the second one deals with the numerical computations 
(curves and shapes), and the last one is the interface between the C 
program and the ART shell. 

Graphics represent the main part of the program. As for the ART 
version, one window is associated with each well under study. In 
each window;' 'five different curves can be plotted (initial, filtered, 
semilog, log-log and derivative plots). The user asks for the one he 
wants through a menu. An other menu is used to select the wells that 
will be. analyzed. This part of the program has been written with the 
low-level functions provided by the Sunview package. 

An other important part of the program is the computation of 
. the curves, the derivatives and the characteristic shapes. This part 

was written in LISP in the original program, and therefore was very 
slow. The translation to C has improved widely the speed of the 
program. Shapes are still computed by a numerical way, since the 
program reproduces exactly the behavior of the original one. It has 
been explained in the preceding sections that the method currently 
In use is probably not the best. Therefore this part is likely to change 
within the few next' weeks. 

Interface with the ART expert system shell is provided in the 
last part of the program. The functions contained in this part send to 
ART all the data it needs to achieve the expertise: straight lines and 
humps, values of slopes at the beginning and at the end of the 
curves, etc... In the present state, the stream is only directed from 
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the C program to ART. If needed, data could easily be sent from ART 

to C. 

No more details will be given about this program: this part is of 
no interest from the expert system point of view. It needed to be 
done,and has been done. Listings are given in Appendix C. Figure 2-
12 shows the screen obtained during the run. 

2.3.3. THE REMAINING ART PROGRAM 

The existing program has been rather shortened, since more 
than half of it has been rewritten in C. The only parts which remain 
written in ART are the definition of the objects (see 1.2.2) and the 
expert part, which extracts the model from the patterns of the 
curves. These parts are almost unchanged, only a few rules have 
been added to read the data on the stream which links ART and the C 
program. 

As the Unix environment on the SUN allows to run programs in 
parallel, the ART part of the system is able to make the analysis of a 
well while the C part is computing the shapes for an other one. 
Therefore none of the system possibilities to analyze more than one 
well simultaneously has been lost. 

This part will also probably' change In the future, since most of 
the rules are based on humps and values of slopes. The existing rules 
can probably be easily modified to use the new representation of the 
curves in terms of straight lines: a hump can be represented in first 
approximation by two straight lines of different directions. It can be 
described more precisely by a group of straight lines whose slopes 
increase or decrease. 
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Figure 2-12: Screen obtained during the run. The windows 
:'List of wells" and "Sp4" belong to the C program. 
The other ones art part of the ART shell. 

73 

ROOT 



P ART III - CONCLUSIONS AND 
EXTENSIONS 

75 



3.1. CONCLUSIONS 

This section describes the conclusions that can be drawn from 
the results given in the above sections. Since research has been done 
in very narrow and separated fields, this synthesis is difficult to do. 
Moreover, almost none of those fields is related to Expert Systems, 
which were supposed to be the subject of this project. One have to 
consider this work as a preliminary or as a realization of tools useful 
for the following of the whole project. I would like to insist on the 
importance of the program conversion, which has taken a lot of time 
and was really necessary: the ART expert system shell was no longer 
able to support the huge number of facts used by the graphic 
interface. This part is certainly not spectacular, since it consists of the 
copy of an existing program, but still has two important effects: the 
execution speed has been multiplied by about five times,and more 
than 70% of the memory space has been freed in the expert system 
shell. 

The next sections draw conclusions for the different parts of the 
research that has been done. Since none of the methods described 
above are currently in use, these conclusions are only expectations. 
They will be probably modified in the future, when new difficulties 
will appear. However, they represent a new step in the realization of 
the whole project. 

3.1.1. NUMERICAL ALGORITHMS 

Results on derivative and straight lines computation have been 
obtained. About derivatives, two algorithms have been shown as the 
best among the ones that have been tested: methods 1 and 3, with 
the notations used in 2.1.2.1. Method 1 has been preferred because- it 
gIves better results at the extremities of the curves, which are of 
great importance in the analysis. If method 3 can be improved to 
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gIve better results for those parts of the curves, it can probably be 
used successfully too. This method gives more continuous results 
than method 1, and this characteristic can probably be useful in 
some cases. In the other hand. it can lead to analysis errors, since 
continuity gives a pseudo-periodical trend to the curves. In the short 
term, method 1 will be used to compute derivatives in the program. 

An other interesting result about derivatives has been given, 
concerning the second order derivative: it has been shown that the 
error range on this derivative can reach large values, even for a 
small range of noise on the initial curve. Since this error range is 
sometimes twice as big as the error bounds used in the existing 
program for shapes recognition, the validity of the method currently 
in use is doubtful. Therefore a new method for shapes recognition 
that no longer uses tJte second order derivative has been proposed. 

This method is basically a least-squares algorithm, or more 
precisely a variation of it, called linear regression. It gives good 
results for the data sets currently used by the. program, but an 
important question remains: the new representation of the curves in 
terms of straight lines can not be used by the rules already written. 
Therefore its possibility of use in well-test analysis has not been 
tested yec 

A new knowledge base will be written to accommodate this new 
representation. The main difference between this database and the 
existing one will be the disappearance of the hump concept, which is 
based on the second order derivative, Since this concept is a very 
important one, it will be replaced in the new representation by a 
group of two straight lines, one going up followed by another going 
down (in the case of a hill). If it appears that the concept of 
curvature is needed, this curvature will be represented by a group of 
straight lines whose slopes increase or decrease. Using these 
representations, the transformation of the existing database should 
not be too difficult. 
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The results described here do not gIVe new possibilities to the 
system, since derivative computation and patterns recognition were 
already done in the existing program. They should be considered as 
improvements of the existing algorithms, whose results were not 
always reliable enough. A high attention has been given to these 
numerical problems, since the rest of the analysis is based on this 
part. New possibilities of improvement will still be considered during 
the development of the system. 

3.1.2. WELL-TEST ANALYSIS 

Very few things have been done In that field. The main reason is 
that other parts of the system needed more urgent work, such as 
modifications of the numerical algorithms or translation of the 

. graphic interface. This part still is the most importa~t in the 
program, since it is the one which contains the knowledge base of the 
system. It will be developed in the future, once all the numerical 
tools it needs will be created. 

Parts of those tools are the type curves for the different models 
the system uses. Two sets of type curves have been generated, using 
two different methods. The program does not use these type curves 
yet, since the results it gives for the model diagnosis are generally 
too bad to be useful. Otherwise, the type curves generation has had 
important "side effects", since it has leaded to the study of the 
derivative problems and to the translation of the program. 

The two ways used to compute type curves are use of tables and 
asymptotic solutions. The tables usually give poor results, but are 
often the only simple way to generate type curves, since a large 
majority of them have no real solutions, and even no asymptotic 
approximations. If the system requires more accurate results (this 
problem has not appeared yet, since the type curves have never 
been used by the program), an other method will be tested: the exact 
solution for many of the type curves is known in the Laplace domain, 
therefore a Laplace inversion algorithm can probably give good 
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results in type curves generation. Some algorithms have been found 
In papers, but none of them have been tested yet. 

Analytical data sets are also tools that seem to be needed by the 
program: the real data sets currently in use show too many specific 
characteristics and therefore can not be successfully analyzed. The 
generation of these new data sets has not been done yet, but is 
strongly related to the type. curves problem. Here again, Laplace 
inversion algorithm will probably be useful. 

3.1.3. PROGRAM CONVERSION 

As explained above, this part takes most of the time I have 
spent on the project. There is. no conclusions to draw from it, since it 
consists of the exact translation of the original program. It will now 
be modified to contain the new algorithms described above. These 
modifications should be easy to do, since graphics and computations 
have been kept separate in the C program. 

This might be considered as a first step in the final conversion of 
the system to a low level language. This translation will have to be 
done if the system must be used in real time, that is, if the analysis 
of a well must be done during the test. In this case, ART and the SUN 
workstation would probably be considered as too expensive to be 
used on each well. From this point of view, the main drawback of the 
current C program is that it is absolutely not standard: all the graphic 
functions use the Sunview package, which is specific to the SUN 
workstation. 
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3.2. EXTENSIONS 

3.2.1 SHORT TERM DEVELOPMENTS 

3.2.1.1. Use Of Theoretical Data 

The very next step in the development of the system will consist 
of putting together the solutions that have been given in this report. 
This step will be achieved by: 

- generating new analytical data sets and corresponding type 
curves. 

- replacing the numerical algorithms in the current C program 
by the new ones. 

- writing the corresponding knowledge base to extract "the 
model from the new straight lines representation. 

- using type curves to estimate the parameters of the 
different data sets. 

The problems of curves generation have been described several 
times in this report. This part needs a lot of bibliographical 
researches to find the equations corresponding to the models in use 
in the program. Since most of those equations are given in the 
Laplace domain, Laplace inversion will probably be computed. 

Replacing the old numerical algorithms by the new ones will not 
be difficult, since all these algorithms have been already written in C 
to be tested. Moreover, the graphic and computation functions are 
totally separate in the C program, therefore the modification will 
consist of replacing some numerical functions in one file by other 
functions already written. 

The knowledge base will need more modifications, since many of 
its rules currently used the concept of hump. Humps are no longer 
computed with the new least-squares algorithm. If this concept is 
really an important one (but there are actually no evidences of that), 
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there are many ways to represent humps with straight lines (see 
above for details). Note that more expertise will be used to compute 
the curve representation, since only "raw" straight lines will be 
computed in C and immediately send to the ART shell: grouping of 
straight lines and elimination of the "bad" data (with the help of the 
quality factor) will be done in ART. Thus the program will have the 
possibility to modify the curve representation during the expertise. 

The use of type curves to extract model parameters will be the 
only really new possibility of the program, since it has never been 
done until now. This extraction is done by matching the curve under 
study, whose model has been obtained, to the corresponding set of 
type curves. The problem of the graphic match is a very interesting 
one, and can be achieved using several ways, such as linear or non
linear regression, but also less sophisticated methods such as 
comparing the high of the peaks on the real and the type curves. 
None of these methods have been studied until now. 

3.2.1.2. Application To Real Data 

Once the system will be able to recognize the theoretical models 
corresponding to the analytical data sets, different kinds of noise will 
be added to these data sets. The knowledge base will then be 
modified to accommodate the new data, and recognize the abnormal 
shapes on the curves. The possibility of expertise during the shapes 
extraction step will probably be very helpful: for example, the 
system might have the possibility to consider a strange pattern 
either as part of a model or as noisy data. 

Type curves will also be used, apd some of them could be 
modified to take in consideration one specific noise that has been 
identified on the "real" curve (the curve can not be considered yet as 
real, since it is a superposition of an analytical curve and a given 
noise). 

The last step will be to introduce real data sets and to test the 
results given by the knowledge base. Since this database will be 

,~ .,-,. 
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theoretically able to recognize the effects of a specific noise on a 
given model, noises will be discarded, to keep only the meaningful 
response of the reservoir. An other way to proceed is to modify rules 
to take in consideration the effects of each different noise for a given 
model. In that case, the noise is kept during the analysis, and it is the 
basic knowledge base that is modified. From this point of view, type 
curves must also be transformed to take the different noises in 
consideration. 

Once this step will be reached, the system will be considered as a 
real expert system, even if its possibilities will be limited. Other 
possible developments are described in the next section. 

3.2~2. EXTENSIONS TO A LARGER PROBLEM 

In its present state, the system uses only a small set of simple 
models, like homogeneous or double porosity medium and some 
boundaries configurations. More models need to be inserted as well 
as a more complete description of the existing ones. This can be done 
either during the step of development described above, or once the 
system will be able to recognize correctly well-tests relevant to the 
existing models. 

In the same respect, the system currently analyzes only single 
well-tests with a constant flow rate and a drawdown phase . 
Modifications should be added to accomodate buildups and more 
generally multiple rate pumping tests. The system should be able to 
reason about these different phases, compare results between them, 
decide which phase is more informative than the others, and so on. 
Another step in the development of the system will be to allow more 
than one observation well for a single pumping well. 

In the long term, the possibility of grouping informations 
obtained by different methods of analysis could be considered. These 
methods might involved hydrogeologic informations (this is the 
object of WES), but also geothermal and geochemical results, and so 
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on. This can lead to the development of a multi-expert system, using 
different methods of analysis. to solve the same problem. A multi
expert system has the possibility of comparing results obtained by 
several different ways with more objectivity than a human expert, 
since a human expert will have more confidence in his own analysis. 

An other extension in the long term will be the complete 
translation of the program to a low level language such as LISP or C. 
The translation of an expert system involves two problems: first, 
programming of the inference engine, second, development of a rule 
compiler, which must be able to translate the rules written in some 
kind of natural language to the format used by the inference engme. 
With this method, rules can still be added after the system 
translation, and thus the program keeps part of the flexibility offered 
by the expert system shell. 
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APPENDIX A - CURVE;S 

TYPE CURVES 

- Figure A-I: Combined wellbore storage derivative and 
pressure type curves. 

- Figure A-2: Double porosity semilog type curves. 
- Figure A-3: Double porosity derivative type curves. 

DERIVATIVE METHODS 

S election Of The Algorithm 

- Figure A-4: Methods 1 to 6. Noise = 0%. 
- Figure A-5: Methods 1 to 3. Noise = 1%. 
- Figure A-6: Methods 1 to 3. Noise = 2%. 
- Figure A-7: Methods 1 to 3. Noise = 5%. 
- Figure A-8: Methods 1 to 3. Noise = 10%. 

Influence Of The Interval Length 

- Figure A-9: Method 1. Noise = 0%. 
- Figure A-IO: Method 1. Noise = 1 %. 
- Figure A-ll: Method 1. Noise = 2%. 
- Figure A-I2: Method 1. Noise = 5%. 
- Figure A-I3: Method· 1. Noise = 10%. 

- Figure A-I4: Method 3. Noise = 0%. 
- Figure A-I5: Method 3. Noise = 1 %. 
- Figure A-16: Method 3. Noise = 2% . 
.. Figure A-I7: Method 3. Noise = 5%. 
- Figure A-I8: Method 3. Noise = 10%. 
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Computation At Extremities 

- Figure A-19: Two methods to compute derivatives at curve 
extremities. 

Effect Of The Superposition Function 

- Figure A-20: Effect of the superposition function. 

Second Order Derivative 

- Figure A-21: Methods 1 to 3. Noise = 1 %. 
- Figure A-22: Methods 1 to 3. Noise =2%. 

Real Data Sets 

- Figure A-23: Left: Semilog curve. Right: Derivative curve 
(1=0). 

- Figure A-24: Derivative curves. Left: 1=0.1. Right: 1=0.2. 
- Figure A-2S: Derivative curves. Left: 1=0.5. Right: 1=1. 

STRAIGHT LINES 

-. Figure A-26: Difference between real least-squares method 
(right) and linear regression (left). 

- Figure A-27: Combined effects of derivative and least-squares 
smoothing. Top: Derivative interval length = 0.05. 
Bottom: Derivative interval length = 0.2. Left: 
Computation interval length = 0.2. Right: Computation 
interval length = 0.1. 
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.. 

APPENDIX B • DIFFERENCE BETWEEN LEAST·SQUARES 
AND LINEAR REGRESSION 

LEAST-SQUARES 

The function to be minimized with the least-squares method is 

where P ](Xl,Y 1), P 2(X2 ,Y2), P n(xn,yn) are the points used to compute 
the straight line, a the slope and b the intercept. f is based on the 
euclidian distance. The values of a and b are given by 

-B +~ s2 + 4X' 
a = 2A and b = Y - ax 

n n 

where A = L XiYi - nxy 
i=l 

and B = L (x r -Yf) - n(X 2 _ y2) 
i=l 

LINEAR REGRESSION 

In this case, the function is given by 

n 

f(P I , P2 •... , ~) = L (ax i - Yi +b)2 
i=l 

with the same notations. f is based here on the vertical distance 
between each point Pi and the straight line. It means that the value 
of f increases faster with this method than with the least-squares 
one when a increases. The values of a and b are given by 
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A a = - and b::: Y - ax 
B 

n 

where A = L xiYi - nxy and 
i=l 

n 

B= L xr- nx2 

i=l 

.. 

