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One-dimensional infiltration of water into an unsaturated porous medium is stu

died, using various analytical and numerical techniques. One method of solution util

izes a variation of the Boltzmann transformation, reducing the governing PDE to a 

two-point ODE boundary-value problem. Numerical integration shows that the instan

taneous flux is proportional to r-112, with a constant of proportionality that depends in 

a highly nonlinear way on both the boundary potential and the initial saturation. An 

approximate solution to the governing equation is derived using a "boundary-layer" 

approach, in which an assumed saturation profile is substituted into the PDE and 

integrated from the boundary out to the "penetration distance". This method yields 

closed-form expressions for the penetration distance and the flux at the boundary; The 

accuracy of this solution depends on the various parameters of the problem, but seems 

typically to be within 15%. 



Introduction 

The flow of water through partially saturated rocks or soils poses an interesting 

and difficult mathematical problem that has applications to various areas of science and 

technology. The uppermost region of the earth's crust is typically in a partially 

saturated state that extends down to the water table. This region, known as the unsa-

turated or "vadose" zone, has a thickness ranging from a few meters to a few hun-

dreds of meters. Historically, the problem of the infiltration of water into an unsa

turated medium has been of the most interest to agricultural scientists and groundwater 

hydrologists. With the proposed use of the upper crust of the earth for the disposal 

and storage of hazardous wastes, flow in the unsaturated zone has taken on even wider 

relevance. In this paper, the· problem of one-dimensional infiltration of water into an 

initially unsaturated semi-infinite formation is studied, using both numerical and 

analytical techniques. While the immediate purpose of this work is for modeling flow 

in the vicinity of the planned nuclear waste repository at Yucca Mountain in Nevada, 

the results should be of general applicability to infiltration problems in unsaturated 

media. 

Formulation of Problem 

One-dimensional flow of water through a porous rock or soil is governed by the 

following partial differential equation [Hillel, 1980]: 

l...[ ~]- ~ dX ~k, ('If) dX - G ('If) dt . (1) 

The dependent variable 'If in equation (1) represents the pressure potential of water in 

the rock; it is positive in regions of full saturation, and negative in regions of partial 

saturation. When the medium is less than fully saturated, the potential is often referred 
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to as the capillary pressure. The parameter ~ represents k I!J.cp, where k and cp are the 

absolute permeability and porosity of the rock, and ll is the dynamic viscosity of 

water. k, ('If) is the relative permeability of the medium to water, and is a dimension

less number lying between zero and one. The storativity function, G ('If), is defined by 

G (\jl) =oS /d'lf, where S is the liquid saturation. Equation (1) essentially represents 

conservation of mass, along with Darcy's law; the left hand side is the divergence of 

the volumetric flux of water, while the right hand side represents the change in the 

water content of the medium. Since (1) does not include a gravitational potential term, 

it can be used to describe horizontal flow, or vertical flow in situations where the 

potential gradients are large relative to the specific gravity of water. 

Each rock formation has its own "characteristic functions", k, ('If) and S (V), 

which relate the saturation, capillary pressure, and relative permeability. As a general 

rule, the relative permeability decreases from one to zero as the saturation varies from 

some maximum value Ss down to the residual saturation S,. The capillary pressure 

will decrease from zero down to - oo over this range of saturations. These functions 

reflect the pore size distribution, and other aspects of the pore geometry, and in general 

must be determined experimentally. Many types of functions have been proposed to 

represent characteristic curves [Rulon et al., 1986]. The equations of van Genuchten 

[1980] will be used in this study, although the methods described in this paper can 

incorporate any set of characteristics curves. The van Genuchten formulae can be 

written as 

(2) 

(3) 
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where n and m are two parameters related by m=(n-l)ln, and a is a parameter that 

has a dimension of !/Pressure. Ex~ples of these characteristic curves are shown in 

normalized form in Figure 1, with the normalized saturation defined as 

S = (S -Sr)I(S9 -Sr), and the normalized capillary pressure as W = av. The value of 

a is reflective of the average pore diameter in the rock, with larger values of a 

corresponding to larger characteristic pore diameters. The parameter n is related to 

the width of the pore size distribution, with larger values of n corresponding to nar

rower distributions. For saturate~ flow, kr = 1, and S is constant, so that G ('If) = 0. In 

this case, equation (1) merely predicts a constant pressure gradient. 

