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Correlation functions of the el~magnetic field are of fundamemal .importance since they 

specify the coherence. At the most basic level these measure a specific rempora1 sequence of density 

maaix elements which can arise froiD the particle and pborcnic smr=. A1 31JY time the density maaix 

element can be either diagonal or off-diagonal in the panicle or radiadoD field portion. providing 

several possibilities. The appmpriar.e choice will be seen to be detr:nnioed by the u:mporal sequence of 

both generation and dea:c:tion Verticies associated with the measurement. that is the quantUm electro

dynamic inreraction sequence_ involved in boch the gencradon and deteCtion a§!OC':iawt with the correla-

tion measuremenL 

The detailed relationship between the pborcn sraristics and field correlations can thus be made 

precise. and we believe. is Unique. We demon.mare this by a q.e.d. c:alculation of the Townes

Schawlow line narrowing formula Cor stimulared emission [1-8]. Although many calculations have been 

carried out from both the underlying phoron statistics and the fields. the relationships between these 

diverse approaches are both obscure and most if not all of the Cully quanrum approaches usc "Langevin 

Noise Sources", which are indirectly related ro the requirem~~ of q.e.d. This is not necessary when 

both the detection and generation are simultaneously considered. 

The recent generation of non-Poissonian phoron distributions. particularly squeezed states. have 

re-emphasized the underlying q.e.d. namre of the field correlations of various orders and has raised 
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questions as to how they might be best calculated and experimentally measured [9]. In addition the gen

eration of partially coheren_t radiation. particularly at· short wavelengths. for which the photon density 

per mode is rather low and the generation is predominantly through spontaneous emission necessitates a 

conceptually more precise approach. 

In this letter the fundamental relationships among field expectations. photonic distributions. and 

correlation functions are discussed in terms of a double Feynman diagramatic approach to the simul

taneous temporal evolution of the field generation and detection processes. The "Langevin noise terms" 

are inherently obtained through a precise fully quantum electrodynamic derivation. as are the limits 

upon coherence implied by them. Since both detection and generation must be included it is useful to 

consider these aspects from the perspective of a specific experimental arrangement. For simplicity we 

consider linear stimulated and spontaneous emission in combination with a Michelson interferometer

square law detection arrangement as schematically shown in Fig 1. The temporal sequence of the 

relevant field generation and detection processes is depicted quantum electrodynamically in terms of the 

density operator in Figs. 1(b) and 1(c). The dashed lines refer to the detector density matrix temporal 

evolution. the detection itself assumed to be linear absorption with the signal proportional to the upper 

state transition rate. Absorption through negative energy photon exchange [10.11] has been chosen. 

This is because the contribution to the excited state transition rate with analytic signal E- preceding E+ 

is desired. Terms with E+ preceding ~can be handled similarly. The inclusion of the photon propa

gator for density operator calculations is discussed in [11]. Other relevant aspects of density matrix 

diagrams are discussed in references [13-19]. 

The density matrix equations directly give the detector upper state transition rate 

Tr[H.p]li 1i = -Tr[pp·E+(t)li1i] evaluated at timet. Here p(t) is the direct product state of the 

detector medium and radiation field density operators. Evaluating the detector density matrix evolution 

of Fig. 1. using standard diagramatic techniques or. as originally. by Glauber [20] gives for this rate. the 

detection response function convolved with 

(1) 
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where R is the density matrix element describing the radiation field at time t, t-t 1 is the temporal 

delay implemented by the interferometer, and Pee is the initial upper state density matrix element of the 

emitting medium. The traced expression is the radiation field correlation function. 

The loss in correlation over a macroscopic time delay t-t 1 = 't implemented by the interferome-

ter is due to accumulated photocounts produced by the spontaneous emission events, as measured by the 
o-\o 

number excited states produced in the detector. In terms of QED, calculating the total number of such 
~ . 

events in time t -t 1 is a high-order process since each excited state excitation corresponds to an internal 

photon line (Feynman propagators). However, the Markovian nature of both the spontaneous and 

stimulated emission events, [21] allows one to obtain the loss in correlation over the macroscopic time 

delay from the fractional loss in correlation due to a single such event over a differential time ~'t; that 

is, the 

~G (.Mi!G(O))N t.J 
G ('t) = lim G (0)(1+--)N = G (O)e t.~ (2) 

N-+00 G(O) 

~G . 
where N = (t-t 1 )/~t. Thus the problem reduces to a calculation of a = --, the rate of change of 

~t 

G for a single such event 

The differential correlation change,a., itself is a characteristic solely of the quantized radiation 

field generated by the emitting medium. To calculate it, however the relative time ordering of the E

. and the E+ operators, with respect to the interaction vertices of the emission (as established experimen-

tally by the interferometer and detector) must be considered. This time-ordering establishes the relevant 

density operator temporal sequence, as shown in Fig. 1 for a particular case. 

