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Abstract- In this paper we continue the discussion of the causes 

for image deterioration in the Maximum Likelihood Estimator (MLE) 

method of tomographic image reconstruction that we initiated with 

the publication of a stopping rule for that iterative process. We 

introduce the concept of a feasible image, which is a result of a re-

construction that, if it were a radiation field, could have generated 

the initial projection data by the Poisson process that governs ra-

dioactive decay. From the premise that the result of a reconstruction 

should- be feasible, we examine the shape and characteristics of the 

region of feasibility in projection space. Although MLE reconstruc-

tions from computer simulated data pass through a feasibility region 

when started from a uniform intensity image field, as determined by 

our previously published stopping rule, attempts at using that rule 

to detect feasibility in reconstructions with real PET data failed- con;. 

sistently. We examine the reasons for that failure and design a more 

relaxed stopping rule that takes into account the fact that the prob-
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ability matrix defining a true tomographic instrument can only be 

known within some error margin. With the new rule, reconstruc-

tions from real data can be tested for feasibility. Results of the test 

and reconstructed images for the Hoffman brain phantom are shown. 

We conclude with a comparative examination of the current methods 

of dealing with MLE image deterioration and we endeavor to put the 

minds of current workers in the field at ease about having to stop 

MLE iterations when the images look acceptable. 

1 Introduction 

Iterative methods, such as the Maximum Likelihood Estimator 

(MLE) method for image reconstruction in Emission Tomography, 

are an attractive alternative to more conventional filtered back-

projection methods. However, several aspects of these methods 

are not fully understood and are actively discussed in the litera-

ture. In particular, several researchers have noticed that, as the 

MLE method passes a certain point, the reconstructions it yields . . . •' 

begin to deteriorate. To counter this unfavorable feature, several 

remedies have been proposed. These remedies fall into three cate-

gones: 

• those which modify the original criterion (likelihood); 
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• those which search for solutions among a set of 'smooth' im

ages; and 

• those which halt the iterative process before the deterioration 

occurs. 

The last approach has been propoSed by V eklerov and Llacer [1], 

Hebert, Leahy and Singh [2] and Defrise [3], who devised certain 

'stopping rules'. They are derived from some fundamental prin

ciples which any reasonable reconstruction should satisfy, such as 

'the image should not fit the data with an accuracy greater than 

the accuracy ()f the data' or 'the image should be capable of gen

erating the data' in a statistical sense. 

In this paper we define two yersions of the concept of feasihility 

which we call weak and strong. This concept is closely related to 

the stopping rule descrj.bed in Ref. 1. We continue by showing that 

successive images obtained by iterating with the MLE algorithm of 

Shepp and V:ardi [4] pass through a region of feasibility, although 

the stopping rule developed in Ref. 1 may not be a good indicator 

of that condition when the data are from real PET scans. 

Although we feel that the most important benefit of developing 

the concepts of feasible images and stopping rules may be in allow

ing an understanding of some essential characteristics of iterative 

image reconstruction, we feel it is useful to conclude this paper by 
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describing a relaxation of the strict demands of the stopping rule 

of Ref. 1 so that it can be applicable to the 11LE or other iterative 

reconstruction methods with real emission tomography data. 

On a historical note, similar stopping critera have been known in 

the case of additive noise. Trussell [5] proposed a stopping criterion 
. ·, 

based on the variance of the residual and, therefore, analogous to 

our weak feasibility for the Poisson case, as will be shown below. 

Trussell and Civanlar [6] discU.ssed possible ways of strengthening 

the previous criterion by adding other constraints. Each constraint 

defines .a set in a finite-dimensional space and the intersection of all 

sets corresponds to the feasible solutions. Numerical algorithms for 

finding such feasible solutions are based on the work by Sezan and 

Stark [7] which is further discussed by Trussell, Orun-Ozturk and 

Civanlar [8]. These works treat the subject from the viewpoint of a· 

more general concept, namely projections onto convex sets. They 

show that sequential projections onto member sets converge to 

their intersection. Medoff, Brody, Nassi and Macovski [9] proposed 

an operator framework for ii:nage reconstruction algorithms using 

limited and missing data. 

Situations in which the system's response :ft.mction is not known 

exactly have also been extensively studied by researchers in the 

case of additive noise. Thus, vVard and Saleh [10] considered the 
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situiation where the response function, which correspond to our 

transition matrix, is itself random, in which case they proposed a 

deblurring technique. 

