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Abstract 

LBL-25652 

This thesis describes the measurement of multiplicities and di:ffel,'ential cross
sections of the p0 , K*0

, and <P in e+e- annihilation at Js = 29 GeV, using 
data collected by the TPC/21 Detector Facility at PEP. The number of vector 
mesons per event is determined to be N(p0 ) = 0.77 ± 0.08 ± 0.15, N(K*0 + R'"0

) 

= 0;58 ± 0.05 ± O.ll, and N(¢) = 0.076 ± 0.010 ± 0.012. These multiplicities 
are used to find that the ratio of strange quarks to up quarks produced in the 
hadronization process is 0.30 ± 0.07, and that the ratio of light vector mesons 
to all light mesons produced in the hadronization process is 0.45 ± 0.08. All 
results agree with previous measurements. Measurements are compared with 
predictions of the Lund and Webber hadronization models; neither model is 
particularly favored nor disfavored. 
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Chapter 1 

Introduction 

It is the goal of physics to understand the material universe we live in. The goal 

of High Energy Physics is to understand the fundamental constituents of matter 

and the interactions between them. The current best understanding of these 

fundamental constituents and forces is in terms of gauge theories· describing the 

interactions of pointlike particles. 

The most successful of these theories is Quantum Electrodynamics (QED), 

which can, for example, predict the magnetic moment of the electron to nine 

significant figures. QED has been combined with the gauge theory of weak 

interactions into an "electroweak" theory, also called the Standard Model of 

Glashow, Weinberg, and Salam. While this model cannot compete with QED for 

extreme numerical precision of its predictions, it has had some dazzling successes 

(such as the prediction of the existence and masses of the w± and Z0 bosons), and 

is consistent with all current experimental results. This theory's main drawbacks 

are the abundance of unconstrained parameters that must be fixed by experiment, 

and the crucial and experimentally unverified assumption of the existence of the 

Higgs particle( s). 

The current theory of strong interactions, Quantum Chromodyriamics (QCD), 

is another successful gauge theory. The physical reality of the quarks, gluons, 

and three color charges that it postulates have been amply verified in diverse phe-
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nomena. The existence of quarks, for example, is seen in hadron spectroscopy, 

(approximate) Bjorken scaling in deep inelastic lepton-nucleon scattering, and in 

the existence of jets in e+e- annihilation. The three color charges are necessary 

to explain, among other things, the rate of e+e- annihilation into hadrons, the 1r0 

lifetime, and the existence of the ~ ++ and n-. The role of gluons as the quanta 

of QCD is demonstrated in the existence of three-jet events in e+e-:- annihilation, 

in large PT jets in hadron-hadron collisions, and in the observations from deep 

inelastic lepton-nucleon scattering of scaling violations, broad PT distributions, 

and the presence of electrically neutral hadronic constituents. 

QCD suffers, however, fromthe relatively large value of its coupling constant, 

as. This means that perturbation theory calculations are less accurate to a given 

order than electroweak calculations. What is worse, as is a fairly strong function 

of Q2 , the four-momentum transfer of the interaction. This running coupling 

constant is given by 

as( Q2) = 127r 
(33- 2nJ)ln (Q2/A~cD) 

(1.1) 

where n1 is the number of quark flavors (presumably six) and where AQcD ""0.1-

0.5 GeV is a parameter to be determined by experiment. This means that for 

quark-gluon interactions on the scale of 30 GeV, say, as "" 0.15-0.2 and per-

turbation expansions are useful; but that for interactions on the scale of the 1 

Ge V typical of hadronic masses, as ~ 1 and perturbation expansions are use

less. In a way, this is good news, for it explains the phenomena of confinement 

and asymptotic freedom: confinement refers to the fact that isolated quarks are 

never observed directly in the lab, but rather are always confined within hadrons; 

asymptotic freedom refers to the fact that quarks inside hadrqns behave as if they 

were non-interacting when probed by large Q2 processes. The running coupling 

constant enforces confinement by making the long-range- hence low Q2 
-

restoring force on a quark heading out of a hadron so strong that it either re-
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mains bound or it becomes energetically favorable for qq pairs to materialize 

from the strong field energy to "dress" the escaping quark; either way, a quark 

can never depart the company of other quarks bound to it in a hadron. The run

ning coupling constant allows asymptotic freedom because high Q2 , short-range 

probes interact with quarks inside hadrons in a Q2 regime where they are largely 

decoupled from one another due to the small magnitude of a 8 • 

While the nature of the running coupling constant helps explain the promi

nent QCD phenomena of confinement and asymptotic freedom, it makes it impos

sible to understand the detailed nature of confinement forces from a perturbative 

QCD approach. Moreover, it makes uncalculable the transition from the initial 

qq state created in e+e- annihilation to the final observed hadrons, a transition 

which of necessity involves low Q2 gluons and quarks on the road to hadrons 

whose masses are 0(1 GeV). The lack of an analytic theory to predict this 

transition to final state hadrons, a process called "hadronization" or "fragmenta

tion," necessitates recourse to empirical models to describe the transition. These 

models typically are motivated by some underlying physical principle, but resort 

to modeling the uncalculable processes in terms of Monte Carlo computer pro

grams which use random number generators to simulate the stochastic processes 

involved. 

An e+e- annihilation into hadrons separates into four basic stages, illustrated 

in Figure 1.1. First is the electroweak creatie>n of a qq pair from the virtual/ or Z0 

arising from the e+e- annihilation. The second stage of the event consists of the 

hard QCD processes accessible to analytic calculation. The third stage consists 

of the soft QCD hadronization process. Finally, in the fourth stage, hadrons 

produced in the third stage that are unstable decay into the .Particles ultimately 

detected experimentally .. As depicted in Figure 1.1, the initial q and q evolve into 

the final state hadrons through QCD gluonemission and qq pair creation in a 
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Figure 1.1: Schematic evolution of an e+ e- annihilation .into hadrons. The arrows 
represent the detected particles. 

continuous fashion; the boundaries between the second, third, and fourth stages 

are arbitrary and set by limitations of the calculational tools brought to bear in 

each case. Roughly speaking, the hard QCD phase gives way to hadronization 

when Q2 is on the ·order of a few Ge V2 (i.e. when a 8 approaches 1 ), and resonance 

decays take over when Q2 ;S 1 Ge V2 • 

The least understood of these four stages is the hadronization process. Sev-

eral different models have been proposed to describe hadronization; I discuss 

some of these in the next chapter. It is the goal of exPerimentalists studying 

hadronization to bring as many experimental tests of the various models to bear 

as possible. This serves to fine-tune the models for better agreement with ex

periment, to identify strengths and weaknesses of the models, and to provide 

'! 

il 
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input for future model-builders to revise current models or to construct new 

ones. Achieving agreement between models and data is. worthwhile. at the least 

because the event structure produced by fragmentation can be a background for 

other measurements of interest, andbecause fragmentation is the filtet:" through 

which the hard QCD processes must be studied. But more importantly, the hope 

is that by ferreting out the strengths and weaknesses of various.models, insight 

will be gained into the actual physics of hadronization itself. The analogy has 

been made that by describing the hadronization process ever more accurately and 

completely, the door ~ould be opened to a true physical theory, much as Kepler's 

precise kinematical description of elliptical planetary orbits enabled Newton's 

dynamical theory of gravitation. 

In this dissertation, I add new experime:r:tal measurements to the body of 

knowledge describip.g hadronization. Using data frorn e+e- annihilation into 

hadrons at yfs = 29 GeV, collected by the TPC/21 Detector Facility at PEP, 

I measure the differential cross-sections 13'!rH ~~ for three .vector mesons: the p0, 

the K*0
, and the ¢>. These cross-sectic:ms are functions of X = Emeson/ Ebeam = 

2Emeson/vfs; they are normalizedto the tot,al hadronic cross-section aH. (The 

f3 in the denominator compensates for;. phase-space suppression at low x which 

would otherwise mask the expected scaling behavior.) In addition, I integrate 

the differential cross-sections to establish. measured mwtiplicities for the three 

vector mesons. These multiplicities are in practice often more useful than the 

detailed shape information of the differential cross-sections for the purpose of 

evaluating the performance of a model. 

One of the characteristic features ()f fragmentation is that hadrons are not 

produced in simple pr()portion to the ntlffiber of available spin states. Since u, d, 

and s quarks are so much lighter than the 29 GeV of available energy at PEP, one 

might na.lvely predict from SU ( 6). (flavor) x (spin) symmetry that equal fragmen-
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tation production rates should hold for particles that ~ffer only by the substitu

tion of an s for a u or d quark, and that vector mesons should be produced three 

times as often as their pseudoscalar partners. What is observed, however, is that 

strange particles appear in hadronization about a third as often as particles that 

differ by the substitution of au or d quark for an s quark; and that light vector 

mesons (those not containing a cor b quark) appear in hadronization with rates 

comparable to their pseudoscalar partners. (The production rates from fragmen

tation are not the same as the rates observed, for decays of higher mass. states 

contribute to the observed rates. Such decay, or "feed-down," contributions must 

be subtracted from observed rates before comparison of fragmentation rates can 

be made.) 

The observed suppression of strange and vector states must be reproduced in 

any successful model of hadronization. In this thesis, I use my measured vector 

meson multiplicities to quantify the strange suppression in terms of the "s/u" 

ratio (the relative production rates of mesons differing by the substitution of an 

s for a u or d quark), and to quantify the light vector meson suppression in terms 

of the "V /(V+P)" ratio (the fraction of light mesons of a given quark content 

that are vectors instead of pseudoscalars). 

The p0
, K*0 , and</> are useful particles to consider for a number of reasons. 

' 
Vector mesons as a class are produced at rates exceeded only by pseudoscalar 

mesons, so these three particles appear at reasonable rates. Of all SU(3) vector 

mesons, only these three decay copiously to two charged particles, enabling effi

cient reconstruction of the parent using the particle identification ability of the 

TPC central tracking chamber. Vector mesons are a better probe of hadroniza

tion than are pseudoscalars, for they are less diluted by feed-down decays and 

hence provide a more direct window on fragmentation. (Another way of saying 

this is that the systematic error from feed-down subtraction is smaller for vector 

,., 
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than for pseudoscalar mesons. For example, the Lund Monte Carlo predicts that 

almost 90% of observed 7r± stem from decays of more massive states, whereas 

less than 20% of p± originate in particle decay.) Comparisons of p0 and K*0 

rates with 1r
0 and K0 rates yield two measurements of V /(V+P); and the p0 , 

K*0 , and¢ contain zero, one, and two strange quarks, respectively, allowing for 

a redundant measure of the s/u ratio. 

Measuring the continuous function f3;H ~: for a given meson amounts to 

making independent measurements of the meson production in each of.several 

discrete x bins. One forms invariant mass spectra of meson decay product can

didates from the data for each x bin; determining the area under the. resonance 

peak establishes the number of mesons observed in the "data. Normalization to 

the total hadronic cross-section is accomplished simply by dividing by the num-
. ·.: 

her of events represented in the mass plot. An acceptance correction is applied 

to account for inefficiencies in· detecting the meson; this correction is .determined 

by performing the identical analysis on Monte Carlo simulated events passed 

through a detector simulation. 

A complication arises from the fact that the incoming e+ ore- can emit a 
: (" 

photon before annihilating. The effect" of this initial state radiation is to lower 

the ..jS available in the annihilation, which raises the hadronic cross-section. 

If unaccounted for, this would increase the reported {3. 
1 

dd(J' • So that cross-
O'H X 

sections and multiplicities can be compared unambiguously to models and other 

experiments, a correction to account for initial state radiation must always be 

made before reporting results; corrected results correspond to an unambiguous 

.JS, easily compared to cc:l.Iculations or Gedanken experiments performed with no 

initial state radiation. 

In practice, then, mea.suring f3;H ~: boils down· to this approximation: · 

1 du · 1 1 Nn N ( ) 
f30'H dx = {3 .6.x N MC gen 1.2 
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where 

X= Emeson/ Ebeam = 2Emeson/ Js, 

f3 is some suitably defined average meson speed over the x-bin, 

~x is the width of the bin, 

N D is the number of particles observed in the given x bin per accepted event 

in the data sample, 

N MC is the number of particles observed in the given x bin per accepted event in 

the Monte Carlo sample (generated with initial state radiation, processed 

through a detector simulation, and analyzed in the same manner as the 

data), and 

Ngen is the number of particles generated in the given x bin per event in the 

Monte Carlo physics generator when run with no initial state radiation. 

To understand Equation 1.2, one may view it as(~ ix) ~where A= NMc/N9 en 

is the acceptance term that simultaneously corrects the observed rate N D for 

detector acceptance and initial state radiation. Alternatively, one can think 

of Equation 1.2 as (~ lx) rN9en, where r = Nv/NMc is the ratio of mesons 

detected in the data (per event) to those in the detector-simulated Monte Carlo 

(per event); this amounts to scaling the Monte Carlo generator cross-section 

by how much the data exceeds or falls short of the corresponding Monte Carlo 

measurement. 

In this chapter I have outlined the reasons for interest in understanding 

hadronization, and the measurements I make to probe it. In Chapter 2 I ex

plain in more detail the physics of e+e- annihilation and models used to describe 

hadronization. I describe the TPC/2{ Detector Facility in Chapter 3, and the 

manner in which raw data is processed in Chapter 4. Chapters 5, 6, and 7 present 
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my analyses for the p0
, ¢>,and K*0 , respectively; I determine s/u and V/(V+P) 

ratios in Chapter 8. I summarize my results and conclusions in Chapter 9. 



Chapter 2 

Theory of Hadron Production 
e+e- ·Annihilation 

2.1 Electroweak Production of qq 

10 

• 
Ill 

The annihilation of e+e- into hadrons begins with the electroweak production of 

a qq pair through a virtual 1 or Z0 . The QED production of a spin-~ fermion 

pair ff through a virtual 1 has the cross-section in the center-of-mass frame 

da - a 2 

dn ( e+ e- --+ ff) = ei · 
48 

(1 + cos2 B), 

where s is the square of the center-of-mass energy, a is the fine-structure constant, 

B is the angle between the f and the e-, and er is the charge off in units of 

the electron charge. This expression is valid in the extreme relativistic limit. 

Integrating over angles gives 

- 47ra2 

a(e+e---+ ff) = -- · ei. 
3s 

This works out to 105ef pb (neglecting radiative correcti~ns) for the Vs = 29 

Ge V available at PEP~ Including the Z0 channel in a full electroweak treatment 

makes only a small correction to this cross-section. 

The total cross-section for production of all possible qq.pairs is thus 

( 4;;2) . 3 ~ e; (2.1) 

a( e+ e- --+ J-l+ J-t-) · 3 2.: e~ 
q 
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where eq is the charge of quark q (in units of the electron charge), the factor 

of three is from the three color states available for each quark flavor, and the 

sum runs over all quarks light enough to be produced. This is not quite the 

same as the total cross-section for production of hadrons, since the quarks can 

radi<3,te gluons, thus providing more channels to hadronic fi;nal states. Adding a 

first order QCD correction to account for this yields the total 0( as) hadronic 

cross-section O'H = O'(e+e--+ hadrons): 

(2.2) 

This hadronic cross-:~ection is often expressed through the ratio R, defined by 

2.2 Hard QCD Processes 

The. qq pair created in the electroweak e+e- annihilation will evolve to the 

qbserved hadrons through a complicated cascade of gluon emission .and quark 

pair creation such as that pictured in Figure 1, 1. Some of this process - the 

hard QCD stage- is c.alculable in analytic approximation schemes. There are 

two such schemes currently available: fixed order perturbative QCD (sometimes 

called the matrix element (ME) scheme), and the leading logarithm approxima

tion (LLA). The ME method consists of performing a perturbative expansion 

i!l powers of as, keeping all Feynman diagrams up to a given order and ne-: 

glecting .everything beyond. 'l'he LLA method uses the renormalization group 

technique to sum the most divergent term from every order of as, neglecting all 

less severely divergent terms. (Each leading term is logarithmically divergent, 

hence the name.) 

Since every gluon vertex contributes one power of as to the cross-section, 

an nth order ME calculation can only provide cross-sections. for states contain-
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ing no more than n partons beyond the original qq pair. By contrast, the LLA 

method can in principle be used to compute cross-sections for states containing 

any number of gluons. Both the ME and LLA methods are often lumped under 

the appellation "perturbative QCD" to indicate that they are QCD approxima-

tion methods analytically calculable by virtue of the small value of as at high 

Q2. 

2.2.1 Fixed Order Perturbative QCD 

Single gluon emission from the original q or q, pictured in Figure 2.1, contributes 

to the O(as) QCD cross-section. The single gluon emission cross-section can be 

expressed as 

(2.3) 

where x1 = 2Eqj.JS, x2 = 2Eq/.JS, and a(e+e- -+ all qq) is the zeroth order 

cross-section from Equation 2.1. The gluon emission cross-section diverges if 

x 1 -+ 1 or x2 -+ 1, which corresponds to the gluon beit;1g either collinear with the 

q or q or being arbitrarily soft. This divergence is not necessarily a problem with 

the theory, for naked quarks accompanied by sufficiently soft or collinear gluons 

will be indistinguishable from the dressed quarks that result from fragmentation. 

The divergences in the integrated gluon emission cross-seCtion are cancelled by 

divergences in the O(as) vertex and propagator correCtions to the zeroth order 

cross-section, so that the total 0( as) cross-section is finite. (It is this result

ing total O(as) cross-section that appears in Equation 2.2.) In Monte. Carlo 

programming, the divergence in Equation 2.3 is handled by imposing arbitrary 

cutoffs to x1 and x2. 

QCD cross-sections to 0( a;) have been computed, although the results de-

pend somewhat on the regularization scheme used to cancel divergences. The 

0( a;) terms represent the addition of two partons to the original qq state. Terms 
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e+ e+ 
g 

+ g -e e 

Figure 2.1: Feynman diagrams for single gluon emission from the qq state pro
duced in e+e- annihilation. 

of O(a:) are difficult to calculate and are not used in ME Monte Carlos. 

2.2.2 Leading Logarithm Approximation 

The most divergent part of Equation 2.3 and higher order terms comes from the 

emission of gluons nearly collinear with their parent parton. The LLA approach 

sums these divergent contributions into a finite cross-section, thus describing pro

cesses involving any number of gluons. The radiated gluons can themselves emit 
' -

gluons or split into qq pairs; the resulting "parton shower" of gluons and quarks 

splitting into more gluons and quarks can be .computed in t.qe LLA scheme. A 

typical parton shower is depicted in Figure 2.4a. 

The evolution of the shower is governed by the· differential probability dPa-+bc 

for a given parton a to split into two partons b and c, given by 

(2.4) 

where rna is the mass of parton a, z is the fraction of parton a's momentum 

given to parton b, and Pa-bc(z)is'the Altarelli:..Parisi splitting kernel [1,2]. These 

splitting kernels depend on the type of vertex: 

1,1±? 
3 1-z for q-+ qg, 



6(1-z(l-z))2 

z(l-z) for g-+ gg, 

'Pa-+bc = !(z2 + (1 - z)2) for g-+ qq. 

14 

Soft gluon terms are included in Equation 2.4 in an incoherent manner, i.e. 

neglecting their interference. The effect of soft gluon interference has been shown 

to restrict the phase space regime allowed for the shower [3]. This forbidden phase 

space can be avoided if successive splittings are ordered in decreasing magnitude 

of a variable e defined by 

e = qb. qc. 
EbEc 

where qb and qc are the four-momenta of partons b and c. For small values of q~ 

and q~, e,...., (1- cos B) where 9 is the angle between the produced partons, hence 

the name "angular ordering" applied to this prescription. 

In Monte Carlo implementation, partons are emitted in the shower under 

the control of Equation 2.4, subject to the angular ordering restriction. The 

emitted partons become less and less virtual as the shower progresses until some 

minimum cutoff is reached, at which point showering is terminated. 

2.3 Hadronization Models 

The analytical tools of the last section can only go so far in describing the tran-

sition from initial qq to observed hadrons; they fail once a 8 approaches unity. 

Hadronization models take over where the analytical methods leave off. They of-

fer computer programmed prescriptions for stochastically evolving partonic con

figurations (generated by Monte Carlos that used analytical methods) through to 

final state hadrons. These prescriptions are motivated by some guiding physical 

principles; the successes or failures of a given model should give some insight into 

the role of the corresponding physical principle in fragmentation. In this section 

I discuss four models: independent fragmentation, string fragmentation, cluster 
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fragmentation, and the UCLA model. 

2.3.1 Independent ;Fragmentation 

The independent fragmentation (IF) model was first proposed by Field and Feyn

man [4] as a way to conveniently describe hadronic jets. In the Field-Feynman 

formulation, each initial quark evolves into hadrons independently. The evolu-

tion is an iterative process: q and q "sea quarks" materialize from the vacuum, 

one of which binds with the quark left over from the previous it~ration to form 

a meson, the other sea quark being Jeft over for "the next iteration. Th~ flavor of ,. ' 

the sea quark pair is selecte<;l randomly in the ratio 2:2:1 for u:d:s to account for 

strange quark suppression. The transverse ~omenta (with respect to the jet) of 

the sea quarks sum to zero; their relative transverse momentum is chosen from a 

gaussian .distribution .. The longitudinal momentum of the newly created meson is 

determined by a probability ftJnction f(z), which represents the probability that 

the meson carries off a fraction z of the remaining momentum of the jet. The 

inclusive momentum spectrum D( z) of (primary) hadl"0ns is then determined by 

f( z) through 
,, .· 11 d7] D(z) = f(z)+ -f(1 -7])D(z/7J), 

. z 1] 

where the first term comes from.the first meson produced and the second term 

accounts for mesons produced at later iterations> The spin of the new meson 

is chosen to be one or zero with:- equal probability to account for the observed 

V /(V +P) ratio. The iteration halts once the remaining energy in the jet is below 

some threshold. 

The IF approach has flaws as a model of hadronization: energy and mo-

mentum conservation are not implicit in the model and must be imposed in an 

ad hoc fashion, flavor is not conserved and there are always leftover quarks to 

be disposed of somehow, the model is not manifestly Lorentz covariant, and no 
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correlations exist between opposing jets. Despite these flaws, it does well in 

reproducing broad characteristics of fragmentation phenomenology, which is all 

Field and Feynman ever intended it to do. 

Extensions to the model were made by Hoyer [5] to add gluon jets; by Ali [6] 

to add band c quark decay as well as a more elaborate treatment of gluons; and 

by Meyer [7] to add a mechanism for baryon production. 

2.3.2 String Fragmentation 

The central concept of string fragmentation (SF) is that of a color singlet QCD 

flux tube, or string, connecting partons. The strong interaction lines of force 

from colored partons are assumed to collapse into an essentially one-dimensional 

tube due to the mutual interactions of the gluon flux quanta inherent in the 

non-Abelian nature of the QCD Lagrangian; strong interactions between par

tons occur only through the force applied by the string. Such a string con-
• •. ·' ,i 

necting the original qq of an e+e- annihilation is depicted in Figure 2.2a. This 

one-dimensional flux tube is assumed to carry a constant linear energy den-

sity of about 1 GeV /fm. It is treated as a classical, massless, relativistic, one-

dimensional string with no transverse excitations. 

Fragmentation of the initial quark-string-antiquark system is understood as 

follows. As the original qq pair separates in the center-of-mass frame, energy is 

deposited into the elongation of the string. It becomes energetically favorable 

for a qq pair to materialize from the vacuum in such a manner as to screen 

the color charge flux in between them, thereby reducing t.he potential energy 

contained in the field. That is, the string severs into two pieces, each of which 

now ends on one of the new quarks as illustrated in Figure 2.2b. Each piece of 

string can sever again by the same argument. This process continues until the 

individual quark-string-antiquark segments are no longer energetically favored to 

~· .. 



,,, 

,_., 

17 

(a):· -• q 0 e q • 

(b): 0 eo e 
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(d): o--cc II . e ()4 o-co II e 0 e 

Figure 2.2: String fragmentation into hadrons. (a) The string connecting 'the 
original qq pair. (b) A break in the string by creation of a qq pair from the 

·vacuum. (c) The string hadronized into mesons. (d) The string hadronized into 
mesons and baryons. 

break: this occurs when confinement forces take over to make the quark-string

antiquark segments bound states - mesons·- that would absorb rather than 

release energy upon cleaving. Put another way, the fragmentation process stops 

when the energy debt in creating new mesons exceeds' the profit of removing 

energy from the field. The end result of the string fragmentation is a collection 

of quark-string-antiquark objects which are mesons, as pictured in Figure 2.2c. 

The picture so far does not accommodate baryon production. Baryons can 

be incorporated by assuming that diquark-antidiquark pairs instead of quark

antiquark pairs are occasionally produced from the vacuum. These diquarks are 

not taken to be new fundan;1en£al particles, but simply to be two ordinary qq 

creations sufficiently close in phase space th~t ·the color field effectively acts on 

the qq and the qq a.S units. Inclusion of t}1js mechanism of baryon production 

results in the picture of string fragmentation· shown in Figure 2.2d. 

There are several heuristic arguments for exploring the string concept as a ba-
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sis for hadronization. The 1+1 dimensional QED model of Schwinger [8] predicts 

stringlike fragmentation characteristics. QCD lattice gauge theory calculations 

predict linear QCD binding potentials [9]. Charm spectroscopy can be under

stood in terms of linear binding potentials [10]. Regge trajectories (which show 

hadron masses mh appearing on loci given by m~ ex J + constant) can be inter

preted by considering rotational modes of a relativistic string [11]. Whatever the 

motivations for the approach, however, its success must be judged in comparisons 

with data, which I discuss briefly in Section 2.3.5. 

The most successful implementation of the SF approach is made by the Lund 

model [12,13,14]. To implement the string fragmentation picture, the Lund 

Monte Carlo uses an iterative procedure: the remaining string from the pre

vious stage is fragmented into a· hadron plus a leftover piece of string that then 

serves as input for the following stage. The hadron carries off one of the quarks 

that terminated the string at the start of the curren~ iteration plus one of the 

vacuum ( di)quarks; the other vacuum ( di)quark terminates the leftover string. 

The formation of a hadron in the model occurs through several steps, first 

at the quark level, then at the hadron level. The first steps are to select the 

flavor and PT (with respect to the string direction) of the quark pair or diquark 

pair materializing from the vacuum. (Diquarks appear in the process at a rate 

govemed by the Lund qqfq parameter. Since the steps are substantially the scttne 

if quarks materialize instead of diquarks, for ease of explanation I will discuss 

the chain of events only for quark production from the vacuum.) Combined with 

the known flavor and PT of the quark terminating the string that will also enter 

the hadron, this specifies the total flavor content and PT of the hadron. 

Field theoretically, the vacuum qq must be produced at a point. This violates 

energy conservation, however, for energy is put into quark masses and PT but 

not removed from the string. The Lund model assumes the materialization of qq 

,. 
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pairs can be described by creati<m at a point followed by quantum mechanical 

tunneling to the classically allowed locations, where the energy in the eliminated 

portion of string balances the mass and PT of the new qq. ·A WKB calculation 

using constituent quark masses predicts that the probability of uu : dd : ss : cc 

tunneling to the allowed .region is roughly in th~ ratio 1 : 1 : 0.3 : 10-11 . This 

mechanism accounts for strange quark suppression, and dictates that c and b 

quarks are not produced at all in hadronization. Moreover, the WKB calculation 

predicts a gaussian spread in PT that is decoupled from the flavor assignment, 

a natural way to explain the observed gaussian spread of PT in jets. While 

predicting the 'general quantitative behavior of strange quark suppression and PT 

distribution, the Lund model does not use the WKB calculation to constrain these 

quantities; rather, it leaves them a8 free parameters of the model, to be adjusted 

for best agreement with data. Thus, the flavor of the qq pair is chosen randomly 

in the ratio 1 : 1 : (s/u) for uu: dd: ss, and the PT is chosen independently from 

a gaussian of width O'q (and randomized in azimuth). Since the string has no 

transverse excitations, the Pr of vacuum quark and antiquark sum to zero. 

