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ABSTRACT 

The ground state of a one-dimensional electron-phonon system is studied by 

means of a small-crystal approach: an exact solution of a two-site cluster with two elec-

trans and periodic boundary conditions. A single electron band is considered in the 

tight-binding approximation, together with two-electron interactions between electrons 

in the same site (Hubbard model); the electrons are coupled to longitudinal acoustic 

phonons through a bilinear interaction. The problem is isomorphic with that of the 

homopolar diatomic molecule with a vibronic degree of freedom and coupling between 

the electronic and vibronic modes. In the adiabatic (large ionic mass, small vibrational 

frequency) limit there is an analytical solution which indicates that the transition 

between the non-distorted (weak coupling) and the distorted (strong coupling) phases 

can be either continuous or discontinuous, depending on whether the value of the 

electron-electron interaction is larger or smaller than a critical value. In the extremely 

high-frequency limit (ionic mass M ~ 0 ) it is also possible to find an analytical solu-

tion (for M = 0) that shows that the system remains undistorted for any value of the 

electron-phonon coupling and the electron-electron interaction. In the intermediate case 

(finite, nonvanishing M) numerical solutions exhibit a continuous transition from the 

non-distorted to the distorted phase. 
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One-dimensional (1-D) systems1 are of great intrinsic interest. They are a testing ground for prob-

lems in higher dimensions because of the existence, in 1-D, of a variety of exactly soluble problems1• 

Even though several electronic many-bqdy problems have been solved1- 3 exactly in 1-D, the very impor-

tant problem of a 1-D interacting electron-phonon and electron-electron system has not however produced 

a model with an exact solution. In dealing with electron-phonon interacting systems several well esta-

blished approximations exist; the most commonly used one-- the adiabatic or Born-Oppenheimer approx-

imation4 -- comple~ely neglects quantum fluctuations in the phonon field when solving the interacting 

electron system. 

In this work a study is made of a 1-D Hubbard1- 3•5 Hamiltonian-- with one electron persite, and in 

the presence of a phonon field and an electron-phonon interaction -- by means of a small-crystal 

approach6-17• This approach samples the Brillouin zone with a finite, small and properly selected set of 

points which constitute a finite-size space group -- identical, except for the finite number of translations, 

to the original space group of the infinite system. It should be remembered that this finite sampling 

approach is exactly equivalent to the study in real space of a cluster of N sites with periodic boundary 

conditions-- hence the nomenclature of small-crystal approach. 
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In this contribution the 1-D Brillouin zone is sampled at two points, the zone center and the zone 

boundary, which results in a cluster of two sites, two electrons and a single vibrational mode. This 

approach to the problem contains four parameters (three if one of them is taken to be the unit of energy): 

(i) an electronic bandwidth, (ii) an electron-electron intra-site repulsion, (iii) a lattice vibration frequency, 

and (iv) an electron-phonon coupling parameter. With the.use of a variety of theoretical techniques the 
.,·! : ' ' . ' . 

problem is reduced, in the various regimes, to situ~tions in which it can be solved exactly, albeit some-

times numerically. 

The problem here considered is either identical or closely related to other well known problems. 

The two-point sampling, two-site cluster approximation makes the problem completely isomorphic to the 

two-electron, two-center homopolar molecule18 in which a single vibronic degree of freedom plays the 

role of the zone-boundary phonon mode. The molecular problem is moreover closely related to the dissi-

pative two-state system 19
, also known as the spin-boson problem 20

• It is also related to the molecular 

polaron problem 21
- 25 and to the Peierls distortion and instability26• 

This paper is organized as follows: Section II describes the model and the Hamiltonian, Section III 

presents the methods of solution and the results, and Section IV contains a discussion and conclusions. 

II. THE HAMILTONIAN 

The starting point is the infinite-chain 1-D Hubbard-Frohlich5•27 Hamiltonian which can be written 

as: 

where 

He =-t:2,[c;~C(i+1)cr+C;~C(i-1)crl+U I,n;tn;J.. · 
i' Cl i 

= L, (-2t cos ka) a/crCJ.kcr + (U IN) :2, ak: tak2tak:J.ak1+k2-k3J. , 
k,O' kl,k2,k3 

Hph = :2,1rroq [ b/bq + b~b-q+ I] , 
q>O 

(2.1) 

(2.2) 

(2.3) 
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He-ph =- i L "2M.1fro [ a/+q ollie a ( b~ + bq ) + a/-q ollie a ( b/ + b-q ) ] . 
/c, a q 

(2.4) 

q>O 

Here ci~ (cia) is the creation (annihilation ) operator for an electron in a s -orbital, with spin 

cr = 1", J.., located at site i in the 1-D chain; nia = ci~ia is the corresponding number operator; a"~ (a~ca) 

is the creation (annihilation) operator for an electron in the Bloch state k with spin cr; and N is the total 

number of sites in the chain. The first term in (2.2) is a hopping term which leads to a total bandwidth 

4t; the second is the intra-site two-particle repulsion term, where U is the singl{i-site Coulomb parameter. 