... 
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APPENDIX C - LISTINGS 

C PROGRAM 

The listings of the following files are given: 

- "cmp.h": Declarations for computation functions. 
- "cmp_data.c": Read the data, filtet it and compute derivatives 

and curves. 
- "cmp_main.c": Call the different functions used for well 

numerical analysis. 
- "cmp_pattern.c": Compute patterns from the curves. 
- "cmp_send.c": Interface between C and ART. 

- "env.h": Set the environment variables. 

- "gph.h": Declarations for graphic functions. 
- "gph_main.c": Drawing functions for the curves. 
- "gph_util.c": Low-level graphic functions. 

- "macro.h": macro function definitions. 

- "main.c": function mainO. 

- "pat.h": Declarations for patterns. 

- "win.h": Declarations for windows. 
- "win_bar.c": Create the explanation line at the bottom of the 

screen. 
"win_base.c": Create the main window (list of wells). 
"win_closer.c": Ask the user for closing windows when too 

many of them are opened. 
"win_confirmer.c": Confirm quit. 

- "win_events.c": Handle mouse events (clicks, moves, etc ... ). 
- "win_init.c": Initializations for windows. 
- "win_main.c": Create all the windows. 
- "win_util.c": Utilities for windows. 
- "win_w~lls.c": Create the windows used for curve drawing. 
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ART PROGRAM 

Two files are used in the current version 

- "init.art": Set the object architecture, functions used to 
interface C and ART. 

- "model.art": Rules used to extract the models from the 
patterns. 



Jun 21 11:43 1988 cmp.h Page 1 

/******************************************************************************* 
/* "cmp.h" : global constants and variables for computations. * 
/******************************************************************************* 

#ifdef CMP MAIN 
#define EXTERN 
#else 
#define EXTERN extern 
#endif 

/******************************************************************************* 
/* wells * 
/*******************************~*********************************************** 

#define MAX NBR WELLS 20 
#define MAX-NBR-INITIAL PTS 1000 
#define MAX-NBR-PTS 61 -
#define INTERV 3 
#define EPSILON le-6 

EXTERN float 
EXTERN float 

EXTERN float 
EXTERN float 

EXTERN float 
EXTERN float 
EXTERN float 

initial time[MAX NBR WELLS] [MAX NBR INITIAL PTS]; 
initialJressure{MAX_NBR_WELLS]{MAX=NBR_INITIAL_PTS]; 

time [MAX NBR WELLS] [MAX NBR PTS]; 
pressure{MAX=NBR_WELLS]{MAX=NBR_PTS]; 

p_derivative[MAX_NBR_WELLS] [MAX_NBR_PTS]; 
p d derivative[MAX NBR WELLS] [MAX NBR PTS]; 
log=derivative[MAx=NBR=WELLS] [MAX=NBR=PTS]; 

EXTERN float first-pressure[MAX_NBR_WELLS]; 
EXTERN float i last time[MAX NBR WELLS]; 
EXTERN float i-last~ressureTMAX=NBR_WELLS]; 
EXTERN float last time[MAX NBR WELLS]; 
EXTERN float last~ressureTMAX=NBR_WELLS]; 
EXTERN float min-p_derivative[MAX_NBR_WELLS]; 
EXTERN float max-p_derivative[MAX_NBR_WELLS]; 
EXTERN float min-p_d_derivative[MAX_NBR_WELLS]; 
EXTERN float max-p_d_derivative[MAX_NBR_WELLS]; 
EXTERN float local_max_time[MAX_NBR_WELLS] [10]; 
EXTERN int i_min-p_derivative[MAX_NBR_WELLS]; 
EXTERN int i_max-p_derivative[MAX_NBR_WELLS]; 
EXTERN int i_min-p_d_derivative[MAX_NBR_WELLS]; 
EXTERN int i_max-p_d_derivative[MAX_NBR_WELLS]; 

/******************************************************************************* 
/* curves * 
/******************************************************************************* 

#define MAX WIDTH 450 
#define MAX-HEIGHT 450 
#define X_ORIGIN 25 
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#define Y_ORIGIN 475 

EXTERN short 
EXTERN short 

EXTERN short 
EXTERN short 
EXTERN short 

EXTERN short 

EXTERN short 

EXTERN short 

initial curve x[MAX NBR WELLS] [MAX NBR INITIAL PTS]; 
initial-curve~[MAX-NBR=WELLS] [MAX=NBR=INITIAL=PTS]; 

curve x[MAX NBR WELLS] [MAX NBR INITIAL PTS]; 
curve-y[MAX=NBR=WELLS] [MAX=NBR=INITIAL=PTS]; 
curve-yl[MAX_NBR_WELLS] [MAX_NBR_INITIAL_PTS]; 

curve_log_x[MAX_NBR_WELLS] [MAX_NBR_INITIAL_PTS); 

curve_log-y[MAX_NBR_WELLS) [MAX_NBR_INITIAL_PTS); 

derivative_log-y[MAX_NBR_WELLS) [MAX_NBR_INITIAL_PTS]; 

EXTERN short log_x_rnin[MAX_NBR_WELLS]; 
EXTERN short log-y_rnin[MAX_NBR_WELLS]; 
EXTERN short log_cycles[MAX_NBR_WELLS]; 

EXTERN struct axis_mark (int pos; char text[10]}; 

EXTERN struct axis mark initial x axis[MAX NBR WELLS] [10]; 
EXTERN struct axis=mark initial:Y=axis[MAX=NBR=WELLS] [10]; 

EXTERN struct axis_mark x_axis [MAX_NBR_WELLS] [10]; 
EXTERN struct axis_mark y_axis[MAX_NBR_WELLS] [10]; 
EXTERN struct axis_mark y1_axis[MAX_NBR_WELLS] [10]; 

EXTERN struct axis mark log_x_axis[MAX_NBR_WELLS] [10]; 
EXTERN struct axis mark log-y_axis[MAX_NBR_WELLS] [10]i 
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/**************~**************************************************************** 
/* "cmp_data.c" : compute filtered data, derivatives and curves. * 
/******************************************************************************* 
Jinclude <math.h> 
~include <stdio.h> 
#inc1ude "cmp.h" 
Jinclude "env.h" 
#include "macro.h" 

/******************************************************************************* 
/* references' * 
/******************************************************************************* 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern int read_welle); 

static float hms_to_s(); 
extern void filter data(); 

static float *derivative_func(); 
extern void compute-p_derivative(); 
extern void examine-p_derivative(); 
extern void compute-p_d_derivative(); 
extern void compute_extrema(); 
extern void compute_log_derivative(); 

static int c_c{); 
extern void compute_initial_curve(); 
extern void compute_filtered_curve(); 
extern void compute_log_scale(); 
extern void compute_semilog_curve(); 
extern void compute_loglog_curve(); 
extern void compute_derivative_curve(); 

/******************************************************************************* 
/* read initial data for well n * 
/******************************************************************************* 
extern int read_well(n,name) 
short n; 
char *name; 
( int i; 

float hour,minute,sec,p; 
float time_unit, pressure_unit, first_time; 
char filename[80]; 
FILE *in_file; 

strcpy(filename,PATH); 
strcat(filename,name); 
if (!(in_file = fopen(filename,"r"») return 0 ; 

(void) fscanf(in_file,"(%f %f)",&time unit,&pressure unit); 
while (fgetc(in_file)!='\n'); - -

(void) fscanf(in_file,"(%f.%f %f %f)\n",&hour,&minute,&sec,&p); 
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} 

first_time = time_unit*hms_to_s(hour,minute,sec); 
initial time[n] [0]=0.0; 
first-pressure[n] = initial-pressure[n] [0] = pressure_unit*p; 

for (i=l;!feof(in fi1e);i++) ( 
(void) fscanf(in_file,"(%f %f %f %f)\n",&hour,&minute,&sec,&p); 
initial time[n] [i] = time unit*hms to s(hour,minute,sec)-first time; 
initial:pressure[n] [i] = pressure_unit*p; -
} 

i last time[n] = initial time[n] [i-1]; 
i=last-pressure[n] =initial-pressure [n] [i-1]; 

fclose(in file); 
return i;-

/******************************************************************************* 
/* convert hours, minutes, seconds to seconds * 
/******************************************************************************* 
static float hms_to_s(h,m,s) 
float h,m,s; 
( return«float)(3600*h+60*m+s»; 
} 

/******************************************************************************* 
/* compute filtered data for well n * 
/******************************************************************************* 
extern void fi1ter_data(n) 
short n; 
( int i,j,k,last_j; 

double coeff; 

} 

coeff = loglO(i_last_time[n])/(MAX_NBR_PTS-1); 

time[n] [0] = 0; 
pressure[n] [0] = first-pressure[n]; 
for (i=1,j=1,k=1;i<=MAX_NBR_PTS-1;i++) ( 

} 

for (last_j=j; 
initial_time[n] [j]<=(f10(coeff*i)+EPSILON) 
&& initial_time[n] [j]; 
j++) ( 

time[n] [k] += initia1_time[n] [j]; 
pressure[n] [k] += initial-pressure[n] [j]; 
} 

if (j > last_j) ( 
time[n] [k] /= (j-last_j)i 
pressure[n] [k++] /= (j-last_j)i 
} 

last_time[n]=time[n] [k-1]; 
last-pressure[n]=pressure[n] [k-1]; 

114 



.~ 

Jun 21 11:52 1988 cmp_data.c Page 3 

/******************************************************************************* 
/* derivative function * 
/******************************************************************************* 
static float *derivative_func(len,x,y,interv) 
int len; 
float x[] ,y[] ; 
int interv; 
( static float d[MAX_NBR_PTS]; 

float ix,xO,fx,iy,yO,fy; 

} 

int i,ii,fi; 

for (i=O;i<MAX_NBR_PTS;i++) d[i]=O; 

for (i=1;i<len-1;i++) ( 
switch(i) ( 

case 1: ii=O;fi=2;break; 
case 2: ii=O;fi=4;break; 
default: switch(len-i) ( 

break; 
} 

case 2: ii=len-3;fi=len-l;break; 
case 3: ii=len-S;fi=len-l;break; 
default: ii=i-interv;fi=i+interv;break; 
} 

ix=x[ii];xO=x{i];fx=x[fi]; 
iy=y[ii];yO=y[i];fy=y[fi]; 
d[i]=«fx-xO)*(yO-iy)/(xO-ix)+(xO-ix)*(fy-yO)/(fx-xO»/(fx-ix); 
} 

d[O]=(y[l]-y[O])/(x[l]-x[O]); 
d[len-1]=(y[len-1]-y[len-2])/(x[len-1]-x[len-2]); 

return (d) ; 

/******************************************************************************* 
/* compute pressure derivative for well n ( = dp/dln(t» * 
/******************************************************************************* 
extern void compute-p_derivative(n,interv) 
short n,intervj 
[ int i; 

} 

float log_t[MAX_NBR_PTS],*deriv; 

for (i=l;time[n] [i];i++) log_t[i]=log(time[n] [i]); 

deriv=derivative_func(i-1,&log_t[1],&pressure[n] [l],interv); 

for (i=l;time[n] [i] ;i++) ( 
p_derivative[n] [i]= *(deriv+i-1); 
} 

/******************************************************************************* 
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/* examine pressure derivative and change values greater than -0.01 to -0.01 * 
/******************************************************************************* 
extern void examine-p_derivative(n) 
short n; 
{ int i; 

for (i=l;time[n] [i];i++) 
if (p_derivative[n] [i]> -0.01) p_derivative[n] [1]- -0.01; 

} 

/******************************************************************************* 
/* compute pressure second derivative for well n ( - dln(dp/dln(t»/dln(t» */ 
/******************************************************************************* 
extern void compute-p_d_derivative(n,interv) 
short n,interv; 
{ int i; 

} 

float log_t[MAX_NBR_PTS],log-p_d[MAX_NBR_PTS],*deriv; 

for (i=l;time[n] [i];i++) { 
log_t[i]=log(time[n] [i]); 
log-p_d[i]=log(-p_derivative[n] [i]); 
} 

deriv=derivative_func(i-l,&log_t[l],&log-p_d[l],interv)i 

for (i=l;time[n] [i];i++) 
p~d_derivative[n] [i]= *(deriv+i-l); 

/******************************************************************************* 
/* compute extrema of pressure derivatives for well n * 
/******************************************************************************* 
extern void compute_extrema(n) 
short ni 
{ int i,j,imax,imin; 

float x,min,maxi 

min=max=p_derivative[n] [1]; 
imin=imax=l; 
for (i=2;time[n] [i] ;i++) { 

if «x=p_derivative[n] [i])<min) { 
min=xi 
imin=ij 
} 

if (x>max) { 
maX=Xi 
imax=ij 
} 

} 
min-p_derivative[n]=maxi 
rnax-p_derivative[n]=min; 
i_min-p_derivative[n]=imaxi 
i_rnax-p_derivative[n]=imini 
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} 

~~=m~x=p_d_derivative[n] [1]; 
J..llU.n=J..max=l; 
for (i=2;time[n] [i];i++) [ 

if ({x-p_d_derivative[n] [i])<min) [ 
min=x; 
imin=i; 
} 

if (x>max) [ 
max=x; 
imax=i; 
} 

} 
min-p_d_derivative[n]=maxi 
max-p_d_derivative[n]=min; 
i_min-p_d_derivative[n]=imax; 
i_max-p_d_derivative[n]=imin; 

for (i=2,j=O;time[n] [i]<1000;i++) 
if (p_d_derivative[n] [i-1]>O 

&& p_d_derivative[n] [i]<O) 
local_max_time[n] [j++]=time[n] [i]i 

/**********************************************************~***********~******** 
/* compute log of pressure derivative for well n ( = dln(p)/dln(t» * 
/******************************************************************************* 
extern void compute_log_derivative(n,interv) 
short n,interv; 
[ int i; 

} 

float log_t[MAX_NBR_PTS],log-p[MAX_NBR_PTS],*deriv; 

for (i=l;time[n] [i] ;i++) [ 
log_t[i]=log{time[n] [i]); 
log-p[i]=log(first-pressure[n]-pressure[n] [i]); 
} 

deriv=derivative_func(i-1,&log_t[1],&log-p[1],interv); 

for (i=l;log_derivative[n] [i]= *(deriv+i-1);i++); 

/******************************************************************************* 
/* curves . * 
/******************************************************************************* 

/******************************************************************************* 
/* coordinates computation function * 
/******************************************************************************* 
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static int c c(X,xO,scale,origin) 
float x,xO,scale; 
int origin; 
( return (origin+(int)(scale*(x-xO»)i } 

/******************************************************************************* 
/* initial curve for well n * ~ 
/******************************************************************************* 
extern void cornpute_initia1_curve(n) 
short ni 
( int i; 

} 

float x_scale,y_scale; 

x scale=MAX WIDTH/i last time[n]i 
y_scale=MAX=HEIGHT/(i_last-pressure[n]-first-pressure[n]) i 

for (i=O;!i I I initial_time[n] [i];i++) ( 
initial curve x[n] [i]=c c(initial time[n] [i],O.O, 