The idea of feasibility was ~~Q. ip radio_ astronomy-by Skilling· - --, .~ - ··- -- -- - ·- -

and Bryan (11) in 1984. Several variations on the same theme in 

case of Gaussian data have been reported by other authors working 

in radio astronomy, see Ables [12], Gull and Daniels (13], Narayan 

and Nityananda [14]. The fact that not any weakly feasible image 

statistically fits the data was noted by Reiter and Pfleiderer [15]. 

2 The Concept of a Feasible Image 

A feasible image is one that could have caused or produc~d the 

observed data by the known statistical process that governs the 

measurement. Let us use the standard notation introduced by 

Shepp and V ardi [ 4]: 

n*(d), (d = 1, ... , D) - the projection data or the number of 

coincidences detected in tubed; 

>..(b),(b = 1, ... ,B)- the emission density; 

p(b, d) -the transition matrix; 

>..*(d)= "E~=t >..(b)p(b,d)- the means or forward projections; 

where B and D are the number of pixels and the number of projec-

tions, respectively. vVe will consider specifically the case of emis-
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sion tomography (PET or SPECT) in which disintegration data 

follow Poisson statistics. 

Definition 1: The image >.(1),>.(2), ... ,>.(B) is said to be a 

feasible image with respect to data, n*(1), n*(2), ... , n*(D), if and 

only if the statistical hypothesis that n*(1), n• (2), ... , n*(D) are 

a Poisson sample with the means >. *(1), >.•(2), ... , >.•(D), respec

tively, can be accepted (not rejected) at a given significance level. 

In order to test this hypothesis, we proposed a procedure in [1] 

which reduces the original problem to testing the hypqthesis that a 

certain random variable is uniformly distributed between 0 and 1. 

The latter hypothesis can be tested following Pearson's procedure 

by corr~puting the standard x2 statistic which we called the H 

parameter. The hypothesis is accepted when the H parameter 

dips below a certain value which depends on the significance level. 

The detailed procedure for obtaining the parameter H has been · 

given in [1]. The main ideas are summarized here: 

The first step of the test consists of scaling the differences 

>. •( d) - n*( d) for each data pair to a new variable x which is uni

formly distributed between 0 and 1 if n • (d) is a Poisson realization 

with mean >.•(d). Next, a histogram of x with N bins is gener

ated. We conclude by testing the hypothesis that x is uniformly 

distributed between 0 and 1 by Pearson's procedure with N- 1 
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degrees of freedom. The histogram testing function H is defined 

as: 

H=E(hi-D/N)
2 

i=t D/N 

where hi is the observed frequency of bin i and D / N is the expected 

frequency if x is uniformly distributed. 

Objections can be raised to using Pearson's test of goodness 

of fit as indicated above for testing the hypothesis of Definition 

1 when the means .A* (d) are obtained from the data n * (d) by a 

reconstruction process. The objections have now been examined 

and our preliminary findings indicate that the contribution of the 

above is negligible in practice, although a theoretical justification 

still remains an open problem. The question will be treated in a 

forthcoming separate paper. 

To visualize the concept of feasibility, let us imagine that we 

were able to recover an image for which all forward projections are 

exactly equal to the corresponding data. This 'ideal' image would 

yield the maximum likelihood. However, it would not be feasible, 

because, taken as a source, it would not be capable of generating 

the data from which it was reconstructed in the first place at a 

reasonable level of confidence. This follows from the fact that the 

Poisson assumption imposes a certain deviation between the data 
o. 

and the means. 
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Feasibility is a general concept in image reconstruction not lim-

ited to any specific algorithm. It allows us to formulate the follow

ing stopping rule for any iterative algorithm: stop the algorithm as 

soon as a feasible image has been recovered. It was shown in Ref. 

1 that feasible images obtained with the MLE algorithm are visu

ally clean, with a good compromise between sharpness and noi~e 

in uniform high intensi~y areas. 

Since feasibility is one, though not necessarily the only, g<?al of 

image reconstruction, it is natural to ask these two questions: how 

large is the set of feasible images and where are they with respect 

to the maximum likelihood image? To do that, let us introduce 

another definition of feasibility by relaxing Definition 1. Since the. 

new definition of feasibility requires less than Definition 1 does, it 

is appropriate to call this new form of feasibility 'weak feasibility' 

to distinguish it from 'strong feasibility' defined above. 