After the flavor content of the hadron is specified, its identity is unique once 

the angular momentum assignment is made. Since the string carries no transverse 

excitations, it contributes no orbital angular momentum, and the total angular 

momentum of the hadron is determined by the total spin. (Thus only vector and 

pseudoscalar mesons, and octet and decuplet baryons, are ~ccommodated by the 

model.) For mesons, the spin is chosen to be one or zero in accordance with a 

V /(V + P) weighting factor that is left as a free parameter of the model. 

At this point the identity of the hadron is known (as is its PT); its mass mh 
:·:·· . 

is chosen from the appropriat~ resonance liiie shape (which i~ a 8-function for 

stable particles). A quantity called "transverse m~s" is defined by ni} = m~+p}. 

This is used in determining the only remqining piece of information necessary to 
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completely describe the kinematics of the hadron, its longitudinal (with respect 

to the string) momentum. 

This longitudinal momentum, pz, is drawn from a probability function (called 

the ''fragmentation function") similar in purpose to f(z) in the IF model. In the 

Lund model the fragmentation function f(z) is given by 

!( ) (1 - z )a ( bm}) z ex exp ---
z z 

(2.5) 

where z is the fraction of the light cone variable (E + pz) available in the string 

that is carried off by the hadron. Called the Lund symmetric fragmentation 

function (LSFF), this has beenshown to be the only possible form for a Lorentz 

covariant fragmentation function under certain general assumptions about the 

shape of the central rapidity distribution, and under the requirement that the 

resulting event should not depend (on average) on which end of the string the 

fragmentation begins at [15]. (The most general form of the LSFF is actually 

a little more encompassing in that a may depend on flavor, but Equation 2.5 

is the implementation of the LSFF in the Lund package used in this thesis.) 

The formation of hadrons continues until the ( E + pz) remaining in the string 

falls below a cutoff, at which point the remaining string decays into two hadrons 

according to two-body phase space. 

So far in this description no provision has been made for gluons. Gluons are 

incorporated as kinks in the string as pictured in Figure 2.3; two pieces of string 

. may contact a gluon by virtue of its two color indices. (In contrast, strings must 

always terminate on quarks, which carry only one color index.) The SF method 

can thus be mated with any hard QCD approximation scheme: whatever the 

partonic configuration presented by the hard QCD event generator, one connects 

the partons by a string (appropriately kinked at the gluons) and turns loose the 

SF algorithm. 

The Lund model does well in reproducing experimental results. Its main 
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Figure 2.3: Incorporating gluons into the Lund model by introducing a kink in 
the string. 

as a aq b s/u (v~P)ud (v~P)s (v~P)cb 
0.183 0.955 0.350 GeV/c 0.6 0.30 0.5 0.6 0.75 

Table 2.1: Values of Lund v5;3 parameters used in this thesis. 

drawback as a modelis its plethora of ~ee parameters: \\That is gained in flexibility 

and accuracy is lost in lack of physical insight and decreased universality. 

I use the Lund Monte Carlo extensively in this thesis. I always use Lund 

v5.3 with the O(a;) ME scheme for the hard QCD phase. The parameters have 

been left at default, except for three·- as, aq, a -.which have been tuned to 

reach agreement with several experimental measures of momentum flow at PEP 

[16]. The values of these parameters, as well as some relevant. default values, are 

listed in Table 2.1. (The only time different parameters are used is in Chapter 

8, where I perform a different tune of parameters taking the values of Table 2.1 

as a starting point.) 
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2.3.3 Cluster Fragmentation 

The central concept of cluster fragmentation ( CF) models is that of preconfine

ment. Preconfinement is a phenomenon resulting from the fact that iii LLA 

events, color flow lines tend not to cross. The partons arising in the LLA scheme 

can therefore be grouped into localized color singlet objects, called clusters [17]. 

Figure 2.4b shows the color flow and resulting clusters for the LLA event of Fig

ure 2.4a. Being a color singlet, a cluster is capable of decaying directly to color 

singlet hadrons; it is also at least partly screened from the internal color charges 

of its neighboring cluster and hence approximately free to decay to hadrons in

dependently of other clusters. These clusters appear at the mass scale where a 8 

approaches unity, regardless of the original Q2 available in the primary interac

tion. The clusters' universal mass scale, their existence as color singlets, and 

their independent decay to hadrons gives clusters some hadron-like properties, 

hence the term preconfinement (in analogy to confinement of hadrons). 

A CF model, then, combines the assumption of clusters with an Ansatz for 

their decay to hadrons. (Note that CF only works in conjunction with the LLA 

approach to hard QCD processes.) A fruitful Ansatz for cluster decay, proposed 

by Wolfram [18], is that qq clusters decay (through auxiliary- creation of a sea 

( di )quark pair) isotropically into two hadrons whose identity is determined -

consistent with the cluster flavor content - entirely according to probabilities 

proportional to available phase space. That is, all sea quark pairs are assumed 

to be equally likely; all possible hadron pairs are considered as cluster decay 

products, each weighted solely by their available phase space. Thus the suppres

sion of strange hadrons and vector mesons is understood to be due only to their 

generally higher mass. The PT distribution falls out naturally in this algorithm, 

too, without recourse to a separate parameterization. 

This cluster decay Ansatz was taken by Webber as the basis for his CF model 

,_, 
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(b) 

Figure 2.4: (a) A typical LLA parion shower. (b) The color flow of the same 
event, after gluons split into qq pairs; the blobs represent preconfinement into 
color singlet clusters. (Diagrams from Webber [3].) 
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A QeD Qo M, 
0.25 GeV 0.6 GeV 3.5 GeV 

Table 2.2: Parameter values used in Webber v3.0 Monte Carlo. 

[3]; I use the Webber v3.0 Monte Carlo extensively in this thesis with all pa

rameters taken at default. Following Wolfram's lead, Webber requires all gluons 

remaining at the end of LLA evolution to split into qq pairs before the formation 

of clusters, so that all clusters consist of q + q with no gluons. This g --+ qq split

ting was imposed on the event of Figure 2.4a before the color flow in Figure 2.4b 

was established. 

The only parameters of the Webber model are A QeD and the virtuality cutoff 

of the parton shower Q0 , and the maximum allowed cluster mass M1. (Clusters 

more massive than Mf fission into two clusters before application of the isotropic 

cluster decay algorithm.) Quark masses are set tomb= 5.3 GeV, me= 1.9 GeV, 

ms = 0.5 GeV, and mu = md =- 0.3 GeV. The default values for the model's 

parameters are listed in Table 2.2. 

To weight all possible decay products by their available phase space, one must 

have an assumed table of allowed decay products. Webber v3.0 uses as allowed 

decay products all o-, 1 +, 1-, and 2+ SU(3) mesons, all ~ + and ~+ octet and 

decuplet baryons, and well-established charmed hadrons. Bottom quarks are 

decayed weakly before cluster formation, so that the only quarks remaining to 

form clusters are u, d, s, and c. 

The Webber Monte Carlo has the beauty of using a minimum of free param-

eters to define an algorithm that works to reproduce a wide range of observed 

phenomena. When the model has been demonstrated to have shortcomings, 

Webber has patched it in various ways to better agree with experiment; the 

improved agreement comes at the cost of introducing extra parameters and as-
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sumptions. Some of the changes in versions subseq4ent to v3.0 are mentioned in 

Section 2.3.5. 

2.3.4 UCLA Model 

A recent modification of the Lund scheme has been advanced by Buchanan and 

Chun at UCLA [19]. In this UCLA model, the LSFF of Equation 2.5 is reinter

preted as a simultaneous probability density in mh, PT, and z = (E+pz)hadron/(E+ 

pz)jet· That is, the hadron's identity and momentum are selected simultaneously 

at the hadron level, with no quark level parameters such as s/u or qqfq. The 

scheme is· iterative, so that each potential hadron is weighted by its Clebsch

Gordan coupling to potential sea quarks (which automatically accounts for spin 

counting) as well as weighted by the LSFF. Because selection of ss sea quarks 

(instead of uu or dd) produces two heavier hadrons, the overall probability of a 

given decay chain will be suppressed by more than is apparent from the single 

heavier hadron appearing at one stage of the iteration. To account for this, all 

possible decay chains from two future iterations are also weighted into the hadron 

selection. 

Since the selection of produced hadrons depends only on the final state 

hadrons themselves, and because the global decay sequence is weighted by cou-
. . . 

pling successive fragmentation iterations, this method is in the spirit of repro-

ducing an overall global quantum mechanical transition from initial state to final 

state. All s/u and V/(V +P) suppression is accounted for by suppression of 

higher mass hadrons in a highly con.strained manner: the only free parameters 
' . 

of the model are a and b in the LSFF. The automatic suppressions and few free 

parameters are advantages of this model in common with CF models. 
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2.3.5 Experimental Status of Models 

Of the SF, CF, and UCLA models just described, none stands out from the others 

as clearly better or worse; each has regimes where it performs well and where it 

performs poorly. I will touch on s~me of the major experimental arenas where 

the models are tested. 

Each predicts the pseudoscalar and vector meson and octet' and decuplet 

baryon multiplicities reasonably correctly [20,19). Each fails to predict inclusive 

1r, K and p differential cross-sections and fractions correctly over some significant 

momentum interval [21). The IF model suffers because only it fails to reproduce 

the "string effect" in three jet events (the phenomenon that the region between 

two quark jets is less populated than that between quark and gluon jets) [22,23). 

The Webber model predicts too few hadrons at high x, an artifact of the two

body decay of the cluster which guarantees that no single hadron gets all the 

available energy [24,21). (This has been cured in Webber versions subsequent to 

v3.0 by allowing some clusters to "decay" to a single hadron.) Webber v3.0 also 

fails to reproduce the observed peaking ofpp production in the jet direction; this 

is an artifact of isotropic cluster decay [25). (Subsequent versions allow some g-+ 

qqqq splittings which creates three-quark clusters to alleviate this discrepancy. 

The baryon decay products of these clusters tend to follow the clusters' boost, 

which is in the direction of the jet.) 

Both the Lund and Webber models as used in this thesis fail to predict ra

pidity distributions correctly for events with sphericity intermediate between two 

and three jet events [26). (Lund v6.3, which implements a parton shower to gen

erate the hard QCD parton configuration, does much better.) The LLA-based 

Lund v6.3 and Webber Monte Carlos yield a momentum spectrum for the gluon 

jet in three jet events softer than quark jets, in agreement with data; Lund using 

the ME scheme predicts a gluon jet spectrum that is too hard [27,20). 
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Chapter 3 

Experimental App,aratus 

3.1 PEP 

The data used in this dissertation were collected by the TPC/21 detector facility. 

This fa6ility is operated at Interaction Region 2 of the PEP. e+e- storage ring, 

located at the Stanford·· Linear Accelerator Center. This storage ring contains 

counter-rotating beams of electrons and positrons, each beam c~nsisting of three 

discrete bunches which meet at six interaction regions. The beam energy is 14.5 

Ge V for a total center-of-mas's energy of 29 Ge V. Beam crossings occur· every 

2.44 J.lSec; a typical operating luminosity is ,...., 1--.:.2 x 1031 cm-2sec-1 • With a 

cross-section of 0.4 nb for e+e- annihilation into a qq pair at 29 GeV, this means 

annihilation-channel hadronic events occur once every,...., 2-4 minutes. 

3.2 Detector Systems 

3.2.1 TPC/21' Detector Facility 

The TPC/21 detector facility is an assembly of several detector and support 

subsystems.· It has been described in detail elsewhere (28]. It is a so-called "gen

eral purpose" detector,. designed to detect and record as much information about 

interesting events as possible, for later offline analysis. The overall geometry is 

an azimuthally symmetric "barrel" structure of components concentric about the 
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beamline, plus fore and aft "endcap" components. 

The TPC/21 facility is shown in a longitudinal section in Figure 3.1, with the 

central elements isolated in Figure 3.2 and Figure 3.3. The detector closest to 

the interaction point is the Inner Drift Chamber (IDC), a wire chamber used for 

triggering. The next detector outside of this in the barrel portion of the facility is 

the Time Projection Chamber (TPC), a proportional wire chamber that provides 

the main charged particle tracking and particle identification. Surrounding this 

is a superconducting magnet creating a 13.25 kG solenoidal field in the TPC to 

enable momentum measurement of the recorded tracks; specially shaped pole

tips in the endcap ensure uniformity of the field. Outside the magnet is the 

Outer Drift Chamber (ODC), a wire chamber used for triggering and tagging 

of photons that convert in the magnet. External to this is the Electromagnetic 

Hexagonal Calorimeter (HEX), a wire chamber sampling shower counter operated 

in limited Geiger mode. The outermost system in the barrel geometry is the 

muon detection system, consisting of shielding iron to absorb particles other 

than muons (and to provide a return magnetic flux path) and wire proportional 

chambers. The endcap detector closest to the interaction point is the Pole

Tip Calorimeter (PTC), a wire chamber sampling shower counter operated in 

proportional mode. Outside of the PTC are more muon system layers of absorber 

iron and wire chambers. Further out, and providing coverage at angles closer 

to the beamline, are assemblies of detectors known collectively as the Forward 

Detectors, which are used primarily in the detection of two-photon events. The 

IDC, TPC, and PTC are inside the same 8.5 atm pressure volume, delimited by 

an imier radius pressure wall, the magnet cryostat, and the magnet pole-tips; the 

other gas chambers operate at 1 atm. 

The analysis in this thesis overtly uses only the charged particle tracking and 

particle identification information from the TPC, the other subsystems being 

.. 
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Figure 3.1: Longitudinal section of the TPC/2r detector facility. 
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Figure 3.2: Longitudinal section of the TPC/21 detector facility, omitting the 
Forward Detectors. 



~- Muon Chambers Hexagonal 
Calorimeter 

Superconducting 
Coil Package 

Outer 
Drift 

Chamber 

31 

Figure 3.3: Partial cross-section perpendicular to the beam direction of the barrel 
components of the TPC/2-y detector facility. · 
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relevant only through their role in triggering. I will therefore describe the other 

systems only briefly, but the TPC in some detail. 

IDC 

The IDC [29,30] is 1.2 m long, extending in radius from about 13 em to 19 em. 

This covers 95% of 47r solid angle, It contains four cylindrical layers of 60 axial 

sense wires each; the wires in a layer are spaced evenly in azimuth, with 1.2 em 

radially between layers. The volume is divided electrostatically into cells about 

each sense wire by field-shaping wires. Each layer is offset azimuthally from its 

neighbors by a one-half cell rotation. The wires operate in proportional mode in 

an 8.5 atm argon (80%)-methane (20%) gas mixture. This detector provides fast 

azimuthal information for triggering, but no longitudinal information. 

ODC 

The ODC (30] is 3 m long, extending in radius from 1.19 m to 1.24 m. This 

covers 77% of 47r solid angle. It contains three cylindrical layers of 216 axial 

sense wires each; the wires in a layer are spaced evenly in azimuth, with 2 em 

radially between layers. The middle layer is offset azimuthally from the inner 

layer by a one-half cell rotation; the outer layer is offset by an additional quarter 

cell rotation. The wires operate in proportional mode in a 1 atm argon (80%)

methane (20%) gas mixture. Like the IDC, this detector offers only azimuthal 

track information. 

HEX 

The HEX calorimeter [31,32,3.3] consists of six modules, each 4.2 m long and 

trapezoidal in a cross-section taken perpendicular to the beam. Assembled into 

a hexagonal geometry surrounding the ODC, this covers 75% of 47r solid angle. 
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Each module is 10.4 radiation lengths thick, consisting of a 40 layer sandwich of 

0.14 em thick lead plates and 0.6 em gas gaps containing sense wires. The lead 

provides a medium for electromagnetic showers which are sampled for magnitude 

and location. by the wire chambers. Inside each gas gap parallel sense wires 

are strung axially, 0.5 em apart. The wires are operated in Geiger mode in a 

1 atm argon (92.3%)-methylal (5.5%)-nitrous oxide (2.2%) gas mixture. Nylon 

filaments strung perpendicular to and touching the sense wires limit the Geiger 

discharges to cells 1.0 em long. Cathode strips ~e mounted on the cell walls to 

capacitively sense the Geiger discharges . .These strips run at ±60° with respect to 

the wires on facing walls of a gas gap, so that wire and cathode readout together 

provide three stereo views of the shower in each layer. 

Muon System 

The muon system [34] consists of interleaved layers of iron absorber and propor

tional wire cells operating in 1 atm of argon (80%)-methane (20%). Structurally, 

these cells are aluminum tubes triangular in cross-section, 8.26 em high. The 

barrel portion of the system lies outside the HEX with the same hexagonal ge

ometry. It contains four layers of wire cells, the inner three running parallel to 

the beam direction, the outermost oriented at 90° to the beam. Between the in

nermost layer of cells and the HEX is 30 em of iron, which serves as the magnet 

return yoke as well as absorber. Between the inner two chamber layers lies an 

additional 35 em of iron, with a final 30 em iron layer lying between the middle 

two chamber layers. The endcap detectors only contain three chamber layers, 

the middle one oriented horizontally, the others running vertically; 20 em of iron 

sits between the inner layer and the outer two layers. The muon system provides 

coverage over 98% of 47r solid angle, but with performance varying with the angle 

of a track, due to the varying thickness ( 4-11 interaction lengths) of absorber 
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traversed by the track. 

PTC 

The PTC [35] consists of two endcap detectors, together covering 18% of 47!" 

solid angle. Each detector is 13.5 radiation lengths thick, consisting of a 51 layer 

sandwich of lead plates and 0.41 em gas gaps containing parallel sense wires. 

The lead thickness and wire spacing is a function of depth into the detector. The 

direction of the wires in successive layers is rotated azimuthally by 60°, so that 

three consecutive layers provide three stereo views of a shower~ The wires operate 

in proportional mode in an 8.5 atm argon (80%)-methane (20%) gas mixture. 

Forvvard I>etectors 

The Forward Detectors provide particle tracking, identification, and calorimetry 

capabilities at angles close to the beamline, subtending the polar angles 22-180 

mrad. A set of five drift chambers perform charged particle tracking. Particle 

identification is done by threshold Cerenkov counters, time-of-flight counters, and 

muon chambers behind iron absorbers. Calorimetry duties are split between a 

Nal array (22-90 mrad) and a lead-scintillator sandwich shower counter (100-180 

mrad). 

3.2.2 TPC 

3.2.2.1 Operation 

The TPC is a cylindrical drift chamber 2m in diameter and 2m long, operating 

in an 8.5 atm argon (80%)-methane (20%) gas mixture [36,37]. The chamber is 

immersed in a 13.25 kG axial magnetic field. Midway down its length a wire mesh 

at negative high voltage bisects the cylinder to establish an axial electric field 

pointing from the ground potential endcaps. Metallic equipotential rings in the 
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Figure 3.4: Schematic view of the TPC ,geometry, showing E field, B field, and 
electron drift directions, and sectors in the endcaps. For simplicity, tracks from 
the interaction are not shown curving in the magnetic field. 

G-10 walls of the TPC enforce uniformity of the electric field. Charged particles 

traversing the TPC leave ionization trails in the gas; the liberated electrons in 

this track drift under the influence of the electric field -to the endcaps where 

they are detected by proportional wire arrays. The midplane mesh was initially 

held at -50 k V for the data used in this thesis, imposing a drift speed of about 

3.3 em/ J.lsec; the voltage was increased to -55 kV partway through the running 

cycle. Figure 3.4 shows schematically the geometry of the TPC and the electron 

drift. The right-handed detector coordinate system has x horizontal and pointing 

outward (roughly east) from the center of PEP, y vertical, and z parallel to the 

beam (pointing roughly south). 

The endcaps, which contain the proportional wire arrays, are each composed 
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of six identical kite-shaped modules, called sectors. A local right-handed coor

dinate system is defined for each sector: 1J points left to right in the plane of 

the sector face (roughly the azimuthal direction when installed in the TPC), e 
points radially outward along the sector midline in the plane of the sector face, 

and z points perpendicular to the sector face into the TPC volume. Each sector 

has 183 parallel sense wires, ruiming in the 1J direction. The wires are spaced 

0.4 em apart and 0.4 em above the grounded cathode plane. The cathode plane 

is subdivided in places into electrically isolated rectangles, called pads,. which . 
are virtually grounded through amplifiers in order to sense the capacitively in-· 

duced signals from avalanches on overhead wires. These pads are 0.75 em high 

by 0.70 em wide, arranged into 15 rows running parallel to the sense wires, with 

0.05 em between pads in a row. Each pad row is centered under a sense wire, 

receiving effectively their entire induced signal from the five closest wires. The 

centers of the pad rows are located at the following e distances (in em) from the 

interaction point: 23.6, 28.4, 33.6, 38.8, 44.0, 49.2, 54.4, 59.6, 64.8, 70.0, 75.2, 

80.4, 85.2, 90.0, and 94.8. The arrangement of pad rows and sense wires in a 

sector is shown schematically in Figure 3.5; the configuration of sectors in the 

endcaps is shown schematically in Figure 3.4. 

The arrangement of wire grids above the cathode plane is shown in Figure 3.6. 

The sense wires are interleaved with field wires which help shape the electrostatic 

configuration near the sense wires. A grounded grid of wires, called the shielding 

grid, is located 0.4 em above the sense and field wires. The shielding grid defines 

the ground plane seen by the TPC midplane high-voltage mesh, and separates 

the proportional cells from the electron drift region. Above the shielding grid by 

an additional 0.8 em is a grid of wires called the gating grid. 

The gating grid acts as a normally closed "electronic shutter." In its open 

(transparent) mode, the wires of this grid are set to V GG, a negative voltage such 
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Figure 3.5: Schematic view of a sector, with a close-up of part of a pad row. 
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Figure 3.6: Configuration of wire planes above the cathode plane of a sector. 
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that field lines running from the drift region to the sense wires are uninterrupted: 

drifting electrons can reach the sense wires. (In practice, V GG roughly doubles 

the field between the gating grid and the shielding grid relative to the drift field 

in the main volume of the TPC.) In its closed (opaque) mode, offset voltages 

+.6. V GG and -.6. V GG are added to V GG on alternate wires, which has the effect 

of deflecting the drift and sense wire field lines to end on the gating grid: both 

drifting electrons and avalanche-produced positive ions discharge at the gating 

grid. This grid when closed thereby prevents positive ions from entering the drift 

region where they would distort the uniform electric field by their space charge, 

and hence distort the apparent trajectories of reconstructed tracks. In use, the . 

gating grid is left closed until a pre-pretrigger decision (described in Section 3.3) 

switches it open just long enough for the ionization trails of interest to drift to 

the sense wires; it closes again before the slowly-moving positive ions can escape 

into the drift region. 

The ionization trails from charged particle tracks drift to the sectors, where 

amplitude and arrival time are measured for the resulting pulses on wires and 

pads. Because the drift field is uniform, the ionization lands on the endcaps as 

a direct axial projection of the original ionization trail. The locations of the hit 

pads give two-dimensional (x-y) information about the location in space of the 

original ionization trail; the arrival time, coupled with knowledge of the electron 

drift speed, gives the axial third coordinate (z). The pad signals therefore give 

three-dimensional space points along a track, from which the track can be recon

structed. The curvature of the track in the axial magnetic field is proportional to 

its (transverse) momentum and its electric charge, so reconstructing the helical 

trajectory of a particle enables the measurement of these quantities. The wire 

signals only give two-dimension~ spatial information, which can be used to re-

fine the spatial information of the pads. More importantly, the amplitudes of the 
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wire signals constitute a large number of independent samples of the particle's 

ionization energy loss per unit track length, dE/dx. This ionization energy loss is 

a function only of the speed of the particle, so measuring dE/dx measures speed; 

coupled with the simultaneous measurement of momentum, this amounts to a 

mass- i.e. particle identity- measurement. This ability to identify charged 

particles is the greatest strength of the TPC/21 detector facility. I discuss par

ticle identification in more detail in Section 4.1.2. 

Tracks need to cross at least three pad rows to define the helical orbit. The 

angular coverage of tracks in the TPC that cross at least three pad rows is about 

95% of 41T' solid angle. 

To detect pulses on wires and pads, the signals are coupled to preamplifiers 

mounted on the backs of the sectors. These preamplifiers integrate charge to form 

a step output with a long decay. These output steps are amplified and shaped to 

pulses having a rise time of "' 250 nsec (with comparable decay time) by shaper 

amplifiers located outside the detector's radiation shielding. These shaped pulses 

are sampled every 100 nsec by a "bucket brigade" linear CCD shift register, each 

sample being passed to the next bucket at every CCD clock. The CCDs are 455 

· buckets long, and so can hold a total time history of 45.5 f..LSec of shaper amp 

output at the normallO MHz clock rate. If a trigger decision (Section 3.3) is made 

to read out the event, the clock rate is slowed to 20kHz so that (relatively slow) 

9-bit ADCs can digitize the CCD samples. Zero-suppression is performed by 

comparing the ADC counts to software-controlled thresholds; counts exceeding 

threshold are read along with their bucket number (i.e. time) into the online 

data acquisition VAX 11/782 computer. 

A minimum ionizing track typically has 5-7 ADC buckets above threshold 

for each wire or pad signal, with a maximum wire signal of"' 70 ADC counts 

above pedestal. A parabola is fit to the three largest ADC counts to define the 
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magnitude and arrival time for that pulse. A track typically induces signals on 

2-3 adjacent pads in a pad row, so hits on adjacent pads arriving at nearly the 

same time are grouped to determine a space point for a track by simply averaging 

(weighted by pulse heights) the pad positions and arrival times. 

These rudimentary space points allow pattern recognition programs to iden

tify tracks and associate the corresponding wire hits with them. Once this is 

done, the track direction and wire information is used to refine the space points. 

The location of a space point in 1J is determined by a gaussian· fit to the am-

plitudes of the grouped pads; if less than three pads are above threshold then 

the width of the gaussian is fixed by a parameterization as a function of drift 

distance and track angle a, where a is the angle of the track with respect to the 

pad row in the x-y plane. A small correction, 

D.ry = [.t
2 

iw;H;/ ,t
2 

w;H;] Dtana, 

is applied to account for ionization fluctuations in the five wires closest to the 

pads, where 

Wi is the wire-to-pad coupling weight for wire i, 

Hi is the pulse amplitude on wire i, 

D is the spacing between wires, and 

i = 0 labels the wire centered on the pad row. 

The location of a space point in e is taken to be the pad row center, plus a 

correction 

D.~= [.t
2 
iw;H;f .t

2 
w,H,] D. 

The location of a space point in z is simply the, average of the pad z values 

weighted by the pad amplitudes. These refined space points are used for subse-

quent, more accurate, track fitting. 
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3.2.2.2 Calibration 

Calibration of the electronics (i.e. amplifiers, CCDs, and digitizers) is done in 

two steps. First, the pedestal (the output with no input signal) is measured for 

each channel. This is a baseline that must be subtracted from the raw ADC 

counts to arrive at the true signal in a given channel. The pedestal is typically 

"'30 ADC counts (out of a maximlim of 511), with a slope of one or two counts 

per 100 CCD buckets (due to CCD leakage currents). Second, the relative gain 

curve for each electronics channel is determined by pulsing the shielding grid with 

precision pulses of several amplitudes to induce signals on the wires and pads. 