- - - x scale~X ORIGIN); 
initial_curveJ[n].[i]=c_c(initial-pressure[n] [i],i_last-pressure[n], 

. y_scale,Y_ORIGIN)i 
} 

initial_x_axis[n] [O].pos=X_ORIGIN; 
initial_x_axis[n] [l].pos=X_ORIGIN+MAX_WIDTH; 
sprintf(initial_x_axis[n] [0].text,"%.2f",O.0); 
sprintf(initial_x_axis[n] [1].text,"%.2f",i_1ast_time[n])i 

initialJ_axis[n] [O].pos=Y_ORIGIN; . 
initial-y_axis[n] [l].pos=Y_ORIGIN-MAX_HEIGHT; 
sprintf(initial-y_axis[n] [0].text,"%.2f",i_last-pressure[n]); 
sprintf(initialJ_axis[n] [1].text,"%.2f",first-pressure[n]); 

/******************************************************************************* 
/* filtered curve for well n * 
/******************************************************************************* 
extern void cornpute_filtered_curve(n) 
short n; 
( int i; 

float x_scale,y_scale; 

x_scale=MAX_WIDTH/last_time[n]; 
y_scale=MAX_HEIGHT/(last-pressure[n]-first-pressure[n]); 

for (i=O;!i I I tirne[n] [i];i++) ( 
curve_x[n] [i]=c_c(tirne[nl[i],O.O,x_scale,X_ORIGIN); 
curve-y[n] [i]=c_c(pressure[n] [i],last-pressure[n],y_scale,Y_ORIGIN); 
} 

x_axis[n] [O].pos=X_ORIGINi 
x_axis[n] [l].pos=X_ORIGIN+MAX_WIDTHi 
sprintf(x_axis[n] [0] .text,"%.2f",O.0)i 
sprintf(x_axis[n] [1].text,"%.2f",last_tirne[n])i 
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y_axis[n] [O].pos=Y_ORIGIN; 
y_axis[n] [l].pos=Y_ORIGIN-MAX_HEIGHT; 
sprintf(y_axis[n] [0] .text,II%.2fll,last-pressure[n]); 
sprintf(y_axis[n] [1].text,"%.2f",first-pressure[n]); 

/******************************************************************************* 
/* compute log scales for well n * 
/******************************************************************************* 
extern void compute_log_scales(n) . 
short ni . 
{ int i,tmax,ymin,ymax; 

float x,min,max; 

log_x_min[n]=(int) (log10(0.98*time[n] [1])+10)-lOi 
tmax=(int)(log10(last_time[n])+10)-9; 
log~cyc1es[n]=tmax-log_x_min[n]i 

min=max=first-pressure[n]-pressure[n] [1]; 
for (i=2;time[n] [i] ;i++) { 

if «x=first-pressure[n]-pressure[n] [i])<min) min=xi 
if (x>max) maX=Xi 
} 

ymin=inf«int) (log10(min)+10)-10, (int) (log10(-min-p_derivat ive[n])+10)-10); 
ymax=sup«int) (log10(max)+10)-9, (int) (log10(-max-p_deriv ative[n])+10)-9); 

} 

switch (log_cy'c1es[n]-(ymax-ymin» { 
case 0: log-y_min[n]=ymin;break; 
case 1: log-y_min[n]=ymin;break; 
case 2: log-y_min[n]=ymin-1;break; 
case 3: log-y_min[n]=ymin-l;break; 
case 4: log-y_min[n]=ymin-2ibreak; 
case 5: log-y_min[n]=ymin-2;break; 
case 6: log-y_min[n]=ymin-3;break; 
default: log-y_min[n]=ymin-4;break; 
} 

/******************************************************************************* 
/* semi log curve for well n * 
/******************************************************************************* 
extern void compute_semi1og_curve(n) 
short n; 
( int i; 

float x_sca1e,y_scale,pO; 

pO=first-pressure[n]-pressure[n] [1]; 
x_scale=MAX_WIDTH/(log_cycles[n]); 
y_scale=MAX_HEIGHT/(last-pressure[n]-pressure[n] [1]); 

for (i=l;time[n] [i] ii++) ( 
curve log x[n] [i-1]=c c(log10(time[n] (i]), 

- - - (float)log_x_min(n], 
x_scale,X_ORIGIN)i 
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curveJ1 [n] [i-I] =c_c( firstJ>ressure[n] -pressure [n] [i] , pO, y_sca1e', Y_ORIGIN) ; 
} 

} 

for (i=0;i<=log_cyc1es[n];i++) ( 
log_x_axis[n] [i].pos=X_ORIGIN+i*x_sca1e; 
} 

sprintf(log_x_axis[n] [0] . text, "10 %d" ,1og_x_min[n]); 
sprintf(log_x_axis[n] [log_cyc1es[n]].text," 10 %d", 

yl_axis[n] [O].pos=Y_ORIGIN; 
yl_axis[n] [l].pos=Y_ORIGIN-MAX_HEIGHT; 
sprintf(yl_axis[n] [0].text,"%.2f",pO)i 

log_x_min[n]+log_cycles[n]); 

sprintf(yl_axis[n] [1].text,"%.2f",first-pressure[n]-lastJ>ressure[n])i 

/******************************************************************************* 
/* log log curve for well n ' * 
/******************************************************************************* 
extern void compute_loglog_curve(n) 
short ni 
{ int ii 

} 

float y_scalei 

y_scale=MAX_HEIGHT/(log_cycles[n]); 

for (i~l;time[n][i]ii++) 
curve_log-y[n] [i-l]-c_c(loglO(first-pressure[n]-pressure[ n][i]), 

(float)log-y_min[n], 
-y_scale,Y_ORIGIN)i 

for (i=Oii<=log_cycles[n]ii++) { 
log-y_axis[n] [i].pos=Y_ORIGIN-i*y_scalei 
} 

sprintf(log-y_axis[n] [O].text,"lO %d",log-y_min[n])i 
sprintf(log-y_axis[n] [log_cycles[n]].text,"lO %d", 

log-y_min [n]+log_cyc1es[n])i 

/******************************************************************************* 
/* derivative curve for well n * 
/***************************************************************************~*** 
extern void compute_derivative_curve(n) 
short n; 
( int i; 

float y_sca1e; 

y_scale=MAX_HEIGHT/(log_cycles[n]); 

for (i=l;time[n] [i] ;i++) 
derivative_logJ[n] [i-l]=c_c(loglO(-p_derivative[n] [ill, 

(float)log-y_min[n], 
-y_sca1e,Y_ORIGIN); 
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} 
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/******************************************************************************* 
/* "cmp_main.c" : main procedures for computations * 
/******************************************************************************* 
#define CMP_MAIN 

#inc1ude "cmp.h" 

/******************************************************************************* 
/* functions references * 
/******************************************************************************* 
extern int read_we11(}; 
extern void fi1ter_data(}; 
extern void compute-p_derivative(}; 
extern void examine-p_derivative(}; 
extern void compute-p_d_derivative(}; 
extern void compute_extrema(); 
extern void compute_1og_derivative(); 
extern void compute_initial_curve(); 
extern void compute_filtered_curve(); 
extern void compute_log_scales(); 
extern void compute_semilog_curve()i 
extern void compute_loglog_curve(); 
extern void compute_derivative_curve(); 

extern void semilog_straight_lines(); 
extern void loglog_straight_lines(); 
extern void derivative_straight_lines(); 
extern void seek_humps(); 

extern void send_number(); 
extern void send initial data(); 
extern void send semilog=staight_lines(); 
extern void send_loglog_straight_lines(); . 
extern void send_derivative_straight_lines(); 
extern void send_humps(); 
extern void send_local_max_time(); 
extern void send_quit()i 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void do_well_analysis()i 

/*******************************************************************************
/* begin the analysis for well n * 
/******************************************************************************* 
extern void do well analysis(n,name) 
int ni --
char *name; 
( 

send_number(n,name)i 

(void) read_well(n,name); 
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} 

filter data(n); 
compute-p_derivative(n,INTERV); 
exarnine-p_derivative(n); 
compute-p_d_derivative(n,INTERV); 
compute_extrema(n); 
compute_log_derivative(n,INTERV); 
send initial data(n); 
send=local_max_time(n); 

semilog_straight_lines(n); 
send_sernilog_straight_lines(n); 
loglog_straight_lines( n) ; , 
send_loglog_straight_lines(n)j 
derivative_straight_lines(n)j 
send_derivative_straight_lines(n); 
seek_humps(n) j 

send_humps(n); 

compute_initial_curve(n); 
compute_filtered_curve(n); 
compute_log_scales(n); 
compute_semilog_curve(n)j 
compute~loglog_curve(n); 
compute_derivative_curve(n)j 
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/******************************************************************************* 
/* "cmPJattern.c" : look for pattern in semi log , log log and derivative curves. * 
/******************************************************************************* 

#define PAT_MAIN /* set flag for pattern declarations */ 

#include <stdio.h> 
#include <math.h> 
#include "cmp.h" 
#include "pat.h" 
#include "macro.h" 

/******************************************************************************* 
/* references * 
/******************************************************************************* 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern float slope(); 

static struct s_line *straight_lines(); 
static void group_s_s_lines(); 
static void check_s_s_lines(); 

extern void semilog_straight_lines(); 
extern void loglog_straight_lines(); 

static int expand_d_s_lines_left(); 
static int group_d_s_lines(); 
static void modify_d_s_lines(); 

extern void derivative_straight_lines(); 

static void modify_extrema(); 
extern void seek_humps(); 

/******************************************************************************* 
/* staight lines * 
/******************************************************************************* 

/******************************************************************************* 
/* compute the slope of a straight line * 
/******************************************************************************* 
extern float slope(c,n,pos) 
char c; 
int n,pos; 
{ int ii,fi; 

if (c=='s') ( 
ii-semilog_s_lines[n] [pos].i; 
fi=semilog_s_lines[n] [pos].f; 
return (pressure[n] [ii]-pressure[n] [fi]) 

/(loglO(time[n] [ii] )-log10(time[n] [fi]»; 
} 

if (c==' 1 ') { 
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} 

ii=loglog_s_lines[n] [pos] .i; 
fi=loglog_s_lines[n] [pos].f; 
return (loglO(abs(pressure[n] [fi]» 

-log10(abs(pressure[n] [ii]») 
/(log10(time[n] [fi] )-log10(time[n] [ii]» i 

} 

if (c=='d') ( 
ii=derivative_s_lines[n] [pos].i; 
fi-derivative s lines[n] [pos].f; 
return (log10(-p_derivative[n] [fi])-log10(-p_derivative[n] [ii]» 

/(log10(time[n] [fi])-loglO(time[n] [ii]»; 
} 

/******************************************************************************* 
/* look for straight lines * 
/******************************************************************************* 
static struct s_line *straight_lines(n,deriv,sig_length,error) 
int ni 
float deriv[],sig_length,error; 
( static struct s line sl[MAX NBR S LINES]; 

int i,j,k; - - --

} 

float sum,average,current,firsti 
for (i=l,k=O;time[n] [i];i=j) ( 

first=deriv[i]; 
sum=first; 
average=first; 

for (j=i+1 ; time en] [j] && abs ((current=deriv [j ] )-average) <error 
&& abs(average-first)<errori 

j++) ( 
sum += current; 
average - sum/(j-i+1); 
} 

if (loglO(time[n] [j-l])-loglO(time[n] [i]»sig length) ( 
sl[k].i=i;· -
sl[k++] .f=j-l; 
} 

} 
sl[k].i=O; 

return(sl); 

/******************************************************************************* 
/* group straight lines in the semilog curve for well n * 
/******************************************************************************* 
static void group_s_s_lines(n) 
int n; 
( int i,ii1,fi1,ii2,fi2,mi,sl number; 

float x=O; -
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} 

for (i=l;time[nJ [iJ;i++) x += p_derivative[nJ [iJ; 
x /- i-1; 

for (i=O;semilog_s_lines[nJ [iJ.i;i++); 
sl_number=i; 

for (i=sl_number-l;i)O;i--) ( 
ii1=semilog_s_lines[nJ [i-1].i; 
fi1=semilog_s_lines[n] [i-1].f; 
ii2=semilog_s_lines[n] [i).i; 
fi2=semilog_s_lines[nJ [i].f; 
mi=(int)«ii1+fi2)/2); 
if (abs(slope('s',n,i)-slope('s',n,i-1»<ABS_ERR 
&& (log10(time[n] [ii2])-log10(time[n) [fi1]»<O.25 
&& abs(pressure[n) [mi]-(pressure[n] [ii1) 

} 

+(pressure[n) [fi2]-pressure[n] [ii1) 
*(log10(time[n) [mi)-log10(time[n] [ii1]» 
/(log10(time[n] [fi2])-log10(time[n] [ii1))) 

< abs(x*REL_ERR» ( 
semilog_s_lines[n] [i-1].f=fi2; 
semilog_s_1ines[n] [i].i=O; 
} 

/******************************************************************************* 
/* check straight lines in the semi10g curve for well n . * 
/******************************************************************************* 
static void check_s_s_lines(n) 
int n; 
( int i,j,ii,fi,mi,sl_number; 

float x=O; 

for (i=l;time[n] [i];i++) x +-p_derivative[n] [i]; 
x /= i-1; 

for (i=O;semilog_s_lines[n] [i].i;i++); 
sl_number=i; 

for (i=O;ii=semilog_s_lines[n] [i].i;i++) ( 
fi=semilog_s_lines[n) [i).f; 
mi=(int)«ii+fi)/2); 
while «fi-ii»2 

&& (loglO(time[n] [fiJ)-log10(time(nJ [iiJ»>2*SIG_LENGTH 
&& abs(pressure[n] [mi]-(pressure[n] [ii) 

+ slope ( , s' ,n, i) 
*(log10(time[nJ [mil )-log10(time[n] [iiJ »» 

) abs(x*REL_ERR» ( 
for (j=sl_number-1;j>i;j--) ( 

semilog_s_lines(n] [j+l].i=semilog_s_lines[n] [j).i; 
semilog_s_lines[nJ [j+lJ.f=semilog_s_lines[nJ [jJ.f; 
} 

sl number++; 
semilog_s_lines[nJ [i+1J .i=mi; 
semilog_s_lines[n] [i+l] .f=fi; 
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} 
} 

fi=serni1og_s_lines[n] [i].f=rni; 
rni=(int) «ii+fi)/2); 
} 

/******************************************************************************* 
/* straight lines in the semilog curve for well n * 
/******************************************************************************* 
extern void sernilog_straight_lines(n) 
int n; 
{ struct s_line *sl; 

int i,ii,fi; 

} 

float x=O; 

for (i=l;time[n] [i];i++) x +- p_derivative[n] [ill 
x /= i-1; 

sl=straight_1ines(n,&p_derivative[n] [0], (float) SIG_LENGTH, 
(float) sup(abs(REL_ERR*x),ABS_ERR»; 

for (i=O;ii=semi1og_s_1ines[n] [i].i=sl[i].i;i++) { 
fi=serni1og_s_1ines[n] [i].f=sl[i].f; 
} 

group_s_s_1ines(n); 
check_s_s_1ines(n); 

/******************************************************************************* 
/* straight lines in the log1og curve for well n */ 
/******************************************************************************* 
extern void loglog_straight_lines(n) 
int n; 
{ struct s line *sl; 

int i,ii~fi; 

} 

float x=O; 

for (i=l;time[n][i] ;i++) x += log_derivative[n] [I]; 
x /= i-I; 

sl=straight_1ines(n,&log_derivative[n] [0] ,(float) SIG_LENGTH, 
(float) sup(abs(REL_ERR*x),ABS_ERR»; 

for (i=O;ii=loglog_s_lines[n] [i].i=sl[i].i;i++) [ 
fi=loglog_s_1ines[n] [i].f=sl[i].f; 
} 

