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Abstract 

The steady-state dissolution of a copper rotating disk in 0.1 N HCI is investigated. 

Specifically, the effect of finite rates of the homogeneous complexing reaction is explored 

by utilizing a perturbation analysis. Formulating the singular perturbation problem 

leads to a better understanding of the physical nature of the system and enables one to 

characterize quantitatively the numerical errors resulting from the Stefan-Maxwell 

algorithm that arise for certain values of the rate constants. Additionally, a new way of 

plotting the steady-state polarization behavior is introduced that reduces the number of 

independent parameters of the system to a minimum. Concentration and potential 

profiles as functions of distance from the electrode, calculated using a macroscoplC 

model based on concentrated-solution theory and Butler-Volmer kinetics, are 

interpreted by means of the perturbation analysis . 

key words: rotating disk, singular perturbation, steady-state profiles, polarization behavior, 
complexing 
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1. Introduction 

A mathematical treatment of the steady-state polarization characteristics of a 

rotating disk electrode is to be presented. The Stefan-Maxwell model discussed earlierl!1 

has been used to predict the concentration and potential profiles, as well as the current

potential behavior, for the largely mass-transfer controlled anodic dissolution of copper 

in chloride solutionsl21 written as 

Cu -+ Cu+ +e- . (1) 

The effect of finite rates of the homogeneous reaction 

(2) 

has been investigated over a wide range of rate constants for this reaction. However, for 

certain combinations of values of the equilibrium and kinetic constants, numerical 

difficulties arise because concentration gradients become steep and finite-difference 

approximations lose accuracy. Thus, a perturbation technique is used as a guide for 

understanding the physical nature of the problem. For example, the perturbation 

solution indicates sources of error in the computer formulation and may be used to 

estimate the order of magnitude of these errors. 

Before proceeding with the mathematical treatment, let us briefly discuss the 

electrochemistry that gives rise to such an analysis. A singular perturbation problem 

arises when the homogeneous-reaction rate constant is large enough to allow the 

diffusion boundary layer to be treated as two regions: (i) the homogeneous reaction zone, 

where the concentrations are distributed according to the rate -of the complexing 

reaction, and (ii) the remainder of the diffusion layer, where the concentration profiles 

are determined by the equilibrated homogeneous reaction. 

• 
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We will present a rigorous justification of the separation of the electrolytic solution 

into two regions by means of a singular-perturbation expansion of the concentration. i3J 

A singular perturbation consists of two perturbation expansions valid respectively in the 

region away from the interface and close to the interface. Si~ce they describe the same 

function, the two expansions must match in an intermediate r:egion. In other words, the 

outer limit of the inner concentration expansion agrees, to all orders in the perturbation 

parameter and the distance variable, with the inner limit of the outer expansion. Again, 

the reason for constructing two such perturbation expansions is that different 

approximations are valid in the two regions. In the outer region of the diffusion

boundary layer, one can neglect departures from equilibrium of the chemical complexing 

reactions assuming infinitely fas't equilibration as a first approximation, so only diffusion 

and convection need to be accounted for. In the inner region (near the interface) 

convection can be neglected, but it is necessary to consider the finite rates of the 

homogeneous reactions as well as diffusion. For the perturbation analysis, migration is 

assumed to be negligible in both regions because of the excess of supporting electrolyte 

that is present. 

2. Perturbation Formulation 

The governing equations and boundary conditions, USIng dilute-solution theory 

with no migration, are presented here for the steady-state dissolution of copper In 

chloride solutions. The minor species, Cu+ and CuCI;, are treated in an excess of 

supporting electrolyte, i. e., HCI, such that the chloride concentration can be taken to be 

constant. Thus, the material balances are given as follows 



4 

(3) . 

(4) 

where 3 and 4 represent Cu+ and CuCI;! respectively. In this analysis for large Schmidt 

numbers, the axial velocity profile is given by[41 

[ ]

1/2 

vz=-aO ~ z2 (5) 

where 0 is the angular rotation speed, II is the kinematic viscosity, and a = 0.51023262 . 