The absolute normalization of this gain curve is not determined. The complete 

electronics calibration is performed on the order of once a month, with daily 

monitoring calibrations. The electronics calibration translates the ADC counts 

to avalanche size at the wires and pads (up to an overall normalization). 

Calibration of the gas gain is done in two steps. _First, a permanent gain 

map of each sector was made before installation into the TPC by irradiating the 

sector (operating in a test vessel) with 55Fe sources in a precise pattern. Gain 

variations are primarily due to non-uniformities in wire diameters and wire-to

cathode spacing. Second, periodic in situ corrections to this gain map are made 

from the results of irradiating the wires with 55Fe sources located within the 

sectors. These 55Fe data acquisition runs were made on the order of once a 

month. Gain variations from pressure, temperature, and sense voltage changes 

are accounted for by monitoring these variables for every event and correcting 

the data accordingly. These calibrations translate the wire signal sizes to the 

amount of initial ionization incident on the wires (up to an overall normalization 

constant). 

In addition to these hardware calibrations, several corrections must be applied 

to the data that are determined from the data themselves. This requires the data 
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analysis to be done in several stages in an iterative fashion, using the results 

from previous analysis stages to refine the various corrections for subsequent, 

more accurate, analysis stages. This iterative procedure is outlined in the next 

chapter. 

Data collection is divided into runs that typically consist of a few thousand 

events acquired under a stable configuration of PEP and the detector over a pe

riod on the order of an hour. By averaging over many events in a run, values 

can be determined for slowly time-varying characteristics of the TPC operation. 

Electron drift speed, precise knowledge of which is needed for z position mea

surement, is determined by matching the two parts of tracks that cross the TPC 

midplane, and also by defining drift over the entire TPC length to correspond 

to the time endpoint of signals in an endcap. Electron diffusion and absorbtion, 

which both attenuate pulse height as a function of drift distance, are measured 

by dividing tracks in half and comparing the ionization from the half nearest the 

endcap to that from the half farthest away. The absolute gain normalization is 

set by defining the average dE/dx of minimum ionizing pions (a well-identified 

set of tracks) to be 12.1 keV /em. The beam interaction point is measured by 

fitting a common vertex to tracks in an event, then averaging over events. 

Additional corrections to the data must also be made on a track-to-track basis. 

An example of this has already been seen in the track angle dependent corrections 

to the pad space points. Another instance is that the dE/dx measurement for a 

track must be adjusted as a function of polar angle, to account for the increased 

track length integrated by each sense wire when a track is not parallel to the 

sector. 
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3.2.2.3 Resolutions 

Position Resolution 

The position resolutions in both x-y and z are expected to be limited by diffu-

sion of the drifting electrons, electronics noise and miscalibration, and ionization 

fluctuations at the wires. The position resolution in z is also degraded by uncer-

tainties in the pulse arrival times. The ionization fluctuation contributions should 

be angle dependent: fluctuations for tracks perpendicular to the pad rows will 

not affect the x-y measurements, fluctuations for tracks parallel to the endcaps 

will not affect the z measurement; but for angles other than these, fluctuations 

can smear the measurements. 

Empirical measurements of the position resolutions confirm this angle depen

dence. Cosmic ray tracks are reconstructed with one pad row excluded from 

the fit; gaussian fits to the residuals of the excluded space points measure the 

resolution. The measured resolution in the x-y plane is 120-200 J.Lm, depending 

on the track angle a; the z resolution is 160-250 J.Lm, depending on polar angle. 

Momentum Resolution 

The (transverse) momentum of a track is related to its radius of curvature in a 

magnetic field through the expression 

R = 3335P.L 
B 

where R is the radius of curvature (in em) of the track, P.L is the component 

of track momentum in the x-y plane (in GeV /c), B is the axial magnetic field 

strength (in kG), and where the particle's charge magnitude is assumed to be 

that of the electron. Measuring the curvature of a track thus measures p .L, which 

amounts to knowledge of total momentum p if the polar angle of the track is 

known. In short, measuring momentum boils down to measuring the track. 
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Inner Radiation Cumulative 
Component Radius Length Rad. Length 

(em) (%) (%) 
Beam pipe 8.50 2.3 2.3 

Cooling Tubes 8.70 0.3 2.6 
Pressure Wall 10.95 7.1 9.7 

Gas Gap 11.59 0.1 9.8 
IDC 13.18 2.6 12.4 

Insulator + Field Cage 20.00 3.2 15.6 
TPC Volume 22.25 4.9 20.5 

Table 3.1: Thickness of material between the TPC and the interaction point. 

In the· TPC, the final track measurements are performed in the· programs 

TRAGIC and VERTEX. These are run after a preliminary identity assignment has 

been made for the track based on dE/dx information, so that mass-dependent 

energy losses in traversing material before entering the TPC and in the TPC gas 

can be taken into account. The thicknesses of components between the TPC and 

the interaction point are listed in Table 3.1. 

TRAGIC fits tracks using the measurement errors of the space points. The 

effect of Coulomb multiple scattering is incorporated by adjusting the errors of 

the fit track parameters. VERTEX finds an event vertex by constraining all tracks 

to pass through a single point, subject to consistency of that point with the run-

averaged beam position; this is done iteratively, discarding tracks inconsistent 

with the common origin before refitting. The vertex constraint effectively adds 

an extra space point with a large lever arm to tracks consistent with the common 

origin, thereby improving the momentum resolution. More on TPC track fitting 

may be found in reference [38]. 

The momentum resolution has two a priori contributions: measurement error 

and Coulomb multiple scattering error. The measured quantity is actually C = 
1/p.J.., the curvature of the track in units of (GeV /c)-1 . This measured quantity 
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is assumed to have gaussian errors of the form 

where the first term corresponds to Coulomb scattering (neglecting the depen

dence on /3) and the second term corresponds to measurement error. Since 

CJc/C = CJP.l./P.l.. = CJpjp, this can be rewritten as 

(;) 

2 

= A 2 + B'p'. 

The multiple scattering term A is calculated from formulae in Gluckstern [39], 

and represents an average over tracks of different polar angles. The measurement 

error term B is measured using stiff tracks for which the multiple scattering term 

is negligible. This was done by comparing the curvature in different sectors of 

cosmic ray tracks and by measuring the width of the curvature distributions for 

14.5 GeV tracks in e+e- --+ e+e- and e+e- --+ f-L+ J.L- events. Like A, B represents 

an average over tracks of different lengths and polar angles. The momentum 

resolution thus determined is 

(;) 

2 

= (0.015)2 + (0.007)2
p2 

for tracks satisfying the vertex constraint. For tracks that fail the vertex con

straint, the measurement error contribution worsens from (0.007)2p2 to (0.011 )2p2 • 

dE/dx Resolution 

The dE/dx resolution is determined from a sample of minimum ionizing pions. 

It can be parameterized as a function of the number of wires used to determine 

dE/dx and of the polar angle of the track, and is found to be gaussian to three 

standard deviations. The dE/dx resolution averaged over tracks with at least 

120 wire samples is 3.4%. The dE/dx measurement from a single pad is more 

reliable than that from a single wire because it integrates over several wires; pads 
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are used instead of win~s to determine dE/dx if the number of usable wires is 
' ' . ·. ' 

less than 2.5 times the number of usable pads. 

3.3 Trigger 

Beam crossings occur once every 2.44 J.LSec, but events of physics interest occur 

some 5-6 orders of magnitude less often. Since it takes about 30 J.LSec to drift 

out the entire TPC volume, and about 8Q-100 msec to completely digitize and 

store an event, it is clear that. the detector cannot be read out at every beam 

crossing. It is the role of the trigger - a network of fast digital electronics - to 

identify events of potential interest for readout, otherwise leaving the detector 

live for subsequent beam crossings. 

The trigger decision is made .in three step~. Each step has progressively more 

information available to it, so can appiy tighter criteria to the decision of whether 

to advance to the next (more tim~-consuming) step or to abort the current event 

and reset the detector. The first step is the pre-pretrigger. This makes the fast 

( < 2 J.LSec) decision of whether to open the gating grid to activate the TPC, or 

to reset the detector in time for the next beam crossing. The second ~tep is the 

pretrigger. This uses information from the first few J.LSec of drift in the TPC 

and calorimeter readout to decide whether to allow sufficient time for all TPC 

tracks to drift to the endcaps, or to close the gating grid and reset the detector. 

It makes this decision within 7.5 J.LSec after the pre-pretrigger. The third step 

is the trigger itself. It uses TPC and calorimeter information to decide whether 

to digitize and read out the event, or whether to ignore the event and reset the 

detector. The trigger makes its decision about 35 J.LSec after the pre-pretriggering 

beam crossing. 

The Forward Detectors can also generate pre-pretriggers, pretriggers, and 

triggers. Since these are triggers for two-photon events, I do not discuss them in 
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the following descriptions. These descriptions are simplifications of complicated 

logic; see, for example, references [40,16,41] for greater detail. 

Pre-pretrigger 

The pre-pretrigger uses information from the IDC, ODC, TPC (from tracks pierc

ing the endcap ), and ganged signals in the HEX and the PTC. The charged pre

pretrigger requires at least two hits in the IDC separated by 60° or more, and 

either any ODC hit or two TPC wire hits azimuthally coincident with the IDC 

hits. At a luminosity of 2 x 1031 cm-2sec-1 , the pre-pretrigger rate is "" 1.5 kHz. 

Pretrigger 

TPC information drifted from the few centimeters nearest the endcaps, and larger 

calorimeter ganged signals are new information available during the pretrigger 

window. The charged pretrigger requires two IDC hits azimuthally consistent 

with ODC hits, or one such IDC-ODC coincidence plus an IDC hit azimuthally 

consistent with signals on several TPC wires, or two such IDC-TPC coincidences. 

At a luminosity of 2 x 1031 cm-2sec-1 , the pretrigger rate is "" 500 Hz. 

Trigger 

There are four charged triggers, two neutral triggers, and one charged-plus

neutral trigger defined. The variety of triggers allows for triggering on events 

of different classes (hence different topologies) and redundancy of the trigger de

cision. Most important of these triggers is the charged "ripple trigger." Latches 

ganging sets of eight adjacent TPC wires are enabled if at least four wires are 

hit within a time window; the latch is set if the latch corresponding to the next 

larger radius is set within an earlier time window. A track emanating from the 

interaction point at the midplane of the detector will have its ionization near 

the beampipe arrive at the sectors last, with ionization from larger radii arriving 
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correspondingly earlier, depending on the polar angle of the track. It should thus 

set off the domino-like cascade of latches, called a ripple. The ripple trigger is 

satisfied if two ripples occur in two different sectors. 

At a luminosity of 2 x 1031 cm-2sec-1 , the trigger rate is "' 2 Hz. Due to 

the large energy and multiplicity of qq events, several triggers are usually easily 

satisfied for each event; the trigger efficiency for qq events is thus over 99%. 



50 

Chapter 4 

Data Reduction, Event Selection, 
and Event Simulation 

4.1 Data Reduction 

4.1.1 Analysis Sequence 

As mentioned earlier, analysis of TPC data must be done in an iterative fash

ion. A first pass through the data is done using the best available information 

(nominal values or averages of preceding runs) for run-dependent constants. The 

results of this first pass are used to refine these constants, which are then used 

in a second, more accurate, pass through the data. Later passes use corrections 

from the analyzed data (averaged over hundreds of runs) for yet more detailed 

refinements of analyzed data. 

Interspersed with the analysis programs are filter programs which decide 

which events to pass on to the next stage of analysis. Separate analysis streams 

exist to distill selected events into condensed Data Summary Tapes (DSTs) for 

two-photon, TT, or qq events. The DSTs contain summary information for each 

track and event, but no raw data. I will describe the analysis stream leading 

to the qq DSTs [42]. A schematic flow chart of this sequence is pictured in 

Figure 4.1. 

In order for the raw data to be written to tape, it must first pass the PRE-
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Bhabha_count 

Figure 4.1: Analysis sequence leading to DSTs for annihilation qq events. Only 
the flow for TPC information is depicted. The filters are actually interspersed 
with analysis code, and are shown grouped only for pictorial convenience. Final 
distortion and dE/ dx corrections described in the text are not pictured. 



52 

ANALYSIS filter. This is essentially a software online verification of the hardware 

trigger; it passes ,..._, 65% of triggered events. About 1500 raw data tapes were 

written during the 1984-86 running cycles. 

The basic sequence of analysis programs is then executed online, if time per

mits between triggers; the results of the analyses are written to the raw data 

tapes along with the data themselves. This analysis sequence consists of the 

following programs: 

CLUSTER identifies pad and wire hits from the ADC counts, applies the electron

ics calibration to establish pulse heights and arrival times; and associates 

neighboring pad hits into space points; 

PATTERN identifies tracks from the set of space points and performs a first mo

mentum fit to the tracks; 

HAWIRE associates wire hits with the identified tracks; 

DISTORT refines space points using wire information, applies corrections for elec

trostatic track distortions, and refits tracks; 

DEDX computes the dE/dx for the tracks and makes identity assignments; 

TRAGIC performs a final track fit to a helix, taking into account mass-dependent 

energy losses; 

VERTEX constrains fitted tracks to a common origin for improved momentum 

resolution and event vertex determination. 

This program sequence is carried to completion online between triggers for all qq 

events and at least through DISTORT for most other events. Enough events are 

analyzed to d~termine run-dependent constants (vertex position, drift speed, gas 

gain, electron absorbtion and diffusion) immediately upon completion of a run. 
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In the next analysis pass (this one offiine), CLUSTER, PATTERN, and HAWIRE 

are executed as needed for events that had insufficient tir:ne for- their execu

tion online. Then DISTORT, DEDX, TRAGIC, and VERTEX ~e run again on all 

events using the run-ave~aged constants determined online. To be written to the 

next set of tapes ("E" tapes), events must satisfy the filters BHABHA-COUNT, 

STRIP _COSMIC, and TPC-SEL. STRIP-COSMIC and TPC-SEL d,elete cosmic rays 

using muon chamber and TPC information, respectively; BHABHA-COUNT counts 

low-angle Bhabha events for luminosity monitoring and keeps every tenth .. About 

65% of the raw data tape events pass these filters and are written to the E tapes. 

Roughly 1000 E tapes, were made for the.1984-86 data. 

In the same processing runE tape events are passed to the filter SELQQTAU. 

This filter makes loose topology cuts to select qq events and most TT events 

while rejecting other processes. About 17% ofE tape events pass this filter and 

are written to "F" tapes; 193 F tapes were written for th~ 1984-86 data. DST 

records are created for the :F tape events; these records are included on the F 

tapes and are extracted (without further selection) onto "Select .DST" tapes. 

The Select DSTs are processed by the analysis programs FIDUCIAL, LA

BELJ>AIRS, FIXDEDX, and VERTEX, which compute information relevant to the 

final qq selection, identify .electrons from photon conversions, refine dE/dx in

formation, and identify secopdary. decay vertices, respectively. A filter LA

BELHADRON_V2 passes,....., 25% of the Select DST events onto the final "Hadron 

DSTs" (which are actually disk files). This filter makes cuts similar to, but looser 

than, the fipal TPC/21 hadronic event selection described in Section 4.2; about 

65% of the events, in the Hadron DSTs are TPC/21 good hadronic events. 

Two final corrections to the data are not shown in Figure 4.1. (These cor

rections are made long after the creation of the original Hadron DSTs.) Final 

electrostatic distortion corrections are determined from two-prong events selected 
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from E tapes. These corrections are applied to the F tape events (starting with 

DISTORT and proceeding through the analysis chain as usual) to produce new F 

tapes, Select DSTs, and Had~on DSTs. Final dE/dx corrections are determined 

from the Hadron DSTs. (As of this writing, new DSTs have not yet been made 

using this final dE/dx correction; instead, the corrections are applied by the 

program FIXDEDX whenever a DST is analyzed.) 

4.1.2 Particle Identification Using dE/dx 

Theory of dE/ dx 

The ionization by a charged particle traversing the TPC gas is a function only of 

the speed v of the particle. (This makes the assumption that the particle's charge 

is plus or minus the electron charge.) Measuring the ionization thus measures 

the speed of the particle; combined with the measured track momentum, this 

establishes the particle's mass m through the relation p = f31m, where (3 = v/c 

and 1 = 1/ vfl - (32 • The viability of this technique to establish the particle's 

identity depends on the ability of the TPC to characterize the ionization suffi

ciently accurately. (The energy loss per unit track length dE/dx is assumed to 

be proportional to the total ionization produced per unit track length, so that 

"ionization" and "energy loss" are often used equivalently.) 

The primary ionization along a track comes from two physical sources, de

pending on the scale of the energy transfer involved. The ionization cross-section 

is strongly peaked at energy transfers corresponding to the binding energies of 

electrons in the TPC gas, so for energy transfers comparable to atomic energy 

levels this resonant ionization dominates. For energy transfers large compared to 

the atomic binding energies, the electrons in the gas are essentially free and the 

process is well-described by Rutherford scattering. The Rutherford scattering 

is "hard," resulting in energetic ionization electrons, but rare compared to the 
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softer resonantly produced ionization electrons. 

A sense wire in the TPC collects ionization from a 4 mm thick slice of gas, 

corresponding to 5 mm or so of track length for a typical track. On the order of 

100 primary electrons are liberated on average along each 5 mm of a typical track. 

This primary ionization obeys Poisson statistics, so the mean primary ionization 

could be determined to "" 10% per. wire (neglecting avalanche fluctuations), or 

1% for a track crossing the entire TPC, if only the TPC were to detect just 

the primary ionization. Unfortunately, the hard electrons from the Rutherford 

scattering (and the resonantly produced electrons from deep levels) are energetic 

enough to ionize the gas themselves, resulting in secondary ionization. This 

secondary ionization contributes greatly toward the total ionization detected, 

but arises from just a few hard scatters, so the statistical fluctuations ("Landau 

fluctuations") in the total detected ionization are large. 

Simply taking the total detected ionization for a track ~~ therefore a poor way 

to characterize the ionization. The TPC was designed to sample the track's ion

ization many times so that shape information of the resulting dE/ dx distribution 

could be used to account for the effect of the few hard scatters. (This is why the 

sectors contain so many sense wires, more than are necessary for tracking.) 

A detailed calculation [21] predicts the distribution of dE/dx samples from a 

track, which is found to be in good agreement with the data. This calculation 

takes into account six energy levels of methane and argon, making suitable ap

proximations for resonant and Rutherford cross-sections; the resulting shape is a 

function of f3 and the sampled track length 8x. I show both the predicted curve 

and the data in Figure 4.2; the salient feature is the long high energy tail ( "Lan

dau tail") resulting from the hard Rutherford scatters. It is primarily dE/dx 

samples drawn from this tail that cause large fluctuations in the mean dE/dx. 

In principle, one could measure the dE/dx distribution for each track, then 
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fit the predicted shape (with 8x as a parameter) to establish f3 for each track. 

This would use the full dE/dx shape information, but would be very difficult 

to calibrate. In practice, a single, simple estimator is constructed (using dE/ dx 

shape information in a rudimentary fashion) for each track to characterize the 

ionization: called the "truncated mean," it consists of the mean of the lowest 

65% usable dE/dx samples. The .truncated mean is what is meant in TPC 

parlance by the dE/dx value for a track. By simply throwing away the Landau 

tail, the truncated mean isolates and removes much of the fluctuations from 

the hard scatters. (It turns out that most of the particle identity information 

resides in the resonant ionization, so that discarding the bulk of the Rutherford 

information is benign.) The truncated mean is assumed to be proportional to 

the most probable energy loss .6..mp, an assumption born out by Monte Carlo 

studies. The same formalism that predicted the dE/ dx distribution is used to 

derive .6..mp as a function of /3, so that the dE/dx value of a track is known as 

a function of /3. The dE/dx resolution is typically 3.4% for a track crossing the 

entire TPC; this yields a sufficiently accurate characterization of the ionization 

for the TPC to perform particle identification by simultaneous measurement of 

dE/ dx and momentum. 

The results of the calculation for .6..mp are: 

.6..mp = ( .6..mp) Rutherford + ( .6..mp) resonance ' 

(8mp)Rutlw:f•"' = y~i [In(~) + 0.198] , 

(8mp)re,nnon~ =~[ox ( ~~1- ~] E;;, 

where the sums are over energy level i of gas j, and 

n· J 

mec2f32 

electron number density of gas j, 

(4.1) 

(4.2) 

(4.3) 
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Figure 4.3: Predicted truncated mean energy loss as a function of f3"'f. 

8x - sampled track length, 

E~ 
J 

mean ionization potential for gas j, 

21re4nj Wij{ Sij - 1) 

mec2/32 EijSij 

E;j mean ionization potential for level i of gas j, 

E ( E1 + iE2 ) = the dielectric constant of TPC gas, 
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and where Wij and Sij are numbers parameterizing the oscillator strength of level 

i ~f gas j. This curve for dE/ dx (which is equivalent to ~mp/ 8x) as a function 

of f3"'t is plotted in Figure 4.3. 

This curve divides into four broadly defined regimes. For slow particles, 

dE/dx"' 1//32 and the curve drops sharply with increasing f3"'ti this is the "1//32" 
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region. Around /31 f'V 3 the curve reaches a minimum; this is the "minimum 

ionizing" region. The curve rises slowly with /31 up to around /31 f'V 103 ; this is 

the "relativistic rise" region. Above /31 f'V 103 the curve flattens to the "Fermi 

plateau." The physical interpretation of these regimes is straightforward. Ioniza

tion is heavy in the 1 I {32 region because the slowly moving particle spends a lot 

of time near each atom, thus increasing the probability of an ionization. The rei-

ativisticrise is due to the Lorentz enhancement of the particle's transverse field, 

and hence its ionizing power. The Fermi plateau is the result of polarization 

of the medium cutting off any further relativistic rise. The minimum ionizing 

region is simply the cusp between two regions of heavier ionization. 

Some relevant properties of ( .6.mp) Rutherford and ( .6.mp) resonance can be inspected 

from Equations 4.2 and 4.3. The Rutherford term has a logarithmic dependence 

on 8x, an effect accounted for in the software before determining a track's dEidx 

value. This term also saturates to a constant value above the minimum ionizing 

region. Both Rutherford and resonance terms exhibit the behavior of the 1 I (32 

region; but only the resonance term contains the behavior of the relativistic 

rise and the Fermi plateau. (Both the relativistic rise and the Fermi plateau 

are implicit in the logarithmic term of ( c;;;)i/ the argument of the logarithm 

increases as /321 2 until the /321 2(1- E(Efj)) in the denominator dominates the 1 

to cancel the f31 dependence.) 

Since p = /31m, the dEidx curves for particles of different mass are estab

lished by simple lateral translation in ln(p) space. This means any two curves 

are guaranteed to cross at one point, called a "crossover"; particle identity as-

signments are problematic in the vicinity of crossovers. It is worth noting that 

the ability of the TPC to perform particle identification above minimum ionizing 

regions rests in the relativistic rise inherent in the resonant ionization term. 

The curve predicted by Equations 4.1, 4.2, and 4.3 is fine-tuned by a fit 
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to samples of unambiguously identified tracks (11 {P protons, minimum ionizing 

and relativistic rise pions, cosmic ray muons, conversion electrons, and Bhabha 

electrons). The resulting agreement between the theoretical curve and data is 

excellent; the systematic error on the theoretical curve is estimated to be 0.2%. 

Plotted in Figure 4.4 are data and the c~rves for e, p, rr, K, and p; the sepa-

ration of the five species on the plot and the agreement with theory graphically 

demonstrate the ability of the TPC to perform particle identification. 

Particle Identity x2 

Each dEidx curve represents an allowed locus in dEidx vs. momentum space for 

particles of a given mass. Each track has its dEidx and momentum measured, 

so a x2 can be formed to quantify consistency with a given mass hypothesis: 

( 4.4) 

In this expression, i stands for any of the five stable species e, p, rr, K, p. Pairs 

of (dE I dx )i and Pi are taken on the dE I dx curve for species i, stepping along the 

curve until xr is minimized; this minimum value is the xr for that measured track 

and that species hypothesis i. The dEidx resolution r7dE/dx is parameterized as a 

function of polar angle and number of dEidx samples; the momentum resolution 

r7p is the quoted error from the TRAGIC fit. 

Particle Identity Probability 

The xr information can stand on its own, or it can be supplemented by prior 

knowledge to arrive at probability assignments. The prior information used in 

TPC hadronic analysis is the knowledge of particle fractions in the hadronic 

event sample as a function of momentum. Thus for example, a particle observed 

at the Klrr crossover will be identified as a rr, since pions outnumber kaons by 
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Figure 4.4: Measured dE/dx of tracks with at least 80 dE/dx samples, as a 
function of momentwn. Also shown are the predicted curves fore, p, 1r, K, and 
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about 8 to 1 at that momentum. Using the particle fractions, the probability Pi 

of a track being species i is given by 

(4.5) 

where fi(P) is the fraction of tracks of momentum p that are species i. The 

denominator simply normalizes the sum of probabilities to unity. The particle 

fractions measured by the TPC /2{ Collaboration are parameterized by 

fe - (0.2/p? 

f1r I= max(0.8494- 0.1350ln(p), 0) 

fK - max(0.1093 + 0.0916ln(p),O) 

fp - max(0.0413 + 0.0434ln(p), 0) 

where the momentum p is measured in Ge V /c. Since muons are a small compo-

nent of hadronic events they are not included in this procedure. 

4.2 Event Selection 

Annihilation events e+e- --+ qq are characterized by large multiplicities, large 

detected energy, and low Lorentz boost with respect to the laboratory frame. 

The standard TPC/2{ selection for these events capitalizes on these features, 

using charged tracks detected in the TPC to make the selection. 

To be used in making the selection, a track must satisfy these conditions: 

1. the polar angle with respect to the beam direction must be> 30°; 

2. either the curvature error dC must be < 0.30 GeV-1 or the fractional 

curvature error dC/C must be< 0.30; 

3. the momentum of the track in the TPC volume must be> 100 MeV /c; 

'' 
,. 
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4. the momentum of the track extrapolated to the vertex (correcting for en-: 

ergy loss) must be> 120 MeV fc;. and 

5. the track must extrap6late 'to within 6 em of the nominal vertex in the x-y 

plane ~d within 10cm in z. ~· . 

. ·, 

Criterion (1) ensures that the track is well within the fiducial volume of the 

TPC; criterion (2) rejects tracks with poorly measured momenta; criteria (3) 

and (4) reject tracks too soft to have made it into the TPC fro~ the interaction 

point, and criterion (5) requires the track to be consistent with originating at the 

interaction point, thereby rejecting many cosmic rays and tracks originating in 

nuclear interactions in the beampipe and beam-gas collisions. A track satisfying 

these conditions is called a "good track." 