/******************************************************************************* 
/* expand derivative straight lines to the left * 
/******************************************************************************* 
static int expand_d_s_lines_1eft(n) 
int n; 
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( int i,ii,fil,flag=O; 

ii=derivative s lines[n] [O].i; 
while (ii>l --

} 

&& abs(slope('d',n,O)-p_d_derivative[n][ii~l])<ABS~ERR) ( 
derivative s lines[n] [O].i= --iii 
flag=l; - -
} 

for (i=l;ii=derivative_s_lines[n] [i].i;i++) ( 
fil=derivative s lines[n] [i-l].f; 
while «log10(time[n] [ii])-loglO(time[n] [f11]»>0.2 

} 

&& abs(slope('d',n,i)-p_d_derivative[n] [ii-l])<ABS_ERR) ( 
derivative s lines[n] [i].i- --iii 
flag=l; - -
} 

return flag; 

/******************************************************************************* 
/* group derivative straight lines '* 
/******************************************************************************* 
static int group_d_s_lines(n) 
int n; 
( int i,fil,ii2,sl_number,flag=0; 

} 

for (i=O;derivative_s_lines[n] [i].i;i++); 
sl_number"'i; 

for (i=sl_number-l;i)O;i--) ( 
fil=derivative s lines[n] [i-l].f; 
ii2=derivative-s-lines[n] [i].i; 
if (abs(slope('d',n,i)-slope('d',n,i-1»<ABS_ERR 
&& (loglO(time[n] [ii2])-loglO(time[n] [fil]»<0.25 
&& abs(p_derivative[n] [ii2]-p_derivative[n] [fill) 
«abs(max-p_derivative[nJ/lO») ( 
derivative s lines[n] [i-l].f=derivative s lines[n] [i].f; 
derivative-s-lines[n] [iJ.i=O; --
flag=l; - -
} 

} 
return flag; 

/******************************************************************************* 
/* modify derivative straight lines * 
/*******************************************************************************+ 
static void modify_d_s_lines(n) 
int n; 
( if (group_d_s_lines(n» 

if (expand_d_s_lines_left(n» modify_d_s_lines(n); 
} 
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/******************************************************************************* 
/* straight lines in the derivative curve for well n * 
/******************************************************************************* 
extern void derivative straight lines(n) 
int n; --
{ struct s line *sl; 

int i,ii-;fi; 
float x=O; 

} 

for (i~l;time[n] [1];i++) x +- p_d_der1vat1ve[n] [1]; 
x /= i-l; 

sl=straight_lines(n,&p_d_derivative[n] [O],(float) SIG_LENGTH, 
(float) (2.3*sup(O.43*abs(REL_ERR*x),ABS_ERR»); 

for (i=O;ii=derivative_s_lines[n] [i].i=sl[i].i;i++) { 
fi=derivative s lines[n] [i].f=sl[i].f; 
} --

(void) expand_d_s_lines_left(n); 
modify_d_s_lines(n); 

/******************************************************************************* 
/* modify extrema * 
/******************************************************************************* 
static void modify_extrema(n) 
int n; 
( int i,ii,ti; 

float diff; 

} 

for (i=O;ii=humps[n] [i].i;i++) ( 
ti=humps[n] [i].t; 

} 

diff=p_derivative[n] [ii]-p_derivative[n] [til; 
if (diff>O) 

while (p_derivative[n) [ti-l) <p_derivative[n] [til 
I I p_derivative[n] [ti+l] <p_derivative[n] [til) { 

} 
else 

if (p_derivative[n) [ti-:-l] <p_derivative[n] [til) humps[n] [i].t= --ti; 
else humps[n] [i).t= ++ti; 

while (p_derivative[n) [ti-l]>p_derivative[n] [til 
I I p_derivative[n] [ti+l]>p_derivative[n] [til) { 

} 

if (p_derivative[n] [ti-l]>p_derivative[n] [ti]) humps[n] [i).t= --ti; 
else humps[n] [i].t= ++ti; 

/******************************************************************************* 
/* humps * 
/******************************************************************************* 
extern void seek humps(n) 
int n; -
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( int i,ii,top,j,k,inoise,fnoise; 
float first,current,next,bef_noise; 

} 

for (i=l,k=O;time[n] [i];i++) ( 
ii=i; 
first=bef_noise=p_d_derivative[n] [i]; 
inoise=fnoise=i; 

for (j=i,top=O;time[n] [j+1] 
&& (log10{time[n] [fnoise])-log10(time[n] [inoise]»<SIG_LENGTH; 

j++) ( 
if «first)O 

&& (current=p_d_derivative[n] [j])<bef_noise 
&& (next=p d derivative[n] [j+1])<current) 

II --
(first<O 

&& (current=p_d_derivative[n] [j]»bef_noise 
&& (next=p_d_derivative[n] [j+l]»current) 

) { 
bef noise=current; 
inoise=fnoise=j; 
} 

else 
fnoise=j; 

if (!top && signum(current)!=signum(first» top=j; 

if «log10(time[n] [fnoise])-log10(time[n] [inoise]»<=(SIG _LENGTH/2) 
&& (!top I I (log10(time[n] [j])-log10(time(n] [top]»<=SIG_LENGTH» 
i=j; 

} 

if (top && (log10(time[n] [j-1])-log10(tirne[n] [ii]»>=(3*SIG_LENGTH) 
&& (log10(tirne[n] [j-1])-log10(tirne[n] [top]»>=SIG_LENGTH 
&& (log10(time[n] [top])-log10(tirne[n] [ii]»>=SIG_LENGTH 
&& sup(abs(log10 (-p_derivative [n] [j-1])-loglO(-p_derivative[n] [top]» 

abs(loglO(-p_derivative[n] [ii])-loglO(-p_derivative[n] [top]») 
>=(SIG_LENGTH/2» ( 

humps[n] [k].i=ii; 
humps[n] [k] .t-top; 
humps[n] [k++].f=inoise+l; 
} 

} 
modify_extrerna(n); 

130 



Jun 21 12:48 1988 crnp_send.c Page 1 

/******************************************************************************* 
/* "crnp_send.c" : functions for interface between C & ART. * 
/******************************************************************************* 
#include <stdio.h> 
#include <string.h> 
#include "crnp.h" 
#include "pat.h" 

/******************************************************************************* 
/* references ' * 
/******************************************************************************* 
extern float slope(); 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
static void send(); 
extern void send_number(); 
extern void send initial data(); 
extern void send=sernilog=straight_lines(); 
extern void send_loglog_straight_lines(); 
extern void send_derivative_straight_lines(); 
extern void send_humps(); 
extern void send_quite); 

/******************************************************************************* 
/* send string to ART * 
/******************************************************************************* 
static void send(buf) 
char *buf; 
[ write(l,buf,strlen(buf»; 
} 

/******************************************************************************* 
/* send well number * 
/******************************************************************************* 
extern void send_number(n,narne) 
int n; 
char *narne; 
[ char buf[80]; 

} 

sprintf(buf,"(l %d %s)",n,narne); 
send(buf); 

/******************************************************************************* 
/* send initial data * 
/******************************************************************************* 
extern void send initial data(n) 
int n; - -
[ char buf[200J; 

int last,irnax=i_max-p_derivative[nJ; 

131 



Jun 21 12:48 1988 cmp_send.c Page 2 

} 

for (last=l;time[n] [last];last++); 

sprintf(buf,"(2 %d %f (%f %f) (%f) (%f %f %f %f) (%f %f»", 

send(buf); 

n, 
last time en] , 
log_derivative[n] [l],log_derivative[n] [2], 
time [ n] [1] , 
p_d_derivative[n] [l],p_d_derivative[n] [2], 
p_d_derivative[n] [last-2],p_d_derivative[n] [last-l], 
time[n] [imax],max-p_derivative[n])i 

/******************************************************************************* 
/* send semi10g straight lines * 
/******************************************************************************* 
extern void send_semi1og_straight_lines(n) 
int ni 
( int sl number,i,ii,fii 

char buf[lOOO],aux[200]i 

} 

for (sl_number=O;semilog_s_lines[n] [sl_number].i;sl_number++); 

if (51_number) ( 
sprintf (buf, " (3 %d %d", n, sl_number) ; 
for (i=O;i<sl_number;i++) ( 

ii=semi1og_s_1ines[n] [iJ.i; 
fi=semilog_s_lines[nJ [iJ.f; 
sprintf (aux," « %f %f) (%f %f) %f)", 

time[nJ [ii],pressure[n] [ii], 
time[n] [fi],pressure[n] [fiJ, 
slope ( I s I , n, i ) ) ; 

strcat(buf,aux); 
} 

strcat(buf,")"); 
send(buf); 
} 

/******************************************************************************* 
/* send loglog straight lines */ 
/******************************************************************************* 
extern void send_1og1og_straight_lines(n) 
int n; 
( int sl number,i,ii,fi; 

char buf[1000],aux[200]; 

for (sl_number=O;loglog_s_lines[nJ [sl_number].i;sl_number++); 

if (sl number) ( 
sprintf(buf,"(4 %d %d",n,sl_number); 
for (i=Oii<sl number;i++) ( 

ii=loglog_s=lines[n] [i].ii 
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} 

fi=loglog_s_lines[n] [i] .f; 
sprintf(aux," «%f %f) (%f %f) %f)", 

time[n] [ii] ,pressure[n} [ii], 
time[n] [fi],pressure[n] [fi], 
slope ( , l' , n, i) ) ; 

strcat(buf,aux); 
} 

strcat(buf,")"); 
send(buf); 
} 

/******************************************************************************* 
/* send derivative straight lines * 

'/******************************************************************************* 
extern void send_derivative_straight_1ines(n) . 
int n; 
{ int 51 number,i,ii,fi; 

char buf[lOOO],aux[200]; 

} 

for (sl number=O;derivative 5 1ines[n] [51 number].i;sl number++); - - - - -
if (51_number) { 

sprintf(buf," (5 %d %d" ,n,sl_number); 
for (i=O;i(sl_number;i++) { 

ii=derivative 5 lines[n] [i].i; 
fi=derivative=s=lines[n] [i].f; 
sprintf (aux," {( %f %f) (%f %f) %f)", 

time[n] [ii],p_derivative[n] [ii], 
time[n] [fi],p~derivative[n][fi], 
slope( 'd' ,n,i»; 

strcat{buf,aux); 
} 

strcat(buf,")"); 
send(buf); 
} 

/******************************************************************************* 
/* send humps * 
/******************************************************************************* 
extern void send_humps(n) 
int n; 
( int h number,i,ii,ti,fi; 

char buf[lOOO],aux[200); 

for (h_number=O;humps[n] [h_number].i;h_number++); 

if (h_number) ( 
sprintf(buf,"(6 %d %d",n,h_number); 
for (i=Oii(h numberii++) ( 

ii=humps[n][i] .i; 
ti=humps [n] [i] . t; 
fi=humps [n] [i] . f; 
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} 

if (p_d_derivative[n] [ii]>O) ( 
sprintf (aux, II (hill (%f %f) (%f %f) (%f %f» II , 

time[n] [ii],p_derivative[n] [ii], 
time[n] [fi],p_derivative[n] [fi], 
time[n] [ti],p_derivative[n] [til); 

} 
else ( 

sprintf (aux," (valley (%f %f) (%f %f) (%f %f»", 
time[n] [ii],p_derivative[n] [ii], 
time[n] [fi],p_derivative[n] [fi], 
time[n] [ti],p_derivative[n] [til); 

} 
strcat(buf,aux); 
} 

strcat(buf,")"); 
send(buf); 
} 

/******************************************************************************* 
/* send local maximum of pressure derivative * 
/******************************************************************************* 
extern void send local max time(n) 
int n; - --
{ int number,i; 

} 

char buf[1000],aux[200]; 

for (number=O;loca1_max_time[n] [number];number++); 

if (number) ( 
sprintf(buf,"(7 %d (%f",n,loca1 max tirne[n] [0]); 
for (i=l;i<number;i++) ( --

sprintf(aux," %f",local_max_time[n] [i]); 
strcat(buf,auX)i 
} 

strcat(buf,"»"); 
send(buf); 
} 

/******************************************************************************* 
/* send end of execution * 
/******************************************************************************* 
extern void send_quite) 
( char buf[20]i 

} 

sprintf(buf,"(8)")i 
send(buf); 
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/******************************************************************************* 
/* "env.h" : Set environment variables * 
/******************************************************************************* 

#define PATH "/usr/lo1a/dm/antoine/Wes/Data/" 
#define WELLS_LIST ''/usr/101a/dm/antoine/Wes/Data/we11s.1ist'' 
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/******************************************************************************* 
/* "gph.h" : Declarations for graphics */ 
/******************************************************************************* 
#include <suntool/sunview.h> 
#include <suntool/canvas.h> 

#ifdef GPH MAIN 
#define EXTGPH 
#else 
#define EXTGPH extern 
#endif 

#define VERTICAL SIZE 500 
#define HORIZONTAL SIZE 500 
#define X ORIGIN 25 
#define Y-ORIGIN 475 

EXTGPH Pixwin *pw[MAX_NBR_WINDOWS]i 
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/******************************************************************************* 
/* "gph_main.c" : Curves drawing. * 
/******************************************************************************* 
#include "cmp.h" 
#include "pat.h" 

/******************************************************************************* 
/* functions references * 
/******************************************************************************* 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void draw initial curve(); 
extern void draw-filtered curve(); 
extern void draw_semilog_curve(); 
extern void draw_semilog-patterns(); 
extern void draw_loglog_curve()i 
extern void draw_loglog-patterns(); 
extern void draw_derivative_curve(); 
extern void draw_derivative-patterns(); 

/******************************************************************************* 
/* draw the initial curve * 
/******************************************************************************* 
extern void draw_initial_curve(n) 
int n; 
( 

} 

plot(n,&initial_curve_x[n] [0], 
&initial_curve-y[n] [0], 
&initial_x_axis[n] [0], 
&initial-y_axis[n] [0], 
"Initial"); 

/******************************************************************************* 
/* draw the filtered curve * 
/******************************************************************************* 
extern void draw filtered curve(n) 
int n; - -
( 

} 

plot(n,&curve x[n] [0], 
&curveJ[n] [0], 
&x axis [n] [0] , 
&y=axis[n] [0], 
"Filtered"); 

/******************************************************************************* 
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/* draw the semilog curve * 
/***********************************************************~******************* 
extern void draw_semilog_curve(n) 
int n; 
( 

} 

plot(n,&curve_log_x[n] [0], 
&curve-yl[n] [0], 
&log_x_axis[n] [0], 
&yl_axis[n] [0], 
"Semilog"); 

/******************************************************************************* 
/* draw the sernilog patterns * 
/******************************************************************************* 
extern void draw_semilog-patterns(n) 
int n; 
( 

} 

plot_straight_lines(n, & semi log_s_li nes [n] [0], 
&curve_log_x[n] [0], 
&curve-yl[n] [O])i 

/******************************************************************************* 
/* draw the loglog curve * 
/******************************************************************************* 
extern void draw_loglog_curve(n) 
int n; 
( 

} 

p1ot(n,&curve_log_x[n] [0], 
&curve_log-y[n] [0], 
&log_x_axis[n] [0], 
&log-y_axis[n] [0], 
"Loglogfl); 

/******************************************************************************* 
/* draw the loglog patterns . * 
/******************************************************************************* 
extern void draw_loglog-patterns(n) 
int ni 
( 