The temporal evolution depicted by Fig. 1 begins prior to any interactions, and thus the density 

matrix is diagonal, describing the probability of the emitting medium initially in the excited state and 

the detector in its ground state. This is 11) I e ) I n+1 )Rn+1 n+1PuPee ( n+ 11 ( e I ( 11 where R is 

the probability of the I n + 1 ) photon state being occupied, pee that of the excited atomic state I e ) , 

and p11 that of the detector ground state 11 ). The detector evolution has been shifted in time by the 

respective delay of the interferometer branches and thus is shown in the reference frame of the emitting 
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medium. For the particular process diagramed, at r" a polarization is induced in the emitting medium 

and the diagonal density matrix element is thereby correlated with the off-diagonal element 11 ) I g ) 

I n+2 )Rn+2,n+IP11Pge ( n+ 11 ( e I ( 11. This off-diagonal component induces a response in the detec-

tor at t 1• We note that since the interaction is expressed in the time frame of the medium, a medium 

polarization must be present for this to have a significant probability. The emitting medium subse

quently completes a self-energy interaction through a photon absorption operation at t'. This results in 

a time rate of change of the off-diagonal photon density matrix element and the upper state atomic 

population. After this interaction occms, the second field interaction with the detector takes place, 

resulting in an increase of the upper state detector population, and consequently, a photo-count. For 

simplicity it will be assumed that the presence of a pumping mechanism for the emitting medium main-

tains a constant upper level population for the emission medium, which is taken into account by taking 

the limit as the decay constant goes to zero. 

Of interest is the calculation of the expectation just after the E+ vertex of Fig.(1) since this gives 

the contribution of the correlation to the transition rate of the upper detector state. To do this precisely 

the R density matrix under the trace of Eq. (1) must be calculated. The governing differential equa-

tions can be explicitly obtained from the Q.E.D. diagrams. This implies a general underlying photonic 

interpretation of double Feynman diagrams, which is treated in [11]. Here we wish to consider a per-

turbational treaunent of the first order correlation directly to show that it inherently contains the limits 

traditionally imposed by stochastic noise tenns and hence the resultant linewidth limitations given by 

the Townes-Schawlow fonnula, as expressed through the correlation function. 

For the perturbation numerous time-ordered diagramatic contributions to the correlation, in addi-

tion to that explicitly shown in Fig. 1, need to be included. These various possible time-ordered evolu-

tionary paths, are obtained by noting that the atomic system can undergo eight fundamental processes. 

These arise from having the two interaction vertices on either the bra or ket and for one on each two 

possible time orderings to give four. These are doubled by having a positive or negative photon energy 

line for each case (that is, absorption or emission). Each of these provides a possible contribution to 

the correlation and hence the detector interaction. The resultant eight basic diagrams with the specific 
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time ordering of Fig. 1 are shown in Fig. 2. In addition to these, the time ordering of the photon 

interaction vertices of the medium with respect to the detector vertices must be taken into account. 

This provides a crucial aspect in the present analysis. 

Each of the diagrams has a fourth order dependence upon the field operators. This, however, can 

be reduced by judiciously combining pairs of self-energy and exchange diagrams with the commutation 

relations, For the correlation, the interference results in terms having the same time-ordered operator 

dependence as the correlation itself (induced correlation terms). However, additional operator indepen

dent terms also originate from the spontaneous emission diagrams. These "stochastic" terms depend on 

the present approach and provide the expected lack of correlation of the field measured at time t with 

respect to that measured a time t1t earlier. These are identified as the source of the Langevin noise 

terms. 

The particular pairs which combine to give induced _and/or stochastic correlation source terms 

could be obtained by physical arguments, however the number of processes makes this . cumbersome. 

This is systematized by considering time-ordered field operator arrangements obtained by appropriately 

pairing the diagrams according to the type of photon process involved. This pairing is shown in Fig. 