To be considered a good hadronic annihilation event, an event must satisfy 

these conditions: 

1. there must be at least five good non-electron tracks, wh~re electron identi

fication is done either by dE/dx or by geometric reconstruction of photon 

conversions; 

2. the total energy of the charged good tracks, Ech, must be> 7.25 GeV; 

3. the longitudinal momentum balance of good tracks must satisfy I~Pzl < 

0.4Echi 

4. at least half the tracks of the event must be good tracks; 

5. the reconstructed vertex of the event must be within 2 em of the nominal 

vertex in the x-y plane and within 3.5 em in z; and 

6. at least one event hemisphere (defined by the sphericity axis of the event) 

must contai~ either at least four charg~d non~electron good tracks or an 

invariant mass of at least 2 Ge V. 
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Criterion (1) eliminates low multiplicity events and Bhabha events where one 

of the particles showered heading into the TPC; criteria (2) and (3) discrimi

nate against two-photon and beam-gas events; criterion (3) also discriminates 

against qq events with energetic initial state radiation; criterion (4) eliminates 

problematic cases; criterion (5) suppresses beam-gas events; and criterion (6) dis

criminates against TT events. Monte Carlo studies estimate the contamination of 

these good hadronic annihilation events (taking into account the relative cross

sections) to be (0.4±0.1)% from TT events, (0.5±0.1)% from two-photon ~vents, 

and< 0.1% from beam-gas and Bhabha events. About 78% [67%] of generated 

Monte Carlo hadronic annihilation events satisfy the hadronic event selection 

when generated without [with] initial state radiation. (Direct interpretation of 

the acceptance for events generated with initial state radiation is difficult, for 

it depends on the details of the initial state radiation high energy cutoff. This 

does not affect the analysis, for events with energetic initial state radiation do 

not pass the hadronic selection anyway; data and Monte Carlo need not agree in 

this regime.) 

In addition to the standard TPC /21 hadronic event selection, I require an 

event to satisfy two more requirements: 

• the sphericity axis of the event must lie > 45° away from the beam direction, 

and 

• the sphericity value must be < 0.5. 

These criteria ensure that the bulk of the event is contained within the TPC 

fiducial volume and that the orientation of the sphericity axis is meaningful 

when used in my subsequent analysis. 

The data used in this dissertation were collected during the 1984-86 run

ning cycles of the detector. Data corresponding to an integrated luminosity of 
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f'V 68 pb-1 [43] were collected, resulting in 25782 events passing th~ standard 

TPC/2/ hadronic event sdection, of which 20089 pass my additional sphericity 

cuts. These 20089 events form the data set OJ;l which I perform the ~easurements 

of this dissertation. 

4.3 Detector Simulation 

The operation, of a modern High Energy Physics detector is sufficiently compli

cated that the only way to understand its performance in detail is through a 

detector simulation Monte Carlo program. Such a program propagates an event 

through the elements of a detector using a random ,number generator to repro

duce the relevant stochastic physical processes experienced by the real events in 

the detection process. This produces simulated data useful for esti~ating detec

tor acceptances, estimating backgrounds, honing one's analysis techniques, and 

studying systematic errors. 

The TPC /2/ collaboration has two detector_ simulation Monte Carlos avail-

able: the Global Monte Carlo (GMC) and the Fast Monte Carlo (FMC). The 

GMC generates simulated raw data which is then. passed through the complete 

data analysis chain for. detailed investigation of detc:'!ctor performance. It is too 

slow, however, to provide the high statistics simulated data usually necessary in 

an analysis .. The FMC trades exactitud~ for speed, ess~ntially picking up the 

analysis chain partway through, generating der,ived quantities such as the dE/ dx 

for a track from a distribution instead of generating the individual wire hits. 

For many purposes,the FMC is accurate enough, The portion of the FMC that 

simulates the TPC is called TPCLU~D; it is the only relevant d~tector simulation 

for my analysis so I sketch its operation h~re. It takes f'V 1.5 sec of VAX 8650 

CPU time for TPCLUND to simulate an hadronic annihilation event (compared 

to f'V 30 msec for the physics generator to produce the interaction itself). 
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TPCL UND takes as input the buffer of particle species and momenta generated 

by a physics generator; initial state radiation is simulated using the program of 

Berends and Kleiss [44]. The TPC and material between it and the interaction 

point are modelled as concentric layers, each characterized by a location, an 

interaction length, and a radiation length. The beampipe, pressure wall, IDC, 

inner field cage, and each TPC pad row constitute layers. Particles interact with 

each layer in turn, the results of these interactions being propagated to the next 

layer. Neutral particles can decay and undergo nuclear interactions; photons 

can convert. Charged particles can decay, undergo nuclear interactions, emit 

bremsstrahlung, undergo Coulomb multiple scattering, and experience dE/ dx 

energy loss. 

The event vertex is smeared about its nominal value by the beam spot size. 

TPC space points are generated where each charged track crosses a pad row, 

then smeared by resolutions parameterized according to track angle and other 

variables. The resulting space points are assigned to tracks; points can be lost 

from tracks due to geometric losses and ambiguous track assignments, but are 

never assigned to the wrong track. A track with three or more associated points 

is considered found, otherwise the track is lost. A fit is then performed to the 

space points to establish the measured track momentum; this fit is not the same 

as the TRAGIC fit used for real data, but is sufficiently similar for most purposes. 

The number of usable dE/dx samples is chosen, which along with the polar 

angle of the track defines the dE/dx resolution expected for that track. The 

dE/dx value for the particle species and momentum is smeared by this resolution 

to arrive at the simulated dE/dx measurement. 

A true vertex constrained fit is not performed in TPCLUND. Instead, x2s for 

vertex consistency are selected for tracks in a quick fashion to roughly reproduce 

the results of VERTEX. 
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Sets of tapes of simulated data DSTs are produced using the FMC. A given set 

has"" 80,000 good hadronic events, or about four times the data set. Statistical 

errors when using Monte Carlo tapes· are therefore small compared to the data 

set. 

The performance of TPCLUND has been checked by comparing a variety of 

experimental distributions (such as track curvature error, number of dE/dx sam

ples per track, vertex impact parameter: etc.) with the predictions of the detector 

simulation. These comparisons have been macle in the co~se of several analysis 

projects, including this one. TPCLUND generally does quite well. (One excep

tion is that the x2 for vertex consistency is untrustworthy, so I avoid using it.) 

At the points where an analysis in this thesis depends on TPCLUND, I estimate 

the reliability of the detector simulation and the corresponding systematic errors 

.incurred by its role in the analysis. 



Chapter 5 

Measurement of the p0 

Differential Cross-section 

5.1 Overview 
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The p0 is a broad resonance (r = 153 MeV, M = 770 MeV) which decays almost 

exclusively to 71"+71"- (~ 100% branching fraction). These seemingly innocent facts 

conspire to make the p0 a surprisingly hard particle to measure. The exclusive 

decay mode means the only accessible signature of a p0 in this experiment is as 

a feature in the 71"+71"- invariant mass spectrum; the fact that pions are by far 

the most copiously produced particles in the hadronization process and ensuing 

decays means that this 7r+ 71"- mass spectrum has a large background in and near 

the p0 mass region. The sizable width of the p0 means that the measured area 

of the spectrum belonging to the p0 peak is subject to a large systematic error 

from uncertainty of the background underlying the p0
• 

The nature of the background in the mass spectrum is complicated by the fact 

that there are two contributions to it. The largest contribution to the background 

is from the many mass pairings possible from the large number of candidate 

tracks; this combinatoric background is large but smooth. Also. entering into the 

mass plot are particle pairings that stem from the decay of a particle other than 

the p0 ; these pairings are fewer in number but give structure to the spectrum. 

.. 
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The analysis technique I use to measure the p0 cross-section is suggested in 

part by the foregoing considerations. Also relevant to my final choice of analy

sis technique is the observation that neither the Lund nor Webber Monte Carlo 

packages (including detector simulation) adequately reproduce the observed di

pion mass spectrum. This effect can be seen in Figure 5.1, where I present the 

unlike-sign and like-sign dipion spectra (M(1r+1r-) and M(1r±1r±)) for x < .10 

and for x > .10, along with the Lund prediction (normalized to the same num

ber of analyzed events). (These spectra are prepared as described in the next 

section.) I also present the result of subtracting the like-sign spectra from the 

unlike-sign spectra. I investigated the source of the disagreement between data 

and Monte Carlo extensively but without success. As I explain in the next sec

tion, the Monte Carlos play a central role in this analysis; since I am unable 

· to understand or eliminate this mass discrepancy, my analysis must minimize 

its effect. Noting that this discrepancy appears roughly equally in the like-sign 

and unlike-sign mass spectra and therefore largely cancels when subtracting the 

former from the latter, I employ a spectrum subtraction technique in part to 

cancel remaining discrepancies between Monte Carlo and data. The remaining 

discrepancy after this subtraction is a strong function of x. The effect is that at 

low x the data shows an excess in the subtracted spectra in the mass region be

tween the p0 and the K8 , an excess that diminishes rapidly with increasing x (see 

Figure 5.1). Because of this discrepancy, I choose not to attempt measurements 

for x < .10 since the background is not well understood; for x > .10 I consider 

the discrepancy when assigning systematic errors. 

As a final consideration in selecting an analysis technique, ~aving no com

pelling reason for trusting one generator and rejecting the other, I adopt the 

philosophy that both Lund and Webber give equally reliable predictions of the 

underlying physical truth. That is, when measuring the p0 cross-section I in-
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Figure 5.1: Dipion mass spectra for data (solid lines) and the predictions of the 
Lund Monte Carlo (dashed lines). These spectra are prepared in the manner 
described in Section 5.2. The Monte Carlo spectra are normalized to the same 
number of analyzed events as in the data. (a) Unlike-sign spectrum M(rr+rr-) for 
x < .10. (b) Unlike-sign spectrum for x > .10. (c) Like-sign spectrum M(rr±rr±) 
for x < .10. (d) Like-sign spectrum for x > .10. (e) Subtracted spectrum 
M(rr+rr-) - M(rr±rr±) for x < .10. (f) Subtracted spectrum for x > .10. The 
arrows in (e) and (f) indicate the central p0 mass. 
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dependently use both Monte Carlos in turn and average the results; when ap

propriate in estimating systematic errors, I assume disagreements between the 

two Monte Carlos are representative of the disagreements between either Monte 

Carlo and physical reality. 

I have presented the general context of the p0 analysis in this section. In 

Section 5.2, I explain the method I've chosen for this analysis and present the 

results (with statistical errors only) for the cross-section. I estimate the system

atic errors of my analysis in Section 5.3. I present final results and errors in 

Section 5.4, as well as comparisons with the predictions of the generators and 

the measurements from other experiments. 

5.2 Basic Method 

In order to measure f3;H ~~ (as described in Chapter 1), I divide the data and 

Monte Carlo mass spectra into six x bins for x > .10, and measure the area in the 

p0 peak independently in each bin. The x bins are chosen to be wide compared to 

the x resolution of the detector, to have comparable statistical significance of the 

p0 in each bin, and to give the finest granularity at low x where the background 

shape changes rapidly as a function of x. The specific x bins I use are given in 

Table 5.3. 

5.2.1 Formation of the Mass Spectra 

To be used in this analysis, an event must first pass the multihadronic event 

selection and sphericity requirements described in Section 4.2. An event passing 

these cuts is called a "good event." 

For a track to be used in forming the mass spectra, it must pass a set of cuts 

tighter than that used in choosing good events. Tracks that pass these cuts are 

called "good tracks." For a track to be considered good, it must 
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1. have a measured dE/dx and have been fit to a helix by the program 

TRAGIC, 

2. satisfy dpj_/pj_ < .05 (if pj_ < 1 GeV /c) or dpj_/Pl < .05 (if pj_> 1 GeV /c), 

where pj_ is the momentum transverse to the beam axis and dpj_ is its error, 

3. have momentum (extrapolated to the event vertex) > 150 MeV jc, 

4. have momentum (extrapolated to the event vertex) < 14.5 GeV /c, 

5. point in a direction more than 30° away from the beam axis, 

6. extrapolate to within 1 em of the measured event vertex in both the bending 

plane and in the beam direction, 

7. have at least 30 wires used in measuring dE/dx, 

8. have a particle-id x2 for the pion hypothesis < 9, and 

9. have a probability for being a pion (measured using the algorithm explained 

at the end of Section 4.1.2) > 0.5. 

Cuts (1) and ( 4) reject meaningless tracks. Cut (2) rejects tracks with poorly 

measured momenta. Cut (3) eliminates tracks in a momentum region of large 

energy loss and uncertain acceptance. Cut (5) rejects tracks at grazing angles 

to the material in front of the TPC, which are subject to large multiple scatter

ing and uncertain acceptance. Cut ( 6) helps eliminate tracks that originate in 

processes other than the primary interaction and ensuing strong decays: these 

processes are beam-gas interactions, cosmic ray coincidences, nuclear interactions 

in the material in front of the TPC, photons converting to electrons (should the 

electrons be misidentified as pions), and weak decays (most notably Ks ---+71"+71"

decay). Cut (7) requires the track to have a well-measured dE/dx for purposes 
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% of remaining tracks 
cut number cut at each stage 

(+)charge (-) charge 
(1) 14 12 
(2) 3 2 
(3) 4 4 
(4) <1 <1 
(5) 2 2 
(6) 25 22 
(7) 14 14 
(8) 15 15 
(9) 5 5 

Total 59 56 

Table 5.1: Percent of tracks in the data cut by single-track selection. 

of pion identification; cuts (8) and (9) are the pion identification cuts. The per-

centages rejected at each stage of tracks surviving the previous cut are given 

in Table 5.1; the cuts are illustrated in Figure 5.2. (Hadronic interactions in 

the TPC material preferentially introduce extra positive tracks into the event 

that are screened out by these cuts; this is why slightly more positive tracks are 

eliminated than negative tracks.) Overall, these cuts reduce the number of ad

missible unlike-sign (like-sign) pairings in the data (relative to all detected pairs) 

by 81.3% (82.9%). The pion purity and acceptance of the good track sample 

as estimated from the Monte Carlo are plotted in Figure 5.3 .. The purity is the -

fraction of the good tracks that are actually pions; the acceptance is the fraction 

of pions.generated in good events that are called good tracks. Integrated over all 

momentum, the purity is 93% and the acceptance is 59%. 

For a pair of tracks to have its mass entered into the mass spectrum, each 

track must be a good track. In addition, the following track-pair requirements 
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Figure 5.2: Selection of good tracks. The arrows indicate the cuts used in this 
analysis. Only those tracks surviving all previous cuts enter the plot for the 
indicated quantity. The "k" in the vertical scales stands for units of 1000. The 
number of pads used for dE/dx by tracks not using wire information are dis
played, shifted by 20 to the left, on the "#of wires" plot. 
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Figure 5.3: Purity and acceptance of pions in the set of good tracks. The dip in 
purity around 1 GeV /cis due to the Kj1r crossover. 

are imposed: 

• both tracks must lie on the same side of the event midplane, defined to be 

the plane passing through the event vertex perpendicular to the sphericity 

aJGs; 

• the vector sum of the momenta of the two tracks must point in a direction 

more than 30° away from the beam axis. 

The first requirement is to reduce the combinatoric background underlying the 

p0
. It is only relevant for x ;S .15; for higher x, any pair lying on opposite 

sides of the event midplane has an invariant mass well above the p0 mass region. 

This cut eliminates 47.3% (52.3%) of the remaining unlike-sign (like-sign) pairs. 

The second cut is to prevent distortion of the p0 line shape: pairs, formed of 

tracks lying outside a 30° half-angle cone about the beampipe, whose resultant 

momentum lie within this cone have masses biased high because small opening 

angles are excluded. In conjunction with the first track-pair cut and the event 
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selection requiring the sphericity axis to point > 45° away from the beampipe, 

this second track-pair cut turns out to eliminate only 1% of the remaining pairs. 

The invariant masses of track pairs surviving all the above selection passes 

form the mass spectra from which I will extract the p0 signal. These spectra from 

the data, divided into x bins, are histogrammed in 40 MeV bins in Figure 5.4. 

Both unlike-sign (M(rr+7r-)) and like-sign (M(1r±1r±)) spectra are presented. The 

lack of a feature at the p0 mass in the like-sign combinations, and the presence of 

a feature at the p0 inass consistent with the p0 width in the unlike-sign spectra, is 

evidence that I truly am observing the p0 signal. The acceptance of p0 s into these 

spectra as estimated from the Monte Carlo is plotted in Figure 5.5; acceptance 

is the fraction of p0 s generated in good events which have daughter pions passing 

all cuts. The overall p0 acceptance for x > .10 is 45.9%. 

5.2.2 Extracting the Cross-section 

. To extract the p0 signal from the data mass spectrum in a given x bin, I employ 

two distinct but similar methods. In the first method, I subtract the like-sign 

spectrum from the unlike-sign spectrum. This reduces the combinatoric contri

bution and cancels or reduces some resonant contributions to the background 

under the p0 without diluting the p0 itself. The discrepancy in the mass spectra 

between the data and the Monte Carlo prediction, occurring as it does in both 

like-sign and unlike-sign combinations, is also largely cancelled. These subtracted 

spectra are shown for the data in 40 MeV bins in Figure 5.6. 

To estimate the residual background under the p0 after subtraction, I use the 

identically prepared like-sign-subtracted-from-unlike-sign spectra from the Monte 

Carlo, after first removing pairings from the same p0 and from the same K*0 • 

(That is, I remove the p0 and the K*0 peaks from the Monte Carlo spectra. The 

K*0 peak stems from the K*0 __.K+7r- ( + c.c.) decay, with the K+ misidentified 



> 
Cl> 
~ 
0 
~ 
..._ 
CJ) 

Cl> .... -c w 

1200 

1400 
.15<X<.2 

700 

0 

600 

0 L.....lu.....&.......L....L-...L...-L.....J.---L--1-....1 

0 1 
GeV 

2 

240 

120 

0 

0 1 
GeV 

2 

77 

Figure 5.4: Unlike-sign and like-sign dipion mass spectra in the data, divided 
into x bins. The arrows indicate the central p0 mass. The like-sign spectra have 
fewer entries than the unlike-sign spectra in each case. 
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Figure 5.5: p0 acceptance in each x bin. 
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as a 7r+; this is reconstructed as a broad peak lying slightly below the p0 , and is 

the only significant resonant background structure remaining in the relevant mass 

region after the subtraction of the spectra.) I then perform a least-squares fit 

to the data summing three contributions: a curve fixed in shape and magnitude 

to account for the K*0
, a P-wave Breit-Wigner line (PWBW) fixed in shape but 

free to float in magnitude to account for the pO, and the aforementioned Monte 

Carlo histogram floating in magnitude to account for everything else but the p0 

and the K*0 . There are thus two free parameters in this fit: the normalizations 

of the background and the p0
• 

The K*0 shape and magnitude are fixed from Monte Carlo predictions; the 

exact line shape is hard to predict analytically, for the curve that appears as a 

pure PWBW in the K±1r=F spectrum gets distorted under the misassignment of 

the pion mass to the kaon. Empirically, an S-wave Breit-Wigner (SWBW) with 
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Figure 5.6: Unlike-sign dipion mass spectra in the data with like-sign mass spec
tra subtracted, divided into x bins. Also shown are the results of a fit (as de
scribed in the text) using the Lund Monte Carlo for background: the upper 
curve gives the total fit, the lower curve is the Monte Carlo background con
tribution. While the backgrounds look jagged to the eye, statistically they are 
smooth compared to the data because the Monte Carlo sample size is four times 
larger. 
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mass and width in each x bin suitably chosen was found to fit the Monte Carlo 

K*0 contributions to the detected spectra with good x2s. I used this SWBW 

with magnitude fixed frorri the Monte Carlo prediction. The systematic error 

from the K*0 contribution proves to be small, so the details of the K*0 treatment 

are not important. 

The PWBW used for the p0 is given by 

(5.1) 

with 

r = ro(!1..)3 Mo 
qo m 

as suggested by Jackson (45]. In these equations, N(m)dm is the expected num-

ber of p0 s in a mass bin of width dm centered on mass m; M0 and f'o are the 

"table value" mass and width; q is the three-momentum magnitude of the decay 

products in the parent's rest frame; q0 is the three-momentum magnitude of the 

decay products in the rest frame if the parent has m = M 0 ; and Np is the overall 

normalization (that is, the number of p0 s present). Fixing M 0 = 771 MeV and 

f'o = 154 MeV gives good fits to the Monte Carlo p0 shape, including detector 

acceptance and resolution, for all x > .10. The normalization Np is the only p0 

parameter allowed to vary when fitting the data. 

When using the Lund package for the Monte Carlo, I perform the fits in the 

mass ranges .6-L2 GeV and .6-1.4 GeV, and average the results. When using the 

Webber package for the Monte Carlo, I fit only in the mass range .6-1.2 GeV. 

This is because the Webber Monte Carlo includes the f tensor meson at 1270 

MeV with the unphysical width f' = 0; this unphysical feature in the simulated 

7r+7r-spectrum prohibits its use in the .6-1.4 GeV window. (I conclude later that 

the fits are insensitive to the fit range used, so this difference between the Lund 

and Webber fits is irrelevant.) 
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The second algorithm I use to fit the p0 peak is quite similar to the first 

.method. The only difference is that I scale up the like-sign spectrum before 

subtracting it from the unlike-sign spectrum. The scale factor used is different for 

each x bin. The motivation for this method is the observation in the Monte Carlo 

that the combinatoric contributions to the same-sign and opposite-sign spectra 

(that is, pairings not belonging to. the same decay tree) are nearly identical 

in shape, differing only in magnitude. The difference in magnitude is simply 

because there are more unlike-sign pairings possible than like-sign; the difference 

is typically 10% over most x. This means that a straight subtraction of like

sign from unlike-sign spectra leaves on the order of 10% of the combinatoric 

background residual under the p0 ; one might achieve better signal-to-noise by 

eliminating this background entirely. The scaling of the like-sign spectra is an 

attempt to eliminate this residual background by using the combinatoric portion 

of the like-sign spectra to cancel the combinatoric portion of the unlike-sign 

spectra. 

To get the proper scale factor in a given x bin, an approximate solution is the 

ratio of the areas in the unlike- and like-sign spectra of the data in a control re

gion away from the p0 and other resonant structures. If the spectra were entirely 

combinatoric in origin in this control region, this approximate solution would be 

the exact solution for the scale factor; to the extent that the spectra are not en

tirely combinatoric in origin, the scale factor desired to cancel the combinatoric 

contributions will differ from this approximate solution. A correction to the ap

proximate scale factor is determined from the Monte Carlo as that multiplicative 

constant needed to adjust the approximate solution to the desired scale factor 

in the Monte Carlo. I then multiply the data-determined approximate scale fac

tor by this correction to arrive at the final factor used in scaling the like-sign 

spectrum. This technique keeps the Monte Carlo influence on the. scale factor 
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as small as possible; this Monte Carlo correction factor differs from unity by 

typically 2%. When using the Lund (Webber) Monte Carlo for backgrounds and 

acceptances, I use the correction factor as determined using the Lund (Webber) 

package. 

The final differential cross-sections are computed using ·the fits from both 

methods, each using both Monte Carlos in turn, for a total of four different 

measurements in each x bin. The results of the four methods· are r~asonably 

consistent, although the straight-subtraction technique gives cross-sectio.ns sys

te~atically slightly lower than those computed from the scaled-subt~action tech

nique, and use of the Webber· Monte Clll'lo gives cross-se~tio~s systematically 

slightly lower than those computed using the Lund Monte C~lo. Not having 

any compelling reason to trust any of the four methods over the others, I take as 

my final answer the average of the four measureme~ts, weighted by the inverse 

square of the statistical errors. As the measurements are all performed on the 

same data set, the statistical errors are mutually comparable and the results are 

not independent; I therefore quote a statistical error that is simply an average 

of the four individual errors. The results of the four individual fits are. given in 

Table 5.2. 

The goodness of these fits is reasonable. When fitting in the mass range .6-

1.2 Ge V, for example, the average x2 per degree of freedom over all x bins and 

all four fitting methods is 1.3 for 13 degrees of freedom. I can assign the role of 

"data" to a Monte Carlo and use my analysis technique to measure N P for this 

Monte Carlo; comparing this measured N P to its known value, I saw no obvious 

correlation between goodness-of-fit and the accuracy of the p0 measurement. I 

therefore accept all the fits regardless of x2 , even. though the goodness-of-fit 

overall is slightly worse than one expects when modeling backgrounds perfectly. 

In calculating -
13

1 
ddu from the observed number of p0 s, I follow the prescrip

UH X 

•· 
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tion of Equation 1.2. To get the total statistical error on the cross-section I add 

in quadrature the statistical errors of the p0 fit in the data, the statistical error 

of the p0s accepted into the Monte Carlo 7r+7r-spectrum, and the statistical error 

of the p0 s generated in events without initial state radiation; this resulting sta

tistical error is dominated by the error in the fit to the data. (Statistical errors 

in this thesis are always standard deviations.) I choose f3 evaluated from the 

Monte Carlos, as described in detail later. The final results for -{3
1 

ddu are given 
t7H X 

in Table 5.3. 

The Webber Monte Carlo introduces a complication to this analysis all its 

own. Webber clusters decaying directly into 7r+ 7r- introduce a feature at the 

cluster mass into the unlike-sign dipion spectra: the cluster is effectively a broad 

"resonance.'; As it happens, the Webber version used in this analysis yields this 

cluster peak with a mass and width comparable to the p0
• Luckily, this effect is 

small except at high x; to the extent it contributes, however, it is a dangerous 

background that might or might not be present in the data. And if a cluster

like feature is present, it might or might not have the shape and magnitude 

predicted by Webber: the shape depends on details of the event generation, and 

the magnitude depends on Webber's particular choice of decay Ansatz. 

I handle this uncertainty in the background in the following manner. Every 

fit to the data using the Webber Monte Carlo for the background is actually 

performed twice. I measure the p0 first using the Webber spectrum "as is." I then 

remove the 7r+ 1r- pairs stemming directly from cluster decay, scale the remaining 

Webber spectrum up to have the same total number of entries, and then refit. I 

av€(rage the two fits to arrive at the number of p0 s I quote as having fit in that bin; 

I use this single number as "the" Webber measurement in the subsequent analysis. 

In the estimation of systematic errors I include an error for the uncertainty of this 

cluster effect. The philosophy here is that Webber "as is" probably overestimates 
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the cluster feature (since the feature is enhanced by artificial thresholds in the 

generation); to remove the feature entirely underestimates it (if it exists). Thus 

an average of these two extremes is as reasonable a guess as to its effect as any; 

the quoted systematic error quantifies the degree of guesswork. 

In any procedure involving as many fits as mine, there are bound to be a 

few special cases to be dealt with;. this analysis has two instances to mention, 

each involving a best-fit Np converging to an (unphysical) nega'tiv~ value. The 

first case involves Np<O for .2 < x < .3 using the Lund Monte Carlo and the 

scaled-up like-sign spectrum technique. I include this measurement in the average 

quoted for that bin, ignoring the fact that it represents a measurement of a 

physically impossible value. As it turns out, due to the large statistical error of 

the negative best-fit, the final average and final statistical error in this bin is quite 

insensitive to whether or not this negative value is included. The second special 

case to mention is Np<O for .6 < x < 1 using the Webber spectrum modified 

by removing direct cluster decays, fitting using the scaled-up like-sign spectrum 

technique. For the method using this modified Webber spectrum to make sense, 

it must fit a larger NP than when using the unmodified spectrum. I therefore 

ignore the fit to the modified spectrum where Np<O, and instead simply take the 
\ 

Np measured using the unmodified spectrum and scale it up by 20%: this 20% 

increase is predicted by a Monte Carlo study, and is within the systematic error 

relevant to this effect that I quote in this bin. Since this effect turns out to be 

small compared to the total systematic error of this bin anyway, the details of 

this adjustment are not significant. 

Merits of the Basic Method 

Having explained my analysis method and presented the results, I now turn to 

the question of why I favor my approach over alternative methods, and tests I've 
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x bin Fitting Algorithm 

U nscaled like-sign Scaled-up like-sign 
subtraction technique subtraction technique 

Lund Webber Lund Webber 
Monte Carlo Monte Carlo Monte Carlo Monte Carlo 

.10< X <.15 1441 370 648 451 2056 579 846 
.. 