A basic problem in the area of fluid flow in the unsaturated zone is that of 

infiltration from a planar surface (such as a fracture) filled with water at some potential 

'lfw, into a semi-infinite formation which is initially at some uniform saturation Si. 

This. saturation will correspond (via equation [2]) to some potential 'l'i, where 'l'i < 0. 

For this problem, the appropriate initial and boundary conditions are 

'lf(X,t =O)='Ifi for all X >0, (4) 

'lf(X =O,t)='lfw for all t >0, (5) 

lim'Jf(X,t)='lfi forallt>O. (6) 
x-+-

The model represented by equations (1-6) neglects the storativity due to the compressi

bilities of the water and the pore space of the rock, which generally is negligible com

pared to G ('If). Hysteretic effects, wherein the capillary pressure depends not only on 

the saturation, but also on whether drainage or imbibition is taking place, are likewise 

ignored. This causes no difficulty for the problem under consideration, since the 
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saturation at each point will be a monotonic function of time. 

Similarity Transformation 

Because of the variation of k, and S with 'If, equations (1-6) represent a highly 

nonlinear problem that is not amenable to standard analytical techniques such as 

Laplace transforms, Green's functions, etc. Philip [1960] has derived a closed-form 

solution to this problem, but this solution requires that the characteristic curves be 

represented as series of inverse error functions. However, expressing equations (2) and 

(3) in this form requires considerable computational effort, made particularly difficult 

by the relative obscurity of inverse error functions. Solutions to this problem are 

much more readily obtained numencally. 

The partial differential equation (1) could be solved directly using finite 

difference or finite element techniques. An easier method, . based on a similarity 

transformation, reduces the POE to an ODE, which is considerably easier to solve. 

The first step in this procedure is to transform (1) into a dimensionless form. This can 

be accomplished through the following change of variables: 

.. 
'\jf=<X'\jf' (7) 

(8) 

This is similar to the traditional Boltzmann transformation 11 =x t.ft, except that the 

factor a/~ is needed to non-dimensionalize the variable 1'\. while the factor (Ss-Sr) is 

included so as to simplify subsequent equations as much as possible. This definition is 

similar to that used by Martinez [1988], except that by using a instead of the initial 
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capillary pressure for the normalization, it allows a characteristic length scale to be 

defined independently of the boundary conditions of the problem. 

Under this change of variables, equation (1) is transformed into 

(9) 

V is seen to be a function only of the single similarity variable 11. and so equation (9) 

is an ordinary differential equation. The function G in (9) is now defined as dS ldV, 

where S is the normalized saturation (S-S,)/(S9 -S,). The boundary conditions (4-6) 

are transformed into 

(10) 

(11) 

The two conditions (5) and (6) collapse into the single condition (11), since both 

x ~ oo and t ~ 0 imply 11 ~ oo. This is necessary for the similarity transformation 

method to be applicable, since a second-order ODE such as (9) can have only two 

arbitrary boundary conditions imposed on it. 

For given values of V; and Vw• equations (9-11) can be solved numerically using 

a so-called "shooting" technique [Press et al., 1986]. In this method, a value of 

dVId11 at 11 =0 is chosen, and (9) is then integrated as an initial-value problem until v 
stabilizes at some value V(oo). An iterative root-finding technique can then be used, 

with V(oo) treated as a function of dVId11 at 11 =0, to arrive at the proper value of 

V(oo) = V;. If it is desired merely to generate families of saturation profiles for 
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different values of Wi , or to study the relationship between Wi and the flux, these itera

tions are not necessary, and the problem can be treated as a pure initial value problem. 

Note that for the purposes of studying the relationship between the initial saturation 

and the flux, the non-dimensionalization substantially reduces the amount of calcula

tion needed, since the only parameter in (9) that has not been normalized out is the 

van Genuchten n . 