2(a) and (b) for instance, giving the two emission processes due to a positive energy photon self-energy 

and exchange interaction, respectively. If the algebraic form of the two terms of each pair is the same, 

then the terms can easily be combined as a common factor multiplied by the field operator sum of the 

two. This is the simplest situation which can arise and will for convenience be assumed. The combi

nation of the terms of Fig. 2(a) and (b) is then proportional to 

(3) 

Thus (a) and (b) do not contribute to a detected photo-count. The pair (c) and (d) of Fig.(2), an absorp

tive pair, also gives a zero annihilation and creation operator combination for the time ordering expli

citly displayed: 

(4) 

The emission pair (e) and (f) for the explicitly displayed time ordering on the other hand gives: 

.. 
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(5) 

which leads to a term depending upon the correlation field pair itself and consequently an induced 

" correlation contribution. If for these diagrams the vertex at time t precedes the vertex at t 1 (shown 

inset in (e) and (f)), then the combination of operators becomes: 

aaa+la+-aa+laa+ = a+aaa+l-aa+aa+l 

=- aa+l 

= (-a+a-l) I 

(6) 

resulting in the field pair correlation term, with a sign opposite to that of the absorption, plus a term 

independent of either the field pair or the electric field amplitude. This time-ordered emission pair can 

thus be identified with at least a portion of the stochastic driving term for a treatment of laser linewidth 

using the Langevin equation [ 4-8]. One observes that the emissive terms (a) and (b) gives a zero com

bined contribution for this particular time ordering, since interchanging t" and t 1 does nothing, thus, 

for both time orderings in which t" is less than or greater than t 1• 

Considering the absorptive pair (g) and (h), one obtains 

a la+aa+- aa la+a+ = +a+aa+a I - a+a+aa I 

= -a+(aa+-a+a)a I 

= +a+a I 

(7) 

(8) 

independent of the relative time ordering of tl> t', and t''. Thus as would be anticipated this combina-

tion contributes to the field pair but not to the stochastic noise term. 

One concludes that the absorptive pair (g) and (h) and the emissive pair (e) and (f) of Fig. 2 are 

all that survive for t' between t 1 and t, with the inset time-ordering of (e) and (f) in particular being 

responsible for the stochastic driving terms. For t' < t 1 these same two pairs provide induced terms but 

no stochastic terms. The stochastic contribution in this case arises from the emissive pair a and b, 
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which also gives an induced response. Finally for t' < t1o the absorptive pair c and d results in an 

induced term. 

All these surviving induced correlation terms and stochastic terms inhibiting the correlation are 

' " respectively redrawn in Figs. 3 and 4. For the first four terms of Fig. 3, t and t vary from -oo to t, 

whereas for the latter four, t' S t 1 and t" varies from -oo tot'. 

The stochastic terms, shown in Fig. 4, are non-zero only for the specific time orderings indicated. 

These diagrams emphasize two obvious but important conclusions. Firstly, the absorptive 

diagrams contribute only to the evolution of the induced correlation as expected. Moreover, the emis-

sive terms are of opposite sign and provide additional stochastic terms responsible for the fundamental 

linewidth limitation of the Fourier transform of the correlation function. Secondly, only by considering 

the correlation diagrams could one obtain the stochastic contribution, since it depends upon the presence 

of the field interaction vertex at time t 1• 

A detailed treatment of the correlation dependence upon f:.t requires a consideration of all of the 

time ordered diagrams of Figs. 3 and 4. However for the atomic population pumped to maintain a con-

stant threshold value diagrams with noninterleaved detection and lasing medium vertices (such as Figs. 

3(e-h) and 4(c-d) are unimportant since pumping compensates relaxation to give an effective zero popu-

lation decay rate after the first two vertices. Consequently, the emission process is de-coupled from the 

detection, which consequently senses the medium as effectively quiescent during the measurement 

This is also true for Figs. 3 (a-d) for the times t', t" < t;'. The remaining diagramatic contributions of 

Fig. 3(a-d) contribute a small perturbation of the induced correlation, as will be seen. 

The processes represented by Figs. 4(a) and (b) give effects whose characteristics are generally 

inferred indirectly by zero point energy arguments [4-8] and are in particular responsible for linewidth 

limitations as given by the Townes-Schawlow narrowing formula [1,7]. This pair of diagrams thus pro-

vides a precise quantum-electrodynamic basis and generalization of these stochastic noise sources used 

as driving terms for Langevin type equations in various treatments of quantum fluctuation phenomena in 

the presence of stimulated emission. 

