
tj..
'

(

LBL-25770
UC-405

ITll Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

SOS- Stan's Own Server: an NFS File
Server for the IBM PC

S.-M. Tan, H. Holmes, and C. Eades

August 1988

p :::·~)I::. I v 1:.:.~.
I..AWR:::~tCE

B,...~·~r· .~··(* r"'--tJTr;r"''(

J '' .. ·, 1C1tl() U'\~ ·~ J(~-'

U:. .-if.~rl'l A •'-~ LJ

DOCUMENTS SECTION

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

.) ..

)

SOS- Stan's Own Server
A NFS file server for the IBM PC

See-Mong Tan, Harvard Holmes, Craig Eades

Computer Science Research Department

Information & Computing Sciences Division

Lawrence Berkeley Laboratory

1 Cyclotron Road

Berkeley, CA 94720

August 1988

LBL-25770

This work was supported by the U.S. Department of Energy under Contract

Number DE-AC03-76SF00098

\
\

• ~I

SOS - Stan's Own Server
A NFS file server for the ffiM PC

See-Mong Tan, Harvard Holme&, Craig Eades

Computer Science Research Department
Information and Computing Sciences Division

Lawrence Berkeley Laboratory
Berkeley, CA 94720

ABSTRACT

SOS is a file server written to run on the IBM PC or compatibles. It con
forms to Sun Microsystem's Network File System {NFS) .protocol version 2. This
paper discusses the SOS implementation and includes notes on portability, for
programmers who wish to uriderstand or modify it.

1. Introduction

In general, a network of workstations provides more computing power than a standalone
mainframe does. Personal computers, however, face the problem of file storage and sharing, since
some machines often do not have local disks attached (e.g. Sun 3/50s), while files needed by
different users must be transferred from one machine to another, by some program such as ftp.
This method of file sharing is at best still cumbersome.

Sun Microsystem's introduction of NFS, the Network File System, is designed to provide
transparent access and sharing of files over a network. In essence, files exist on the locally
attached storage device of a machine called the file server, whose job is to accept requests for
operations on files from the other machines on the network, called the clients. The clients mount
filesystems on the server. A filesystem is a directory on the server. The mount point on the client
is the directory at which the client chooses to substitute for the server directory. Any operations
on files below the mount point are trapped by the operating system and mapped into appropriate
requests to the server. Sun Microsystem·s has also recently introduced PC-NFSl. PC-NFS
allows IBM PO's or compatibles with ethernet interfaces to become NFS clients on the network.

We have designed a file server conforming to the NFS protocol (version 2), that runs on the
IBM PC. This allows a dedicated PC to perform a task otherwise required of a Sun workstation
running NFS in kernel, or a VAX running a user-level NFS daemon. The original project
intended for a PC to serve files from an optical disk to a heterogeneous network of Suns and PCs
(with PC-NFS) as clients.

2. Managing Concurrency

The Sun NFS server consists of three different processes running concurrently. There is the
mount daemon, port mapper.and the server daemon proper.

The mount daemon handles requests from a client for a filesystem directory to be mounted.
If the request is valid, the mount daemon hands back to the client a file handle. The file handle
contains context informatjon, and the clien~ must use it in further transactions with the server
daemon. The handle is opaque and varies from server to server.

1 PC-NFS is a trademark of Sun Microsystems, Inc.

- 2 -

The server daemon performs requested file operations such as reading and writing files, and
reading of directories.

The port mapper always exists at a well known port, PMAPPORT, which is equal to 111.
The server and mount daemons can theoretically be bound to any port, and the port mapper will
answer queries from client machines regarding the port numbers of the other two daemons. In
version 2 of the NFS protocol however, the server is expected to be bound to port 2049. Clients
do not query . the port mapper for the . NFS port. This is a bug in the protocol which Sun
Microsystem claims it will fix in the near future.

MS-DOS does not allow concurrent processes. SOS includes both port mapper and mount
programs together with the server. Calls to these are by necesSity sequential, not parallel. Since
port mapper and mount requests are infrequent compared to NFS requests, this does not seriously
hamper the server's performance.

3. File Handles and !nodes

Between a client and the server, a file is identified by a file handle. NFS protocol specifies
the length of a file handle to be 32 bytes. In the Unix2 implementation, the file handle contains
(among other things) the inode number of the file .

. MS-DOS does not explicitly support index nodes {inodes). Access to a file is almost com
pletely path driven. Since the file handle must be only 32 bytes long, it is impractical to stuff
the path name into the handle. A 32 byte long path would only allow the shallowest directory
trees. Thus, SOS has an artificial inode interface to the files on disk. It assigns inode numbers to
files as requests arrive for it to lookup or read. An image of the filesystem tree is built in
memory, and a file's path name is reconstructed from its inode number by referring to the filesys
tem tree.

Since the inode numbers are artificial, they would not be preserved if the server crashes or is
interrupted. Instead, the server writes to a file ("inode.dmp") the path names of the files it had
assigned inodes to. SOS will read and reconstruct the filesystem tree from both the export file
and the inode dump file when it is next started up. This means that SOS is not really stateless,
because it must preserve assigned inode numbers from one invocation to the next.