Equation (9) has been integrated for various values of Wi, Ww, and n, using the 

fourth-order Runge-Kutta scheme [Press et al., 1986]. The n parameter, which 

reflects the width of the pore-size distribution, is necessarily greater than 1, with typi

cal values being on the order of 2-5 [van Genuchten, 1980; Rulon et al., 1986]. 

For this range of values, the numerical value of n has only a small effect on the 

potential profiles, and does not affect any of the main qualitative features of the solu

tion. It is therefore worthwhile to choose a fixed value of n, such as n = 3, in order to 

study the effect of Wi and Ww. Figure 2 shows pressure profiles for the case n = 3, 

with zero pressure on the boundary (i.e. , Ww = 0), and different values of Wi. Since 

wi = -4 corresponds to a value of si of only a few saturation points above irreducible 

saturation, the initial capillary pressures shown in this figure cover most of the range 

of interest Figure 3 shows the profiles for a fixed value of Wi = -2, with different 

"wall" pressures, Ww. In contrast to a linear diffusion problem [cf. Crank, 1975], 

the distance into the formation to which the pressure disturbance has propagated 

depends significantly on the boundary conditions. The shape of the pressure profile 

also depends on the boundary conditions, becoming ''steeper'' as the initial capillary 

pressure becomes more negative; this has the effect of necessitating very small integra

tion steps when the magnitude of the capillary pressure is large. 

The most important relationship to be found from the results of these integrations 

is that between the boundary conditions Ww and Wi and the instantaneous flux per unit 

area at the wall, q. From Darcy's law, this flux is equal to (kkr!J.L)Chjlldx, evaluated at 
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x =0. Using the chain rule, and the fact that kr = 1 when x =0 [since 'JI(x=O)~O], 

this can be written as 

(12) 

As is the case for a linear diffusion problem (such as fully-saturated flow), the instan

taneous flux is proportional to r-112• The constant of proportionality, which depends in 

a highly nonlinear way on both the potential at the wall and the initial capillary pres-

sure, can be referred to as the "flux constant". The relationship between the (normal

ized) flux constant do/ldllj 0 and the boundary conditions o/i and o/w is shown in Fig

ure 4. As would be expected, the flux constant increases as either o/w increases or o/i 
decreases, since in either case there is an increase in the overall potential difference, 

which is the driving force for the flow. But whereas arbitrarily large values of o/w 
will lead to arbitrarily large fluxes, the flux constant rapidly approaches an asymptotic 

value as o/i~-oo. This can be understood by noting that the flux is actually propor

tional not only to the potential drop, but also to the relative permeability; as o/i ~- oo, 

S ~ 0 and kr ~ 0 (see Figure 1), so the excess flux due to the tail of the pressure 

profile is actually quite negligible. 
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Boundary-Layer Solution 

For many purposes, it would be useful to have a closed-form solution that clearly 

illustrated the effect of the various parameters on the resultant flux. As explained 

before, there is no tractable method of exactly solving the governing equations (1-6). 

An extremely simple, albeit approximate, solution can be obtained, however, by using 

the so-called "boundary-layer", or "integral", technique. The boundary-layer method 

has been widely used for heat conduction problems [Goodman, 1964], heat transfer 

problems with phase change [Eckert and Drake, 1972], and hydrodynamic boundary

layer problems [Schlichting, 1968]. The method uses an assumed pressure profile that 

satisfies various boundary (or other subsidiary) conditions, but only satisfies the 

governing PDE in an integrated sense. If a reasonable trial function is assumed as the 

solution to the problem, the method is known to lead to accurate results for the types 

of problems previously mentioned. 

The accuracy of the boundary-layer method for the present problem depends 

mainly on choosing an appropriate pressure profile; guided by the numerical results 

shown in Figure 3, this can be done as follows. First, consider a fixed but arbitrary 

time t, and note (from Figure 3) that the potential drops linearly from 'l'w at the wall 

down to zero at some distance A. into the formation. This part of the solution, 

representing the saturated flow, follows from equation (1) when kr and S are constant 

The pressure then drops, in a somewhat nonlinear manner, down to P;. Although the 

capillary pressure, strictly speaking, does not reach 'If; until x ~ oo, for practical pur

poses it can be considered to equal 'If; for all x >A.+ o, where o and A. are penetration 

distances that each depend on t in some manner that is not known a priori. 