830 ·± ± ± ± 

.15< X <.20 1166 ± 265 946 ± 288 1220 ± 455 1201 ± 330 

.20< X <.30 789 ± 318 300 ± 374 -1426 ± 1764 1601 ± 343 

.30< X <.40 943 ± 131 651 ± 178 913 ± 91 698 ± 174 

.40< X <.60 450 ± 114 234 ± 139 608 ± 92 524 ± 118 

.60< X <1.0 135 ± 36 79 ± 56 . 149 ± 30 134 ± 31 

Table 5.2: Number of p0s fit in the data by each of the four fit procedures. 

x bin 

.10 <X< .15 .766 3.86 1.42 

.15 <X< .20 .910 2.55 0.71 

.20 <X< .3Q .960 0.91 0.36 

.30 <X< .40 .981 0.87 0.13 

.40 <X< .60 .991 .240 .055 

.60 <X< 1.0 .994 .037 .010 

Table 5.3: p0 differential cross-section with statistical errors. 
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made to verify the validity of my technique. 

Preparation of the Spectra 

To test if my sphericity requirements in event selection introduced a bias, I re

measured the differential cross-section using only the good multihadron events 

which failed the sphericity-dip cut. I u~ed the unsealed like-sign subtraction 

technique, taking both Monte Carlos in turn, for a total of two measurements 

of ~ ddo-. · These measurements were consistent within errors of the same mea-
FJ<TH X . 

surements performed using good events, with no systematic trend of deviations· 

observed (although the errors are large due to the small sample size). 

The single-track cuts are straightforward, and as can be seen from Fig~re 5.2, 

details of the cut thresholds are unlikely to affect the analysis. At low momentum, 

however, the 1 em vertex cuts potentially remove too many pions or cut in a 

rapidly changing distribution. To test the sensitivity of the analysis to this 

cut, I remeasured f3;H ~~ using a 2 em vertex cut in both the bending plane 

and in z. Comparing the cross-sections (as measured using the unsealed like

sign subtraction algorithm and Lund as the Monte Carlo). revealed negligible 

differences between the results of the two sets of vertex cuts. 

I did a similar test of the track-pair cut requiring both pions to be in the 

same event hemisphere. I reran the analysis (unsealed like-sign subtraction, 

Lund Monte Carlo) eliminating this requirement. The cross-sections measured 

under both sets of cuts were consistent to well within errors. 

To test the sensitivity of the measurement to particle identification criteria, 

I reran the analysis accepting a track regardless of how few wires or pads were 

used for the dE/dx information. The cross-sections measured under both sets of 

cuts were consistent' to within errors. 

In addition to the track-pair cuts that I made, there were a number that I 
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considered and rejected: Monte Carlo studies showed them to be of little assis

tance in this analysis. For completeness, I list these rejected trial cuts: (a) cut on 

(J•, the angle between the pion momentum and the reconstructed p0 momentum 

in the p0 rest frame; (b) require each pion to be in the same hemisphere defined 

by the direction of travel of the p0 ; (c) cut on the minimum p0 momentum; and 

(d) cut on the momentum transverse to the jet direction of one or both pions. 

Fitting the p0 

The technique I use of subtracting the like-sign dipion spectrum (scaled or un

sealed) from the unlike-sign spectrum, and taking the background from the Monte 

Carlo histograms, has numerous merits: 

• The large combinatoric background beneath the p0 is reduced without di

luting the p0 itself, reducing systematic errors from uncertainty in the back

ground shape. 

• Certain resonance contributions (e.g. K*± -+ 1r±K8 , Ks -+ 7r+7r-) appear 

equally in both like- and unlike-sign spectra and so cancel in the subtrac

tion; other resonant contributions at least partially cancel. 

• The imperfect reproduction of the data dipion spectra in the Monte Carlo, 

appearing roughly equally in both like- and unlike-sign spectra, is mostly 

cancelled. 

• There is no need to involve the mass region <600 MeV in the fit-a mass 

region rich in resonant structure (and subject to Bose-Einstein effects in 

the like-sign case) and therefore prone to introducing systematic errors if 

used. 

• Certain systematic errors (such as mismodeling of pion identification or 

trackfinding efficiency) cancel in the subtraction. 
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• Details of structure in the mass spectra are preserved (instead of being 

obliterated in a smooth analytic fit). 

• The procedure is simple, allowing for efficient exploration of systematic 

errors. 

The primary demerit of this analysis technique is the increase of statistical errors 

inherent in the operation of subtracting histograms. 

I tried and rejected a variety of other techniques to fit the rP, aiming at reduc

ing .the statistical errors of the fits. One can a priori reject fitting the unlike-sign 

data with a background taken directly from the Monte Carlo due to the obvious 

discrepancy between the two. One may also reject a priori any technique using a 

smooth analytic curve fit to the Monte Carlo for the background: the reduction 

in statistical errors is minimal, for the Monte Carlo sample is almost foU:r times 

the size of the data set. I attempted to fit the unlike-sign spectra (both with 

and without subtraction of the like-sign spectra) with a smooth analytic back

ground plus p0 line shape independently in the data (for Np) and Monte Carlo 

(for acceptance correction); these fits proved to be unstable, however, without 

benefit of a mass sideband below the p0 to control the background curve. I also 
,. 

attempted subtracting from the, unlike-sign spectra a smooth analytic fit to the 

like-sign spectra (instead of subtracting the like-sign histograms thE;mselves), us

ing backgrounds taken from similarly-prepared Monte Carlo spectra. While this 

last method did reduce th~ statistical errors of the fits, it proved to be subject to 

systematic errors larger than those of my chosen method, as revealed by running 

the analysis on a Monte Carlo (treating it as if it were data) and comparing the 

best-fit Np to the true NP. I conclude that reduction of the statistical errors of 

the fits can only be accomplished by increasing the systematic errors, so I am 

satisfied with my nominal method. 
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My method leaves two parameters free in the fit to the data: the PWBW 

magnitude to account for the cases where both pions from a p0 decay are paired, 

and the background magnitude to account for all other pairings. This approach 

makes the tacit assumption that pairings of one pion from a p0 decay and one 

unrelated pion have a mass structure similar to that of pairings of pions neither 

of which came from p0 decay. Only in this case is the magnitude that I call 

"background" correctly accounting for all the pairs not stemming from the same 

p0 • Using the Monte Carlo to test this assumption, I compared spectra consisting 

of pairs of pions exactly one of which came from a p0
, to,spectra consisting of 

pairs of pions neither of which came from a p0
• The agreement is good: fitting one 

set of spectra by the other set in .6-1.2 GeV gives an average x2 /d.o.f. of 1.2 for 

14 degrees of freedom for x < .6. (The fit was bad for x > .6, where systematic 

errors are large anyway.) Especially since the extracted spectra represent only 

20-25% of the total, I conclude that they are sufficiently similar to verify the 

tacit assumption of similarity. 

5.3 Estimation of Systematic Errors 

Sources of systematic error are considered below. The quantified errors are listed 

in Table 5.4. These errors are combined in quadrature to arrive at an overall 

systematic error in each bin. 

Background 

By far the dominant systematic error is the uncertainty in the background un

derneath the p0
• I estimate this uncertainty as follows. In a given Monte Carlo 

(either Lund or Webber) I measure N P by applying my analysis technique, using 

the other Monte Carlo for backgrounds. The N P that I fit in the analysis can be 

compared to the number actually present to arrive at a figure of mismeasurement. 
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If I use the true background, I will measure (within statistical errors) the true 

number of p0 s, N P true, present in the spectrum. Thus, if orie ignores statistical 

scatter, the deviation of the measured number, N P meas, from N P true is attributable 

to the background being different from the true background.· (Ignoring statistical 

variation must result in a somewhat conservative estimate of the background 

systematic.) I assume that the two Monte Carlos reasonably reproduce the data, 

and hence comparing one to another (where the errors are known) to estimate 

the systematic error is a reasonable approximation of the systematic error when 

. fitting data by the Monte Carlo (where the errors are unknown). 

Both Monte Carlos can be fit by my analysis method (taking backgrounds 

from the other Monte Carlo), each undergoing the two p0-fitting techniques, for 

a total of four such comparisons. For each comparison, I compute the percentage 

mismeasurement: 

I 
N meas _ N true I 

p N true p X 100 • 
p 

I average these four numbers, weighting by the inverse square of the statistical 

error of the fit, to arrive at a final estimate for the percentage of mismeasurement 

in each x bin. Not having a particular model of how this systematic error should 

depend on x, I attempt no smoothing or neighboring-bin averaging: instead, I 

simply compute the errors independently in each x bin. 

To test the effect of statistical fluctuations in the Monte Carlo backgrounds, 

I re-~easured .B;H ~~ using the differences of smooth analytic fits to the Monte 

Carlo M( 7r+ 1r-) and M( 7r±7r±) histograms (instead· of subtracting the histograms 

. themselves). Except for .10 < x < .15, these fits were consistent with my nominal 

method to within systematic errors. For .10 < x < .15 these fits were 30% higher 

than the nominal fits. 

To test the effect of the discrepancy between Monte Carlo and data subtracted 

spectra, I re-measured ~ ddu using a free five-parameter analytic. background fit 
fJUH X 
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instead of taking backgrounds from the Monte Carlos. This free fit background 

is pulled up in the data by the excess of entries below the p0 mass, thus yielding 

a smaller p0 area. Except for .10 < x < .15, these fits were consistent with 

my nominal method to within systematic errors. For .10 < x < .15, where the 

discrepancy is most apparent, these fits were 30% lower than the nominal fits. 

I conclude from these checks that my systematic errors as determined above 

are reasonable except for .10 < x < .15. In this bin I increase the systematic 

error to 30% to account for its special sensitivity to background assumptiqns and 

to the discrepancy between data and Monte Carlo at low x in the mass region 

below the p0
• 

p0 shape 

There is some a priori uncertainty in what to use for the P-wave Breit-Wigner 

(PWBW) functional form for the p0 [45]. More important still are effects pre

dicted by the details of various hadronization schemes: some perhaps artifacts, 

some perhaps physically expected. 

The most important of these considerations is an effect predicted by the 

Lund hadronization scheme. The LSFF (Equation 2.5) favors higher-momentum 

decays for more massive particles. Because the p0 is so broad, a given p0 can 

assume a wide range of actual masses; and a more massive p0
, on average, will 

have a stiffer spectrum than a less massive p0 under the influence of the LSFF. In 

the cross-section measurement, the act of segregating p0 s according to x therefore 

groups stiff p0 s (soft p0 s) together which should have higher (lower) mass, on 

average. The upshot is that Lund predict~ a p0 line shape distorted toward 

higher masses at high x: for .6 < x < 1, for example, the best-fit M0 and ro 
in the Lund Monte Carlo are found to be rv 11 MeV and rv 14 MeV larger 

than the generator values, respectively. (Observation of this effect woUld be very 
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interesting evidence for the physical reality of the string decay model. I looked 

at the data, and found it impossible to get reliable fits when floating M0 and/ or 

r 0 due to the low statistics. This bears further investigation should ~ignificantly 

more data become available.) 

There are other generator-dependent distortions of the PWBW. For example, 

toward the end of the Lund iterative decay scheme, particles are produced at low 

x with insufficient energy to form a high-mass p0-this results in a p0 line shape 

distorted toward low mass at low x. 

To somewhat counterbalance these ambiguities about the correct p0 line shape 

to use--which stem essentially from its broad width-is the fact that detector 

resolution broadening of the signal is negligible compared to its intrinsic width. 

This means detailed understanding of the detector resolution is unnecessary for 

the determination of the proper resonance shape. 

To estimate the potential systematic err?r from using the wrong line shape 

when fitting to the data, I fit the area of a histogram generated fr~m a p0 PWBW, 

the fit using a PWBW shape with a variety of fixed M0 and r 0 • I fixed M0 and 

ro at several values extending from 760 MeV to 783 MeV for M0 , and from 

140 MeV to 170 MeV for ro; I performed the fits in two different mass windows 

(.6-1.2 GeV and .6-1.8 GeV). In these fits the fit area deviated from the true 
. 

area by typically less than 1-2% (4% in the worst case). As these values for M0 

and r 0 cover the full range expected from the discussed effects, I conclude that 

for any reasonably expected mass and width in the data at any x > .10, I incur 

<2% systematic error by fixing M0 = 771 MeV and ro = 154MeV. 

I furthermore observe that the best-fit PWBW area typically deviates by I"V 1% 

from the true contents of the PWBW-prepared histogram; that the best-fit area 

changes by I"V 1% depending on the fit window; and that choosing an alternative . . 

form of the PWBW [45] changes the best-fit ar~a by <2%. I lump all of these 
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systematic errors associated with the PWBW shape into a conservative estimate 

of 4% systematic error at all x . 

. Webber cluster 

As detailed earlier, the Webber cluster--+7r+7r- decay introduces a systematic 

uncertainty; I perform several fits to quantify this uncertainty. Fitting the data 

in turn by the previously-described two versions of the Webber spectra gives a 

measure of the effect. As equivalent tests, I fit both versions of Webber spectra as 

if they were data, using Lund as the Monte Carlo; and fit Lund as if it were data 

using both versions of Webber .as Monte Carlo. I do these three tests for both 

scaled and unsealed like-sign analysis techniques, for a total of six estimations of 

the effect. For each of these six tests, I compute 

! INp- Npl 
!(Np+Np) 

that is, half the fractional excursion between the fit number of p0 s using Webber 

as is (Np) and using the modified Webber spectra (Np)· I then average these six 

. numbers to arrive at a quantification of this uncertainty, listed in Table 5.4. 

Beta 

The f3 occurring in -
13

1 
ddu refers to the f3 of p0s at that x; when performing the 

O'H X 

analysis in discrete x bins, f3 must represent an appropriate average over the x 

bin in question. 

Since the f3 of p0s carries no necessary relation to the f3 computed from 

random pion pairings, I cannot dete~mine it directly from the data (which is 

mostly combinatoric in origin). I can compute it from the measured differential 

cross-section, but this is liable to be subject to relatively large errors. Instead, I 

compute it directly from the Monte Carlo. Since the average f3 in a bin depends 

only on the shape of the differential cross-section, and since the shapes of the two 
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generators I use generally agree with each other and with the data (although the 

magnitudes differ), I assume that f3 is not strongly model-dependent, and hence 

it is safe to determine it from the Monte Carlos. 

I compute f3 as follows. In each x bin, using the Lund and Webber Monte 

Carlos in tum, I compute(~) - 1 
for generated p0 s in event's without initial state 

radiation. I take the average of (~) - 1 
as my final value for (3. I take half the 

absolute difference of the two values as my estimate of the systematic error on 

(3, expressed as a percentage. My values for f3 are listed in Table 5.3; the errors 

are listed in Table 5.4. 

Nuclear interactions 

Pions may undergo nuclear interactions in the material between their creation 

point and the fiducial volume of the TPC. These interactions can scatter pions, 

a:bsorb pions, or produce more pions, so reproducing their effect in the detector 

simulation is important in . getting the simulated backgrounds and acceptances 

right. 

To estimate the error in p0 acceptance from mismodeling the nuclear interac

tions, I consider pions in the Monte Carlo from p0 s deemed "findable." A findable 

p0 is one in an event that passes the event selections criteria, whose daughter pi- . 

ons satisfy (before detector simulation) the track-pair cuts, and whose daughter 

pions each have momentum> 150 MeV /c pointed> 30° away from the beam 

direction. Up to the track-quality cuts, these are the p0s one would expect to find 

in the 7r+ 7T'- spectrum if it were not for interactions in the material in front of the 

TPC. In each x bin I tabulate (a) the number of findable p0s,.and (b) of these, 

the number that have at least one daughter undergoing a nuclear interaction of 

any type. 

In the worst-case bin (.10 < x < .15), 15% of findable p0s have daughters 
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involved in nuclear interactions. Since the Monte Carlo interactions are estimated 

to be accurate to within 10% of reality [46), this 15% is accurate to within "' 2%. 

That is, one expects only "' 2% of the p0 s to have nuclear interactions not 

correctly modeled in the detector simulation. Since not all nuclear interactions 

remove a 7r+7r- mass from the p0 region, to qu,ote a full 2% systematic uncertainty 

in the p0 acceptance for this bin is a conservative choice, which I make. The errors 

for the other bins' acceptance are computed in the same manner. 

A priori, the background is also subject to errors from mismodeling nuclear 

interactions; but since the background is composed of the difference between two 

dipion spectra, errors in the dipion acceptance should cancel. Since I have just 

shown that any such error is individually small to begin with, background errors 

from mismodeling nuclear interactions are negligible. 

Pion decay 

The decay 1r -+ J.L affects the Monte Carlo acceptances and backgrounds in the 

same way as nuclear interactions and are evaluated in the same manner. The 

background error is negligible for the same reasoning as in the case of nuclear 

·interactions. 

Track reconstruction efficiency 

The track-finding efficiency in the TPC (excluding geometric losses) is estimated 

to be 97%±2% [28). The 2% uncertainty of single-track efficiency means a 4% 

uncertainty in the two-track-hence p0-acceptance. 

Pion identification 

I find 97% pion acceptance (flat in x) for my particle identification cuts, judged to 

be accurate to within 2%. As with the track reconstruction efficiency uncertainty, 

this leads to a 4% systematic error in p0 acceptance. 
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To verify this systematic error, I perform the following test. The establish

ment of the identity x2 for a given species hypothesis depends on three things: 

1) the assumed dE/dx curve, 2) the dE/dx resolution, and 3) the momentum 

resolution. Of these, (1) is known by far the best, (2) is known to within about 

8% of itself, and (3) is known to within about 10% of itself. I assume (1) is 

correct, and test the sensitivity of my analysis to (2) and (3) py refitting NP in 

the data after reprocessing all tracks with the resolutions altered up and down 

by their uncertainty. The uncertainty in (2) domi~ates the uncertainty. in (3); 

the average absolute percent shift in Np under raising and lowe~ing (2) is 2%, 

indicating that a 4% systematic is, if anything, conservative. 

Errors in the background are negligible from track reconstruction and pion 

identification systematics for the same reasoning as in the case of nuclear inter-

actions. 

Fitting window 

The analysis technique to fit N P should not depend ori the mass window used in 

performing the fits. To test this, I fit Np in the data (using the Lund backgrounds) 

using several different mass windows: .6-1.0 GeV, .6-1.2 GeV, .6-1.4 GeV, and 

.6-1.6 GeV. I found that fits using different windows were consistent to well 

within errors, and that the fits showed no systematic tre~d (ex~ept that Np was 
. . 

occasionally a little low when fit in .6-1.0 GeV). This indicates that the analysis 

is insensitive to the fit window, as long as it extends to 1.2 GeV or beyond. 

As a high-statistics test of this claim, I lUI_llped all the data for x > .10 to-

gether and measured the p0 multiplicity by fitting in the mass windows .6-1.2 • 

GeV, .6-1.4 GeV, and .6-1.8 GeV. I used only Lund backgrounds, but used both 

unsealed and scaled subtraction algorithms. The rms deviation of these six mea

surements was 7%. This is not quite a true test of my nominal method, since it 
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does not allow for independent background subtraction as x varies (and is there

fore unduly weighted by the many entries at low x where systematic background 

errors are known to be large); moreover, the 7% variation may be partly statisti

cal in origin. I believe this makes a 7% systematic error a conservative estimate, 

but one I choose to quote. 

K*0 area 

Because kaons are misidentified as pions most often near the Kf'rr crossover, the 
. . 

contribution of the K*0 to the 7r+7r- spectrum is significant only in one x bin, 

.10 < x < .15. In this bin its area is about a fourth as large as the p0 area. 

Taking the K*0 contribution from the upper and lower extremes of measured 

values and Lund and Webber predictions (see Section 7.4) makes the measured 

N P in the data vary by 5% for .10 < x < .15. I am therefore unlikely to be more 

than 5% in error in my final measurement of Np and hence -13
1 ddu; 5% is the 
ffH X 

error I assign in this bin. The errors in the other bins were estimated in the same 

manner and found to be "' 1%. 

Attempts to Diagnose the Mass Discrepancy 

For completeness, I list here the attempts I made to diagnose the low x, low 

mass discrepancy between Monte Carlo and data in the M(1r+1r-) - M(1r±1r±) 

subtracted spectra. The discrepancy persisted for extensive variation of track 

and particle identification cuts, so I believe it's not an artifact of my particular 

set of cuts. I examined the predicted contribution to the mass spectra from all 

likely o-, 1-, 1 +, and 2+ mesons to see if a reasonable shift in Monte Carlo 

assumptions (production rates, decay branching fractions, detector acceptance) 

could explain the excess seen in the data, but none had the necessary combination 

of spectrum shape and magnitude. 

The discrepancy remained when requiring all tracks to lie > 50° away from the 



Source of 
Error 

Background 
p0 shape 

. Webber cluster 

f3 
Nuclear interactions 
Pion decay 
Tracking efficiency 
Identification efficiency 
Fitting window 
K*0area 

.Quadrature Total 
Systematic Error 

I Statistical 
Error 

.10- .15-
.15 .20 

30 10 
4 4 
2 2 
4 1 
2 2 
2 2 
4 4 
4 4 
7 7 
5 1 

32 15 

x bin 

.2Q- .30- .40- .60-
.30 .40 .60 1.0 

25 45 35 75 
4 4 4 4 
2 2 5 .20 
0 0 0 0 
1 1 1 1 
1 1 1 1, 
4 4 4 4 
4 4 4 4 
7 7 7 7 
1 1 1 1 

27 46 37 78 

Table 5.4: Systematic and statistical errors. All figures expressed in %. 
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beam direction, regardless of whether track pairs were required to be in the same 

sphericity hemisphere or not, so I do not suspect mismodeling of interactions in 

the beampipe as the culprit. Further tests of the TPCLUND detector simulation 

were made by dividing track pairs into several momentum and polar angle bins 

and observing that the discrepancy was present in all bins, whereas it's unlikely 

that TPCLUND - abundantly checked in other people's analyses - is wrong 

across the board. Moreover, the discrepancy existed in data collected in an 

earlier configuration of the detector for which a different version of TPCLUND 

was used, so an element of the current version of TPCLUND wrong in detail is 

unlikely to be the source of the problem. 

The excess in the data cannot be due to Bose-Einstein enhancement, for 

(a) it appears in the unlike-sign spectra, and (b) it extends to masses too high 

to be subject to this effect. To investigate the ability of a tune of Monte Carlo 

parameters to eliminate the discrepancy, I generated detector-simulated events 
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for four different tunes of the Lund v5.3 Monte Carlo; all continued to exhibit 

the effect. To test the role of the hard QCD generation scheme, I generated 

detector-simulated events using the parton shower algorithm of Lund v6.3; the· 

discrepancy was not reduced. (And it is present in the Webber prediction as 

well, also a parton shower scheme.) I explored several different cutoffs to the 

hadronization process in both Lund and Webber to see if the effect was sensitive 

to the essentially ad hoc termination of the fragmentation schemes, all to no avail. 

In short, the mass discrepancy between data and Monte Carlo at low x in the 

subtracted spectra was stable against all my attempts to explain and eliminate 

it. There may be interesting hadronization physics implicit in this effect, but 

further investigation of this possibility is outside the scope of this thesis. 

5.4 Results 

The p0 differential cross-section measured in this study (with radiative correc-

tions applied following the prescription of Equation 1.2) is plotted in Figure 5.7, 

along with the results from several other experiments [47,48,49,50]. (The JADE, 

TASSO, and HRS measured quantities are~~~· To convert to f3;H ~~'I divide 

by a Hs = 471";
2 

• R, assuming R = 3 L:f=1 q[(l + ~) = 3.84 using a 8 = 0.15.) Com

parison to the two Monte Carlo generators is made in Figure 5.8. Forming a x2 

from my measured contributions in each x bin and the Monte Carlo predictions 

quantifies the agreement between the generators and this experiment. This x2 for 

six degrees of freedom is 8.2 for Lund and 7.6 for Webber, indicating that both 

models do equally well in predicting the p0 differential cross-section. The points 

plotted forall experiments (including this one) indicate statistical error bars only, 

except for the HRS measurement which shows their systematics-dominated total 

error bars. The horizontal bars on my measured points simply represent the 

extent of the x bins. The points are located in x at the average x of the bin, 
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computed from an exponential fit to the cross-section. 

To get the total measured p0 multiplicity, I sum the contributions to the mul

tiplicity from each x bin as measured in this analysis for radiationless initial state 

events. This gives 0.50 ± 0.07 p0 /event measured in x > .10 taking statistical 

~rrors only. Combining all mass pairs for X> .10 and then fitting with my anal

ysis technique yields a p0 multiplicity of 0.39 ± 0.09 for x > .10. Since this latter 

technique does not allow for independent background subtraction as x varies, I 

am not surprised by the discrepancy with the sum of the individual fits. Com

bining the systematic errors from each bin quadrati~ally yields an uncertainty 

on this multiplicity of 11%. -Combining them linearly yields an uncertainty of 

27%. As there are certainly some, but not perfect, correlations of the systematic 

errors among the bins, these two figures bracket the sensibl~ range of sy~tematic 

errors. A hybrid approach to combining systematic errors; wherein a 15% error 

is assumed to be correlated and the rest is uncorrelated, finds a reasonable 20% 

systematic uncertainty; I use this value in the remairiing discussion. 

An auxiliary exercise in calculating the total p0 multiplicity involves fitting a 

smooth curve to the measured -
13

1 ddu; a single exponential does well. I take the 
<I'H X . 

abscissa of the cross-section points to be the (x) in each bin computed from the 

previous fit; the fit converges in two iterations. This fit has a 'x2 of 4.7 for four 

degrees of freedom. 

The Lund Monte Carlo, Webber Monte Carlo, and exponential fit predict 

34%, 28%, and 30% of all p0 s generated in events without initial state radiation 

to have x < .10, respectively. Using these figures to extrapolate the sum of 

individual x bin measurements to the full x range, I find 0.76 ± 0.11, 0.69 ± 0.10, 

and 0.71 ± 0.10 p0 /event produced in radiationless initial state events assuming 

the Lund, Webber and exponential correction, respectively. 

An alternative method to calculate the total p0 multiplicity· is to fit a fixed 
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I Source I p0 /event I 

TPC (this study) .77± .17 

TASSO .72± .15 
JADE .98 ± .17 
HRS .95± .09 
MARK II· .67 ± .11 
Lund Generator .84 
Webber Generator .62 

Table 5.5: p0 multiplicity in this and other experiments, and as predicted by the 
Monte Carlos. Errors are quadrature sums of statistical and systematic errors. 

shape to the differential cross-section and integrate the multiplicity under the 

curve (correctly accounting for ~). This tends to reduce statistical errors at the 

cost of introducing systematic error from the assumed fixed shape. I use three 

shapes for this approach: the Lund predicted shape, the Webber shape, and the 

exponential shape. The fits to the Monte Carlos are a one parameter fit, floating 

the normalization of the generator curves; the exponential is a two parameter 

fit. The res~lts of these fits for Lund, Webber, and exponential, respectively, 

are 0.80 ± 0.08 (x2 = 8.0 for 5 d.o.f.), 0.76 ± 0.07 (x2 = 4.1 for 5 d.o.f.), and 

0.74±0.10 (x2 = 4.7 for 4 d.o.f.). Since these fits cluster closely, I judge that the 

systematic error from dependence on assumed cross-section shape is sufficiently 

small to be neglected in comparison to the other errors in this analysis. I choose 

to average the results of these fits to arrive at my final result. Including the 20% 

systematic error, this yields 0.77±0.08(stat)±0.15(syst) p0 /event as my measure 

of total p0 multiplicity. This multiplicity is compared to the determinations of 

other experiments and the predictions of the Monte Carlos in Table 5.5. (No 

correction is made for the differing Vs of the various experiments. The Monte 

Carlo predictions are for Vs = 29 GeV.) 
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Figttre 5.7: p0 differential cross-section in this and other experiments. Errors 
(except for HRS) are statistical only. 
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Chapter 6 

Measurement of the ¢ 
Differential Cross-section 

6.1 Overview 
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The c/J is a narrow resonapce (r = 4.2 MeV, M = 1019.5 MeV) which decays 

frequently to K+K- (49.5% branching fraction), the decay modestudied in this 

analysis. Implicit in these characteristics are the salient features of the c/J analysis. 