• 
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Figure 4(b) is reproduced in Fig. 5. A dressed atom energy level diagram is also included to 

indicate the decay coefficients which determine the detailed algebraic form of this diagramatic contribu

tion. reg corresponds to the usual T 2 polarization interruption time. r;e, r;8, and r;8 refer to decay 

processes which have long effective decay times; r;e and r;g because states g and e are assumed 

pumped to maintain a constant population, and r;8 because this refers to a non-energy conserving 

decay process. These long decay times help assure the equality of the algebraic forms of Figs. 4(a) and 

4(b) pair, thereby allowing these two terms to be simply expressed as a common algebraic expression 

multiplying the field operator combination obtained above, which in this case is 1. Any inequality of the 

algebraic factors can be included as an additional perturbation of the induced correlation. In the present 

analysis it will be assumed that (t- lt) < r;~-t, r;;1, r;;t so that this situation does not arise. By 

further assuming that the time delay for the correlation measurement is composed of successive 

independent differential intervals each of duration dt, this can always be guaranteed. 

The differential contribution to the detector transition rate, by the terms arising from Figs. (4a) 

and (4b) is then determined by the field correlation 

[ ]
2 [ ]2 t = lt+dt 

dG(t,t 1) = 1L _e_ J ~ . J dt'di 
2£ m1i (21t) ,· = 't 

(9) 
lt 

f dt"df' (K+(t ,t)pK+(t',tt)K+(tt,r'') 
t = -oo 

as written directly from the diagrams neglecting the detector response function. In this expression Po 

arises from the field factors at t 1 and t as does one of the (!!..) factors. The Trace over the field den-
2£ 

sity matrix is 1 for the lowest order of perturbation. The combinations of propagators, for statistically 

independent time intervals between interactions and exponential decays are given by: 

· , -r (r-r'> (K+(l ,t )K-(l ,t)) = e •• (lOa) 
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(lOb) 

(lOc) 

Substituting these into the expression for the spontaneously developed correlation, integrating with 

respect to r' from t 1 to t = t 1 + dt and t" from -oo to t 1o one obtains 

dG (t-tl) = 2 [ e ]2 [ 7i ]2 J ..£iJ_ Pee 
m 7i 2e (2rc)4 7 (11) 

where I p I = I p ge I is the matrix element (momentum) ( g I p I e ). Assuming a single radiation mode 

1 
at frequency p 0 = ro0 the integral reduces to a single term. Assuming dt « 

r;g 
1 

, -,-,and 
-rgg 

(12) 

This expression provides real and imaginary contributions to the correlation expression, representing 

both a shift in the correlation oscillation frequency as well as a real decay of correlation with time. It is 

observed that dG can be interpreted as the linear portion of the interference of two temporally oscillat-

ing terms; one at the emitting frequency, and the other at the atomic line center frequency. A real part 

which limits the linewidth is guaranteed since reg must be at least as large as the inverse of the spon-

taneous emission time. 

If the unperturbed contribution (Fig. l(b)) is included, the correlation to first order in the 

differential time (assuming an instantaneous detector response of unit quantum efficiency) is: 

" 
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{E(t-dt)E+(t)) = ({E(O)E* (0)) + dG)/¥ 

= { E(O)E* (0)) [ 1 + dG /{ E(O)E* (0)) ]e i ¥ 
(13) 

Using the statistical independence of the differential intervals [21], the total fractional loss of correla-

tion is then the product of that for each interval. One thus has as the number of differential intervals 

goes to infinity. 

11-+00 
(14) 

= { E(O)E* (O)) e G,I{E(O)E(O)) + iOOo(t-t 1) 

where Gs is equal to dG with dt replaced by t-t 1• Substituting the expression for Gs one obtains 

{E(t 1)E+(t)) = G(t-t 1) = {E(O)E*(O)) exp (15) 

[ 
Pee e 2 1i 2~ [reg-i(roo+(Eg-E,J/1i)l . l 

- { IE (0) 12) ( m 1i) ( 2£o) roo2 (roo+(Eg -Ee )11i )2+r!, (t-t t) + z roo(t-t t) 

the usual result including the slight correlation oscillation frequency shift from the lasing frequency. 

The decaying temporal amplitude of the correlation deduced above gives the Fourier transform 

Lorentzian linewidth, tJ.v, equal to: 

A Pee = 1i roo--
2W 

(16a) 

(16b) 

where W is the energy density 2£o{ I E(O) 12 ). Using A = h v B where B is the stimulated emission 

coefficient, A is the Einstein coefficient for spontaneous emission into a single mode, and 

h Vo(N e-Ng )B = 2M v 1!2 1. from the threshold equation where tJ. v 112 is the cavity line width. This 
c 

can be written as the usual linewidth formula: 
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(17) 

Here Pis the power emitted from the cavity, and v0 the resonant frequency (roof21t). 