In (2.3) b/ (bq) is the creation (annihilation) operator for a phonon of wavevector q, and 1froq is the 

corresponding phonon energy; for a 1-D monoatomic chain: 

roq = v(K !M) I sin (qa/2) I , 

where M is the mass of the atoms, K is the spring constant and a is the equilibrium interatomic distance. 

Finally, (2.4) represents the electron-phonon interaction, and g is the electron-phonon coupling constant. 

1he system has 1-D translational invariance, with a Brillouin zone that extends over the interval 

- (1tla) < k, q ~ (rrla) . (2.5) 

Note however, that in (2.3) and (2.4) q is restricted to take values on the positive half of the zone (q > 0). 

The sampling consists of the following two points in the zone: 

k = 0 : point r ' 

k = nla : point X . 

When only these two points in k space are selected to sample the Brillouin zone, the Hamiltonian 

can be rewritten as: 

He =- 2t L (ataara- a1ollxa) + (U /2) L a~ ra~c 2ialc~!alc1+1c3-lc2! , 
a /cl,/c2,/c3=r.X 

(2.6) 

(2.7) 

(2.8) 
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With the use of the Bloch-Wannier transformation 

the Hamiltonian in equations (2.6)-(2.8) can be finally written 

H =- 2t L (c lac2cr + c/ac lei) + U (n1tn1.J. + n2tn2.J.) 
(J 

(2.9a) 

(2.9b) 

(2.10) 

and the problem has been reduced to the solution of a cluster of two atoms. Note that from equation 

(2.10) it is clear that the on-site Coulomb repulsion (U > 0) tends to spread the electronic charge between 

the two sites28 , whereas the electron-phonon coupling favors the uneven distribution of electrons between 

sites 1 and 2. 

The six two-electron states of the present problem are: 

I 1 > = c ftc !.J. I 0 > , (2.11a) 

I 2 > = (1/Yl )(c ftd.J. - c !J.cit) I 0 > , (2.11b) 

I 3 > = citci.J. I 0 > , (2.llc) 

. I 4 > = c ftdt I 0 > , (2.11d) 

(2.1le) 

I 6 > = c !.J.ci.J. I 0 > , (2.llf) 

where I 0 > is the vacuum state. It is clear that the states I 1 >,I 2 > and I 3 > are spin singlets, and that 

I 4 >,I 5 >and I 6 >are spin triplets. 

It is also clear that the triplet states have one electron in each site and, as seen from (2.10), there is 

no coupling between electrons and phonons in this case. This also applies for the singlet state I 2 >. 
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Moreover, beca,use the Hamiltonian conserves the total spin ',and its z-component, there is no mixing 

between the singlets and tripl~ts. Consequently only the three singlet states, I 1 >,I 2 >and I 3 >,need to 

be considered, Since only three states are relevant, the problem becomes isomorphic to a spin-1 spin-

l;>oson problem,, as mentioned in the inQ-oduction. 

It is useful to establish the isomorphism between the Hamiltonian for the three singlet states and a 

Hamiltonian for a pseudo-spin 1 system: 

Sx=(l!...f2) 'L<clac'la+cfcrcla), (2.12a) 
a 

Sy =-(i/..fi) 'L(c/ac2a-c!crcla) ~ (2.12b) 
a 

(2.12c) 

where the pseudo-spin operators S" ,Sy an<J, Si obey the usual angular-momentum commutation rules 

(2.13) 

Substitution of (2.12) in (2.10) yields 

H = -2 ..f2 t Sx + U S? 