It is clear from Figure 2 that 'If initially drops off linearly at the start of the unsa

turated region, although it then becomes concave downward. Hence, 

'lf(X = A.+ E) = -a E + · · · , where a depends on t, but not on E. As will be seen 

below, however, it is much more convenient to utilize the saturation, rather than the 

• 
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pressure, when integrating the equation in the unsaturated region. If the pressure 

profile has an initially linear variation, (2) can be used to show that the leading terms 

in the saturation profile must be of the form S (x =A.+e) = Ss -ben + · · · , where b 

depends on t, but not on e. The simplest pressure and saturation profiles that satisfy 

the criteria just described are 

'If= 'lfw [1- (x lA.)] for O<x<A., (13) 

for A. < x < A. + o , (14) 

S = Si for X > A + 0 . (15) 

In any of the three regions, (2) could be used to relate 'If and S, if so desired, although 

it is convenient to use the pressure profile in the saturated region and the saturation 

profile in the unsaturated region. A relationship between the parameters A. and o can 

be found by requiring the flux (and hence d\jl!ax) to be continuous at x =A., which 

leads to 

(16) 

It is usually recommended [Goodman, 1964] that trial profiles should have zero 

slope at the edge of the boundary layer, so that the flux is continuous at x =A.+ o. 
While this condition is satisfied by the exact solution, since it merely reflects conserva

tion of mass at the boundary between the disturbed and undisturbed zones, enforcing it 
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substantially complicates the algebraic manipulations that are needed to solve the prob-

lem, without a concomitant increase in the accuracy of the results. It is simplest to 

imagine that there is a small tail on the saturation profile expressed by equations (13-

15), providing continuity of flux at the outer edge of the boundary layer, but 

sufficiently localized so as to make no perceptible contribution to the mass conserva

tion integral. 

With the pressure and saturation profiles given by equations (13-16), the conser

vation equation (1) is integrated from x =0 to x =oo. Using the facts that <hjflox =0 

for all x. > A.+ o. and kr = 1 at x = 0, the left side of ( 1) integrates out to 

-~~J ax x=O 
(17) 

Since G ('V) = dS ld'lf, the right side of (1) equals dS ldt. To avoid a divergent integral 

(which would reflect the fact that the "infinite" half-space initially contains an infinite 

amount of liquid), Si can be subtracted away from S; this obviously will not affect the 

time derivative oS lot. Hence the right side of (1) integrates out to 

- -
f.E_(S -S· )dx = !!....J<S -S· )dx 

ar ' dr ' 0 0 

• 
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= (S -s.) .!!_ ["-+ _n_o] . 
s ' dt n+1 

(18) 

Equating ( 17) and (18), and using ( 16) to express A. in terms of o, leads to 

(19) 

Since none of the parameters appearing in equation (19) explicitly depend on o or t, 

and since o = 0 when t = 0, (19) can be integrated to yield 

(20) 

The instantaneous volumetric flux at the wall is found by combining equations (16) 

and (20) with Darcy's law: 

0 

= 

q _ kkr ~J = 
- ll ax .X =0 

k 'lfw 

k 'l'w --
ll A. 

ll [m(S9 -Sr)I(S9 -S;)]11
n CX'IfwO 

k tl\ (S -S· )l+lln m (S -S ) lin 
__::..:r_ s ' n ( ) s r 

= 2cqu [m(S,-5,)] 11" t+l + <l'l'w [ S,-S; ] } . [ ] 

112 

(21) 
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The pressure profiles predicted by the boundary-layer solution are compared to 

the essentially exact numerical solutions in Figure 5, for the cases where n = 3, Ww = 1, 

and W; = -1 and -2. The approximate solution not only correctly predicts that the 

flux is proportional to t- 112, it predicts the numerical value of the flux constant (which 

is proportional to the slope of the curve at the wall) quite accurately. The pressure 

profiles of the approximate solutions are similar to the exact profiles, with the agree

ment becoming poorer as the initial saturation decreases. This is to be expected, since 

the boundary-layer method does not explicitly account for the extreme variations in k, 

that occur throughout the zone of penetration. Since the boundary-layer method does 

not utilize any information from the characteristic curves except the behavior of the 

capillary pressure curve (2) near 'lf=O, its accuracy is perhaps surprising. The overall 

accuracy of the boundary-layer method (in predicting the flux, for example), increases 

as 'Vw increases, since this method treats flow in the fully saturated zone exactly . 