. The boundary conditions in the bulk are 

c· = c· , 1,00 and $ = 0 at Z = zmax , (6) 

where the arbitrary zero of potential is specified at 

(7) 

and the problem is scaled using the largest diffusion coefficient Dmax' The boundary 

condition at the electrode relates the flux of species i to the electrochemical reaction 

occurring at the surface 

de· s· 
N=-D·--' =--'- i , 'dz nF n , 

(8) 

where Si is the stoichiometric coefficient of species I, n is the number of electrons 

transferred in the single electrode reaction, and in is the normal component of the 

faradaic current density. 
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2.1. Governing Equations for the Outer Solution Region 

The modified homogeneous-reaction equilibrium relationship 

A • 

k·=!L=~ 
kb C3 

(9) 

A 

is applicable because the complexing-reaction backward rate constant k b is large, and 

the chloride concentration is taken to be constant due to the presence of an excess of 

Hel. Addition of equations 3 and 4 yields 

(10) 

Substitution of equation 9, with rearrangement, gives 

d c4 d2 c4 v--=D--
z dz dz2 

(11) 

where the effective diffusion coefficient is given by 

"'. D3 +K D4 
D = x. 

l+K 
(12) 

Equation 11 is a first-order differential equation for d c4 / d z and can be integrated twice 

to give the well-known solution l51 in the high-Schmidt-number approximation 

00 

"'. .-x' c 4 = K c3 = A In J e dX, (13) 
e 

where A is an integration constant to be given later. The rotating-disk problem is 

.. properly scaled using the dimensionless parameter 

(14) 

which arises from the dimensionless convective-diffusion equation[51 and () is the 

boundary-layer thickness. For small values of e, the concentrations of species 3 and 4 
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are given by 

C4 = k" C3 = A in [r(4/3) - E] , (15) 

although these concentration profiles do not reflect the differences between species 3 and 

4 as required by stoichiometry of the reaction. Thus, equations 13 and 15 do not satisfy 

the boundary condition at the surface as given by equation 8. Let us next treat the 

region next to the electrode surface where the complexing reaction is not equilibrated, 

and finite rates of the homogeneous reaction must be accounted for. 

2.2. Governing Equations for the Inner Solution Region 

Convection can be ignored in the inner region close to the electrode surface; thus, 

equation 10, when usiI),g the dimensionless distance E, reduces to 

d2(D3 C3 + D4c4) 
--'---'''--''-----=-......;.;... = 0 . 

dE2 
(16) 

The solution to this equation is obtained by integrating twice to give 

(17) 

Matching with the inner limit of the outer solution (equation 15) enables P and Q to be 

related to A in with the result 

(18) 

By returning to the original governing equations, c3 in ~quation 4 can be 

eliminated by using equation 18. When convection is neglected within the inner region, 

substitution and rearrangement of the material balance for species 4 yields the following 

equation 
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d
2
c4 __ 1_ [ ( )] 

de2 - ~2 C4 - A in r(4/3) - e (19) 

where the dimensionless perturbation parameter ~ is given by 

(20) 

The solution to this equation is 

C4 =a4 e{/t1 +/34 e-{/t1 +Ain [r(4/3) -e] , (21) 

where <l'4 = 0 so that C4 is bounded at infinity. Since d c4 / d e = 0 at e = 0 according to 

equation 8, /34 = - A in~' 

Equation 18 yields c3 as follows 

[r(4/3)-e] , (22) 

upon substitution of equation 21 for C4' Next, the boundary condition at e = 0, given 

by equation 8 for species 3, enables the constant A in equation 22 to be determined 

A = ~4F 
DaiK +D4 

Finally, the concentrations of species 3 and 4 at the surface are given by 

C30 6 
~=--

2n FD3 

respectively . 

2.3. Composite Solution 

(23) 

(24) 

We have constructed two expansions, e.g., equations 13 and 21 for c4' which are 

valid in different, but overlapping regions of e, and these two expansions match in the 

region of overlap. The expansion, valid for all values of e, is obtained by adding the 
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inner and outer solutions, followed by subtracting the terms common to both the inner 

and outer expansions. Thus, the "composite expansions" for the concentrations of 

species 3 and 4 as a function of the dimensionless distance from the electrode are as 

follows 

2.4. Polarization Behavior 

The current is related to the potential by the modified Butler-Volmer equation 

in = Fko exp [ (1 ~pF v]- FkcC3,O exp [- ~~ v] 
Substitution of equation 24 for c3,O' with rearrangement, yields 

1 +k .1-. 
c D3 

(25) 

(26) 

(27) 

(28) 

For the fast electrode kinetics of the copper system, with the expected values of ka, kc' 

and V, the one in the denominator is negligible, as one would have obtained by using a 