+ 1i rox (b}bx + 'h ) (2.14) 

- g ..JnroxiK s. (bx + bj) 

which is a classical spin-1 spin-boson problem19• 

The Hamiltonian (2.14) contains four (one scaling and three dimensionless, independent) parame-

ters: t, (Uit), (1iroxlt), and [(glt)..JnroxiK]. Energies can be measured in units oft, and the length 

scale can be defined either by the harmonic-oscillato~ length ..Jnrox/K, or by thehybrid electronic

vibronic length ..Jr !K. 
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ill. METHODS OF SOLUTION AND RESULTS 

A. Adiabatic limit 

In the adiabatic limit (cox ~ 0 or M ~ oo) it is possible to write the Hamiltonian (2.14) in the fol

lowing way: 

H = -2 ..J2 t Sx + U S? + 'h. K x2
- ...fig Sz x (3.1) 

where x = "Tiroxi2K ( bx + bj) can now be considered a classical variable, i.e. a parameter. The quan

tity x is the change in inter-site distance from the uniform a value (the dimerization length change) or, 

for the molecular problem, the interatomic separation change in the diatomic molecule caused by the 

electronic-vibronic interaction. 

In this adiabatic limit the problem reduces to the diagonalization of a 3x3 matrix, whose eigen

values are given by a cubic equation 

E (U , K, t, g ; x) = lhKx 2 + A.(U , t, g ; x) , 

A.3 - 2 U A.2 + A. ( U2 - 2 g 2 x 2 - 16 t 2 ) + 16 t2 U = 0 . 

(3.2) 

(3.3) 

An analysis of the limit U = 0 of (3.2)-(3.3) is easy and instructive; in that limit (3.3) reduces to a 

linear equation, with solution at A.= 0, and a quadratic expression with a solution given by 

A.(O, t, g; x) =- --/2 g2 x2 + 16 r2 (3.4) 

If A. in (3.4) is real, the total energy of the system is 

E (0, K, t, g; x) = 1h K x 2 - --/2 g2 x 2 + 16 t2 (3.5) 

A distortion occurs if the value of x that minimizes (3.5) is different from zero, 

d /i(O,~~t, ~; x) = 0 --+ x;... = 2 [f._ :~' ]. (3.6) 

Because x!n must be non-negative, there is a critical value 8c such that the system is distorted only if 

g > 8c . The critical value of g is given by the condition x!n = 0 or 
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(3.7) 

Note that this is a continuous transition, i.e. there is no discontinuity in the value of x2as g crosses 

In the general situatjon U ::/:. 0, for x < 1 it is possible to expand A(U, g , x) about x = 0: 

A(U, t, g; x) = A <O>(u, t., g) + A <Z>(u, t, g) x 2 + A <4>(u, t, g) x 4 + (3.8) 

where 

A<z><u, t, ) = L [u- uz + 32tz] (3.10) 
g 16t2 ..Ju2 + 64t2 

A<4>(u t g)= g
4 [U6

+112U
4

t
2

+3072U
2

t
4

+8192t
6 

-U('UZ-f- 64tz)] (3.1l) 
' ' 2048 t 6 · (U2 + 64t2)

312 

. . 

Substitution of (3.4) in (3.3) yield~ 

(3.12) 

There are two possible types of distortions, depending on the sign of A<4>(u, t, g) : 

a) if A<4>(u, t, g) > 0 the system has a continuous distortion as a function of the parameters U, t, and g. 

The critical line gc (U, K, t ), i.e. the locus of the parameters for an infinitesimal distortion, is giv~n by 

K + ~ U _ U + 32t = O 2 [ 2 2] 
2 · 16t2 ..Ju2 + 64t2 • 

(3.13) 

which is the generalization of (3.7) for U ::/:.0. Equation (3.13) means that, for given values of U, K, and 

t, a minimum strength gc of the electron-phonon coupling constant g is necessary to obtain a distorted 

system. For g < gc the system is undistorted. For U ~- oo, (3.13) takes the asymptotic form 

(3.14) 

as expected from physical considerations28
, 
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b) if ').}4>(u, t, g) < 0, the system has, as a function of the parameters, a discontinuous transition between 

x=O and a finite value of x. The critical values Ur(t) and gr(t, K) of U and g that separate the continu

ous from the discontinuous transitions are given by the condition 

(3.15) 

which, according to (3.11), reduces to 

Urlt = 2 ..J..JSO- 8 ::; 1.94347 , (3.16) 

whereas gr is given by (3.13) for U = Ur. 

For U > Ur there is a discontinuous change in the distortion x as a function of the parameters. It 

can be seen from (3.12) that, since A. <4> is negative, the ground-state energy E (U, K, g, t; x) has three 

minima, one at x=O and two symmetric ones at finite values of x. The discontinuous transitions take 

place when all three minima attain the same E value; the values of the parameters at the transitions must 

be determined numerically by solving the equation for the minima and using the complete expressions 

(3.2)-(3.3). 