Equation (21) is perhaps most useful in its display of the manner in which the various 

parameters influence the flux. While the fact that the flux is proportional to (k /J.Lt )112 

can be predicted from dimensional arguments, the relative influences of 'Vi and 'Vw 

could not easily be seen a priori , and would probably require extensive numerical 

simulations to demonstrate. It is worth noting that (21) bears some resemblance to an 

exact solution derived by Brutsaert [1968] utilizing a more restrictive class of charac

teristic curves. 

Example: Topopah Spring Welded Tuff 

The unsaturated zone below Yucca Mountain in Nevada is being considered by 

the U.S. Department of Energy as a site for the construction of an underground reposi

tory for high-level radioactive waste [DOE, 1986; Peters and Klavetter, 1988; Mar

tinez, 1988]. The Topopah Spring unit below Yucca Mountain is a welded volcanic 

tuff, with estimated values of porosity and absolute permeability of 0.14 and 

.. 
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3.9 x 10-18 m2, respectively [Rulon et al., 1986]. The van Genuchten parameters that 

have been found to provide the best fit to capillary pressure and relative permeability 

data from the Topopah unit are [Rulon et al., 1986]: Ss =0.984, Sr =0.318, n =3.04, 

m = 0.671, and a= 1.147 x 1 o-5 Pa-1• As an example of the use of the similarity 

transformation and boundary-layer methods for studying one-dimensional flow in unsa

turated formations, horizontal flow from a saturated fracture in the Topopah unit will 

be treated. 

Consider a vertical fracture that is saturated with water at zero potential, adjacent 

to a matrix which has an initial capillary pressure of -1 x loS Pa (-1 bar). (This capil

lary pressure is not meant to necessarily equal the in situ value at Yucca Mountain, 

but is chosen merely to illustrate the use of the two methods of solution). For times 

small enough so that the penetration thickness is less than half the distance to the 

nearest fracture, the "infinite half-space" assumption should be applicable. Using the 

parameters listed above for the Topopah welded unit, a fluid viscosity of 0.001 Pas (1 

cp), and an elapsed time of 1 x 106 s (11.6 days), the boundary-layer solution 

represented by (13-16) and (20) can be transformed into physical coordinates to give 

the pressure and saturation as a function of the distance from the fracture (Figures 6, 7). 

The numerical solution of equations (9-11), likewise transformed from the similarity 

variables back to physical variables, is also shown in Figures 6 and 7. Since the 

instantaneous flux is proportional to the slope of the pressure profile at the wall, and 

the cumulative flux is proportional to the area under the saturation profile, it is clear 

that the two methods are in close agreement in this case. Note that this limiting case 

of zero boundary potential, in which there is no region of full saturation, is a "worst 

case'' test of the boundary-layer method, si11ce this method satisfies the governing 

equation ( 1) exactly in regions of full saturation. 

As a further check of these two solutions, this problem has also been solved using 

TOUGH [Pruess, 1987], a finite-difference code that is known to produce accurate 
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results in problems involving the flow of water in porous and fractured media. The 

TOUGH solution (using 25 nodes spaced 0.04 m apart) agrees very closely with the 

solution based on the similarity transformation (Figures 6, 7). As a comparison, 

Runge-Kutta integration of equation (9), including iteration to meet boundary condition 

(11), requires on the order of only 1% of the computational time needed to achieve 

similar accuracy with TOUGH, while the approximate boundary-layer method, which 

requires essentially no computer time, yields a cumulative flux that is accurate to 

within 10%. (Since TOUGH is a multi-purpose program that can also treat phase 

changes, heat transfer, formation compressibility, and other effects, this comparison is 

intended only to explain the usefulness of the present methods for this particular type 

of problem). 