Because the decay mode is to charged kaons, the TPC's particle identifica

tion ability greatly reduces the background under the c/J peak. The remaining 

background is virtually entirely combinatoric and smooth; resonant structure in 

this K+K- background is negligible. 

Because the daughters' masses sum to nearly the mass of the c/J, the decay 

products have little momentum in the c/J rest frame. This means the daughters 

have similar momenta when boosted to the lab frame, which in turn means a) 

the tracks are close in space and the detectors' ability to resolve them must be 

well understood, and b) that in momentum regions of low kaon acceptance -

in particular the K/ 1r crossover region - the c/J acceptance shows a pronounced 

hole if both kaons are subject to stringent identification criteria. 

Lastly, the narrow width of the c/J is comparable to the detector resolution, 

so that understanding the correct line shape to use for the c/J peak in the data 
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and the Monte Carlo - and thereby estirm:i.ting the acceptance correctly - is 

not trivial. 

Because my <P analysis measures the <P independently in the data and the 

Monte Carlo (as opposed to the p 0 analysis, where Monte Carlo backgrounds 

were used when measuring the data), the Monte Carlo measurement serves only 

· as an acceptance correction· (and a . tool for probing systematic errors): This is 

essentially a question of detector simulation, insensitive to the particular physics 

generator used, as long as the generator gets the gross features· of the multihadron 

event environment close to reality. There is therefore no need to duplicate this 

analysis using different Monte Carlo generators; for the <P study. I use only the 

Lund generator, and in this chapter "Monte Carlo" is always taken to mean the 
' 

Lund Monte Carlo package. 

I have previewed some features of the <P analysis in this section. In Section 6.2 

I explain the method I've chosen for the· <P analysis and present the cross-section 

results (with statistical errors only). In Section 6·.3 I estimate systematic errors, 

with final results and errors described in Section 6.4. 

6.2 Basic Method 

In order to measure f3;H ~~, I divide. the data and Monte Carlo mass spectra into 

five x biris for .1 < x < .8, and measure the area in the <P p~ak independently in 

each bin. The x bins are chosen to be wide compared to the. x resolution of the 

detector andto have reasonable numbers of cjJs in each bin. The specific x bins I 

use are given in Table 6.1. 

6.2.1 Formation of the Mass Spectra 

To be used in this analysis, an event must first pass the multihadronic event 

selection and sphericity requirements described in Section 4.2. For a track to 
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be used as a kaon candidate in forming the mass spectra, it must pass - apart 

from identity cuts - nearly the same track cuts as in the p0 analysis. The 

only differences from that analysis are: cut (2) is relaxed to dp1./P1. < .10 (if 

Pl.< 1 GeV /c) or dp1./Pl < .10 (if Pl.> 1 GeV /c), where Pl. is the momentum 

transverse to the beam axis and dp1. is its error; and cut (3) is tightened to 

require momentum (extrapolated to the event vertex) > 350 MeV/ c, si~ce kaons 

range out in material before the TPC at higher momentum than pions. The~e 

cuts may be inspected from Figure 5.2. 

The freedom in choosing the kaon identification cuts leads to important de

cisions. To begin with, I require no minimum number of wires for the dE/dx 

.information, thus utilizing tracks that have dE/dx determined from pad signals. 

This is because the daughters of the </>, often close in space, will often lose wire 

dE/dx assignments due to ambiguity of the assignments of wire hits to tracks; 

the slight cost of worsened dE/dx resolution when using pads for the dE/dx 

measurements is worth the gain of higher acceptance and lessened systematic 

uncertainty of the acceptance. 

Even more important is the choice of the particle identity selection. If no 

identification is used at all, </> acceptance is high but so is the background; this 

. is similar to the procedure used by HRS [51]. If tight identification criteria are 

used on both kaons, the </> acceptance drops but so does the background; this is 

the procedure used by a previous measurement using the TPC [52]. (Under this 

algorithm, no measurement can be made in .15 < x < .2,5, the bin affected by 

the Kj1r crossover kaon acceptance hole, due to the miniscule</> acceptance.) For 

this analysis, I choose a middle ground: I require at least one kaon to satisfy a 

fairly tight identity cut, but the other kaon may satisfy a much looser identity 

cut. The increased </> acceptance relative to the earlier TPC approach, which 

improves the statistical significance of the signal, competes with the increased 
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background, which reduces the significance: the result is that the "one tight + 
one loose" selection has about the same statistical significance as the "two tight" 

selection. Moreover, this approach allows a measurement in .15 < x < .25, as 

there is sufficient ¢>acceptance after "the cut for a meaningful result. 

The ¢> acceptance (estimated from the Monte Carlo) for several approaches to 

kao.n identification are shown in Figure 6.2. Acceptance here means the number 

of ¢>s entering the mass plot after all cuts divided by the number of ¢>s generated, 

both from Monte Carlo good events. I define the loose kaon identity selection to 

be XJ( < 9, where XJ( is the particle-id x2 for the kaon hypothesis; this represents 

consistency of the track with the kaon identity. The tight kao1,1 selection for my 

analysis I define to be XJ( < 9, x~ > 4, and the probability (see Sectiol} 4.1.2) 

for being a kaon > 0.3; this represents a reasonably solidly identified kaon in

consistent with the electron hypothesis. (In studies requiring both kaons solidly 

identified, I strengthen the minimum probability requirement for the tight se

lection to 0.5.) The XJ( cut rejects 50.7% of traqks surviving previous cuts; of 

those tracks surviving the xl cut, 28.1% have a probability for being a kaon > 

0.3. These identity cuts are illustrated in Figure 6.1. The electron discrimina

tion only matters for the lowest x bin, where the K/e dE/dx crossover at 600 

MeV /c would otherwise admit conversion electron pairs which peak in mass near 

threshold, complicating the smooth background fit. 

The kaon purity and acceptance as estimated from the Monte Carlo for the 

loose and tight identification cuts are shown in Figure 6.3. Integrated over all 

momentum, the purity is 26% (68%) [13%) and the acceptance is 77% (52%) 

[79%) for the loose (tight) [no) kaon selection. The purity is the fraction of good 

tracks (under the relevant identification scheme) that are actually kaons; the 

acceptance is the fraction of kaons generated in good events that are called good 

tracks (under the relevant identification scheme). 
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Figure 6.1: Kaon identity cuts for those tracks surviving previous cuts. The 
probability plot only contains entries for tracks passing the X~< selection. The 
arrows indicate the cuts used in this analysis. 
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Figure 6.2: <P acceptance under various kaon selection schemes: a) no particle 
identification; b) require at least two loosely identified kaons; c) require at least 
one tightly identified kaon with one loosely identified kaon; d) require two tightly 
identified kaons. The definitions of tight and loose identification criteria are in 
the text. 
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Figure 6.3: Kaon purity and acceptance under (a) loose (Xk < 9), and (b) tight 
(Xk < 9, x; > 4, and kaon probability > 0.3) identification criteria. The dips 
around 1 GeV /c in purity (plots (a) and (b)) and acceptance (plot (b)) are due 
to the K / rr crossover. 
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The invariant masses of track pairs surviving all the above selection passes, 

under the at least one tight kaon identification procedure, form the mass spectra 

from which I will extract the ¢>signal. No additional cuts at the track-pair level 

are made. These spectra from the data, divided into x bins, are histogrammed 

in 4 MeV bins in Figure 6.4 for both unlike-sign and like-sign combinations. The 

¢> feature is prominent in all unlike-sign bins (at a mass and width consistent 

with the¢>) and is absent in all like-sign bins, indicating that the observed peak 

is truly the ¢> and not an artifact of the selection. 

6.2.2 Extracting the Cross-section 

To extract the number of ¢>s observed in a given mass plot, N,p, I perform a 

maximum-likelihood fit to the spectrum using a smooth background function 

plus a resonance curve fixed in shape but floating in magnitude. The background 

curve 1s 

(6.1) 

where the Ci are the floating parameters of the fit. (The exponent fixed at 20 

could in principle be a free parameter, but it proves to be highly correlated with 

c3 when free, so it is sensible to fix it.) 

The resonance curve for the ¢> is the convolution of the P-wave Breit-Wigner 

(PWBW) of Equation 5.1 and a fixed gaussian detector resolution. The Breit

Wigner parameters used are ro = 4.0 MeV and M0 = 1020 MeV. The analysis 

is done twice, once using a detector resolution fixed at 2.5 MeV and once using 

a 3.5 MeV resolution; the results are averaged for the final N,p. 

The spectra are fit in the mass range from threshold to 1.28 GeV. The six

parameter (five background and one signal) fit to these 74 bins has 68 degrees 

of freedom. The fits are fair: the average x2 over all x bins for these 68 degrees 

of freedom for x < .6 is 84 (99) for the data (Monte Carlo). (An alternative 
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Figure 6.4: Dikaon invariant mass spectra from the data. Unlike-sign pairings 
are in the left column, like-sign pairings are in the right column. The curves show 
the results of the fitting procedure described in the text. The total fit (using a 
2.5 MeV detector resolution for the ¢) and the smooth background component 
are superposed. 
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x bin II (3 
.10< X <.15 .807 55± 15 0.335 ± 0.097 
.15< X <.25 .926 107 ± 24 0.311 ± 0.079 
.25< X <.40 .974 89 ± 19 0.114 ± 0.026 
.40< X <.60 .989 49 ± 11 0.051 ± 0.013 
.60< X <.80 .995 6.1 ± 4.5 0.010 ± 0.007 

Table 6.1: N<t> fit to the data and the derived </> differential cross-section; errors 
are statistical. . 

method, wherein I fix the four background shape parameters from a fit" to the 

like-sign spectra before fitting for the </>, I reject because the x2s of the fits are 

markedly worse.) 

The systematic errors incurred by this method of measuring N <t> are discussed 

in the next section. The results for f3;H ~~, derived from N<t> by the prescription 

of Equation 1.2, are presented with statistical errors in Table 6.1. 

6.3 Estimation of Systematic Errors 

Sources of systematic error are considered below. The quantified errors are listed 

in Table 6.2. These errors are combined in quadrature to arrive at an overall 

systematic error in each bin. 

¢shape 

If the spectra are fit with the wrong</> shape, a systematic error inN¢ will result. 

If the Monte Carlo mass resolution matches that of the data, this systematic 

error cancels out in the final cross-section by virtue of the acceptance correction; 

so the relevant information is how closely the Monte Carlo and data resolutions 

agree. I estimate the mass resolutions for the data and the Monte Carlo by a 

number of methods, described below. 

A simple calculation sets the scale of the expected resolution. Assuming a 
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symmetric decay geometry and including multiple scattering and measurement 

error contributions to both the momentum and angular track resolution, this 

calculation predicts a mass resolution of 2.6 MeV at its optimum around x = .2, 

worsening to 3.3 MeV at x = .1 and 3.9 MeV at x = .8. This is in rough agreement 

with the resolution found by propagating quoted track errors for track pairs in 

the </>mass band 1.012<m(GeV)<1.028 (using the "two tight" kaon selection to 

maximize signal-to-noise): this exercise yields mass resolutions of 1.8 MeV to 

2.6 MeV (2.3 MeV to 3.1 MeV) for the data (Monte Carlo) over the observed 

x range .1 < x < .8. This is also roughly consistent with the resolution in the 

Monte Carlo determined by fitting just the spectrum of accepted </>s (i.e. with 

background removed) with a floating line shape, then deconvolving the gaussian 

detector contribution to the fit width; this exercise gives best-fit resolutions from 

2.1 MeV to 5.1 MeV in the observed x range, with errors marginally consistent 

with the simple calculation. 

Deducing the detector resolution from fits to the full mass spectra (i.e. with 

background present) using a </> signal free to float in shape is complicated by two 

effects. First, the errors in the resolution are large after deconvolving from the 

observed width. Second, the Monte Carlo shows a tendency for the background 

curve and the</> curve to interact, giving a larger measured width (and larger N.p) 

to the </> than when fitting the </> contribution to this spectrum by itself. With 

these warnings in mind, the general trend of this estimate of the resolution is 

that the data is marginally consistent with the simple calculation, but systemat

ically better; the Monte Carlo is marginally consistent with the calculation but 

systematically worse. 

Because of the errors observed in fitting N 4> in the Monte Carlo with a floating 

line shape, and because the predicted detector resolution has been reasonably 

verified for both data and Monte Carlo as just described, I choose to fix the 
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</> shape when fitting the spectra. The shape is fixed as the convolution of a 

PWBW and the "right" detector resolution. The resolution is sufficiently flat in 

x to use one resolution for all x. The best estimate of the resolution from tests 

in the data (Monte Carlo) is around 2.5 MeV (3.5 MeV), values which bracket 

the prediction. I use these two resolutions in turn to generate the fixed </> shape, 

as described in the previous section. 

I claim that the above estimates of the mass resolution show that it is surely 

between 1 MeV and 5 MeV in both data and Monte Carlo, but that the relative 

agreement of Monte Carlo and data cannot be pinned down more precisely than 

that. In order to quantify the possible systematic error from </> shape disagree

ment between data and Monte Carlo, I refit the spectra using the unreasonably 

large and small resolutions of 5 and 1 MeV in the </> shape. Calling these refit 

values N5 and N1 , I tabulate 

this represents half the extreme excursion in N 4> for these extreme resolutions, and 

is thus a conservative estimate of the systematic error. The errors so determined 

are flat in x and average to 10% in both the data and the Monte Carlo. I take 

10% as my systematic error from uncertainty in the </> line shape. 

Background 

In the Monte Carlo, I establish the true background for each spectrum from 

the fit of the smooth background curve to the spectrum once mass pairs from 

the same </> have been removed, I then refit for N4> using this fixed shape and 

normalization instead of allowing the background to float. Denoting this new N 4> 

by Nfix, and the original measurement by Nfloat, I find the worst-case deviation 

INfloat- Nfixl 
Nfix 
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where the worst case is selected from the two fits using reasonable detector res

olutions of 2.5 and 3.5 MeV in the </> shape. This deviation expresses the error 

incurred when using the free background instead of the true background. It is 

flat in x and averages to 8%, which I take as my estimate of systematic error from 

uncertainty in the background shape. (Broadening this test to include 1 MeV 

and 5 MeV resolutions gives a 10% systematic error estimate.) 

As a further test, I can compare N.p as I fit it in the Monte Carlo to the 

actual number of</> entries present, Ntrue· This is problematical as a test. of the 

background systematic, for statistical fluctuations and the </> shape uncertainty 

may also contribute to any deviation of N.p from Ntrue· Nevertheless, this com

parison shows average absolute deviations of N.p from Ntrue to be 12% from this 

combination of systemati~ effects, indicating that my choice of an 8% error from 

background uncertainty alone is reasonable. 

Two-track overlap 

Since the daughter kaons of a </> decay tend to be close in space, especially at 

high x, the ability of the detector simulation to reproduce the actual two-track 

separation ability of the TPC is potentially important in getting the correct </> 

acceptance. Since the Monte Carlo estimates that only 10% of the </>s are lost 

due to two-track overlap even at the extreme of x = .8, dropping sharply with 

lowering x, uncertainty in the accuracy of the overlap simulation is unlikely to 

be a problem: the Monte Carlo could be grossly in error and still not contribute 

significant errors. Nevertheless, I test to see that the Monte Carlo roughly re

produces the true loss of overlapping tracks. 

To test the performance of the detector simulation, I prepare distributions 

that quantify the "closeness" of tracks. The expected acceptance loss for very 

close tracks is observe.d in these plots; comparing these distributions from the 
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data and Monte Carlo shows excellent agreement, even for the most sensitive case 

of tracks within 1 o of each other in polar angle. Agreement of the plots away 

from the overlap region indicates that the Monte Carlo correctly reproduces the 

overall structure of the plot, and that the agreement in the overlap region is 

therefore evidence for the general correctness of the overlap simulation. 

I conclude that, while there is some slight detector loss for close tracks, the 

Monte Carlo reproduces these losses adequately. To quantify the systematic 

error~ I assume the detector simulation is correct to within a factor of two, and 

therefore I set the error equal to the predicted loss of <Ps from this effect. 

Kaon identification 

T~e systematic error from uncertainty in the particle identification acceptance I 

estimate by varying the momentum and dE/dx resolutions and refitting N,p, in 

the same manner as in the p0 analysis. The systematic error so determined is 

8% over most of the x range (worsening as expected at high x where the dE/dx 

bands converge). 

¢> spin-alignment 

The possibility of the </>s having their spms preferentially aligned with some 

quantization axis is important for two reasons: 

• knowledge of such would reveal new physics of the hadronization process, 

and 

' 
• such an alignment could cause the acceptance calcul~ted from the Monte 

Carlo, wherein </>s are decayed isotropically, to be in error. 

I consider such an alignment along two different quantization axes: 1) the </> 

flight direction, and 2) the normal to the plane determined by the </> flight di

rection and the sphericity axis (representing the direction of flight of the initial 
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quarks). (Although it is not implemented in the Lund Monte Carlo program, 

some alignment along the latter axis, depending on Pt, is predicted in the string 

model.) 

To test for spin alignment, I divide the mass spectra (all x combined) into 

five cos(8) bins and three Pt bins, where 8 is the angle of the decay products in 

the </> rest frame relative to the quantization axis under consideration, and Pt is 

the transverse momentum of the </>with respect to the sphericity axis. I fit the 

number of </>s, N.p(8,pt), in each bin as I do for my standard analysis. Dividing 

N .p( 8,pt) as measured in the data by that as measured in the Monte Carlo provides 

acceptance-corrected plots showing the angular distribution of </>s in the data. I 

fit these plots by a function of the form R · (s!B) (1 + B cos2 8), where R is the 

relative </> production between data and Monte Carlo and B measures the degree 

of anisotropy by the amount it diffe:rs from zero. The factor of (3!B) normalizes 

the distribution so that it integrates to R. I allow R to float in the fits, but the 

results forB are insensitive to whether I float R or fix it from the results of the 

next section. 

For Pt > 0.6 GeV /c, B = .19 ± .85 for axis (1) and B = 0.2 ± 1.0 for axis (2). 

For all Pt combined, B = .19 ±.51 for axis (1) and B = -.09 ± .41 for axis (2). 

The other Pt bins have statistical errors so large that this exercise loses meaning. 

I conclude that </> spin alignment, if it occurs, is undetectable in this analysis, 

and that isotropy of the </> decay in the Monte Carlo introduces no systematic 

error. 

Other sourc~s 

I deduce systematic errors from uncertainties in tracks lost from kaon decay, 

track-finding efficiency, nuclear interactions in material before the TPC, and 

determination of j3 in the same manner as for the p0 analysis. The errors from 



Source of 
Error 

</>shape 
Background 
Two-track overlap 
Identification efficiency 
Kaon decay 
Tracking efficiency 
Branching fraction 

Quadrature Total 
Systematic Error 

I Statistical 
Error II 

.10-.15 .15-.25 

10 10 
8 8 
0 0 
8 8 
3 1 
4 4 
3 3 

16 1 16 

x bin 

.25-.40 .40-.60 .60-.80 

10 10 10 
8 8 8 
1 3 6 
8 .8 20 
0 0 0 
4 4 4 
3 3 3 

'• 

16 16 25 

Table 6~2: Systematic and statistical errors. All figures expressed in %. 
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the latter two sources I find to be negligible. The former two sources have errors 

that are small but nonzero, and are entered into Table 6.2. I find that direct decay 

of the Webber cluster to good track pairs is expected to contribute negligibly to 

the ma.Ss spectra. The uncertainty in the 49.5% </>branching fraction to K+K-

is ±1.5%, contributing a 3% relative error to the acceptance 'correction. 

6.4 Results 

The </> differential cross-section measured in this study (with radiative corrections 

applied according to Equation 1.2) is plotted in Figure 6.5, along with the results 

from earlier experiments [51,52]. (The HRS measured quantities are converted 

to -
13

1 dd(j in the same manner as for the p0 measurement.) Comparison to the 
(jH X 

Lund and Webber Monte Carlo generators is made in Figure 6.6. The x2 formed 

from my measured points and the Monte Carlo predictions is 13 for Lund and 3.9. 

for Webber for five degrees of freedom, indicating that Webber does much better 

than Lund in predicting this cross-section. The points plotted for all experiments 



119 

(including this one) indicate statistical error bars only. The horizontal bars on 

my measured points simply represent the extent of the x bins. The points are 

located in x at the average x of the bin, computed from an exponential fit to the 

cross-section. (The points from other experiments are plotted at the centers of 

their bins.) 

To get the total measured</> multiplicity, I sum the contributions from each x 

bin as measured in this analysis for radiationless initial state events. This gives 

0.071 ± 0.010 </>/event measured in .1 < x < .8 (taking statistical errors only). 

I fit an exponential to the differential cross-section as in the p0 analysis; this fit 

has a x2 of 1.4 for three degrees of freedom. The Lund Monte Carlo, Webber 

Monte Carlo, and exponential fit predict 19%, 14%, and 11%, respectively, of all 

</>s generated in events without initial state radiation to have x < .1 or x > .8. 

Using these figures to extrapolate the sum of individual x bin measurements to 

the full x range, I find 0.088 ± 0.011, 0.083 ± 0.012, and 0.080 ± 0.011 </>/event 

produced in radiationless initial state events assuming the Lund, Webber, and 

exponential correction, respectively. Combining all mass pairs (for all x) and then 

fitting with my analysis technique yields a total </> multiplicity of 0.081 ± 0.010. 

As in the p0 analysis, an alternative method to calculate the total </> multi

plicity is to fit the measured -(3
1 

ddCT by the Lund and Webber shapes and by 
C!H X 

the exponential, and then integrate the contents ~nder the curve (taking into ac-

count the~ factor). The results of these fits for Lund, Webber, and exponential, 

respectively, are 0.080 ± 0.010 (x2 = 2.8 for four d.o.f.), 0.073 ± 0.010 (x2 = 3.5 

for four d.o.f.), and 0.074 ± 0.009 (x2 = 1.4 for three d.o.f.). 

Since all these determinations of multiplicity cluster within the other errors 

in this analysis, I assign no additional·systematic error for the multiplicity de-

termination. The systematic error determined in the previous section is 16% in 

all bins except the highest, where the contribution to the multiplicity is small; it 
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I Source I c/J/event 

TPC (this s~udy) .076 ± .016 

TPC 1984 .077 ± .020 
HRS .101 ± .015 
Lund Generator .112 
Webber Generator .079 

Table 6.3: cp multiplicity in this and other experiments, and as predicted by two 
Monte Carlos. Errors are quadrature sums of statistical and systematic errors. 

is thus fair to take an overall 16% systematic error on the cp multiplicity. To be 

consistent with the p0 analysis, I average the results of the fits to -(31 ddu as my 
f7'H X 

quoted result; this gives 0.076 ± 0.010(stat) ± 0.012(syst) c/J/event as my mea-

sured total cp multiplicity. This multiplicity is compared to the determinations 

of other experiments and the predictions of the Monte Carlos in Table 6.3. (All 

measurements and Monte Carlo predictions are for -1/S = 29 Ge V.) 
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Figure 6.5: ¢differential cross-section in this and other experiments. Errors are 
statistical only. 
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Figure 6.6: ¢ differential cross-section measured in this experiment, along with 
the predictions of two Monte Carlo generators. Errors are statistical only. 



Chapter 7 

Measurement of the K*0 

Differential Cross-section 

7.1 Overview 

. 122 

The K*0 resonance (r =51 MeV, M = 897 MeV) is broad ·enough that the con

siderations relevant to this analysis are similar to those of the p0
, but somewhat 

less prone to errors. (In this thesis, "K*0 " and its decays are understood to stand 

for the charge-conjugated states as well.) The fact that it decays to K+7r- (67% 

branching fraction), the decay mode studied in this chapter, makes the combi

natoric background under the K*0 smaller than the 7r+7r- background beneath 

the p0 • Along with the comparable production rate (despite the loss of observed 

rate from the smaller branching fraction) and the smaller intrinsic width of the 

K*0
, this reduces the statistical error of the fits relative to the p0 analysis. These 

same facts, aided by the relative lack of structure in the K+7r- spectrum from 

resonance decays, mean also that the analysis is less prone to systematic error 

from uncertainty in the background shape. 

As in the p0 analysis, the background uncertainty will dominate the system

atic error. The K*0 is broad enough that precise knowledge of detector resolution 

is relatively unimportant. There is no serious momentum:..dependent gap in the 

acceptance, as the large Q value of the decay spreads the momenta of daughter 

.•. 
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kaons sufficiently that the kaop acceptance loss at _1r /K crossover is washed-out 

over many x bins. 

As with the</> analy:sis, my K*0 analysis measures the K*0 independently in 

the data and the Monte Carlo, using the Monte Carlo measurement only for the 

acceptance correction. Hence it suffices to use only the Lund Monte Carlo in this 

analysis, and unless otherwise stated, "Monte Carl)" in this chapter refers to the 

Lund Monte Carlo package. (I use the Webber Monte Carlo only to investigate 

certain systematic errors.) 

I have previewed some features of the K*0 analysis in this section. In Sec

tion 7.2 I explain the method I've chosen for the K*0 analysis and present the 

cross-section results (with statistical errors only). In Section 7.3 I estimate sys

tematic errors, with final results and errors described in Section 7.4. 

7.2 Basic Method 

In order to measure -
13

1 ddu, I divide the data and Monte Carlo mass spectra into 
. UH X 

seven x bins for x > .075, and measure the area in the K*0 peak independently 

in each bin. The x bins are chosen to be wide compared to the + resolution of 
" 

the detector and to have reasonable n~bers of K*0s in each bin. The specific x 

bins I use are given in Table 7 .1. 

7.2.1 Formation of the Mass Spectra 

To be used in this analysis, an event m~st first pass the multihadronic event 

selection and sphericity requirements described in Section 4.2. For a track to be 

used as a kaon (pion) candidate in forming the mass spectra, it must pass

apart from identity cuts- the same kaon (pion) candidate tra,ck cuts as in the 

I make the following choices for the particle identification cuts. I require no 
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minimum number of wires or pads (to maximize acceptance), accepting the slight 

cost in purity of the identified tracks. For a track to be used as a kaon candidate, I 

demand consistency with the kaon hypothesis by requiring XI(< 9; and I require 

it to have a probability (see Section 4.1.2) for being a kaon > 0.3. These are 

fairly loose identification criteria, designed to maximize acceptance. For a track 

to be used as a pion candidate, I demand consistency with the pion hypothesis 

by requiring x; < 9; and I require it to have a probability for being a pion> 0.7. 

This cut does not overly restrict acceptance, for the pion probability is strongly 

·peaked above 0.7 anyway; by requiring the kaon and pion probabilities to sum 

to one or more, I eliminate the possibility of the same pair oftracks entering the 

mass plots more than once. The track cuts are either identical to, or trivially 

inspected from, those illustrated in Figures 5.2 and 6.1. I consider the systematic 

error from this choice of identification criteria later. 