Nernst equation. With this simplification, equation 28 can be written as 

~~1.. r(4!3) 
F ka D exp(FV / RT) = (29) 

a form which suggests a general correlation of the current-potential curve. 
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3. Results 

Steady-state results are presented here for the electrodissolution of copper in 

chloride solutions. Unless specified otherwise, all cases are for a copper disk rotating at 

2000 rpm in 0.1 N HCI with a kinetic viscosity of l/ = 8.9 X 10-3 cm2/s. The kinetic 

and thermodynamic input parameters are summarized in table 1 for the two-step copper 

dissolution mechanism given by equations 1 and 2. The potential between the working 

and saturated calomel reference electrode is V = -0.205 V. 

The concentration profiles of the minor species, as calculated by the Stefan-

Maxwell macroscopic model,!li are given in figures 1 and 2, where the dimensionless 

concentrations are normalized with respect to the resulting current density. Figure 1 

illustrates cuprous ion profiles as a function of the dimensionless distance e from the 

anode for three values of the homogeneous complexing-reaction rate constant, 

kb = 0 s-1, 10-2 s-1,and 10° s-1. With no homogeneous reaction, the cuprous ion 

Table 1. Model input parameters for the dissolution of copper in 0.1 N HCl. 

kc = 70 cm/s 

A. A 

K = KcC~I-,oo = 695 kb = 0, 10-2, 10°, 102, 104,00 s-1 

Dma.x = 9.31 X 10-5 cm2/s DC1- = 2.03 X 10-5 cm 2/s 
(for H+) 
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Figure 1. Dimensionless cuprous concentration profiles as a function of the 
dimensionless distance E from the disk electrode (V = -0.205 V and n = 2000 rpm). 
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Figure 2. Dimensionless CuCI2' ion concentration profiles as a function of 
dimensionless distance from the disk electrode (V = -{).205 V and n = 2000 rpm). 
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concentration at the surface is given by c3,ol in = 631 F·D3 according to equation 8, 

where the Nernst diffusion-layer thickness, 63 = r(4/3) 03, corresponds to 

E = f( 4/3) ( D31 D r3 
= 0.966 in the figure. In this limiting case, reaction 1 occurs 

alone so that no CuCI2' is formed, and the dimensionless cuprous concentration is a 

maximum. For larger values of le b, the ordinate of figure 1, C3F D lin'o, decreases 

because the current increases and the cuprous ion concentration remains constant 

(C3,O = 4.9 X 10-11 mol/cm3 for all le b for the chosen value of V). This is a result of fast 

copper kinetics and Nernst-like behavior yielding a potential-controlled cuprous ion 

COlleen tration. As Ie b increases, the dimensionless concentration of the copper chloride 

complex is shown to increase, as expected, in figure 2. For large homogeneous rate 

constants. (Ie b > 10-2 s-1), the concentration of the copper chloride complex c4 is 

greater than the cuprous ion concentration. This trend is reversed for the Ie b = 10-2 s-1 

case shown in the two figures. 

Because CuCI2' does not participate in the electrochemical reaction, the slope of 

A 

the curves in figure 2 are zero at E = 0 for finite values of k b' An infinitely large 

complexing rate constant enables reactions 1 and 2 to be combined as 

Cu + 2CI- - CuCI2' + e- , (30) 

where the concen tration glven by equation 24 with ~ =0, 
_ A.. A.-

c.,ol in = {) K I F·D·(l + K), is the upper limit shown in figure 2. The Nernst 

boundary-layer thickness, 6, corresponds to E = 0.893 for this reaction. The 

k b = 104 s-1 and infinity cases are indistinguishable in this figure, except for their slopes 

A 

at E = 0; the infinite k b case has a finite slope due to the electroactive CuCI;, whereas 

the finite rate-constant case has a zero slope. The corresponding equilibrium amount of 
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• " '" cuprous ion, c3 = c 41 K , is so small for this infinitely fast rate of the complexing 

reaction that its profile cannot be seen in figure 1. 

Next, we should like to compare the Stefan-Maxwell results with those from the 

perturbation analysis. The numerically calculated results (321 mesh points) are 

tabulated in parenthesis in table 2, where values in the last column of the table are 

calculated based upon reaction 30, for an infinitely fast complexing rate constant, as 

opposed to the two-step reaction mechanism. The kinetic expression 

(31) 

" 
IS applicable for kb = 00, assuming the chloride ion concentration does not vary. The 

rate constants for this case ~re modified to be more consistent t with the two-step 

mechanism. Thus k' = k Ic 2 = 103 cm4/mol·s and k' = k IK'" = 10-1 cmls . , II II Cl-,oo C C • 

Making these substitutions into equation 31 yields the original kinetic expression given 

by equation 27. 