} 

plot_straight_lines(n,&loglog_s_lines[n] [0], 
&curve_log_x[n] [0], 
&curve_log-y[n] [0]); 

/******************************************************************************* 
/* draw the derivative curve * 
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/******************************************************************************* 
extern void draw_derivative_curve(n) 
int ni 
( 

} 

p1ot(n,&curve_log_x[n] [0], 
&derivative_log-y[n] [0], 
&log_x_axis[n] [0], 
&log-y_axis[n] [0], 
"Derivative") i 

/******************************************************************************* 
/* draw the derivative patterns * 
/******************************************************************************* 
extern void draw_derivative-patterns(n) 
int ni 
( 

} 

plot_straight_lines(n,&derivative_s_lines[n] [0], 
&curve_log_x[n] [0], 
&derivative_log-y[n] [O])i 

plot_humps(n,&humps[nJ [0], . 
&curve_log_x[n] [0], 
&derivative_log-y[n] [O])i 
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/***********************************************************~******************* 
/* "gph_util.c" : Drawing functions * 
/******************************************************************************* 
#include "cmp.h" 
#include "win.h" 
#include "gph.h" 
#include "pat.h" 

/******************************************************************************* 
/* references * 
/******************************************************************************* 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void plot(); 
extern void plot_straight_lines(); 
extern void plot_humps(); 

/******************************************************************************* 
/* plot curve y versus x, x axis and y axis * 
/******************************************************************************* 
extern void plot(w_nurnber,x,y,x_ax,y_ax,title) 
int w number; 
short - x [] ,y [] ; 
struct axis_mark x_ax[],y_ax[]; 
char *title; 
( int i,pos,n=w_window[w_number]; 

pw_writebackground{pw[n],O,O,HORIZONTAL_SIZE-l,VERTICAL_SIZE-l,PIX_SRC); 

for (i=l;x[i];i++) 
pw_vector{pw[n],x[i-l],y[i-l],x[i],y[i],PIX_SRC,l); 

pw_vector(pw[n],X_ORIGIN,Y_ORIGIN,X_ORIGIN+MAX_WIDTH,Y_ORrGIN,PIX_SRC,l); 
for (i=O;(pos=x_ax[i] .pos);i++) { , 

pw_vector(pw[n],pos,Y_ORIGIN-2,pos,Y_ORIGIN+2,PIX_SRC,1); 
} 

pw_text(pw[n],X_ORIGIN,Y_ORIGIN+10,PIX_SRC,scale_font,x_ax[O].text); 
pw text(pw[n],X ORIGIN+MAX WIDTH-40,Y ORIGIN+10, 

- PIX_SRC,scale_font,x_ax[i-I].text); 

pw_vector(pw[n],X_ORIGIN,Y_ORIGIN,X_ORIGIN,Y_ORIGIN-MAX_HEIGHT,PIX_SRC,l)i 
for (i-O;(pos~y_ax[i].pos);i++) { 

pw_vector(pw[n],X_ORIGIN-2,pos,X_ORIGIN+2,pos,PIX_SRC,1); 
} 

pw_text(pw[n],X_ORIGIN-20,Y_ORIGIN-5,PIX_SRC,scale_font,y_ax[O].text); 
pw_text(pw[n],X_ORIGIN-20,Y_ORIGIN-MAX_HEIGHT-5, 

PIX_SRC,scale_font,y_ax[i-l].text); 

pw_text(pw[n],200,Y_ORIGIN+20,PIX_SRC,O,title); 
} 
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/********************************************~********************************** 
/* draw straight lines * 
/******************************************************************************* 
extern void p1ot_straight_1ines(w_number,sl,x,y) 
int w number; 
struct s line sl[]; 
short x[I,y[]; 
( int i,ii,fi,n=w window[w number]; - -

} 

for (i=0;(ii=sl[i].i-1)!=-1;i++) ( 
fi=sl[i] .f-1; 
pw_vector(pw[n],x[ii],y[ii],x[fi],y[fi],PIX_SRC,l); 
pw_vector(pw[n],x[ii],y[ii]-l,x[fi],y[fi]-l,PIX_SRC,l) i 
pw_vector(pw[n],x[ii]-l,y[ii],x[fi]-l,y[fi],PIX_SRC,l) i 
pw_vector(pw[n],x[ii],y[ii]+l,x[fi],y[fi]+l,PIX_SRC,l) i 
pw_vector(pw[n],x[ii]+l,y[ii],x[fi]+l,y[fi],PIX_SRC,l); 
} 

/******************************************************************************* 
/* draw humps * 
/************************~****************************************************** 
extern void p1ot_humps(w_number,h,x,y) 
int w number; 
struct hump he]; 
short x[],y[]; 
( int i,ii,ti,fi,n=w window[w number]; - -

} 

for (i=0;(ii=h[i].i-1)!=-1;i++) { 
ti=h[i].t-1; 

} 

fi=h[i].f-1; 
if (abs(y[ii]-y[ti]»abs(y[fi]-y[ti]» { 

pw_vector(pw[n],x[ii],y[ii],x[fi],y[ii],PIX_SRC,l)i 
pw_vector(pw[n],x[ii],y[ti],x[fi],y[ti],PIX_SRC,l); 
pw_vector(pw[n],x[ii],y[ii],x[ii],y[ti],PIX_SRC,l); 
pw_vector(pw[n],x[fi],y[ii],x[fi],y[ti],PIX_SRC,l); 
} 

else { 
pw_vector(pw[n],x[ii],y[fi],x[fi],y[fi],PIX_SRC,l)i 
pw_vector(pw[n],x[ii],y[ti],x[fi],y[ti],PIX_SRC,l); 
pw_vector(pw[n],x[ii],y[fi],x[ii],y[ti],PIX_SRC,l); 
pw_vector(pw[n],x[fi],y[fi],x[fi],y[ti],PIX_SRC,l); 
} 
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/******************************************************************************* 
/* "macro.h" : macro-functions definitions. Date : 05/09/88 * 
/******************************************************************************* 

#define abs(x) « (xPO) ? (X) : -(x» 
#define sup(a,b) «(a»(b» ? (a) : (b» 
#define inf(a,b) «(a)«b» ? (a) : (b» 
#define signum(x) «(xPO) ? 1 : «(x)<O) ?-1 
#define f10(x) (exp«x)*M_LN10» 

0» 
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'/******************************************************************************* 
/* IImain.c ll function maine). * 
/******************************************************************************* 

/******************************************************************************* 
/* functions references * 
/******************************************************************************* 
extern void create windows(); 
extern void start_loop(); 

/******************************************************************************* 
/* main function * 
/******************************************************************************* 
void main ( ) 
{ 

} 

create_windows(); 
start_loop(); 

exit(O); 
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/******************************************************************************* 
/* "global-pattern.h" : global qeclarations for pattern. Date: 05/05/88 * 
/******************************************************************************* 

#ifdef PAT MAIN 
#define EXTPAT 
#else 
#define EXT PAT extern 
#endif 

#define SIG LENGTH 0.25 
#define ABS-ERR 0.05 
#define REL_ERR 0.2 

/******************************************************************************* 
/* straight lines * 
/******************************************************************************* 

EXT PAT struct s line (int i,f;}; 

EXTPAT struct s line semilog_s_lines[MAX_NBR_WELLS1[MAX_NBR_S_LINES1; 
EXTPAT struct s-line loglog_s_lines[MAX_NBR_WELLSl [MAX_NBR_S_LINES1; 
EXT PAT struct s=line derivative_s_lines[MAX_NBR_WELLS] [MAX_NBR_S_LINES1; 

/******************************************************************************* 
/* humps * 
/******************************************************************************* 

EXT PAT struct hump (int i,t,f;}; 
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/******************************************************************************* 
/* "win.h" : Declarations for windows. * 
#include <suntool/sunview.h> 
#include <suntool/panel.h> 

#ifdef WIN MAIN 
#define EXTWIN 
#else 
#define EXTWIN extern 
#endif 

#define MAX_NBR_WELLS 20 
#define MAX NBR WINDOWS 5 
#define MAX-CHAR NAME 15 
#define DIM=SQ 18 

EXTWIN Frame base frame, 
w_frame[MAX_NBR_WINDOWS], 
confirmer, 
closer, 
expl_bar; 

EXTWIN Panel_item square[MAX_NBR_WELLS]; 

EXTWIN struct pixrect *image[MAX_NBR_WELLS] [3], 
*closed_square, 
*opened_square; 

EXTWIN char mess [MAX_NBR_WELLS] [3][200]; 

EXTWIN Pixfont *scale_font; 

EXTWIN char w_name[MAX_NBR_WELLS] [MAX_CHAR_NAME]; 
EXTWIN int w_analysed[MAX_NBR_WELLS]; 
EXTWIN int w window[MAX NBR WELLS]; 
EXTWIN int nbr wells; - -

. EXTWIN int bound_frame[MAX_NBR_WINDOWS]; 
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1******************************************************************************* 
1* "win_bar.c" : Explanation bar. * 
1***************************************************** ************************** 
#include "win.h" 

/******************************************************************************* 
/* references *-
/******************************************************************************* 

/*******************************************************************************
/* contents * 
/******************************************************************************* 
extern void create_expl_bar(); 
extern void expl_mess(); 

/******************************************************************************* 
/* create the explanation bar. * 
/******************************************************************************* 
extern void crea~e_expl_bar() 
( Rect *r; 

} 

expl_bar = window_create(base_frame,FRAME, 
FRAME SHOW LABEL, TRUE, 
WIN SHOW, TRUE, 
WIN-X,O, 
WIN=Y,863, 
WIN_WIDTH,11S2, 
WIN HEIGHT,18, 
0); -

r = (Rect *) window_get(expl_bar,WIN_RECT); 
r->r_left = -5; . 
window_set(expl_bar,WIN_RECT,r,O); 

/******************************************************************************~ 
/* display explanation message . * 
/******************************************************************************* 
extern void expl_mess(message) 
char *message; 
[ window_set(expl_bar,FRAME_LABEL,message,O); 
} 
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1***************************************************** ************************** 
1* "win_base.c" : definition of the main window. Date: 05/26/88 * 
1***************************************************** ************************** 
#inc1ude "win.h" 

1***************************************************** ************************** 
1* references * 
1******************************************************************************* 
extern void do_we11_ana1ysis(); 
extern void bind_window_with_we11(); 
extern void show window(); 
extern void confIrm_quit(); 
extern void destroy_a11_windows(); 
extern void send_quite); 

extern void we11_button-proc(); 
extern void quit_button-proc(); 

1***************************************************** ************************** 
1* contents * 
1******************************************************************************* 
extern void create_base_frame(); 

static Menu new_menu(); 

static void create_wells-panel(); 
static void open_welle); 1* procedure for the Notifier *1 
static void quite); 1* procedure for the Notifier *1 

extern void start_loop(); 

1***************************************************** ************************** 
1* create the main window * 
I*~*************************************************** ************************** 
void create_base_frame() 
( 

} 

base frame window_create(NULL,FRAME, 
FRAME SHOW LABEL, FALSE, 
WIN X-; 5, -
WIN=Y, 19, 
0) ; 

window_~et(base_frame,WIN_MENU,new_menu(base_frame),O); 

create_we11s-panel(base_frame)j 

window_fit(base_frame); 

1***************************************************** ************************** 
1* set the menu for the main window * 
1***************************************************** ************************** 
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static Menu new menu(frame) 
Frame frame; -
( Menu menu; 

menu - (Menu) window_get(frame,WIN_MENU); 

menu_set(menu, 

return(menu); 
} 

MENU REMOVE, 1, 
MENU-REMOVE,1, 
MENU-REMOVE, 1, 
MENU-REMOVE,4, 
0); -

/******************************************************************************* 
/* create the panel for the list of wells * 
/******************************************************************************* 
static void create_wells-panel(frame) 
Frame frame; 
( Panel panel; 

int i; 

panel = window_create(frame,PANEL, 
WIN_CONSUME_PICK_EVENTS, 

0) ; 

WIN NO EVENTS, 
LOC=MOVE, 
LOC_DRAG, 
LOC_STILL, 
LOC_WINENTER, 
LOC WINEXIT, 
LOC=RGNENTER, 
LOC_RGNEXIT, 
WIN MOUSE BUTTONS, 
0, - -

(void) panel_create_itern(panel,PANEL_MESSAGE, 
PANEL LABEL STRING, " LIST OF WELLS", 
0); - -

for (i=O;i(nbr wells;i++) ( 
(void) panel-create_itern(panel,PANEL_BUTTON, 

PANEL CLIENT DATA, i, 
PANEL=LABEL_IMAGE, image[i] [0], 
PANEL_LABEL_X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(i+l), 
PANEL_EVENT_PROC, well_button-proc, 
PANEL_NOT I FY_P ROC , open_well, 
0) ; 

square[i] = panel_create_item(panel,PANEL_BUTTON, 
PANEL CLIENT DATA, i, 
PANEL=LABEL_IMAGE, closed_square, 
0) ; 

} 
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(void) pane1_create_item(pane1,PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_image(panel,"Quit",O,O), 
PANEL LABEL X, ATTR COL(O), 
PANEL:LABEL:Y, ATTR:ROW(i+2), 
PANEL_EVENT_PROC, quit_button-proc, 
PANEL_NOTIFY_PROC, quit, 
° ) ; 

.window_fit(panel); 
} 

/******************************************************************************* 
/* open one well * 
/******************************************************************************* 
static void open_well (item, event) 
Panel item item; 
Event-*event; 
( int w_number=(int) panel_get(item,PANEL_CLIENT_DATA); 

} 

if (!w_analysed[w_nurober]) ( 
w_analysed[w_nurober] =1; 
do_well_analysis(w_number,w_name[w_number]); 
} 

if (!w window[w number]) 
bind-window_wIth_well(w_number); 

show_window(w_number); 

/***********************************************************************~******* 
/* end of program * 
/******************************************************************************* 
static void quite) 
(if (confirm_quit(» ( 

destroy_a11_windows(); 
send_quit ( ); 
} 

} 

/******************************************************************************* 
/* start loop * 
/******************************************************************************* 
extern void start_1oop() 
( window_main_1oop(base_frarne); 
} 
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/******************************************************************************* 
/* "win_c1oser.c" : Definition of the closer package. . * 
/******************************************************************************* 
~include "win.h" 

/******************************************************************************* 
/* references * 
/******************************************************************************* 
extern void free_window(); 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void create closer(); 

static void quit closer(); /* procedure for the Notifier */ 

extern void call closer(); 
static void create_closer_items(); 
static void close_subframe_from_closer(); /* procedure for the Notifier */ 

/******************************************************************************* 
/* create the closer * 
/******************************************************************************* 
extern void create_closer() 
{ Panel panel; 

closer = window_create(NULL,FRAME, 
FRAME SHOW LABEL, FALSE, 
WIN X-; 400-; 
WIN-Y, 400, 
0); -

panel = window_create(closer,PANEL,O); 

(void) panel_create_item(panel,PANEL_MESSAGE, 
PANEL LABEL STRING, " Too many opened windows. " 
0); - -

(void) panel_create_item(pane1,PANEL_MESSAGE, 
PANEL LABEL STRING, " Please close at least", 
PANEL=LABEL=X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(1), 
0); 

(void) panel_create_item(panel,PANEL_MESSAGE, 
PANEL LABEL STRING, " one of those wells:", 
PANEL=LABEL=X, ATTR_COL( 0), 
PANEL_LABEL_Y, ATTR_ROW(2), 
0); 

. (void) panel_create_item(panel,PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_image(panel,"Ok",O,O), 
PANEL_LABEL_X, ATTR_COL(O), 
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} 