The complete stability diagram in parameter space is given in Figure 1. 

B. The mx ~ oo ( M ~ 0) limit. 

In the (unphysical) case of infinitely light atoms, the Hamiltonian (2.14) can be rewritten in the fol

lowing way: 

H=H0 +V, (3.17) 

where 

(3.18) 

and 

(3.19) . 

.. 
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It is now possible to perform a canonical transformation that diagonalizes H 0 with respect to the 

boson field29: 

(3.20) 

where 

L"" dh S, (bx +bJ) 
1i mxK .. 

(3.21) 

(3.22) 

and 

(3.23) 

In the limit rox ~ oo (3.20) red)lces to · 

(3.24) 

i.e. there is a complete decoupling of the pseudo-spin (the electronic degrees of freedom) and phonons. 

Moreover, since L ~ 0 for rox ~ oo, 

fl (rox ~ oo) = H (rox ~ oo) (3.25) 

and consequently the system remains undistorted for any value of the electron~phonon coupling g . 

C. The case for finite mass M. 

In this case, the only way of study the problem is by numerical diagonalization of the hamiltonian; 

for finite cox it is convenient to use the matrix representation of the Hamiltonian (3.20) and, as a basis, 

the eigenstates of fi 0• 

In order to understand the results and present them in a convenient way, it is important to remark 

that for both, the distorted and the undistorted cases, the quantum-mechanical expectation value < x >is 

always equal to zero. This is because of the symmetry of H: which is; invariant under the simulta~ous 

changes 
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Sz ~ -Sz , X ~-X . 

The vanishing expectation value means that the system is either undistorted, or has equal probability of 

being distorted to the right or to the left. The symmetry above implies also. vanishing expectation values 

for any odd power of the distortion x . 

One possible measure of the distortion is the mean value< x 2 >, as compared to the square of the 

natural oscillator length --./n rox!K . However this quantity does not distinguish betw~n a "static" (except 

for tunneling effects) distortion, and a "dynamic", soft~spring-oscillator situation. 

A complementary information to be obtained is the dimensionless parameters 

. f (U,K,t,g)= . (3.26) 

where the expectation values are taken for the ground state corresponding the the values of the parameters 

(U, .K, t, g). It can be shown that for the uncoupled oscillator 

f (U, K, t, 0) = 3 (3.27) 

and, for the static distortion corresponqing toM ~oo. rox = 0, 

I (U, K ~o. t, g>gc) = 1 (3.28) 

It is expected that f will exhibit intermediate values 1 ::;; f ::;; 3 for other values of the parameters. 

Changes (as function of the parameters) will be continuous for continuous transitions, and discontinuous 

if the transition is discontinuous. 

When the eigenstates of ii 0 are used as a basis for the diagonalization of ii, any state can be writ-

ten: 

I '¥ > = v~O [ av I +, V > + bv I 0, V > + Cv I -, V >] , (3.29) 

cr = 0, ±1 is an eigenstate· of the pseudo-spin operators., and v = 0,1,2, .... oo is the excitation state of the 

canonically transformed oscillator. The coefficients av, bv, and Cv satisfy the normalization condition 

.. 
L (ai + bi + ci) = 1 (3.30) 

v=O 

.. 
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The calculation proceed as follows. In the original basis 

(3.31) 

since 

I '¥ > = e-iL I 'P > , (3.32) 

(3.31) can be rewritten as 

(3.33) 

which, with the use of (3.29) yields .. 

Analysis of the various limits of (3.34) is easy and instructive. In the weak-coupling limit (g ~ 0) 

there is no coupling between the pseudo-spin and the phonons, and the ground state of. the system 
. 'J . . ' 

corresponds. to an harmonic oscillator iii its ground state (aJ + bJ + cJ = 1, av = bv = Cv = 0 for any 

v '1: 0); in this limit, expression (3.34) reduces to 

(3.35) 

· the standard result for a free harmonic oscillator in its ground state. ~orresponqingly the value (3.27) is 

obtained for! . 

In the strong coupliQg limit ( g ~ oo) the leading term in (3.34) is the last one, and because 

for in this limit, (3.34) reduces to 

(3.36) 
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Note that (3.36) yields the value (3.6), obtained for the square of the distortion in the. adiabatic 

limit, M ~oo, for U = 0 and g ~oo. 