This derivation establishes the basic approach of the present diagramatic treatment of the line-

narrowing formula. If the saturation terms given by higher order perturbation diagrams are taken into 

account, an explicit expression for P will be obtained from the field expectation equation, and a fully 

quantum mechanical oscillator model demonstrating the amplitude stability should follow. 

One observes that for this approach the induced terms, which are proportional to a a+ would be a 

small correction to the diagram of Fig.(lb) since E+E is proportional to aa+ as well. Thus < 

E+(O)E (0) > could be renormalized to reflect this. 

At least two other approaches have been used to arrive at essentially the same result; the 

Langevin equation driven by a stochastic noise source for an oscillator ([5], for instance) and a photonic 

approach using the photon rate equations in the high photon number limit (see [22]). 

It can be shown that the photonic density matrix equations, and hence this approach to the 

linewidth, are implicit in the diagramatic representation of the field expectations determined by the 

emission process. The off-diagonal components of the radiation field portion can be extracted, and 

hence the linewidth inferred. A complete treatment however requires the correlation diagrams of 

Figs.(3) and (4) to give the· full particle radiation field density matrix element combinations. The 

Langevin approach provides a phenomenological model for this combination. 

It is interesting that a detuning enhancement factor (l+a.2) has not resulted directly from the 

present derivation [4,8,24-27]. In its simplest form a. = Llrolreg, first derived by Lax [8], whose quan

tized approach included a steady state solution of the Heisenburg equation for the field operator. Henry 

[4] provided a simple model based upon amplitude-phase coupling through the refractive index. Vahala 

and Yariv derived the same result by considering X(3) coupling [26]. All of these used phenomenologi-

cal noise sources. In terms of the present formulation this amplitude-phase coupling should result from 

higher order self-energy terms which cause fluctuations in the transition frequency (Ee -Eg )/ h as well 

as lifetime broadening as modeled by reg. A relatively small fluctuation is expected for the diagrams 
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contributing to the threshold equation because of the dominance of the stimulated emission (large pho

ton number) associated with a single mode. A particularly simple approximation is to assume that the 

fluctuations are much larger than the linewidth for a given Po and that all values of Ee-Eg are equally 

probable. This could be true for the large effects observed for semiconductor lasers. An integral over 

Ee-Eg results multiplying the correlation diagram and hence llv by 1 + (llrolre8 )2. A simple exten

sion should give lln,./lln; for ex 

In conclusion we have considered a quantum electrodynamic approach for the calculation of 

stimulated emission linewidth as limited by spontaneous emission processes. This approach emphasizes 

the importance of simultaneously considering the generation and detection processes [28]. Generally 

the present approach is particularly useful for situations in which phase coherence is a consideration, 

which arises, for instance, when states having significant number population are present The present 

results also raise a fundamental question with regard to self-energy diagrams. In terms of the density 

operator, these are seen to be on an equal footing with exchange diagrams and Ref.(ll) shows that both 

of these are equally important in determining the expectation value of the electric field associated with 

the photonic distribution . 
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Figure Captions 

Classical Michelson interferometer measurement of field correlations (a) schematic of the 

experimental configuration, (b) density matrix diagram for the unperturbed contribution to a 

correlation measurement; showing the initial state 11 ) In+ 1 ), where 11 ) is the ground 

state of the detector, I e ) the excited medium state and In+ 1 ) the photon number state of 

the mdiation field. (c) One possible density matrix diagram contributing to the first order 

spontaneous and stimulated contributions to the correlation measurement I g ) is the 

ground state of the medium and 12) the excited state of the detector. 

The diagrams for the eight possible first order processes which can contribute electric field 

"induced" and "spontaneous" correlation terms in a Michelson interferometer measurement 

The insets in (e) and (f) show the specific time ordered diagrams providing stochastic 

source terms. 

Specific time-order pairs of terms of Fig. 2 which contribute only induced correlation terms. 

For (a) through (d) t" ::;; r' and r' ::;; t for the time constraints. For (e) through (h) 

t :5 r' and r' ::;; t 1• As explained in the text these terms are perturbations with respect 

the zeroth order processes of Fig.(lb). 

The specific time-ordered diagrams of Fig. 2 contributing the quantum noise sources and 

associated with the noise sources in the Langevin equation for the field correlation calcula-

tion. For (a) and (b) t ~ r' ~ t 1 and t" ::;; t 1• For (c) and (d) r', t" ::;; t 1 and r" :5 r'. 

Decay coefficients which enter into the correlation coefficient calculation. (a) Fig. 3(d) with 

the decay processes indicated. (b) Dressed atom portmyal of the decay processes. 

Appropriate Green's functions for calculating emission rates. 
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