In table 2, the current densities and the surface concentrations, normalized with 

respect to the current density, are calculated from the perturbation analysis using 

equations 29 and 24, respectively, for all cases except kb = 0 s-l. For the latter 

asymptotic limit, the current density is given by 

t It should be pointed out, however, that reaction 30 is not equivalent to the two
step process (equations 1 and 2) with k b = 00 because the chloride reaction order is 
different in the two cases. 
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Table 2. Comparison of the numerical Stefan-Maxwell results with those from 
the analytic solution as a function of the homogeneous backward rate constant. 

kb (S-1) 0 10-2 100 102 104 00 

A 00 1.0 0.1 0.01 0.001 0 

in (/.lA/cm 2
) 0.0348 0.0335 0.3299 2.8842 12.776 20.642 

(0.0339) (0.0452) (0.3278) (2.0242) (2.742) (20.222) 

C310F D 
0.7625 0.7918 0.0803 0.00919 0.00207 0.00128 

ino 

(0.7829) (0.5858) (0.0808) (0.01309) (0.00967) (0.00132) 

C410F D 
0 -0.11 0.7915 0.8817 0.8907 0.8917 

ino 

(0) (0.2236) (0.8134) (0.8985) (0.9028) (0.9148) 

c4,0/ C3,0 0 -0.14 9.85 95.96 429.65 695.28 

(0) (0.382) (10.06) (68.63) (93.40) (695.28) 

63 [(I -(3)F 
1 + D3 kc exp - RT 

(32) F 

A 

Small to moderate values of kb are included in order to reveal the limit of applicability 

of the perturbation analysis. Concentration ratios are calculated using the following 

relation 
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C 4,0 = __ ..:..r..l,.;( 4;,L1..::;.3)J----=~=__ __ 
x. 

C3,0 r(4/3)/K + ~D4/D3 
(33) 

even though these are negative for ~ > r(4/3). 

Examination of the results in table 2 indicates that numerical inaccuracies in the 

Stefan-Maxwell model arise for large, but finite, rate constants of the homogeneous 

complexing reaction (k b > 10° s-I). For example, an error of a factor of 4.7 arises for 

the case of kb = 104 s-l. For small values of the rate constant (kb < 10-1 8-1) 

equations 24, 29, and 33 begin to break down. Thus, the perturbation analysis is valid 

only for ~ « 1. 

The normalized potential profiles are given in figure 3, where the zero of potential 

is specified at zmax = 5.15 X 10-3 em, corresponding to emax = 5.1. Five different values 

... 
of the homogeneous reaction backward rate constant k b are given, and three distinct 

features are revealed. In all cases, the potential is determined by the magnitude of two 

different potentials: the ohmic potential drop and the diffusion potential. Ohm's law,. 

1·n = -/I: \7<1>, is characterized by the linear portion of the curve far from the electrode 

surface, but the magnitude of the diffusion potential next to the disk dictates the 

detailed shape of the potential profile. 

For kb = 0 s-l, the potential profile is linear, except where deviations from Ohm's 

... 
law occur close to the electrode surface. In the other asymptotic limit of k b = 00, a 

maximum in the potential profile occurs, where the diffusion potential balances the 

Ohm's law portion of the curve and then determines the potential profile next to the 

surface. This behavior, where the electric field in the solution is reversed, has been 

shown l61 to occur for a number of different electrochemical systems and will be discussed 
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Figure 3. Normalized potential profiles as a function of distance from the disk 
electrode (V = ~.205 V and n = 2000 rpm). 
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only briefly here. 

At the electrode surface, the normal current flow can be shownl7J to be related to 

the potential gradient by 

. F2 ~ zl Cj [8<1> 1 
'n = R T E Zj8j 8 Z z _ 0 . 

j nD j 

(34) 

The stoichiometric coefficients, charge numbers, and magnitude of diffusion coefficients 

of the species participating In a particular reaction determine whether a potential 

maximum/minimum occurs or not. For example, the sum in the denominator in 

equation 34 is positive (or slope of figure 3 = [d<l>/zl/in = 103 [2'cm for reaction 30) 

which implies that the potential gradient is reversed in comparison to Ohm's law. 