PANEL LABEL Y, ATTR ROW(9), 
PANEL=NOTIFY_PROC, quit_closer, 
0); 

window_set(closer,WIN_CLIENT_DATA,panel,O)i 

/******************************************************************************* 
/* quit the closer. * 
/******************************************************************************* 
static void quit_closer(item,event) 
Panel_item item; 
Event *event; 
{ window return(); 
} -

/********************************************~********************************** 
/* call the closer * 
/******************************************************************************* 
extern void call_closer() 
{ Panel panel; 

} 

panel = (Panel) window_get(closer,WIN_CLIENT_DATA); 
create_closer_items(panel); 
window_loop(closer)j 

/******************************************************************************* 
/* create the menu of wells * 
/******************************************************************************* 
static void create_closer_items(panel) 
Panel panel; 
{ int i,w_numberj 

for (i=l;i<MAX_NBR_WINDOWS;i++) { 
w_number = (int) window_get(w_frame[i],WIN_CLIENT~DATA)j 
(void) panel_create_item(panel,PANEL_BUTTON, 

} 
window_fit(panel); 
window_fit(closer)j 

} 

PANEL_LABEL_X, ATTR_COL(O), 
PANEL_LABEL_Y, ATTR_ROW(i+3), 
PANEL_LABEL_IMAGE, image[w_number] [0], 
PANEL CLIENT DATA, i, 
PANEL-NOT!FY-PROC, close subframe from closer, 
0); - - - --

/******************************************************************************* 
/* close a sub frame from closer * 
/******************************************************************************* 
static void close_.subframe_from_closer( item,event) 
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Panel_item item; 
Event *event; 
{ int f_number = (int) panel_get(item,PANEL_CLIENT_DATA), 

} 

client = (int) window_get(w_frame[f_number],WIN_CLIENT_DATA); 

free_window(f_number); 
pane1_set(item,PANEL_LABEL_lMAGE,image[c1ient] [1],0); 

152 



Jun 7 15:17 1988 win confirmer.c Page 1 

/******************************************************************************* 
/* "win_confirmer.c" : definition of the confirmer window ,* 
/******************************************************************************* 
#include "win.h" 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void create confirmer(); 

static int yes_no(); /* procedure for the Notifier */ 

extern int confirm_quit(); 

/******************************************************************************* 
/* create the confirmer * 
/******************************************************************************* 
extern voidcreate_confirmer() 
( Panel panel; 

confirmer = window_create(NULL,FRAME, . 
FRAME SHOW LABEL, FALSE, 
WIN X-; 400-; 
WIN-Y, 400, 
0) ;-

panel = window_create(confirmer,PANEL,O); 

(void) panel_create_item(panel,PANEL_MESSAGE, 
PANEL LABEL STRING, 

" Do you-really want to quit? ", 
0) ; 

(void) panel_create_item(panel,PANEL_BUTTON, 
PANEL LABEL X, ATTR_COL(8), 
PANEL=LABEL=Y, ATTR_ROW(2), 
PANEL_CLIENT_DATA, TRUE, 
PANEL LABEL IMAGE, 

panel_button_image(panel,"Yes",3,O), 
PANEL_NOTIFY_PROC, yes_no, 
0) i 

(void) panel_create_item(panel,PANEL_BUTTON, 

window_fit(panel); 
window_fit(confirmer); 

} 

PANEL_CLIENT_DATA, FALSE, 
PANEL LABEL IMAGE, 

panel_button_image(panel,"No",3,O), 
PANEL_NOTIFY_PROC, yes_no, 
0) i 

/******************************************************************************* 
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/* response from the confirmer * 
/******************************************************************************* 
static int yes_no(item,event) 
Panel_item item; 
Event *event; 
{ window_return«int)panel_get(item,PANEL_CLIENT_DATA»; 
} 

/******************************************************************************* 
/* call the confirmer * 
/******************************************************************************* -
int confirm_quit() 
{ return «int) window_loop(confirmer»; 
} 
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/******************************************************************************* 
/* "event_handle.c" : handle events for panels. * 
/******************************************************************************* 
#include "win.h" 

/******************************************************************************* 
/* references * 
/******************************************************************************* 
extern void expl_mess(); 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void well_button-proc(); 
extern void quit_button-prOC()i 
extern void opened_button-proc(); 
extern void closed_button-proc(); 
extern void initial_button-proc(); 
extern void filtered_button~roc(); 
extern void semilog_button-proc(); 
extern void loglog_button-proc(); 
extern void derivative_button-proc()i 

/******************************************************************************* 
/* events for list buttons * 
/******************************************************************************* 
extern void well_button-proc(item,event) 
Panel item item; 
Event-*event; 
( int client=(int)panel_get(item,PANEL_CLIENT_DATA); 

static int flag; 

switch 
. case 

case 

(event_id(event» ( 
MS_LEFT: if (event_is_up(event» ( 

panel_accept-preview(item,event); 
expl_mess(mess[client] [(w_analysed[client])]); 
panel_begin-preview(item,event); 
} . 

break; 
PANEL_EVENT_MOVE_IN: panel set(item,PANEL LABEL IMAGE, 

image [client] [O]~O); -
panel_begin-preview(item,event); 
expl_mess(mess[client] [(w_analysed[client])]); 
flag=l; 
break; 

case PANEL_EVENT_DRAG_IN: panel set(item,PANEL LABEL IMAGE, 
image[client] [O]~O); -

panel_begin-preview(item,event); 
expl_mess(mess[client] [(w_analysed[client])]); 
expl_mess(mess[client]); 
flag=l; 
break; 

case LOC_STILL: panel_set(item,PANEL_LABEL_IMAGE, 
image [client] [0],0); 
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} 

case 

panel_begin-preview(item,event); 
expl_mess(mess[client] [(w_analysed[client)]); 
flag=l; 
break; 

PANEL_EVENT_C&~CEL: if (flag) ( 
panel_cancel-preview(item,event); 
panel_set(item,PANEL_LABEL_IMAGE, 

image [client] [(w_analysed[client])],O); 
expl_mess(ltlt); 
flag=O; 
} 

break; 
case LOC_WINEXIT: if (flag) ( 

panel_cancel-preview(item,event); 
panel_set(item,PANEL_LABEL_IMAGE, 

} 

image[client] [(w_analysed[client])],O); 
expl_mess(""); 
flag=O; 
} 

break; 

/******************************************************************************* 
/* events for quit button * 
/******************************************************************************* 
extern void quit_button-proc(item,event) 
Panel_item item; 
Event *event; 
( static intflag; 

switch (event_id(event» ( 
case MS_LEFT: if (event_is_up(event» ( 

panel_accept~review(item,event); 
flag=O; 
} 

break; 
case PANEL_EVENT_MOVE_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_meSs(ltBack to Art Graphics Studio. It); 
flag=l; 
} 

break; 
case PANEL_EVENT_DRAG_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess(ltBack to Art Graphics Studio. It); 
f1ag=1; 
} 

break; 
case LOC_STILL: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess(ltBack to Art Graphics Studio. It); 
flag=li 
} 

break; 
case PANEL_EVENT_CANCEL: if (flag) ( 
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case LOC WINEXIT: 

} 
} 

panel_cancel-preview(item,event); 
expl_mess(""); 
flag=O; 
} 

break; 
if (flag) [ 

panel_cancel-preview(item,event); 
expl_mess(flfI); 
flag=O; 
} 

break; 

/******************************************************************************* 
/* events for opened square button * 
/******************************************************************************* 
extern void opened_button-proc(item,event) 
Panel_item item; 
Event *event; 
[ int client = (int) panel_get(item,PANEL_CLIENT_DATA); 

} 

switch (event id(event» { 
case MS_LEFT: if (event_is_up(event» 

panel_accept-preview(item,event); 
break; 

} 

case PANEL_EVENT_MOVE_IN: expl_mess(mess[client] [2]); 
break; 

case PANEL_EVENT_DRAG_IN: expl_mess(mess[client] [2]); 
break; 

case LOC_STILL: expl_mess(mess[client] [2]); 
break; 

case PANEL_EVENT_CANCEL: expl_mess(""); 
break; 

case LOC_WINEXIT: expl_mess(""); 
break; 

/******************************************************************************* 
/* events for closed square button * 
/******************************************************************************* 
extern void closed_button-proc(item,event) 
Panel item item; 
Event-*event; 
[ int client = (int) panel_get(item,PANEL_CLIENT_DATA); 

switch (event id(event» { 
case MS LEFT: if (event_is_up(event» 

panel~accept-preview(item,event)i 
break; 

case PANEL_EVENT_MOVE_IN: expl_mess(mess[client] [1]); 
break; 

case PANEL_EVENT_DRAG_IN: expl_mess(mess[clientJ [1]); 
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} 
} 

break; 
case LOC_STILL: expl_mess(mess[client] [1]); 

break; 
case PANEL EVENT CANCEL: expl mess(""); 

- - break; 
case LOC_WINEXIT: expl_mess(""); 

break; 

/******************************************************************************* 
/* events for initial button * 
/******************************************************************************* 
extern void initial_button-proc(item,event) 
Panel item item; 
Event-*event; 
( static int flag; 

switch (event_id(event» ( 

} 

case MS_LEFT: if (event_is_up(event» ( 
panel_accept-preview(item,event); 
panel_begin-preview(item,event); 
} 

break; 
case PANEL_EVENT_MOVE_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess("Display the initial curve. "); 
flag=li 
} 

break; 
case PANEL_EVENT_DRAG_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess("Display the initial curve."); 
flag=l; 
} 

break; 
case LOC_STILL: if (!~lag) [ 

panel_begin-preview(item,event); 
expl_mess("Display the initial curve. "); 
flag=l; 
} 

break; 
case PANEL_EVENT_CANCEL: if (flag) [ 

panel_cancel-preview(item,event); 
expl_mess(""); 
flag=O; 
} 

break; 
case LOC WINEXIT: if (flag) ( 

panel_cancel_preview(itern,event); 
expl_mess(""); 
flag=O; 
} 

break; 
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} 

/******************************************************************************* 
/* events for filtered button * 
/******************************************************************************* 
extern void filtered_button-proc(item,event) 
Panel_item item; 
Event *event; 
{ static int flag; 

} 

switch (event_id(event» { 

} 

case MS_LEFT: if (event_is_up(event» ( 
panel_accept-preview(item,event); 
panel_begin-preview(item,event); 
} 

break; 
case PANEL_EVENT_MOVE_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess("Display the filtered curve."); 
flag=l; 
} 

break; 
case PANEL_EVENT_DRAG_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess("Display the filtered curve. "); 
flag=l; 
} 

break; 
case LOC STILL: if (!flag) [ 

panel_begin-preview(item,event); 
expl_mess("Display the filtered curve."); 
flag=l; 
} 

break; 
case PANEL_EVENT_CANCEL: if (flag) [ 

panel_cancel-preview(item,event); 
expl_mess(""); 
flag=O; 
} 

break; 
case LOC_WINEXIT: if (flag) [ 

panel_cancel-preview(item,event); 
expl_mess(""); 
flag=O; 
} 

break; 

/******************************************************************************* 
/* events for semilog button * 
/******************************************************************************* 
extern void semilog_button-proc(item,event) 
Panel_item item; 
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Event *event; 
( static int flag; 

} 

switch (event_id(event» ( 

} 

case MS LEFT: if (event is up(event» ( 
- pane1_accept-preview(item,event); 

pane1_begin-preview(item,event); 
} 

break; 
case MS_RIGHT: if (event_is_down(event» ( 

pane1_accept-preview(item,event); 
pane1_begin-preview(item,event); 
} 

break; 
case PANEL_EVENT_MOVE_IN: if (!f1ag) ( 

pane1_begin-preview(item,event); 
exp1_mess( 

"Display the semi10g curve. L: Alone. R: With patterns."); 
f1ag=1; 
} 

break; 
case PANEL_EVENT_DRAG_IN: if (!f1ag) ( 

pane1_begin-preview(item,event); 
exp1_mess( 

"Display the semilog curve. L: Alone. R: With patterns."); 
f1ag=1; 
} 

break; 
case LOC_STILL: if (!f1ag) ( 

panel_begin-preview(item,event); 
expl_mess( 
"Disp1ay the semi log curve. L: Alone. R: With patterns. "); 
f1ag=1; 
} 

break; 
case PANEL_EVENT_CANCEL: if (flag) ( 

panel_cancel-preview(item,event)i 
expl_mess(""); 
flag=O; 
} 

break; 
case LOC_WINEXIT: if (flag) ( 

panel_cancel-preview(item,event); 
expl_mess(""); 
flag=O; 
} 

break; 

/******************************************************************************* 
/* events for log log button * 
/******************************************************************************* 
extern void loglog_button-proc(item,event) 
Panel_item item; 
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Event *eventi 
( static int .flag; 

switch (event_id(event» ( 
case MS_LEFT: if (event_is_up(event» ( 

pane1_accept-preview(item,event); 
panel_begin-preview(item,event)i 
} 

break; 
case MS_RIGHT: if (event_is_down(event» ( 

. panel_accept-preview(item,event); 
panel_begin-preview(item,event); 
} 

break; 
case PANEL EVENT MOVE IN: if (!flag) ( 

- - - panel~begin-preview(item,event); 
expl_mess( 

"Display the loglog curve. L: Alone. R: with patterns."); 
flag=l; 
} 

break; 
case PANEL_EVENT_DRAG_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess( 

'. "Display the log log curve. L: Alone. R: With patterns. ") i 

} 
} 

flag=li 
} 

break; 
case LOC_STILL: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess( 
"Display the loglog curve. L: Alone. R: with patterns. "); 
flag=l; 
} 

break; 
case PANEL_EVENT_CANCEL: if (flag) ( 

panel_cancel-preview(item,event); 
expl_mess(""); 
flag=O; 
} 

break; 
case LOC_WINEXIT: if (flag) ( 

panel_cancel-preview(item,event); 
expl_mess("II); 
flag=O; 
} 

break; 

/******************************************************************************* 
/* events for derivative button * 
/******************************************************************************* 
extern void derivative_button-proc(item,event) 
Panel_item item; 
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Event *event; 
( static int flag; 

} 

switch (event id(event» ( 
case MS_LEFT: if (event_is_up(event» ( 

panel_accept-preview(item,event); 
panel_begin-preview(item,event); 

} 

} 
break; 

case MS_RIGHT: if (event_is_down(event» ( 
panel_accept-preview(item,event); 
panel_begin-preview(item,event); 
} 

break; 
case PANEL_EVENT_MOVE_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess( 

"Display the derivative curve. L: Alone. R: With patterns.") 
flag-I; 
} 

break; 
case PANEL_EVENT_DRAG_IN: if (!flag) ( 

panel_begin-preview(item,event); 
expl_mess( 

"Display the derivative curve. L: Alone. R: With patterns.") 
flag=l; 
} 

break; 
case LOC_STILL: if (!flag) ( 

panel_begin-preview(item,event); 
expI_mess( 

"Display the derivative curve. L: Alone. R: with patterns. ") 
flag=l; 
} 

break; 
case PANEL_EVENT_CANCEL: if (flag) ( 

panel_cancel-preview(item,event); 
expl_mess(""); 
flag=O; 
} 

break; 
case LOC~WINEXIT: if (flag) ( 

panel_cancel-preview(item,event); 
expl_mess("II); 
flag=O; 
} 

break; 
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/******************************************************************************* 
/* "win init.c" : initializations for windows. * 
/******************************************************************************* 
#define WIN_MAIN 

#include "win.h" 
#include "env.h" 
#include <stdio.h) 
#include <string.h) 