The purity and acceptance of the kaon 'and pion candidates, as computed 

from the Monte Carlo, are plotted in Figure 7.1. The purity is the fraction of 

candidates of a given species that are identified correctly; the acceptance is the 

fraction of a given species generated in good events that are correctly identified 

candidates. Integrated over all momentum, the kaon (pion) purity is 66% (93%) 

and the kaon (pion) acceptance is 56% (65%). 

In addition to comprising one kaon and one pion candidate, for a track pair to 

enter into the mass spectrum both tracks must lie on the same side· of the event 

midplane as defined by the sphericity axis. This is to reduce the combinatoric 

background underlying the K*0
• 

The invariant masses of track pairs surviving all the above selection passes 

form the spectra from which I will extract the K*0 signal. These spectra from 

the data, divided into x bins, are histogrammed in 20 MeV bins; unlike-sign 

combinations in Figure 7.2, like-sign in Figure 7.3. The K*0 peak is evident in 

.. 
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Figure 7.1: Kaon and pion purity and acceptance. The dips in purity and accep
tance around 1 GeV /care due to the Kj1r crossover. 
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the unlike-sign spectra at the correct mass and width (within statistical errors) 

and absent in the like-sign spectra, indicating that the feature is truly from the 

K*0
, and is not an artifact of the selection procedure. 

The K*0 acceptance, defined as the number of K*0 s entering the mass plots 

divided by the number generated in good events (both estimated from the Monte 

Carlo) is plotted in Figure 7.4. Integrating over the measured x range yields an 

overall acceptance of 24%. 

7.2.2 Extracting the Cross-section 

As a preliminary observation, . the Monte Carlo indicates that the unlike-sign 

spectra are composed almost entirely of two peaks riding atop a combinatoric 

background: One of these features is the K*0 itself. The other is from the 

decay D*+--+ 7r+D0 (and its charge-conjugate) with the ensuing decay D0 -+ 

K- +anything: The 1r+ is soft in the D*+ frame.and to lesser extents in the D0 

and K- frames, so mass combinations of it with the K- yield masses peaking 

near threshold. Another relevant observation from the Monte Carlo is that the 

like-sign spectra are expected to closely resemble, in both shape and magnitude, 

the combinatoric portion of the unlike-sign spectra. 

I fit the K*0 area independently in data and Monte Carlo by the following 

procedure. To extract the K*0 signal from the mass plots, I exploit the similarity 

of the like-sign spectra to the background beneath the K*0
• Rather than using 

some smooth analytic curve fit to the like-sign spectra directly as background for 

the unlike-sign spectra, which would make an assumption about the functional 

form, I take the more assumption-free step of subtracting the like-sign histograms 

from the unlike-sign plots in each x bin. Monte Carlo studies indicate that this 

procedure yields results somewhat less prone to systematic error than fitting the 

unlike-sign spectra directly; the cost of increased statistical errors is justified 

... 
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Figure 7.2: Unlike-sign K1r mass spectra in x bins. 
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Figure 7.4: K*0 acceptance as a function of x. 

since systematic errors will prove to dominate the multiplicity determination. 

Havin~ thus greatly reduced the combinatoric background beneath the K*0 

by this subtractioq., I account for residual background by using the analytic form 

of Equation 6.1; all parameters except the overall normalization are fixed in each 

x bin by a fit to the like-sign spectrum for that bin. The normalization is left free 

in the fits to the subtracted spectra. This is not necessarily the correct shape 

to use to estimate the background to the K*0 in the subtracted spectra; but 

aside from having a certain a priori appeal, it works well in the Monte Carlo, it 

certainly has the right limiting behavior (it vanishes) at threshold and at high 

mass, and it yields x2s of the fit!) as good as those of fits using different back-

ground assumptions, and hence is as reasonable as anything else. The systematic 

uncertainty in the cross-section frp~ background shape is estimated in the next 

section. 



130 

To account for the K*0 contribution, I use a curve fixed in shape at the convo-

lution of the P-wave Breit-Wigner (PWBW) of Equation 5.1 and a fixed gaussian 

detector resolution. Only the normalization is left free in the fit. The PWBW 

parameters are r 0 = 52 MeV and M0 = 898 MeV. The detector resolution used 

is 10 MeV for x < .3 and 15 MeV for x > .3. These values for the resolution 

are not critical as long as the detector simulation closely reproduces the true 

resolution, for the acceptance correction cancels errors in the fit area to better 

than a few percent. A systematic error can enter only if the simulationfails to 

reproduce the true situation, a source of error I consider in the next section. 

To account for the contribution from the D*± decay chain, I use the Monte 

Carlo prediction for both shape and magnitude.· This contribution is therefore 

totally fixed in the fit; the systematic error from this will prove to be minor. 

The two-parameter fit (background and K*0 normalizations) is performed as 

a least-squares fit to the subtracted spectra from threshold to 1.35 GeV. The 

upper mass cutoff is to avoid the feature from K*0 (1430) --+ K+7r- decay. These 

fits and the subtracted spectra are plotted in Figure 7.5. The x2s of the fits seem 

only fair on the surface: they average to 43 for the data, 51 for the Lund Monte 

Carlo, and 62 for the Webber Monte Carlo, for the 35 d.o.f. Some of this x2 

comes from the D*± feature region, however, where the final fit can be obviously 

wrong without affecting the measured K*0 area. (Floating the D*± area in the 

:fit, in an effort to account for wrong branching ratios in the Monte Carlo, does 

not significantly improve the x2s.) A more meaningful measure of goodness of fit 

is to consider only the contribution to the x2 from above 800 MeV (thus avoiding 

the D*± contribution): here the x2s average 30 (data), 28 (Lund Monte Carlo), 

and 37 (Webber Monte Carlo) for 26 d.o.f., indicating that the fits are good in 

the K*0 region and above. 

The results for -
13

1 
dda are derived from the fit K*0 areas,-NK•, in the standard 

f7H X . 
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Figure 7.5: Like-sign from unlike-sign subtracted Krr spectra in x bins, and the 
fits described in the text. The upper curve represents the total fit, the lower 
curve represents only the smooth background component. 
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x bin II {3 Ng. 

.075< X <.10 .625 267 ±54 6.18 ± 1.42 
.10< X <.15 .820 468 ± 86 2.82 ± 0.58 
.15< X <.20 .923 480 ± 78 1.87 ± 0.35 
.20< X <.30 .962 825 ± 92 1.49 ± 0.21 
.30< X <.40 .981 390 ± 69 0.53 ± 0.11 
.40< X <.60 .992 331 ± 56 0.29 ± 0.06 
.60< X <1.0 .997 54± 23 .026 ± .012 

Table 7.1: Ng• fit to the data and the derived K*0 differential cross-~ection; 
errors are statistical. 

manner. The fit Ng• and the derived cross-section are presented, with statistical 

errors, in Table 7 .1. 

7.3 Estimation of Systematic Errors 

·Sources of systematic error are considered below. The quantified errors are listed 

in Table 7 .2. These errors are combined in quadrature to arrive at an overall 

systematic error in each bin. 

Background 

In order to estimate the systematic error from uncertainty in the background, 

I focus attention on (Nfit/Ntrue), the ratio of the fit number (using my nominal 

procedure) of K*0s in a Monte Carlo spectrum to the actual number present. 

While a fitting method needn't necessarily have this ratio close to unity to be 

reliable - as long as the corresponding ratio in the data is the same, the accep

tance correction cancels the potential error- it is certainly reassuring to find 

this ratio close to unity, and seems as reasonable a measure of the reliability of 

the method as any. 

I average the absolute deviation from unity of this ratio (Nfit/Ntrue) over the 

seven x bins using the Lund and Webber Monte Carlos. This average is 11% 



133 

1.4 

1.2 
Q) 

:I 

z= 
1.0 -

z-
0.8 

0.6 e Lund Monte Carlo 
0 Webber Monte Carlo 

1 2 3 4 5 6 7 

x bin number 

Figure 7.6: The ratios (Nfit/Ntme), as described in the text. The horizontal lines 
indicate unity and the ±15% error band. 

for Lund and 21% for Webber. The signed average deviation from unity is -7% 

in Lund and + 1% in Webber, indicating that the procedure introduces no gross 

systematic shift of (Nfit/Ntme)· This ratio is plotted for each x bin and both 

Monte Carlos in Figure 7 .6. 

I choose to claim a 15% systematic error due to background uncertainty from 

this study. This is a happy medium between the Lund and Webber estimates of 

error (with the assumption that such errors in the data are partially correlated 

with those in the Monte Carlos so that I need not increase them by v'2). At least 

it's a conservative estimate in that I'm attributing all the scatter to systematic 

error, while some is statistical in origin. 

This method of estimating the systematic error also attributes all systematics 

to background uncertainty, while some could be due to using the wrong K*0 signal 

shape or D*± contribution. I show presently that these effects are expected to 
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be small compared to the observed errors, however, and so do not affect this 

estimate. As a check, I measured (Nfit/Ntrue) using slightly different techniques 

designed to eliminate the· K*0 shape and D*± systematics, and found essentially 

the same background systematic error. 

As a further check of this 15% background systematic, I remeasured -
13

1 ddu 
<I'H X 

using different background assumptions. These included: floating the back-

ground parameters c2 and c3 in the fits, using a free linear background, using 

a free linear background but fitting only above 800 MeV, and even the (extreme) 

choice of no background at all. I also tried fitting the unlike-sign (i.e.- unsub

tracted) spectra, taking as background both the shapes used in my nominal 

method, and starting at these shapes but letting all five paramet~rs float. The 

ratio of these results to my nominal -
13

1 
ddu are plotted in Figure 7. 7. The vast 

<I'H X 

majority lie within ±15% of my nominal results, indicating that my results are 

stable against differing background assumptions to within my quoted systematic 

error. 

K*0 shape 

There are two leading uncertainties in the line shape of the K*0
• The dominant 

systematic is from uncertainty in the detector mass resolution, am. The lesser 

effect is from the perturbation of the pure PWBW resonance shape, in the context 

of Lund string fragmentation, as explained in the case of the p0
• 

I treat the dominant systematic first. A calculation for the case of a decay 

transverse (in the K*0 frame) to the K*0 flight direction indicates expected de

tector resolution of ""8 MeV at x ""'0.1, worsening to ""17 MeV at x ""' 1. The 

resolutions determined from Monte Carlo studies agrees with this calculation, as 

does the resolution observed in the data by deconvolving the intrinsic line shape. 

I only get a systematic error in the cross-section if the Monte Carlo fails to re-

!' 
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produce the resolution of the data; it would be nice to compare the resolutions 

directly to see how dissimilar they could be. The statistical errors, unfortunately, 

are too large to do this meaningfully. 

To estimate this systematic, I instead consider the basic error propagation 

formula, 

to evaluate how far off the Monte Carlo could be. Here, PK and P1r are the 

magnitudes of the kaon and pion momenta, and a is the angle between the 
I 

tracks. The potential error incurred in NK• is worst at high x, where crm is 

largest. In this regime, measurement errors in the TPC dominate 8pK, 8p11", and 

8a, so they scale together. By examining 8p for muons in e+e- ~ J-l+ j.l- events, 

Monte Carlo is seen to reproduce data to probably 20% of itself or better, and 

surely to better than 50% of itself [53). A 50% shift in the crm used, from 15 MeV 

to 22 MeV, causes a 7% shift in N K• , which I take as my (conservative) estimate 

of high x error. The pot~ntial N K• error is less severe at lower x, dropping to 

4% for x < .4. 

The lesser effect of the Lund perturbation of the intrinsic line shape I treat as 

follows. For the worst-case bin .6 < x < 1.0, the Lund generator predicts a K*0 

line shape well described by a PWBW with ro =·59 MeV.(and M0 . 898 MeV). 

Fitting a PWBW generated using r 0 = 52 MeV by a PWBW with r 0 . 59 MeV 

shifts the fit area by less than 4%. I take this as my systematic error from 

uncertainty as to the presence or absence of this effect in the data. Repeating 

this exercise for the other bins gives a 3% error in .4 < x < .6, and negligible 

error otherwise. These errors are added in quadrature with the errors from C1'm 

uncertainty to arrive at the overall systematic errors from uncertainty in the K*0 

line shape quoted in Table 7 .2. 

•. 
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Particle identification 

The systematic error from uncertainty in the particle identification acceptance I 

estimate in the same manner as in the p0 and ¢ analyses. I find an 8% systemat~c 

error for all x. 

As a further test that this analysis is insensitive to the details of particle 

identification, I remeasure ~ ddu using two different particle identification cuts: 
fJO"H X 

probability cuts for the kaon (pion) of 0.5 (0.5), and of 0.7 (0.5). These cross-

sections agree with my nominal results within statistical errors. 

D*± contribution 

I attack the question of the systematic error incurred by uncertainty in the D*± 

contribution in two ways. First, I repeat the fits to the data handling the D*± 

feature in manners different from my nominal method: a) instead of fixing the 

feature area I leave it free, and b) I restrict the fit to masses > 800 MeV to 

eliminate the feature from consideration·. The resulting fits are in all cases within 

statistical errors of the nominal fits; and with one exception they are all within 

the ±15% systematic error from background subtraction. (Performing the same 

fits (a) and (b) to the Lund spectra shifts the fit NK• negligibly. The Nfit/Ntrue 

criterion thus fails to single out one method of accounting for the D*± feature 

over the others.) I do not attribute a value to this systematic error, but simply 

declare it to be small compared to the background systematic. 

As a check, I can remeasure ~ ddu using a cut to greatly reduce the D*± 
fJO"H X 

feature. Since the feature arises from D*+ ---+ 1r+D0 (and its charge-conjugate) 

and D0 ---+ K-x, with X often including a 1r+, there is a low mass enhancement 

in the 11"±11"± spectrum just as there is in the K=F1r± spectrum. Rejecting any 

pion that enters into a like-sign dipion mass pair lighter than 600 MeV therefore 

results in an 80% reduction of the D*± feature in the K=F1r± spectra. The cross-
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section measured using this cut agrees with my nominal method within statistical 

errors. 

Other sources 

I estimate systematic errors from uncertainties in particle decay reconstruction, 

track reconstruction efficiency, nuclear interactions, an:d determination of {3 in 

the same manner as for the p0 and 4> analyses. While these expected errors are 

small, I include them in Table 7.2 for completeness. The expected contribution 

to the mass plots from p0 decay (entering via misidentification of one of the 

daughter pions) is broad, removed from the K*0 mass, presumably reasonably 

well reproduced in the Monte Carlo, and small (comparable to the fluctuations 

in each mass bin), so should influence the measured cross-section negligibly. The 

predicted spectrum (from the Webber Monte Carlo) of clusters decaying directly 

to accepted track pairs is likewise lost in the noise and smooth over the mass 

range used in this analysis, and so its presence or lack in the data should not 

appreciably affect the results. 

7.4 Results 

The K*0 differential cross-section measured in this study (with ·radiative cor

rections applied) is plotted in Figure 7.8, along with the results from earlier 

experiments [50,54]. (The HRS measured quantities are converted to -(3
1 

dd(J' in (J'H X 

the same manner as for the p0 and 4> measurements.) Comparison to the Lund 

and Webber Monte Carlo generators is made in Figure 7.9. The x2 formed from 

my measured points and the Monte Carlo predictions is 8.2 for Lund and 21 for 

Webber for seven degrees of freedom, indicating that Lund does well in predicting 

this differential cross-section, while Webber does poorly. The points are plotted 

with statistical error bars only, except that the HRS results are plotted with 



Source of 
Error 

Background 
K*0 shape 
Identification efficiency 
K/1r decay 
Tracking efficiency 
Nuclear interactions 
(3 

Quadrature Total 
Systematic Error 

I Statistical 
Error 

.075 
-.10 

15 
4 
8 
4 
4 
1 
4 

19 

.1()- .15-
.15 .20 

15 15 
4 4 
8 8 
2 1 
4 4 
1 1 
1 1 

18 18 

x bin 
.2()- .3()- .4()- .60-

.30 .40 .60 1.0 

15 15 15 15 
4 4 8 8 
8 8 8 8 
1 0 0 0 
4 4 4 4 
1 1 1 1 
1 0 0 0 

.. 

18 18 19 19 

Table 7;2: Systematic and statistical errors. All figu:r:es expressed in %. 
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their systematic error bars. The horizontal bars on my measured points simply 

represent the extent of the x bins. The points are located in x at the average x 

of the bin, computed from an exponential fit to the cross-section. (The points 

from other experiments are plotted at the centers of their bins.) 

To get the total measured K*0 multiplicity, I sum the contributions from 

each x bin as measured in this analysis for radiationless initial state events. This 

gives 0.56 ± 0.04 K*0 /event measured in x > .075 (statistical errors only). I fit 

·an exponential to the differential cross-section as in the p0 and <P analyses; this 

fit has a x2 of 6.6 for five degrees of freedom. The Lund Monte Carlo, Webber 

Monte Carlo, and exponential fit predict 8%, 8%, and 5%, of all K*0 s generated 

in events without initial state radiation to have x < .075, respectively. Using 

these figures to extrapolate the sum of individual x bin measurements to the full 

x range, I find 0.61 ± 0.05, 0.61 ± 0.05, and 0.59 ± 0.05 K*0 /event produced in 

radiationless initial state events assuming the Lund, Webber, and exponential 

correction, respectively. Combining all mass pairs (for all x) and then fitting 
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I Source I K*0 /event I 

TPC (this study) .58± .12 

TPC 1984 .49 ± .08 
MARK II .62 ± .13 
HRS .63 ± .10 
Lund Generator .58 
Webber Generator .41 

Table 7.3: K*0 multiplicity in this and other experiments, and as prediCted by 
two Monte Carlos. Errors are quadrature sums of statistical and systematic 
errors. 

with my analysis technique yields a total K*0 multiplicity of 0.57 ± 0.04. 

As in the p0 and ¢> cases, an alternative method to calculate the total K*0 

multiplicity is to fit the measured f3;H ~~ by the Lund and Webber shapes and 

by the exponential, and then integrate the contents under the curve (taking 

into account the ~ factor). The results of these fits for Lund, Webber, and 

exponential, respectively, are 0.61 ± 0.05 (x2 = 7.9 for six d.o.f.), 0.58 ± 0.05 (x2 

= 7.2 for six d.o.f.), and 0.56 ± 0.05 (x2 = 6.6 for five d.o.f.). 

Since all these determinations of multiplicity cluster well within the other 

errors in this analysis, I assign no additional systematic error for the multiplicity 

determination. The systematic error determined in the previous section is close 

to 19% in all bins; it is thus fair to take an overall 19% systematic error on the 

K*0 multiplicity. As for the p0 and the ¢>, I average the results of the fits to 

-13
1 ddu as my quoted result; this gives 0.58 ± 0.05(stat) ± O.ll(syst) K*0 /event 
UH X 

·as my measured total K*0 multiplicity. This multiplicity is compared to the 

determinations of other experiments and the predictions of the Monte Carlos 

in Table 7.3. (All measurements and Monte Carlo predictions are for Js = 29 

GeV.) 
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Figure 7.8: K*0 differential cross-section in this and other experiments. Errors 
are statistical only (except for HRS). 
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Figure 7.9: K*0 differential cross-section measured in this experiment, along with 
th~ predictions of two Monte Carlo generators. Errors are statistical only. 
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Chapter 8 

Determination ·of sfu and 
V/(V+P) 

The foregoing measurements of -(31 ddo- and overall multiplicities for the p0
, K*0 , 

UH X . 

and <P vector mesons stand on their own as additions to the world body of knowl-

edge of the behavior of e+e- annihilation at Vs = 29 GeV. In addition, they 

can be used to probe the underlying nature of the hadronization process; in this 

chapter I use them to deduce values for the strange quark to nonstrange light 

quark (u or d) production ratio in hadronization- the "s/u" ratio- and for 

the fraction of all light mesons (those containing only u, d, or s quarks) produced 

in fragmentation that are vector mesons- the "V /(V +P)" ratio. 

The determination of s/u and V /(V +P) can be approached in model depen

dent and (reasonably) model independent fashions. In the mo~el independent ap

proach (Section 8.1), I consider only the multiplicities Nprirnary stemming from the 

hadronization process, i.e. the measured multiplicities once contributions from 

decay of higher-mass states have been subtracted, and Nfrag, which is NPrirnary with 

contributions from leading quarks removed. Making the assumption that, apart 

from particles containing the QED-produced leading quarks, relative production 

rates of particles that differ only by the substitution of s quarks for u or d quarks 

depend only on a single s/u suppression factor;""the three ratios {!N~!~/NZoag), 

(N!ag /! N~!~), and JN!ag /NZoag represent two independent measurements of s ju. 
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(In this chapter, all multiplicities are understood to include antiparticles as well; 

hence the factor of! accompanying N~~~ in these ratios.) Making the assumption 

that relative production rates of vector and pseudoscalar mesons that have identi

cal quark content are governed only by a single vector to pseudoscalar production 

ratio, the fractions N~~ /(N~~ + N!:orimary) and N~~ary /(N~~ + N~~ary) 
represent two independent measurements of V /(V+P). These assumptions are 

important (and in themselves form a sort of a toy model) and must be kept in 

mind when interpreting these results; but they must be made to gain anyinsight 

into the fragmentation process independent of detailed hadronization models. 

For a model dependent understanding of s/u and V /(V +P) (Section 8.2), I 

consider the Lund Monte Carlo, which contains s/u and V /(V +P) as explicit 

parameters. 'lUning these parameters to reproduce the measured fragmentation 

multiplicities at the least investigates the model's ability to self-consistently re

produce this aspect of the data. Assuming that such a tune of Lund is reasonable 

(i.e. yields all multiplicities satisfactorily close to those observed), the resulting 

s/u and V /(V +P) values will automatically include detailed effects inherent to 

the hadronization process: for example, threshold effects from the finite .jS avail

able that slightly favor lighter particles beyond any intrinsic s/u or V /(V+P) 

ratios. Even if s/u and V /(V +P) are considered simply as parameters of the 

model, devoid of physical content, tuning them in the Lund context is a way of 

characterizing my results that allows comparison with other determinations of 

s/u and V /(V+P) in the Lund context. 

8.1 Multiplicity Ratio Method 

In general, observed particles come from three sources: decay products of higher 

mass particles, particles produced in the hadronization process that contain one 

of the original two leading quarks from the QED annihilation, and particles pro-
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duced in the hadronization process that do not contain a leading quark. Breaking 

the total observed multiplicity N into the individual contributions from the three 

processes and calling them Ndecay, Nleading, and. Nfrag, respectively, one can write 

N = Ndecay + Nleacling + Nfrag. 

The total hadronization contribution, Nprimary, is given by 

Nprimary = Nleading + Nrrag. 

(8.1) . 

(8.2) 

The definition of Ndecay involves some subtlety, in that one must carefully 

define just what particles one considers decay products from. As Hofmann [55] 

points out, the boundary where "hadronization" ends 'and "decays" begin is 

largely a matter of definition: does it make sense to treat a tensor particle, say, 

on a different footing than a piece of Lund string or a Webber QCD cluster which 

can have the same quark content and comparable mass? Indeed, if one accounts 

for decays from tensor, axial vector, and scalar mesons as well as those from pseu

doscalar and vector mesons, the resulting rates of "primary" light pseudoscalars 

are consistent with zero [55]. Following Hofmann's lead, I will only consider 

decays from pseudoscalar and vector mesons (and octet and decuplet baryons, 

although these should contribute negligibly to the vector meson multiplicities); 

this is also the approach of the Lund model. 

In this section, I will first estimate Nleacling, then Ndecay. With this information, 

I compute values for s/u and V /(V +P). I then consider systematic errors of this 

computation to arrive at final values and errors for s / u and V / (V + P). 

Estimation of Nleading 

I will estimate leading quark contributions to multiplicities, Nleading, not only for 

the p0
, K*0 , and </>; but also for the heavy pseudoscalars (D and B mesons) and 

heavy vector mesons (D* and B* mesons), as these rates will be needed for the 

feed-down contributions Ndecay. 
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mearung 

fm 0.90 Probability of a leading quark forming 
a meson instead of a baryon. 

Ps 0.13 Probability of a non-leading quark 
to be strange. (Equivalent to s/u = 0.30.) 

Pu 0.43 Probability of a non-leading quark 
to be up. 

Pd 0.43 Probability of a non-leading quark 
to be down. 

Pv 0.50 Probability of a light meson 
to be a vector. 

p~ 0.75 Probability of a heavy meson 
(i.e. one containing charm or bottom) 
to be a vector. 

Table 8.1: Nomenclature and default values for calculation of multiplicities from 
leading quarks. 

I assume leading quarks are produced in the QED ratio of u : d : c : s : b = 1~ : 

1
2
1 : 1

8
1 : 1

2
1 : 1

2
1 • (These are the average multiplicities per event, with antiquarks 

included.) I further assume, as in Lund, that each leading quark will mate with 

a quark from the vacuum to form a meson a fraction f m of the time, the flavor 

of this quark selected at random in the ratio u: d: s: c: b = Pu : Pd: Ps : 0: 0. 

This meson will be a vector a fraction Pv of the time (p~, if the leading quark 

is c or b); else it will be a pseudoscalar. For the p0
, a factor of ! enters from 

the Clebsch-Gordan decomposition of uu or dd quark pairs: these could equally 

well produce an w. The notation and default numerical values are summarized 

in Table 8.1. The multiplicities are computed in Table 8.2. 

Estimation of Ndecay for p0 , K*0 , and ¢> 

There is no baryon significantly produced at PEP that decays to p0
, K*0

, or </>, so 

in computing the decay feed-down into these three states I may restrict attention 
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Species Formula default 
(includes antiparticles) value 

Po [ 8 1 2 llt aPuPv2 + uPdPv2 m .089 

K*o [1
2
1PsPv + 121PdPv] fm .046 

cP 1
2
1PsPvfm .011 

no 181Pu(1 - P~)Jm .071 

n+ l~Pd(1- P~)Jm .071 

n+ s 181Ps(1 - P~)Jm .021 

D*o 8 ht uPuPv m .213 

D*+ 8 ht uPdPv m .213 

n*+ 
s 

8 ht 
11 PsPv m .064 

Bo 121Pd(l- P~)Jm .018 

B+ 1
2
1Pu(l - P~)Jm .018 

Bo 
s 121Ps(1 - P~)Jm .005 

B*o 2 ht uPdPv m 
,. .053 

B*+ 2 hf 
11 PuPv m .053 

B*O 
s 

2 h f uPsPv m .016 

Table 8.2: Calculation of expected multiplicities from leading quarks. 
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to pseudoscalar and vector mesons. Of these, the only state not containing a 

charm or a bottom quark that contributes to the feed-down is the 1]1, which decays 

to p0
{ 30% of the time. Using the measured 1]1 multiplicity [56] of .26 ± .09 ± .05, 

I find .08 ± .03 p0 /event expected from 1]1 decay (taking the quoted errors in 

quadrature). 

The remaining states to consider for contributions to N:~Y, N~~Y, and N;ecay 

are B, D, B*, and D* mesons. Except for the D*+, I assume the B* and D* 

mesons always decay to their pseudoscalar partners plus an irrelevant pion or 

photon. I assume the D*+ decays to D0 50% of the time and to n+ the rest 

of the time (again along with the emission of a pion or photon). With these 

assumptions and the leading multiplicities just calculated, I can estimate the 

multiplicities of D and B mesons, which constitute the remaining sources of the 

decay contributions to vector mesons. All I need to complete the feed-down 

calculation are the 18 branching fractions of the six D and B states into the 

three vector mesons states. 