Finally, as rox ~ oo, the only contribution in (3.34) comes from the second term when v = 0, and 

therefore the result (3.35) is obtained again, in agreement with the analysis of the previous section. 

Numerical results are presented in Figures 2 thr()ugh 4. Figure2 shows the calculated values of 

< x 2 >, in units oft IK, plotted as a function of g (in units of WK), for U = 0 and several values of rox. 
' . ' . . . . 

Figure 2 (a), corresponding to rox = 0 is the representation of (3.6) .. It is clear that, as phonon quantum 

·. 
fluctuations increase, the non-distorted region (the "flat" part of the curve) becomes larger, and conse-

quently larger values of g are necessary to obtain a distorted system . 
. . : :,l . 

Figure 3 displays f (U =0, K, t, g) as a function of g for the same three values of the frequency 

rox of Figure 2. It is clear that only for the adiabatic limit (rox=O) is the transition discontinuous between 

the two limits (3.27), (3.28). In all ofue~ cas~ the transition is smooth. Examination of Figures 2 and 3 

clearly show that the presence of quantum fluctuations in the phonon (vibronic) field blurs the distinction 

·between "static" distortion and "softer" effective oscillato~ spring. 

Figure 4 is the plot of< x2 ;, ~gain in unitS ~f tiK, as a function of g (once more in units of WK), 

for constant frequency (1iroxlt:::::: 1), and for various values of the C~ulomb repulsion U It. It is clear that 

as u increases it is necessary to have larger values of g to obtain a distorted system; this is expected 

from physical grounds. Although as a function of g the transition is always continuous if rox :t: 0, as U . . 

increases the curves resemble more closely one with a discontinuous jump [see especially Figure 4 (b), 

for U It = 10, and its detail, Figure 4(c)]. 

IV. CONCLUSIONS 

By analytical solution in several limits, and by numerical solution [employing the canonical 

transformation (3.20)-(3.21)] of the general case, the following three isomorphic problems have been stu-

died: 

(i) A 1-D Hubbard Hamiltonian, with one electron per site, in the presence of a phonon field and an 

electron-phonon interaction and with sampling of the Brillouin zone in only two points (two-site 

.. 
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small-crystal approximation); 

{ii) A two-electron, diat<;>mic, homopolar molecule with an interaction between the electronic and the 

· vibronic degrees of freedom; 

(iii) The spi~J-1 spin-boson problem. 

(a) 

The exact results found here can be summarized as follows: 

Only in the adiabatic li~it (rox=O) it is possible to make a clear-cut distinction between a distorted 

and an undistorted system. Vibronic quantum fluct1,1ations blur the distinction. 

(b) In the strongly interacting limit (U ~oo) the system is always undistorted. 

(c) The system is also always undistorted in the unphysical limit M ~0. cox ~oo, finite spring constant 

K. 

(d) Smaller values of the electron-phonon interaction g, and/or larger values of the electron-electron 

repulsion U make the "undistorted" state more stable. 

(e) In the adiabatic limit there is a critical value of the electron-electron repulsion, Ur, given by (3.16), 

such that for U < Ur the transition between undistorted and distorted ground state is continuous; 

for U > UT the distortion, as a function of the parameters, is discontinqous and requires increasing 

values of the electron-coupling constant g as U increases. 
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FIGURE CAPTIONS 

FIGURE 1. The various ground states of the system as a function of the parameters g and U in the 

adiabatic limit M ~oo, COx~O. The dot corresponds to 1he critical value Ur. For U < Ur (light line) the 

transition, as function of the parameters, between the undistorted and the distorted states is continuous; 

for U :> Ur (heavy line) the transition is discontinuous from x=O to a finite v~ue of x. 
. . 

FIGURE 2. The expec;tation value <X~ as a function of the coupling parameter g for the non-

interacting electron system, U = 0, The three cases correspond to (a) the adiabatic limit cox = 0; (b) 

ncox = t; and (c) 1'icox = 100 t. 

FIGURE 3. The dimensionless parameter f, defined in (3.26), for the three cases of Figure 2: (a) 

the adiabatic limit cox = 0; (b) Ti cox = t; and (c) 1f cox = 100 t. 

FIGURE 4. The expectation v_alue ·<X~ as a function .of the coupling parameter g for the cases 

1fcox = t and for (a) U = St; and (b) U = 10 t. The steep but smooth increase in (b) in the neighborhood 

of g:;:: 3.3 ..fiK is shown in detail in (c). The case for1icox = t and U = 0 is shown in Figure 2 (b) . 
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