Equation 34 indicates reversal at the surface is not possible for reaction 1, since the 

denominator is negative (slope = - 185 [2·cm). For intermediate values of Ie band 

C4,O/ c3,o > 1, the salient features of both the asymptotic limits are displayed yielding 

both a minimum and a maximum in the potential. For Ie b = 10-:-2 s-1 (C 4,O/ c3,O < 1), 

neither a minimum nor maximum occurs within the boundary layer, similar to the 

k b = 0 s-1 case. The slope at the surface remains at - 185 [2'cm for each of these cases. 

Steady-state polarization curves, as calculated from the perturbation analysis 

(valid asymptotically in the limit of small a), are given in figure 4 for different values of 

the homogeneous rate constant Ie b' Results for two different rotation rates, 

[2 = 1000 and 2000 rpm, are given for the larger values of le b• 

A dimensionless polarization curve is presented in figure 5 that is based on 

equation 29. This way of plotting the current-potential behavior is convenient for 
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reducing the homogeneous-reaction rate constant and potential dependence to 

approximately one curve. Also shown on this plot are the numerically calculated 

Stefan-Maxwell results. Both 161 and 321 mesh-point results are plotted. Again, the 

numerical solution for large values of kb is not good. As the homogeneous rate constant 

goes to zero, the left side of equation 29 should approach (D3/D)2/3 because the 83 / D3 

term in equation 32 (k b = 0 s-l) is proportional to Di/3
• In the other limit of k b - 00 

"* 
for which the perturbation analysis is valid, equation 29 goes to 1 + K . 

This particular plot tends to eliminate substantial variations in current-potential 

curves (figure 4) due to variations in the rotation speed and potential V, and it displays 

the substantial dependence on k b' Thus, different values of ke/ ka could be used to 

" compensate for different values of k bl with equally good fits of the data. Calculated 

points can fail to fall on a single curve for several reasons, and the fact that they fall 

nearly on a single curve indicates that these factors are valid or can be ignored to a good 

approximation. 

1. A single curve is spoiled when the one in the denominator of equation 28 cannot 

be ignored. However, the Nernst approximation is good in virtually all cases plotted. 

2. Numerical (Stefan-Maxwell) results include effects of migration and variations 

of Cl- concentration as well as interdiffusion effects. The' closeness to a single curve 

indicates that these effects are of minor importance for the conditions reported here. 

A 

3. For moderate to low k b values, the singular-perturbation analysis does not 

apply, and at k b = 0 s-1, the ordinate value should reach a limit while the abscissa value 

moves one off the graph toward infinity at the left. Results may still fortuitously fall on 

a single curve. 
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A 

4. For high k b values, the numerical (SM) calculations break down, and one 

cannot assess whether migration and variations of the chloride concentration and 

interdiffusion effects are truly negligible, although one can surmise from separate 

estimates that they do not become important unless currents are large. 

4. Discussion of Results 

The dimensionless perturbation parameter A, given by equation 20, characterizes 

the homogeneous reaction zone next to the electrode surface. In table 3, values of A are 

A 

given as a function of the homogeneous rate constant k b' Also, values of the 

dimensional distance, z~, corresponding to e = A, 

Table 3. Comparison of different perturbation parameters that characterize the 
homogeneous backward rate constant. 

Homogeneous rate constant, Ie b (5-1) 

10° 102 104 

A 0.1 0.01 0.001 

z~ (cm) 1.0 X 10--4 1.0 X 10-5 1.0 X 10-6 

A 

6 / (cm) 9.0 X 10-5 9.0 X 10-6 9.0 X 10-7 

6 b (em) 2.4 X 10-3 2.4 X 10-4 2.4 X 10-5 
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r (35) 

are included in the table and can be used to judge the region of importance of 

homogeneous reaction in figure 3. 

6. represents a ratio of the penetration depth to a length characteristic of the 

thickness of the diffusion layer. The Nernst diffusion boundary layer thickness is given 

by 8 = 1.6117v1/ 6 D 1/ 3n-1/ 2 = 9.0 X 10-4 cm, for the conditions reported in this paper. 

If the two characteristic lengths are of the same magnitude [6. = 0(1) ], then the finite 

rate of the homogeneous reaction must be accounted for in the region wher.e convection 

is important. The computer program can handle this case easily and accurately. This 

was demonstrated for Ie 6 < 10° S-I, and 6. > 0.1. 