A main intended application of the approximate "boundary layer" solution is to 

calculate flow between fractures and matrix in the vicinity of the proposed nuclear 

waste repository at Yucca Mountain. The intention is to model the region using a 

numerical simulator such as TOUGH, with a mesh consisting only of ''fracture ele

ments". Equation (21) will be then used as a "source" or "sink" term for flow 

between the fractures and the adjacent matrix blocks. If successful, this approach will 

allow a considerable reduction in the number of elements required for accurate simula

tion, thereby reducing computational time and expense. The present solution would be 

useful for times that are small enough so that flow from one fracture is not affected by 

neighboring fractures. Application of this approach to longer time scales will be made 

possible by extending the "integral method" solution to other geometries, such as the 

cuboidal matrix blocks whose boundaries are formed by sets of intersecting fractures. 
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Conclusions 

Two methods have been used to study one-dimensional flow of water in a semi

infinite, unsaturated porous media. In one method, the governing nonlinear PDE was 

transformed into an ODE by using a non-dimensionalized similarity variable, and then 

integrated numerically. The instantaneous flux was found to be proportional to t-112, 

with a constant of proportionality that depends not only on the physical parameters of 

the medium, but also on the initial saturation and boundary pressure. The flux con

stant is an increasing function of the absolute values of both the potential at the boun

dary and the initial capillary pressure of the formation, although it reaches a finite 

asymptotic value for infinitely negative initial capillary pressures. 

An approximate closed-form solution was also derived, using the "boundary

layer'' approach. This solution correctly predicts all major qualitative features of the 

solution, including the r 112 behavior of the instantaneous flux. The boundary-layer 

solution has an accuracy of (at worst) 15%, and explicitly shows the manner in which 

the boundary conditions and parameters of the characteristic curves influence the pene

tration distance and flux. The boundary-layer solution is currently being extended to 

deal with other problems of interest, such as flow into cuboidal matrix blocks whose 

boundaries are defined by sets of intersecting fractures. 
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Figure 1. Capillary pressure and relative permeability ~urves for media partially 

saturated with water, using the equations proposed by van Genuchten [1980]. After 

normalization, the shapes of the curves depend only on the parameter n. 
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Figure 2. Potential profiles for one-dimensional infiltration, with zero potential at the 

boundary, and various values of the initial capillary pressure. Profiles are derived from 

numerical solution of equation (9), using a value of n = 3. 
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Figure 3. Potential profiles for one-dimensional infiltration, for various values of boun

dary potential, and an initial normalized capillary pressure of -2. Profiles are derived 

from numerical solution of equation (9), using a value of n = 3. Penetration distances 

A. and B are also shown. 

• 



- 21 -

1.5-----------------------, 
_Q 
~ 

"0 -... 
(~ 

"0 

1-z 
<{ 
1-
(f) 

z 
0 u 
X 
:::J 
....J u.. 
0 
UJ 0.5 
N 
:J 
<{ 
~ a: 
0 
z· 

0~~~------~,----------~----------~,----------~, 
0 0.5 1.5 2 

... 
NORMALIZED INITIAL POTENTIAL, 1/;i 

XBL 887-1 0335 

• 

" Figure 4. Relationship between the flux constant and the boundary potentials. The 

potential at the wall is o/w , and the initial capillary pressure in the medium is o/i . 
Results are obtained from numerical solution of equation (9), using a value of n = 3. 
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Figure 5. Comparison of boundary-layer solution to the numerical solution of equation 

(9), using a value of n =3. The normalized potential at the boundary is +1, and the 

initial normalized capillary pressures are -1 and -2. 
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. ~· . Figure 6. Pressure profile for influx into Topopah welded tuff formation, according to 

similarity solution, boundary-layer solution, and TOUGH simulation. The boundary 

potential is 0 bars, the initial capillary pressure is -1 bar, and the elapsed time is 

1 x 107 seconds (116 days). 
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Figure 7. Saturation profile for influx into Topopah welded tuff formation, according to 

similarity solution, boundary-layer solution, and TOUGH simulation. Boundary condi

tions and elapsed time are the same as in Figure 6. 
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