/******************************************************************************* 
/* references * 
/******************************************************************************* 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void init_windows(); . 
, static int read_wells_list(); 

static void create_images(); 
static void create_messages(); 
static void open_fonts(); 

/******************************************************************************* 
/* initializations for windows * 
/******************************************************************************* 
extern void init_windows() . 
{ nbr_wells=read_wells_list(WELLS_LIST); 

create_images(); 

create_messages(); 

open_fonts(); 
} 

/******************************************************************************* 
/* read the list of wells * 
/******************************************************************************* 
static int read_wells_list(name) 
char *name; 
{ int i; 

} 

FILE *in_file; 

if (!(in_fi1e = fopen(name,"r"») return 0; 

for (i=O;!feof(in_file);i++) 
fscanf(in_file,"%s*\n",w_name[i]); 

fclose( in_file) ; 
return i-I; 

163 



Jun 7 15:17 1988 win init.c Page 2 

/******************************************************************************* 
/* create the images for panels * 
/******************************************************************************* 
static void create_images() 
{ int i,j,width,1ength; 

} 

struct pixrect *background j-;' 
Frame framej 
Panel panel; 

frame 
panel 

window_create{NULL,FRAME,FRAME_NO_CONFIRM,TRUE,O)j 
window_create(frame,PANEL,O); 

opened_square = mem_create(DIM_SQ,DIM_SQ,l); 
pr_vector(opened_square,O,O,DIM_SQ-l,O,PIX_SRC,I); 
pr_vector(opened_square,0,0,0,DIM_SQ-l,PIX_SRC,1)j 
pr_vector(opened_square,O,DIM_SQ-l,DIM_SQ-l,DIM_SQ-l,PIX_SRC,1); 
pr_vector(opened_square,DIM_SQ-l,0,DIM_SQ-1,DIM_SQ-1,PIX_SRC,l); 

closed_square = mem_create(DIM_SQ,DIM_SQ,l); 
pr_rop(closed_square,O,O,DIM_SQ,DIM_SQ,PIX_NOT(PIX_SRC),opened_square,O,O); 

for (i=O;i<nbr_wellsji++) 
image[i] [0] = panel_button_image(panel,w_name[i],MAX_CHAR_NAME,O); 

width = image[O] [O]->pr_size.x; 
length = image[O] [O]->pr_size.y; 

background - mem_create(width,length,1); 
for (i=O;i<width;i++) 

for (j=O;j<length;j++) 
pr -put (background,i,j,(i+j)%2); 

for (i=O;i<nbr wells;i++) ( 
image[i] [1] = mem_create(width,length,l); 
pr_rop(image[i] [l],O,O,width,length,PIX_SRC,background,O,O); 
pr_rop(image[i] [l],O,O,width,length,PIX_SRClpIX_DST,image[i] [0],0,0); 
} 

window_destroy(frame); 

/******************************************************************************* 
/* create the messages * 
/******************************************************************************* 
static void create_messages() 
( int i,j; 

for (i=O;i<nbr_wellsji++) { 
strcpy(mess[i] [O],"Start analysis for well "); 
strcpy(mess [i] [1] , "Show window for well"); 
strcpy(mess[i] [2] ,"Close window for well "); 

for (j=0;j<3;j++) ( 
strcat(mess[i] [j],w_name[i]); 
strcat(mess [i] [j] ," . ") ; 
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} 
} 

} 

/******************************************************************************* 
/* open the fonts . * 
/******************************************************************************* 
static void open_fonts() 
( sca1e_font=pf_open(tI/usr/1ib/fonts/fixedwidthfonts/screen.r.7"); 
} 
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1******************************************************************************* 
1* "win_main.c" : call the different procedures used for windows * 
1***************************************************** ************************** 
#inc1ude <stdio.h> 

1***************************************************** ************************** 
1* references *:. 

-1**************************************************** *************************** 
extern void init_windows(); 
extern void create_base_frame(); 
extern void create_exp1_bar(); 
extern void create_we11_frames(); 
extern void create_c1oser(); 
extern void create_confirmer(); 

1******************************************************************************* 
1* contents * 
1******************************************************************************* 
extern void create_windows(); 

1******************************************************************************* 
1* create windows * 
1******************************************************************************* 
extern void create_windows() 
( 

} 

init_windows(); 
create_base_frame(); 
create_exp1_bar(); 
create_we11_frames(); 
create closer(); 
create_confirmer(); 
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/******************************************************************************* 
/* "win util. cIt : utilities for windows. * 
/******************************************************************************* 
#include "win.h" 

/******************************************************************************* 
/* references * 
/******************************************************************************* 
extern void call_closer(); 

extern void opened_button-proc{); 
extern void closed_button-proc{); 

extern void draw_initial_curve(); 

/******************************************************************************* 
/* contents * 
/******************************************************************************* 
extern void bind_window_with_well(); 

static int find next frame(); 
static void set=opened_square(); 

static void close_well_from_square(); 

extern void free window(); 
static void set_closed_square(); 

static void open_well_from_square(); 

extern void show_window(); 

extern void destroy_all_windows(); 

/******************************************************************************* 
/* link one well to one window * 
/******************************************************************************* 
extern void bind window with wellen) 
int n; - --
[ int i; 

} 

while (!(i=next_frame_free{») 
call_closer{); 

w window[n)=i; 
wIndow_set{w_frame[i),FRAME_LABEL,w_name[n), 

WIN_CLIENT_DATA, n, 
0) ; 

set_opened_square(n); 
draw_initial_curve(n); 

/******************************************************************************* 
/* find the next free frame * 
/******************************************************************************* 
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static int next_frame_free() 
( int i; 

} 

for (i-1;i<MAX_NBR_WINDOWS;i++) 
if (!bound_frame[i]) ( 

bound frame[i]=l; 
return i; 
} 

return 0; 

/******************************************************************************* 
/* set the square to "opened" * 
/******************************************************************************* 
static void set_opened_square(n) 
int n; 
( 

} 

panel_set(square[n],PANEL_LABEL_lMAGE,opened_square, 
PANEL_EVENT_PROC, opened_button-proc, 
PANEL_NOTIFY_PROC,close_well_from_square, 
0); . 

/******************************************************************************* 
/* close a well from the corresponding square item * 
/******************************************************************************* 
static void close_well_from_square(item,event) 
Panel_item item; 
Event *event; 
( int w_number=(int) panel_get(item,PANEL_CLIENT_DATA); 

free_window(w_window[w_number]); 
} 

/******************************************************************************* 
/* free one window '* 
/******************************************************************************* 
extern void free_window(f_number) 
int f number; 
(. int-w_number=(int) window_get(w_frame[f_number],WIN_CLIENT_DATA); 

} 

bound frame[f number]=O; 
w_window[w_nuIDber] =0; 
set_closed_square(w_number); 
window_set(w_frame[f_number],WIN_SHOW,FALSE,O); 

-\ 

/**** **** ** *1< * *.1;/* *** **** **** *** *** * * ******** ******** *** ** *** ************ ***** ** 
/* set the s~uare to "closed" * 
/****************~t~************************************************************ 
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static void set_c1osed_square(n) 
int n; 
( 

} 

panel_set(square[n],PANEL_LABEL_lMAGE,closed_square, 
PANEL_EVENT_PROC, c1osed_button-proc, 
PANEL_NOTIFY_PROC,open_well_from_square, 
0) ; 

\ 

/******************************************************************************* 
/* open a well from the corresponding square item . * 
/******************************************************************************* 
static void open_well_from_square(item,event) 
Panel item item; 
Event-*eventj 
( int w_number=(int) panel_get(item, PANEL_CLIENT.:....DATA) 0; 

} 

bind window with well(w number); 
show=windowTw_nuillber); -

/***************************************************************~*************** 
/* show the window for the well n * 
/******************************************************************************* 
extern void show_window(n) 
int n; 
( window_set(w_frame[(w_window[n])],WIN_SHOW,TRUE,O); 
} . 

/******************************************************************************* 
/* destroy all the windows before quitting * 
/******************************************************************************* 
extern void destroy_all....:.,windows() . 
( 

} 

window_set(c1oser,FRAME_NO_CONFIRM,TRUE,O)i 
window_set(confirmer,FRAME_NO_CONFIRM,TRUE,O); 
window_set(base_frame,FRAME_NO_CONFIRMrTRUE,O); 

window_destroy(c1oser); 
window_destroy(confirmer); 
window_destroy(base_frame); 
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/******************************************************************************* 
/* "win_we1ls.c" : definition of the wells windows. Date: OS/26/88 * 
/******************************************************************************* 
#define GPH_MAIN 

#include "win.h" 
#include "gph.h" 

/******************************************************************************* 

-. 
/* references * ~ 
/******************************************************************************* 
extern void free_window(); 

extern void draw_initial_curve(); 
extern void draw_filtered_curve(); 
extern void draw_semi1og_curve(); 
extern void draw_1oglog_curve(); 
extern void draw_derivative_curve(); 
extern void draw_semi1og~atterns(); 
extern void draw_1oglog~atterns(); 
extern void draw_derivative~atterns(); 

extern void initial_button~roc(); 
extern void filtered_button~roc(); 
extern void semilog_button~roc(); 
extern void loglog_button~roc(); 
extern void derivative_button~roc(); 

/******************************************************************************* 
/* contents * 
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *.'1< * * * * * * * * * * * * * * * * * * 
extern void create_we11_frames(); 

static Menu new sub menu(); 
static void close=subfr~e_from_menu(); /* procedure for the Notifier */ 

static void create_curves~anel(); 
static void display_initial_curve(); 
static void display_filtered_curve(); 
static void display_semilog_curve(); 
static void display_log1og_curve(); 
static void display_derivative_curve(); 

static void create_canvas(); 

/* procedure for the Notifier */ 
/* procedure for the Notifier */ 
/* procedure for the Notifier */ 
/* procedure for the Notifier */. 
/* procedure for the Notifier */ 

/******************************************************************************* 
/* create the windows for the wells * 
/******************************************************************************* 
extern void create well frames() 
( int i; --

static int xJ'os[] {0,330,480,180,630}; 
static int YJ'os[] [0,270,240,300,2l0}; 
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for (i=lii<MAX_NBR_WINDOWSii++) ( 
w frame[iJ = window create(base frame, FRAME, 

- - - FRAME SHOW LABEL, TRUE , 
FRAME-NO CONFIRM, TRUE, 
WIN_X~ x:pos[iJ, 
WIN_Y, y -pos [i] , 
WIN HEIGHT, VERTICAL SIZE+100, 
WIN-WIDTH, HORIZONTAL SIZE, 
0);- -

'-, window_set{w_frame[i] ,WIN_MENU,new_sub_menu(i}, 0); 

create_curves-panel(i); 

} 

create_canvas{i); 

window_fit_height{w_frame[i]); 
} 

/******************************************************************************* 
/* set the menu for the subframe * 
/******************************************************************************* 
static Menu new_sub_menu(f_number) 
int f number; 
{ Menu menu; 

menu_set (menu, MENU REMOVE, 1, 
MENU-REMOVE, 2 , 
MENU=INSERT, 0, menu_create_item(. 

MENU_STRING, "Close", 
MENU ACTION PROC, close subframe from menu, 
0), - - -

MENU_CLIENT_DATA, f_number, 
0); 

return(menu)} 
} 

/******************************************************************************* 
/* close a frame from menu * 
/******************************************************************************* 
static void close_subframe_from_menu(m,mi) 
Menu m; 
Menu item mi; 
{ free_window«int) menu_get(m,MENU_CLIENT_DATA»i 
} 

/******************************************************************************* 
/* create the panel for displaying curves * 
/******************************************************************************* 
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static void create_curves-panel(f_number) 
int f number; 
( Panel panel; 

} 

panel = window create(w frarne[f number],PANEL, 
- WIN CONSUME PICK EVENTS, WIN NO EVENTS, 

0); 

- - - LOC=MOVE, 
LOC_DRAG, 
LOC STILL, 
LOC-WINENTER, 
LOC-WINEXIT, 
LOC=RGNENTER, 
LOC RGNEXIT, 
WIN-MOUSE BUTTONS, 
0, - -

(void) pane1_create_item(panel,PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_irnage(panel,"Initial",O,O), 
PANEL_EVENT_PROC, initial_button-proc, 
PANEL_NOT I FY_P ROC , disp1ay_initial_curve, 
0); 

(void) panel_create_item(pane1,PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_irnage(panel,"Fi1tered",0,0), 
PANEL_EVENT_PROC, filtered_button-proc, 
PANEL_NOT I FY_P ROC , display_filtered_curve, 
0) ; 

(void) panel_create_item(panel,PANEL_BUTTON, 
PANEL_LABEL_IMAGE, panel_button_irnage(panel,"Sernilog",O,O), 
PANEL_EVENT_PROC, sernilog_button-proc, . 
PANEL_NOTIFY_PROC, display_sernilog_curve~ 
0); 

(void) panel_create_item(panel,PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_irnage(panel,"Loglog" ,0,0) , 
PANEL_EVENT_PROC, loglog_button-proc, 
PANEL_NOT I FY_P ROC , display_loglog_curve, 
0); 

(void) panel_create_item(panel,PANEL_BUTTON, 
PANEL_LABEL_lMAGE, panel_button_irnage(panel,"Derivative",O,O), 
PANEL_EVENT_PROC, derivative_button-proc, 
PANEL_NOT I FY_PROC , display_derivative_curve, 
0); 

window_fit_height(panel); 

1***************************************************** ************************** 
1* display initial curve * 
1***************************************************** ************************** ~ 
static void display_initial_curve(itern,event) 
Panel item item; 
Event-*eventi 
( int client = (int) window_get«Frarne) window_get ( 

(Panel) panel_get(itern,PANEL_PARENT_PANEL), 
WIN_OWNER) , 
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draw_initia1_curve(c1ient); 
} 

1***************************************************** ************************** 
1* display filtered curve * 
1******************************************************************************* 
static void display_filtered_curve(item,event) 
Panel item item; 
Event-*event; 
{ int client = (int) window_get«Frame) window_get ( 

(Panel) panel_get(item,PANEL_PARENT_PANEL), 
WIN_OWNER) , 

WIN_CLIENT_DATA); 
draw_filtered_curve(client); 

} 

1***************************************************** ************************** 
1* display semilog curve * 
1***************************************************** ************************** 
static void display_semilog_curve(item,event) 

.>P anel,;... item item; 
Event *event; 
{ int client = (int) window_get«Frame) window_get ( 

(Panel) panel_get(item,PANEL_PARENT_PANEL), 
WIN_OWNER) , 

} 

WIN_CLIENT_DATA); 
switch(event_id(event» { 

} 

case MS_LEFT: draw_semilog_curve(client); 
break; 

case MS_RIGHT: draw_sernilog_curve(client)i 
draw_semilog-patterns(client); 
break; 

1******************************************************************************* 
1* display log log curve . . * 
1******************************************************************************* 
static void display_loglog_curve(item,event) 
Panel_item item; 
Event *event; 
( int client = (int) window_get«Frame) window_get ( 

(Panel) panel_get(item,PANEL_PARENT_PANEL), 
WIN_OWNER) , 

WIN_CLIENT~DATA); 
switch(event_id(event» { 

} 

case MS_LEFT: draw_loglog_curve(client); 
break; 

case MS_RIGHT: draw_loglog_curve(client); 
draw_loglog-patterns(client); 
break; 
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} 

/******************************************************************************* 
/* display derivative curve * 
/******************************************************************************* 
static void disp1ay_derivative_curve(item,event) 
Panel_item item; 
Event *event; 
( int client = (int) window_get«Frarne) window_get ( 

(Panel) pane1_get(item,PANEL_PARENT_PANEL), 
WIN_OWNER) , 

} 

WIN_CLIENT_DATA); 
switch(event_id(event» ( 

} 

case MS_LEFT: draw_derivative_curve(c1ient); 
break; 

case MS RIGHT: draw derivative curve(client); 
- draw=derivative-patterns(c1ient); 

break; 

/******************************************************************************* 
/* create the graphic window * 
/******************************************************************************* 
static void create_canvas(f_number) 
int f number; 
( Canvas canvas; 

} 

canvas window_create(w_frame[f_number],CANVAS, 
WIN HEIGHT, VERTICAL SIZE, 
0) i- -

pw[f_number] = canvas-pixwin(canVaS)i 
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;;; -*- mode: ART; Package: ART-USER; Base:10. -*
;;; file: well/input.art 

;;i This file contains the initial facts and schemata. 