Unfortunately, these branching fractions are not well-known; uncertainty in 

them is a source of systematic error. I will arrive at a set of nominal branching 

fractions that I think are reasonable, along with estimates of upper and lower 

limits to these branching fractions. Using the nominal branching fractions to 

complete the estimation of feed-down into the p0
, K*0

, and </>, I will proceed to 

compute values for s/u and V /(V+P), employing the branching fraction limits 

later on to estimate the systematic error of this computation. 

For the D mesons, I estimate branching fractions using experimental measure

ments, usually from the Particle Data Group compilations. Setting a lower limit 

on a given branching fraction is straightforward: I take a one sigma excursion 

on the low side of the sum of explicitly meastired exclusive decay channels. If no 

such measurements exist, then the lower limit is simply zero. 
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Setting an upper limit for a D meson branching fraction is more problematical. 

Decay modes that have been measured or had upper limits set contribute in the 

same straightforward manner as when setting lower limits. But many potential 

decay modes have not been measured, except perhaps as possible contributions 

to observed final states (where the vector meson has not been reconstructed). 

In this case, one may set limits on vector mesons by assuming that final states 

consistent with an unreconstructed vector meson do, in fact, come from a decay 

chain including that meson at an intermediate stage. (The known bra.nching 

fraction of the vector meson to the final observed particles must be factored into 

this analysis.) This procedure for setting upper limits is complicated by the fact 

that these limits sometimes turn out to be so conservative as to be patently 

ridiculous; there are also more or less arbitrary decisions of which heavy meson 

decay channels to consider and which to neglect. (One might neglect Cabibbo 

suppressed channels, say, or massive fi.D.al states expected to be phase-space sup

pressed. Since the uncertainty in the dominant modes is typically larger than the 

likely contribution from the less dominant modes, it should suffice to consider 

only the dominant modes.) The upper limits that I select are therefore subject to 

some guesswork. The systematic errors from the branching fraction uncertainties 

turn out to be modest, however; so mistakes in setting the upper limits should 

not be very important. (The Particle Data Group figures I use are preliminary 

values for the 1988 edition of its biannual review. Because the systematic depen

dence on the branching fractions is moderate, my analysis should not be affected 

by any disparities between these figures and the ultimately published values.) 

When combining explicitly measured modes and limits on unmeasured modes 

to arrive at an overall branching fraction upper limit, I make the conservative 

assumption that observed final states consistent with the presence of a vector 

meson always include that meson; I treat measured upper limits as one-sigma 
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errors on a zero measurement. All contributions can thus be treated as measure

ments with errors added in quadrature to arrive at a plus one-sigma excursion, 

which I take as the overall upper limit. 

The branching fractions I choose as nominal values to assume in performing 

the analysis are similarly subject to some guesswork. But again, since the sys

tematic error from this guesswork does not dominate the final errors, errors in 

these guesses should not be important. The branching fractions I select are at 

least equal to the sum of explicitly measured channels, with occasional adjust

ment upward to fall somewhere near the center of the range bracketed by the 

maximum and minimum estimates. 

Decay branching fractions for the B mesons are even more difficult to estimate 

from measured channels than forD mesons. ForB mesons, therefore, I simply 

take the Lund model predictions for the fractions. This model treats B. decay 

by first weakly decaying the bottom quark, then decaying the resulting partonic 

configuration by the usual string decay. Since the B decay results in a reasonably 

high energy (several Ge V) string, this algorithm should roughly reproduce the 

true branching fraction. Because the multir:>licity of B mesons is much smaller 

than that of D mesons, errors in the B branching fractions should not matter 

much. (For this reason, I need not set upper and lower limits for the B branching 

fractions.) 

There are two places where I depart from the straight Lund predictions for B 

branching fractions. First, I use the measured B+ and B0 (unseparated) branch

ing fraction to <P +X [57]. Second, I override the Lund D to vector meson branch

ing fractions with my nominal fractions in decay sequences of the B mesons. 

In Table 8.3 I present the elements of the estimation of the branching fractions 

forD mesons: the decay channels I consider and their numerical values. I present 

the corresponding information forB decays in Table 8.4. Using these ingredients, 
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I calculate the values I use for nominal, rmmmum, and maximum branching 

fractions, presented in Table 8.5. Using the nominal fractions, I can compute 

the estimated feed-down contributions to the p0
, K*0

, and </> multiplicities from 

heavy mesons; I list these contributions in Table 8.6. 

Nominal s/u and V/(V+P) 

Since the strange quark content of mesons containing leading quarks is presum

ably different from those produced in the fragmentation process, one mt1st sub

tract Nleading as well as Ndecay from observed multiplicities when computing slu. 

Since there is no reason to believe the spin of a particle depends on whether 

it contains a leading quark, only Ndecay needs to be subtracted from observed 

multiplicities when computing V I(V +P). That is, slu must be calculated from 

Nfrag; VI (V + P) may be calculated from NPrimary. 

The necessary subtractions from the observed p0 , K*0 , and </> multiplicities are 

performed in Table 8. 7. The ratios (! N~~~ IN~ag), (N!ag I! N~~),. arid JN!ag IN~ag 

that characterize the slu ratio are 0.44±0.18, 0.20±0.08, and 0.30±0.07, respec-

tively, where the errors come from the total error on my measured multiplicities. 

All three ratios are consistent with the generally accepted value of slu """0.3. 

In order to determine the VI (V + P) ratios N~~ I (N~~ + N~mary) and 

N~~ary I (N~~ary + N~~), I need _figures for N~ary . and N~~. Hofmann 

(55) computes these to be 0.87 ± 0.45 and 0.55 ± 0.11 respectively. This calcula

tion uses world-average measured multiplicities minus feed-down expected from 

pseudoscalar and vector mesons and octet and decuplet baryons; the errors in

clude systematic as well as statistical errors. These figure~ yield V I(V +P) ratios 

of 0.40 ± 0.13 (from p0 and 1r0 ) and 0.47 ± 0.08 (from K*0 and K0
), where the 

errors combine my measured multiplicity errors and the pseudoscalar multiplic

ity errors. The 1r0 error dominates for the p0 l1r0 determination; the K*0 error 

• 
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Branching 
Fraction 

n+---+ Po+ X 

n+--+ K*0 +X 

n+--+ <1> + x 

no--+ po+X 

no-+ I(*O +X 

no--+ </>+X 
nt--+ po+X 

nt--+ 1(*
0 
+X 

nt--+ </>+X 

Channel 

I~ 11"+ ( 71"+ 71"-) 

Jrl ( 1r+ 1r- )e+ v 

Jrl ( 71"+ 71"- )J.L+ ll 
1(*011"+ 

K*OJ(+ 

(K-71"+ )7r+ 7ro 

(Jrl7ro)7r+ 71"+ 71"-
( K-71"+ )1r+ 7ro7ro 
( K-71"+ )1r0 e+ v 
( K-1r+)1r0 J.L+v 

</>11"+ 
Jrl7l"+ ( 71"+ 71"- 11"0) 

Kpo 
J(-11"+ Po 

Jrl1ropo 
71"+ 71"- ( 71"+ 71"-) 

11"0( 71"+ 71"-) 
J(*O 71"0 

K*opo 

K*O 71"+ 71"-
K*OJ(o 

K*O 0 0 71"71" 

XO<t> 
p07r+ 

J(*OJ(+ 

</>11"+ 
cf>7r+7r+7r-
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Value 
(%) 

< (15::~) 
< (2.2::g:~) 

B(n+--+ Jrl1r+7r-e+v) 

1.7 ± 0.8 

0.4 ± 0.2 
< ~(3.8::6:~) 
< 3( 4.4::~:~) 
< ~(2.2::g:g) 
< ~( 4.4::~:~) 

B(n+ --+ K-7r+7r0e+v) 
0.7 ±0.2 

< 7( 4.4::t~) 
0 5+0.3 . -0.2 
6 7+1.2 . -1.9 

B( no --+ K-11"+ po) 
< (Lo::g:~) 

< (1.1 ± 0.4) 

2.1 ± 0.6 
o s+o.9 . -0.8 
< 2.9 

< 0.7 
-*O B(n° --+ K 1r+1r-) 

0.8 ± 0.2 
< (0.2)B(nt --+ </>1r+) 

(1.4 ± 0.4)B(nt --+ cf>rr+) 
4.4 ± 1.1 [58] 

(1.1 ± 0.5)B(nt --+ cf>rr+) [59] 

Table 8.3: Contributions to branching fractions forD mesons decaying to p0 , K*0 , 

and</>. Channels wherein the vector meson has not been explicitly reconstructed 
are entered with parentheses around the putative vector meson contribution; the 
numerical value for these channels is weighted by the inverse of the branching 
fraction of the vector meson to the final state particles. Unless otherwise cited, 
all numerical values are taken from the Particle Data Group (1988 preliminary). 



Branching 
Fraction 

B+--+ Po +X 

B+--+ 1(*0 +X 
B+--+ ¢>+X 
Bo--+ po+X 

B 0 --+ 1(*0 +X 
B 0 --+ ¢>+X 
B~--+ p0 +X 

B~--+ 1(*
0 
+X 

B~--+ ¢>+X 
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Value 
(%) I 
17 

9 
2.3 ± 0.8 [57) 

19 

21 
2.3 ± 0.8 [57) 

27 

26 
9 

Table 8.4: Branching fractions forB mesons decaying to p0 , K*0
, and¢>. Unless 

otherwise cited, all numerical values are taken from the Lund model prediction. 

Branching Nominal Lower Upper 
Fraction Value Limit Limit 

(%) (%) (%) 
n+ -+p0 +X 8 0 29 
n+--+ 1(*0 +X 25 1.3 57 
n+--+ ¢>+X 2 . 0.5 67 
no--+ po+X 14 5.3 18 
no--+ I(*U +X 5 1.9 7 
no--+ ¢>+X 0.8 .0.6 1.0 
n;--+ p0 +X 0 0 1 
n+--+ I(*0 +X 

8 6 4 9 
n;--+ ¢> + x 8 6 12 

B+--+ p0 +X 17 - -· 

B+--+ 1(*0 +X 9 - -

B+--+ ¢>+X 2.3 1.5 3.1 
Bo--+ po+X 19 - -

B 0 --+ I(*0 +X 21 - -

B 0 --+ ¢>+X 
.. 

2.3 1.5 3.1 
B~--+ p0 +X 27 - -

B 0 --+ I(*0 +X 26 - -
8 

B~--+ ¢>+X 9 - -

Table 8.5: Nominal, minimum, and maximum branching fractions used in this 
analysis for D and B mesons decaying into p0

, K*0
, and ¢>. 
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Heavy Multiplicity Daughter Branching Ndecay 

Pseudoscalar Meson Fraction 
D+ 0.178 Po .08 .014 

K*o .25 .045 
¢> .02 .004 

no 0.391 Po .14 .055 
K*o .05 .020 

¢> .01 .. 003 
n+ 

8 0.085 Po .00 .000 
K*o .06 .005 

¢> .08 .007 
B+ 0.071 Po .17 .012 

K*o .09 .006 
¢> .02 .002 

Bo 0.071 Po .19 .013 
K*o .21 ·.015 

¢> .02 .002 
Bo 

8 
0.021 Po .27 .006 

K*o .26 .005 
¢> .09 .002 

Table 8.6: Estimated feed-down contributions to p0 , K*0 , and ¢> from heavy 
pseudoscalars. This calculation uses the nominal branching fractions listed in 
Table 8.5. The heavy pseudoscalar multiplicities include the effects of heavy 
vector meson decay, as explained in the text. 

I Vector Meson: 

Measured multiplicity 
(this thesis) 0.77 ± 0.17 0.58 ± 0.12 0.076 ±0.016 

Nleading 0.089 0.046 0.011 

Ndecay (from B, D mesons) 0.100 0.096 0.020 

Nde~Y(from ryl) 0.08 ± 0.03 0 0 

Nfrag 0.50 ± 0.17 0.44 ± 0.12 0.045 ± 0.016 

NPrimary 0.59±0.17 0.48 ± 0.12 0.056 ± 0.016 

Table 8.7: Estimation of Nfrag and NPrimary for p0
, K*0

, and¢>. The errors are the 
total errors on the measured multiplicity. 
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dominates for the K*0 IK0 determination. Both ratios are consistent with the 

generally accepted value of V I(V+P) "'0.4-0.5. 

Systematic Errors 

I consider the following sources of systematic error: 

• Then*+-+ no+ X branching fr~tion, 

h 
• Pv' 

• the effect of the assumed slu and VI(V+P) (i.e. Pu, Pd, Ps, and Pv) on 

Nleading 
·' 

• . the heavy pseudoscalar decay branching fractions, and 

• n multiplicities. 

The first four of these prove to be quite small, so I'll treat them briefly. 

Varying the n*+ -+ no + X branching fraction from 0.4 to 0.6 (roughly a 

±la swing) causes no more than' a 4% relative shift in slu and no more than a 

2% relative shift in V I(V+P). Altering p~ to the extreme values of 0.5 and 1.0 . . 
produces less than a 4% (2%) relative shift in slu (V I(V +P)). Varying fm to the 

extreme values of 0.8 and 1.0 creates a 2% change in both slu and V I(V+P). 

Changing fm for heavy mesons only to 0.7 (as suggested by measurements of Ac 

[55]) also changes slu and V I(V +P) by"' 2% of themselves. Setting slu to 0.25 

and 0.35 causes N;ag (N~rimary) to vary from nominal by 4% (2%) of itself, with 

much less variation in the p0 and K*0
; I therefore take 4% (2%) as a sensible 

systematic error on s I u (VI (V + P)). The only effect of changes in Pv is to change 

Nfrag in a correlated fashion for p0
, K*0

, and </J, and not to change NPrimary at all; 

so no significant systematic error in s/u or V /(V +P) results from an error in Pv· 
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Adding these minor systematics (all conservative) in quadrature results in a 

7% error on s/u and a 4% error on V/(V+P), quite negligible compared to the 

"'20-40% relative errors found previously. 

To estimate the systematic error from uncertainty in the heavy meson branch

ing fractions to p0 , K*0 , and ¢>, I recompute the. Ndecay contributions using the 

lower and upper limits for these fractions tabulated in Table 8.5. Using all of 

the lower limit branching fractions . (which corresponds to correlated branching 

fraction errors and hence is a conservative choice), Nfrag and NPrimary increase 

by 0.048, 0.058, and 0:008 for the p0
, K*0 , and¢>, respectively. Using all of the 

upper limit branching fractions· (again a conservative choice) results in a decrease 

in Nfrag and NPrirn&ry of 0.054 and 0.067 for the p0 and K*0 , respectively. This 

exercise unfortunately forces Nfrag and NPrimary for the¢> to be negative, an aber

ration that can be traced back to the absurdly high upper limit set on B(D+ ~ ¢> 

+ X) from the ~ 7r+ ( 7r+ 7r-7r0 ) channel. I choose to assume the limits of B(D+ 

~ ¢> + X) are symmetric about the nominal value in this channel; this choice 

gives a decrease in N;as and N:rimary of 0.008. 

These systematic shifts in Nrrag and Nprimary are roughly symmetric about 

the nominal values, so I take symmetric systematic errors on Nrras and Nprimary of 

0.06, 0.07, and 0.008 for the p0
, K*0

, and¢>, respectively. This branching f;action 

systematic is much larger than the other systematic errors put together, so the 

other systematics can be safely ignored. 

Since the branching fraction systematics are largely independent for the p0 , 

K*0 , and¢> and independent of the measurements, and since the measurements 

each have different dominant systematic errors which are independent, to an 

excellent approximation all systematic errors are independent and may be added 

in quadrature. This results in the final estimates of Nfrag and Nprimary listed in 

Table 8.8, and final calculations of s/u and V /(V+P), systematic errors included, 
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I Vector meson: I 
Ntrag 0.50 ± 0.17 ± 0.06 0.44 ± 0.12 ± 0.07 0.045 ± 0.016 ± 0.008 

= 0.50±0.18 = 0.44 ± 0.14 = 0.045 ± 0.018 
NPnmai"Y 0.59 ± 0.17 ± 0.06 0.48 ± 0.12 ± 0.07 . 0.056 ± 0.016 ± 0.008 

= 0.59±0.18 = 0.48± 0.14 = 0.056 ± 0.018 

Table 8.8: Estimation of Nfrag and NPrima.rY for p0
, K*0

, and ¢. The first error 
is the total error on the ~easured multiplicity (statistical and systematic); the 
second error is the systematic error of the subtraction of Ndecay and N 1eading. 

These errors are added in quadrature for· a total error. 

I Quantity I ··Value 

0.44 ± 0.21 (from p0 and K*0 ) 

slu 0.20 ± 0.10 (from K*0 and¢) 
0.30 ± 0.08 (from p0 and <P) 

average: 0.30 ± 0.07 

0.40 ± 0.14 (from p0 and 1r
0

) 

VI(V+P) 0.47 ± 0.09 (from K*0 .and K0
) 

average: 0.45 ± 0.08 

Table 8.9: Calculated slu and V I(V+P). The errors include the total error of 
the measured multiplicities (statistical and systematic) and the systematic error 
of the subtraction of Ndecay and Nleadins. The averages are weighted averages; in 
the case of slu, correlations in the definitions of the individual slu ratios are 
taken into account. 

listed in Table 8.9. The weighted averages of these estimates of s I u and VI (V + P) 

represent my end results for this section, and are also entered into Table 8.9. 

Taking into account the correlations in the definitions of the slu ratios, these 

averages are slu = 0.30±0.07 and VI(V+P) = 0.45±0.08. 

Finally, one may use the measured no and n+ multiplicities 0.45 ± 0.07 and 

0.17 ± 0.03, respectively [60) instead of my calculated multiplicities. To do this, 

I retain the calculated feed-down from channels not involving no and n+. This 

includes all n: decays and the fraction of B decays coming from Lund string 
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fragmentation. I add to this the contribution from the mea.sured D mesons 

multiplicities, using my nominal branching fractions. This calculation yields the 

new values N;:ay = 0.106, N~~ay = 0.079, and N~ecay = 0.021. Using these values 

to recompute s/u and V /(V+P) gives s/u = 0.47 (from p0 andK*0
), s/u = 0.19 

(from K*0 and¢), s/u = 0.30 (fro~ p0 and¢), V /(V+P) = 0.40 (from p0 and 1r
0

), 

and V /(V +P) = 0.48 (from K*0 and K0
). The shifts from the calculated values 

in Table 8.9 are small compared to the errors, so using measured D multiplicities 

in lieu of the predicted multiplicities makes no significant difference. 

8.2 Lund-specific Method 

As explained earlier, I can attempt to tune the Lund s/u and V /(V +P) parame

ters to achieve agreement of the Lund model predictions with my measurements. 

I use Lund v5.3 for this study. (Lund v5.3 allows the V /(V +P) ratio for strange 

mesons to be different from V /(V +P) for nonstrange light mesons; I set these to 

be equal so there is one overall V / (V + P) ratio for light mesons.) 
. . . 

I tune these parameters by minimizing a x2 formed from Lund model pre-

dictions and experimental measurements. One is therefore faced with a choice 

of just what quantities to include in forming this x2 • The simplest x2 one could 

form from my measurements would include the p0
, K*0

, and ¢ multiplicities 

before feed-down, i.e. NPrimary. One would then tune sfu and V /(V+P) tore-

produce these rates. This could result in a contrived and useless configuration 

of the Lund parameters, however, if other predictions of the model fell into poor 

agreement with the data in the process of adjusting s/u and V /(V+P). In par

ticular, adjusting s/u and V /(V +P) is certain to change the total and strange . 

multiplicity predictions of the model, multiplicities which are well-measured in 

the form of charged pion and charged kaon multiplicities. To keep my tuning 

procedure from going too far afield in these well-measured quantities, I include 
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them in the x2 and allow the parameter a in the LSFF (Equation 2.5) to vary 

to help compensate for multiplicity changes when adjusting s/u and V /(V +P). 

Apart from a, s/u, and V /(V+P), all parameters are kept at the values used 

throughout this thesis, described in Section 2.3.2. 

Thu~, the x2 I choose to minimize is 

(

Nprimary _ NLund) 
2 

(Nprimary _ NLund)2 (Nprimary._ NLund) 
2 

pD pD J(•O J(•O . rJ> rJ> 

f)Nprimary + f)Nprimary + f)Nprimary . 
pD J(•O rJ> 

(

. Ntotal _ N Lund) 2 ( Ntotal _ N Lund) 2 + 1T+ 1T+ + }(+ I<+ 
8 Ntotal . fj Ntotal · 

1T+ J(+ 

(8.3) 

where the indicated particles are understood to include antiparticles. The Nprimary 

and their errors 8NPrimary for p0
, K*0 , and </> are taken from Table 8.8. The 

statistical errors of the Lund predictions are negligibly small, so no additional 

error is taken in 8NP~. For the pion and kaon charged multiplicities N;~al 

and N~~al, I take the world-average values 10.3 ± 0.4 and 1.48 ± 0.09, respectively 

[55]. No error in addition to those just quoted are taken in oN;_o;ai and 8N~tal. 

The quantities superscripted "Lund" are the Lund model predictions for the 

corresponding measured quantity. I vary three Lund parameters- a, s/u, and 

V / (V + P) - so there are two degrees of freedom in this fit to five· measured 

quantities. 

To minimize this x2 , I generate 10,000 hadronic events (without initial state 

radiation) at each point of a lattice in the three-dimensional parameter space. 

The lattice sites are at all 45 combinations of a = 0.855, 0.955, and 1.055, s/u 

= 0.25, 0.30, and 0.35, and V /(V +P) = 0.40, 0.451 0.50, 0.55, and 0.60. At 

each lattice site, tabulating the various multiplicities· in the 10,000 events gives 

the Lund predictions from which I form the x2
• I assume this x2 is sufficiently 

near minimum to be described by a three-dimensional parabola centered on the 

minimum. Assuming equal errors on the x2 at each lattice site, I fit a three-

,. 
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dimensional parabola of the form 

+D(a- amin)(s- Smin) + E(a- amin)(V- Vmin) + F(s- Smin)(V- Vmin) 

2 + Xmin (8.4) 

to this x2 , where sis short for s/u and Vis short for V/(V+P). The ten free 

parameters of this fit are A, B, C, D, E, F, am in, Smin, Vmin, and X~ in. The values 
~ . 

amin, Smin, and Vmin represent the best tune of a, s/u, and V /(V +P); mapping 

out the (x2 - X~in) = 1locus in three dimensions yields the ±1a bounds on these 

parameters including correlations. Systematic errors are also included in these 

±1a bounds, as systematic errors are included in the x2 • I present these tuned 

parameters and their errors in Table 8.10. The tuned values for s/u and V /(V+P) 

are consistent with the generally accepted values s/u"' 0.3 and V /(V +P) "'0.4-

0.5. At minimum, x2
· = 0. 7 for two degrees of freedom, indicating that the Lund 

model is capable of simultaneously reproducing all five experimental quantities 

that entered into the x2
• 

The errors quoted on the tuned values for a, sju, and V /(V+P) are only 

sensible if the three-dimensional parabola is a good fit to the actual x2s at the 

lattice sites. The RMS deviation of the parabola from the actual values is 0.36 

taken over all 45 lattice sites. Interpreted as the order of the x2 fitting error, 

perhaps I've found the .6..x2 = 1.36 or .6..x2 = 0.64locus instead of the .6..x2 = 1.0 

locus. This would mean my 1a errors are wrong by "' 20% of themselves, a mod

est discrepancy. (In point of fact, the agreement between the three-dimensional 

parabola and the actual lattice values is better than an RMS deviation of 0.36 

in the vicinity of the .6..x2 = 1.0 locus.) The parabolic fit is therefore sufficiently 

good to trust the errors I quote. 
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I Lund parameter I tuned value I 
a 1.01 ± 0.29 

s/u 0.30 ± 0.03 
V/(V+P) 0.45 ± 0.11 

Table 8.10: Result of tuning the Lund parameters a, sju, and V /(V+P) to fit 
N~~, N~~, N~rimary, and charged pion and kaon multiplicities. The errors 
include correlations and systematic errors. 
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Chapter 9 

Summary and Conclusions 

In this thesis I have measured radiatively corrected differential cross-sections 

in x = Emeson/ Ebeam for the ~eCtor mesons p0
, K*0

, and ¢. The results of these 

measurements are plotted, along with previous measurements and the predictions 

of the Lund and Webber Monte Carlos, in Figures 5.7, 5.8, 7.8, 7.9, 6.5, and 6.6. 

Integrating the cross-sections and extrapolating to unmeasured x regions yields 

the particle multiplicities in Table 9.1. The agreement with the Lund and Webber 

Monte Carlos is quantified in terms of x2s both for the differential cross-sections 

and for the total multiplicities in Table 9.2. 

Using these measured multiplicities, plus estimations of the leading quark 

and feed-down contribution to them, I computed the s/u and V /(V +P) ratios 

presented in Table 9.3. In the specific context of the Lund Monte Carlo, I tuned 

the s /u and V / (V + P) (and a) parameters. of the model to minimize a x2 formed 

using these multiplicities. I list the results. of this Lund-specific tune in Table 9.4. 

These measurements in themselves do not clearly favor nor disfavor either 

the Lund or Webber Monte Carlos. The differential cross-sections, multiplicities, 

and s/u and V /(V +P) ratios measured in this thesis are consistent with previous 

measurements. While the results of this work provide no dramatic breakthroughs 

nor definitive tests of models, it is my hope that their contribution to the world 

body of knowledge brings us closer to finding an ultimate theory of hadronization. 
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I meson I measured multiplicity 
Po 0.77 ± 0.08(stat) ± 0.15(syst) 

K*o 0.58 ± 0.05(stat) ± O.ll(syst) 
4> 0.076 ± 0.010(stat) ± 0.012(syst) 

Table 9.1: Vector meson multiplicities measured in this thesis. These results are 
extrapolated from measured x regions to cover all allowed x and are corrected 
for initial state radiation. 

meson _l._Q_u multiplicity 
f3uH dx 

Lund I Webber I d.o.f. Lund I Webber 
Po 8.2 7.6 6 0.2 0.8 

K*o 8.2 21 7 0.0 2.0 

4> 13 3.9 5 5.1 0.0 

Table 9.2: Agreement of predictions of the Lund and Webber Monte Carlos with 
measured differential cross-sections and multiplicities, expressed as x2s. The 
degrees of freedom (d.o.f.), which are simply the number of x-bins, are indicated 
for the differential cross-sections; the d.o.f. is one for multiplicities. The specifics 
of the Lund and Webber Monte Carlos used for these comparisons are detailed 
in Section 2.3. 

,., 
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0.44 ± 0.21 (using p0 and K*0 ) 

s/u 0.20 ± 0.10 (using K*0 and¢) 
0.30 ± 0.08 (using p0 and¢) 

average: 0.30 ± 0.07 

0.40 ± 0.14 (using p0 and 1r0 ) 

V/(V+P) 0.47 ± 0.09 (using K*0 and K0 ) 

average: 0.45 ± 0.08 

Table 9.3: The s/u and V /(V+P) r?-tios determined in Chapter 8. Errors are 
combined statistical and systematic errors. 

s/u 0.30 ± 0.03 
V /(V+P) 0.45 ± 0.11 

a 1.01 ± 0.29 

Table 9.4: The s/u, V /(V +P), and a parameters of Lund determined by the 
tuning procedure described in Chapter 8. The errors are combined statistical 
and systematic, and include correlations among the parameters. 
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