A 

For very small values of 6. (a fast homogeneous reaction or very large k b), 

equilibration of the homogeneous reaction could be assumed almost everywhere, and the 

two-step mechanism reduces (except chloride reaction order) to the one-step reaction 30. 

A 

For the case of large, but finite k 6, numerical inaccuracies arise because the 

concentration variations occur in such a small region next to the electrode surface. For 

example, this results when Ie 6 = 104 s-1 and 6. = 0.001. In order to investigate the case 

for large values of the backward rate constants, a perturbation expansion accounting for 

the finite chemical reaction zone next to the electrode is necessary. 

Finally, 6. should be compared with another dimensionless ratio 66/8, where 6 b is 

the homogeneous reaction thickness given by Levichl4\ as V D /le 6• Values of this 

parameter are included in table 3 and should be compared to the position next to the 

electrode in figure 3 where the minima occur. Because the correlation is not good, 
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values of 8 ! = V D lie ; are also included III the table. It can be concluded that the 

perturbation parameters ~ and 8! are the most appropriate quantities for 

characterizing finite rates of the homogeneous reaction. 

5. Conclusions 

The generalized Stefan-Maxwell program!li accounting for multicomponent 

diffusion, migration, and convection, in addition to any number of homogeneous and 

heterogeneous reactions, IS a very powerful algorithm for studying many reaction 

mechanisms at a rotating disk. However, when utilizing computer implemented 

techniques, one must be cautious of numerical inaccuracies that can arise for certain 

values of the system parameters. 

In this paper, the dissolution of a copper rotating disk has been studied. We have 

shown that a perturbation analysis for large, but finite, rates of the homogeneous 

complexing reaction is most helpful for elucidating numerical (SM) errors that did occur 

for these conditions. Additionally, the analytic solutions to the simplified governing 

equations (dilute-solution theory with no migration) help verify the unexpected potential 

profiles. Asymptotic limits for values of the homogeneous rate constant were presented 

and provided a window for studying the finite-rate cases. Finally, the perturbation 

analysis led to a simplified correlation (equation 29) for the entire current-potential 

curve. This new way of plotting the steady-state polarization behavior reduces the 

number of independent parameters for the system to a minimum. 

. ~ 
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mol/cm2·s 

cathodic rate constant for the heterogeneous 
electrochemical reaction, cm / s 

anodic rate constant for the electrochemical reaction in the 
one-step mechanism, cm4 jmol·s 

cathodic rate constant for the heterogeneous 
electrochemical reaction in the one-step mechanism, cm /s 

backward rate constant for the homogeneous complexing 
reaction, 1/s 

modified forward rate constant for the homogeneous 
complexing reaction, 1/s 
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A * K 

n 

N I 

P,Q 

R 

T 

v 

z 

Greek symbols: 

f3 

x 

f{4/3) 

concentration thermodynamic equilibrium constant for the 
homogeneous reaction, cm6 /mo12·s 

thermodynamic equilibrium constant for the homogeneous 
complexing reaction 

number of electrons involved in electrode reaction 

molar flux of species z·, mol/cm2·s 

integration constants introduced in equation 17 

universal gas constant, 8.3143 J/mol-K 

stoichiometric coefficient of species i In the electrode 
reaction 

absolute temperature, K 

axial component of the velocity to a rotating disk 

kinetic driving force (electrode potential relative to given 
reference electrode placed just outside double layer), V 

normal distance from surface, cm 

distance from electrode surface that best characterizes the 
homogeneous penetration depth, cm 

constant in equation 21 for c4 

constant in equation 21 for c4 

symmetry factor 

dummy variable of integration 

0.89298, the gamma function of 4/3 
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A 

fJ 

v 

n 

subscripts: 

a 

b 

c 

f 

o 

00 

3 

4 

characteristic diffusion layer thickness, cm 

Nernst diffusion-layer thickness for species i, cm 

Levich homogeneous reaction penetration depth, cm 

perturbation parameter given by equation 20 

kinematic viscosity, cm2js 

dimensionless axial distance for rotating-disk convective
diffusion equation 

electrostatic potential, V 

angular rotation speed of disk, rad/s 

anodic 

backward reaction 

cathodic 

forward reaction 

just outside the diffuse part of the double layer 

in the bulk electrolyte, where there are no concentration 
variations 

cuprous lon 

copper chloride complexed species 
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