;;; The program will use a one level viewpoint structure. This level, 
i;; called "hypothetical" will contain all hypothesis regarding the 

• ; ;; nature of the medium. 

(def-viewpoint-levels hypothetical) 

ii; Initial facts and relations. 

(defrelation start-up (?init) 
"flag for opening window for user interface") 

(defrelation abs-d-error (?error) 
!'-absolute imprecision allowed on the derivatives") 

(defrelation significant-length (?sig-length) 
"length in fraction of a log cycle") 

(defrelation open-stream (?stream) 
"stream between ART and e") 

(defrelation read-data (?data) 
"raw data from stream") 

(deffacts initial 
(start-up yes) J~'~;:' 

) 

(deffacts parameters "used for curve analysis" 
(abs-d-error 0.15) 
(significant-length 0.25) 
) 

(defschema derivative 
(instance-of relation) 
(inverse derivative-of» 

(defschema semilog 
(instance-of relation) 
(inverse semilog-of» 

(defschema loglog 
(instance-of relation) 
(inverse loglog-of» 

(defschema model 
(instance-of relation) 
(inverse model-of» 

(defschema straight-line 
(instance-of slot) 
(slot-how-many multiple-values» 

(defschema hump 
(instance-of slot) 
(slot-how-many multiple-values» 
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(defschema well 
(derivative) 
(sernilog) 
(loglog) 
(model) 
(last-time) 
(number) 
) 

(defschema well-sernilog 
(sernilog-of) 
(straight-line) 
) 

(defschema well-loglog 
(loglog-of) 
(log-derivative) 
(straight-line) 
) 

(defschema well-derivative 
(derivative-of) 
(time) 
(p-d-derivative) 
(max-p-derivative) 
(local-max-time) 
(straight-line) 
(hwnp) 
) 

(defschema well-model 
(model-of) 
(reservoir) 
(reservoir-exp (» 
(early) 
(early-exp (» 
(intermediate) 
(late) 
(wellbore-storage) 
(wellbore-exp (» 
(fractured) 
(fractured-exp (» 
(boundary) 
(boundary-exp (» 
) 

(defrule start-C-program 
?x (- (start-up yes) 

=) 

(retract ?x) 
(setq c-stream #L(run-unix-program II-antoine/Wes/Exec/c wes" 

:input :stream 
:output :stream 
:wait nil» 

(assert (open-stream =c-stream») 
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(defrule read-stream 

=) 

(declare (salience -1000» 
?x <- (open-stream ?stream) 

(retract ?x) 
(if (listen ?stream) then 

(assert (read-data =(seq*$ (read ?stream»») 
(assert (open-stream ?stream») 

(defrule open-well 
?x <- (read-data (1 ?well-number ?well» 

=) 

(retract ?x) 
(assert (schema ?well 

(instance-of well) 
(semilog =(concat ?well 'semilog» 
(loglog =(concat ?well 'loglog» 
(derivative =(concat ?well 'derivative» 
(model =(concat ?we11 'model» 
(number ?well-number»» 

(defrule initial-data 

=) 

?x <- (read-data (2 ?w-n $?data» 
(number ?well ?w-n) 
(loglog ?well ?well-l) 
(derivative ?well ?well-d) 

(retract ?x) 
(assert (schema ?well 

(last-time =(nth$ ?data 1»» 
(assert (schema ?well-l 

(log-derivative =(nth$ ?data 2»» 
(assert (schema ?we1l-d 

(time =(nth$ ?data 3» 
(p-d-derivative =(nth$ ?data 4» 
(max-p-derivative =(nth$ ?data 5»») 

(defrule semilog-straight-lines 

=) 

?x (- (read-data (3 ?w-n ?n $?data» 
(number ?we11 ?w-n) 
(semilog ?well ?well-s) 

(retract ?x) 
(for i from 1 to ?n do 

(assert (schema ?well-s 
(straight-line =(nth$ ?data i»»» 

(defrule loglog-straight-lines 

=) 

?x (- (read-data (4 ?w-n ?n $?data» 
(number ?well ?w-n) 
(loglog ?well ?well-l) 

(retract ?x) 
(for i from 1 to ?n do 
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(assert (schema ?well-l 
(straight-line =(nth$ ?data i»»» 

(defrule derivative-straight-lines 

=> 

?x (- (read-data (5 ?w-n ?n $?data» 
(number ?well ?w-n) 
(derivative ?well ?well-d) 

(retract ?x) 
(for i from 1 to ?n do 

(assert (schema ?well-d 
(straight-line =(nth$ ?data i»»» 

(defrule humps 

=> 

?x (- (read-data (6 ?w-n ?n $?data» 
(number ?well ?w-n) 
(derivative ?well ?well-d) 

(retract ?x) 
(for i from 1 to ?n do 

(assert (schema ?well-d 
(hump =(nth$ ?data i»»» 

(defrule local-max-time 

=> 

?x (- (read-data (7 ?w-n ?l-m-time» 
(number ?well ?w-n) 
(derivative ?we1l ?wel1-d) 

(retract ?x) 
(assert (schema ?well-d 

(local-max-time ?l-m-time»» 

(defrule quit 
?x (- (read-data (8» 
?y (- (open-stream ?stream) 

=> 
(retract ?x ?y) 
(close ?stream» 
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;;; -*- Mode: ART; Package: ART-USER; Base:10. -*
iii file: well/model.art 

;;; Rules used to extract a model by generating hypotheses and checking 
iii those hypotheses on other plots (semilog or loglog). 

iii Locates the end ?f early-time period by a global or local maximum 

(defrule early-data-global-max 

=> 

(max-p-derivative ?well-d (?tm ?max-p-d» 
. (test « ?tmlOOO» 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize (assert (early ?well-m ?tm») 
) 

(defrule early-data-local-max 

=> 

(max-p-derivative ?well-d (?tm&:(?tm >= 1000) ?» 
(local-max-time ?well-d ($? ?l-m-t $?» 
(not (hump ?well-d (hill? ? (?th&:(?l-m-t - ?th) ?»» 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize (assert (early ?well-m ?l-m-t») 
) 

iii If there is a hill hump, whose maximum is different from the 
iii max-p-derivative and located before it, then, this maximum 
iii corresponds to the end of the early time period 

(defrule early-data-hump 
(max-p-derivative ?well-d (?tm ?» 

=> 

(hump ?well-d (hill? ? (?th&:(?th < ?tm) ?») 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize (assert (early ?well-m ?th») 
) 

i;i If there is a negative slope at the beginning, it means that there is 
;;; no early data, and that the intermediate-time period starts there. 

(defrule no-early-data 
(p-d-derivative ?well-d (?fpdd&:(?fpdd < 0) $?» 

~ (time ?well-d (?first-t $?» 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

=> , 

; ; i 
; i i 

(hypothesize (assert (early ?well-m =?first-t») 
) 

If there is a slope 1 at the beginning of the derivative curve, 
then there is wellbore storage. 
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(defrule wellbore-storage-on-derivative 
(p-d-derivative ?well-d (?p-dl ?p-d2 $?» 
(abs-d-error ?error) 

=> 

(test « (abs (1- (I (+ ?p-dl ?p-d2) 2») ?error» 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize (assert (wellbore-storage ?well-m yes») 
) 

iii If the first two slopes at the beginning of the loglog curve are close 
iii to 1, then there is wellbore storage. 

(defrule wellbore-storage-on-loglog 

=) 

(loglog-of ?well-l ?well) 
(log-derivative ?well-l (?sll ?s12 $?» 
(model ?well ?well-m) 
(abs-d-error ?error) 
(test « (abs (1- (I (+ ?sll ?s12) 2») ?error» 

(hypothesize (assert (wellbore-storage ?well-m yes») 
) 

iii If there is a slope 1/2 at the beginning, then: fractured 

(defrule fractured-on-derivative 

=> 

(p-d-derivative ?well-d(?p~dl ?p-d2 $?» 
(abs-d-error ?error) 
(test « (abs (- (I (+ ?p-dl ?p-d2) 2) 0.5» ?error)·) 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) . 

(hypothesize (assert (fractured ?well-m yes») 
) 

iii A 1/2 slope on loglog means fractured system 

(defrule fractured-on-loglog 

=> 

(loglog-of ?well-l ?well) 
(log-derivative ?well-l (?sll ?s12 $?» 
(model ?well ?well-m) 
(abs-d-error ?error) 
(test « (abs (- (I (+ ?sll ?s12) 2) 0.5» ?error» 

(hypothesize (assert (fractured ?well-m yes») 
) 

iii Boundary conditions: If the slope at the end is negative, hypothesize 
iii there is a pressure maintenance boundary 

(defrule pressure-maintenance-boundary 
(p-d-derivative ?well-d ($? ?pddl ?pdd2» 
(test (and « ?pddl 0) 

« ?pdd2 ?pddl») 
(derivative-of ?well-d ?well) 

.1' 
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=> 
(model ?well ?well-m) 

{hypothesize (assert (boundar~ ?well-m pressure-maintenance») 
) 

iii If the slope at the end is positive, hypothesize there is a closed 
iii system (no-flow boundary) 

{defrule no-flow-boundary 

=> 

{p-d-derivative ?we1l-d ($? ?pdd1 ?pdd2» 
(test (and (>?pdd1 0) 

(> ?pdd2 ?pdd1») 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 

(hypothesize {assert (boundary ?well-m no-flow») 
) 

iii If, after early time, there is a doubling of the slope of the semilog 
iii curve, it means that there is a no-flow boundary 

(defrule no-flow~6n-semilog 
(early ?well-m ?e-time) 
(model-of ?well-m ?well), 
(semilog ?well ?well-s) 
(abs-d-error ?error) 

=> 

(straight-line ?well:'s «?itl&:(?itl > ?e-time) ?) (?ftl ?) ?sll» 
{straight-line ?we11-s ({?it2 ?) ? ?s12» 
{test (and (> ?it2 ?ftl) 

« (abs (- ?s12 (* 2'?sll») ?error») 

(hypothesize (assert (boundary ?wel1-m no-flow») 
) 

iii If there is a horizontal straight line at the end there it is an 
iii infinite system 

(defrule infinite-system 
(derivative-of ?wel1-d ?we11) 
(last-time ?we11 ?last-t) 
(abs-d-error ?error) 
(significant-length ?sig-l) 

=> 

(straight-line ?well-d {? (?It ?) ?slope» 
(test {and {< (abs ?slope) ?error) 

{< {- (log ?last-t 10) (log ?It 10» ?sig-l») 
(model ?we11 ?well-m) 

(hypothesize {assert (boundary ?well-m infinite») 
) 

iii If there isa valley hump, followed by either a hill hump or a 
iii horizontal straight-line then hypothesize double porosity reservoir 

(defrule double-porosity 
(abs-d-error ?error) 
(hump ?well-d {valley (?itl ?) ? ?» 
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=) 

(or (hump ?well-d (hill (?it2&:(?it2 > ?it1) ?) ? ?» 
(straight-line ?wel1-d «?it3&:(?it3 ) ?it1) ?) 

? 
?slope&:«abs ?slope) < ?error»» 

(derivative-of ?we11-d ?we11) 
(model ?well ?well-m) 

(hypothesize (assert (reservoir ?we11-m double-porosity») 
) 

;;; If there is a valley hump close to the end of the data set, then -0;1 

iii hypothezise that it is a homogeneous reservoir with a no flow boundary. 

(defrule homogeneous-and-closed-system 
(significant-length ?sig-l) 
(derivative-of ?well-d ?well) 
(last-time ?well ?last-t) 

=) 

(hump ?well-d (valley? (?It ?) ?» 
(test « (- (log ?last-t 10) (log ?It 10» ?sig-l» 
(model ?well ?well~m) 

(hypothesize (assert (reservoir ?well-m homogeneous») 
(hypothesize (assert (boundary ?well-m no-flow») 
) 

iii If there is a hill hump followed by a straight line until the end 
;ii of the data set, then hypothesize that it is a homogeneous reservoir 
iii with an infinite boundary 

(defrule homogeneous-and-infinite-system 
(significant-length ?sig-l) 
(derivative-of ?well-d ?well) 
(last-time ?well ?last-t) 
(abs-d-error ?error) 

=) 

(hump ?well-d (hill? (?hump-lt ?) ?» 
(straight-line ?well-d «?line-it ?) (?line-It ?) ?slope» 
(test (and « ?hump-It ?line-it) 

« (- (log ?line-it 10) (log ?hump-It 10» 0.25) 
« (abs ?slope) ?error) 
« (- (log ?last-t 10) (log ?line-It 10» ?sig-l») 

(model ?well ?well-m) 

(hypothesize (assert (reservoir ?well-m homogeneous») 
(hypothesize (assert (boundary ?well-m infinite») 
) 

iii If there is a hill hump and no valley hump, then hypothesize 
i ii homogeneous 

(defrule homogeneous 

=) 

(hump ?well-d (hill? ? (?th ?») 
(derivative-of ?well-d ?well) 
(model ?well ?well-m) 
(early ?well-m ?th) 
(not (hump ?well-d (valley? ? ?») 
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(hypothesize (assert (reservoir ?well-m homogeneous») 
) 

iii These rules merge viewpoints. They aggregate all possibilities for every 
iii possible combination of facts in the well-model schemata. It also prints 
iii all possible models for each well 

(defrule find-model-with-wellbore-storage 
(early ?well-m ?) 
(wellbore-storage ?well-m yes) 
(reservoir ?well-m ?type) 
(boundary ?well-m ?bound) 

=) 
(model-of ?well-m ?well) 

(fresh-line) 
(write-'-string 
(write-string 
(write-string 
(write-string 
(write-string 
(write-string 
(write-string 
) 

"A possible model for well ") 
(string ?well» 
II is a ") 
"( string ?type» 
II reservoir with wellbore storage and a ") 
(string ?bound» 

II boundary.") 

(defrule find-fractured-model 
(early ?well-m ?) 
(fractured ?well-m yes) 
(reservoir ?well-m ?type) 
(boundary ?well-m ?bound) 
(model-of ?well-m ?well) 

=> 
(fresh-line) 
(write-string 
(write-string 
. (write-string 
(write-string 
(write-string 
(write-string 
(write-string 
) 

"A possible model for well ") 
(string ?well» 
II is a ") 
(string ?type» ~ 
II reservoir with a fractured well and a ") 
(string ?bound» 

II boundary.") 

(defrule find-model 

=) 

(early ?well-m ?) 
(reservoir ?well-m ?type) 
(boundary ?well-m ?bound) 
(not (or (wellbore-storage ?well-m yes) 

(fractured ?well-m yes») 
(model-of ?well-m ?well) 

(fresh-line) 
(write-string "A possible model for well ") 
(write-string (string ?well» 
(write-string" is a ") 
(write-string (string ?type» 
(write-string II reservoir with a ") 
(write-string (string ?bound» 
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(write-string 
) 

" boundary.") 
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