4. MS-DOS Constraints

MS-DOS was not designed for a multi-user system. Unix file attributes are inherently richer
than can be put into ari MS-DOS directory.

All files in an exported sos filesystem are tagged owned by the superuser (user id of 0).
Further reflecting MS-DOS, files can exist in only three modes: a directory (global read, write and
execute), a normal file, which is globally readable, writeable and executable, and a read only file,
which is a normal file sans write permission.· ·

This means that certain attributes cannot be set in exported files; for example, chown(l)
will not work at all, and clunod(l) will only affect write access.

5. RPC/XDR Interface

RPC and XDR stand for Remote· Procedure Call and External Data Representation respec
tively. RPC is a convention for calling remote procedures. A server program is identified by its
program number and version number. Each procedure within a program is represented by a
procedure number. For example, the read procedure in a NFS server is identified by this tri
ple: 100003 (program number), 2 (version number), 6 (procedure number). A client wishing to
read a particular file would send a request to the server in the form of the previous identifying tri
ple, followed by the file's file handle. In order to decipher what is sent over the wire, both servers
and clients use the XDR routines. XDR encodes and decodes data sent over the network in a

2 Unix is a. trademark of Bell Laboratories.

I

)</,
. .1

\
' ,.,

- 3 -

format not dependent on each machine's architecture.

Sun NFS runs on an RPCjXDR interface. We ported the public domain Sun server side
RPC and XDR code to the PC. Only a few minor changes were made. One was allowing the
procedure svcudp_create() to take two arguments, the second of which specifies whether to use
a large (8800 byte) UDP send and receive buffer, or to use a small (400 byte) buffer. The port
mapper and mount daemon use the small sized version, and the server daemon uses the large
sized buffer. Also, the ported RPC procedures do not register services with the port mapper. The
SOS port mapper knows of only two se~ice ports, the mount daemon port and the server dae
mon port, which are compiled into SOS.

Only datagrams are used in SOS; the TCP interface was not moved. This mainly affects
the port mapper. It cannot receive TCP requests.

6. IPC Interface

The project used a PC attached to the net with an Excelan EXOS card.

The Excelan EXOS package provided asocket interlace quite similar to 4.2 BSD UNIX. A
seperate module was written on top of the Excelan library ("sock.c"). This abstracts the socket
interface which the rest of the program sees from Excelan specific details. Portability in the
future to a different ethernet card will simply consist of rewriting this module in concert with the
new library provided.

7. Some Difficulties Encountered

Before we moved development to a PC with an Excelan ethernet card, we tried to write the
server on another machine running PC-NFS. PC-NFS provides a very congenial environment for
writing a server. The toolkit provides XDR routines and client side RPC routines, as well as a
good 4.2 BSD Unix socket and networking interlace. Unfortunately, PC-NFS uses the local port
number 2049 for its own transactions. In NFS protocol version 2, port 2049 is the de facto NFS
port, and clients do not query the port mapper for the port number of the server. This means
that any PC-NFS client cannot also be a server. We were forced to abandon this approach and
use a PC with ari Excelan card and Excelan software instead. ..

8. Server Performance

Some informal timings of server performance were done. We compared the speeds taken to
access a large file by several different clients, from both a Sun 3/280 server and a PC running
SOS. The reference SOS configuration was an IBM PC with a hard disk drive3 .

The Sun runs at 25 MHz with twenty times the bandwidth of the 4.77 MHz IBM PC. On
the average, SOS on a PC was about nine times slower than the Sun, with a PC as a client.
With a Sun client, SOS was some seventy times slower. The table below shows transfer rates in
kilobytes per second.

Transfer rates in kilobytes per second

Clients
Servers

PC (SOS) VAX (11/785) Sun (3/280)

IBM PC 4.2 14.4 36.0
Compaq 386 4.4 17.7 125.9
Sun 3/60 · 2.9 100.7 220.0

Note that the performance of the Sun client with the PC server is not as good compared to the
PC and 386 clients. This irregularity is explained by the fact that the Sun client tends to time

3 We used a. Microcode 20 Megabyte ba.rd drive.

- 4 -

out before the PC server's reply, hence causing a double read request to be sent out.

Running the server in verbose mode (where the server advises of all incoming requests)
slowed performance by about two-thirds. Running the server with files accessed from a virtual
disk (RAM disk) created in memory gained a 20% increase in performance.

9. Improvements

The port mapper and mount daemons are incomplete. Clients currently cannot dump list
ings of ports or exported filesytems from the server.

The inode interface is inelegant. A better scheme would be to use the starting cluster
numbers of files on disk to serve as inode numbers. We suspect that this would involve quite
some work.

10. Aeknow ledgements

Fred Gey's generosity in loaning us his PC for SOS's development over one summer is
greatly appreciated. Thanks to David Robertson for his bug free host to network and network to
host data conversion procedures. We are also grateful to Bill Johnston for his help in troub
leshooting PC-NFS's perculiarities.

11. Comments

Bugs and comments should be sent to:

stan@lbl-csam.arpa, stan@lbl-csam.lbLdoe.gov, lbl-csam.arpa!stan

" \

!

...? _, -.......;.4

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

!.i,? A__,.