Definition 2: The image .>.(1),.>.(2), ... ,>.(B) is said to be a 

weakly feasible image with respect to data, n*(l), n*(2), ... , n*(D), 

if and only if the second moments of n*(1),n*(2), .... ,n*(D) are 

consistent with the Poisson hypothesis, namely: 

E [n*(d)- .A*(d)]2 ~ D 
d=l >.•(d) . 

(1) 

Indeed, the expected value of the numerator of each term in Eq. 

(1) is the variance, while that of the denominator is the mean. 
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Therefore, Eq. (1) must be satisfied if the Poisson hypothesis 

holds. However, the reverse statement is .not true, because the 

equality Of the variance and the mean is necessary but not sufficient 

for a distribution to be Poisson or, put another way, Definition 2~-

is less demanding than Definition 1. 

It is interesting to note that, since (1) has the form of a x2 

function, it is tempting to state that we are carrying out a x2 test 

and that (D-B -1) should appear in the right hand side of (1). 

That is the number of degrees of freedom when the parameters 

A*(d), projections of ..\(b), are estimated from n*(d) by allowing 

the MLE procedure to converge. Definition 2 does not, however, 

call for a x2 test. We stop the MLE procedure when (1) is satisfied 

for the stated reason that (1) must hold if the Poisson hypothesis 

is true. 

Note that whereas Definition 1 allows for a certain margin of 

error for any given significance level, Definition 2 does not give a 

clue as to how much the .left-hand side of (1) may differ from D 

in order for the image to remain feasible. We leave this statistical 

problem open at this time although we recognize that this is an 

important issue. 

Let us consider the projection space and imagine that any set 

of proj~ctions ..\*(d),d = 1, ... ,D is "achievable"; that is, it can 
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be obtained from a distribution of intensities in the pixel space. If 

any point is achievable, then the maximum likelihood solution is 

such that .A*( d) = n*( d) for all d = 1, ... , D. 

We assert that all weakly (and, therefore, strongly) feasible im

ages belong to an area resembling an ellipsoid and surrounding 

the maximum likelihood point. Indeed, if the letf-hand side of 

Eq. (1) must equal the right-hand side to the accuracy of E, all 

points satisfying (1) form the space between two egg-shaped sur

faces. They would be exact ellipsoids if the denominators were 

constants. They are not constants in the D"'"dimensional projec

tion space of .A* (d), d = 1, ... , D and the set of points satisfying 

(1) will be referred to as a shell. The parameter E reflects the 

expectation that the region of feasibility has a certain width. Fig

ure 1, which is just a schematic 2-D illustration, shows a shell as 

well as lines along which likelihood is constant, which are regular 

ellipsoids for large values of data. 

The shell defined by Eq. (1) contains all weakly feasible images. 

The strongly feasible images form a subset of the shell with gaps 

between them. The gaps are large, as can be deduced from the 

following reasoning: A point may satisfy (1) even if n*(d) ·>.A*( d) 

for all d = 1, ... ,D. But n*(d) are measurements and .A*(d) are 

their means; therefore some n * (d) should be greater than .A* (d), 
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while others should be less. The simple sign test, see e.g. Freund 

[16), shows that the hypothesis that .X•(d) are the means of n•(d) 

should be rejected if for D = 1000, for example, there are less 

than 450 measurements below their averages or if there are less 

than 450 measurements above their averages. Needless to say that 

not all points passing this test will be truly feasible but this test 

eliminates most of the points of the shell ( 1). 

Let us now return to the assumption that all points in the 

projection space are achievable. If we consider that the matrix 

p(b, d) maps a B-dimensional space of pixel intensities into a D

dimensional space of measurements, D being typically greater than 

B, it is clear that not all sets of projections .X • (d) are achievable 

from a distribution of intensities in the pixels. This fact further 

limits the region of feasibility (1) by placing holes into the remain

ing parts of the region. It should be pointed out, however, that 

the trajectory of likelihood in projection space obtained during the 

iterative reconstruction process, if it crosses the feasibility region, 

will escape those holes, since the result of the iterations is an im

age whose projections have to be in the solid part of the feasibility 

regiOn. 

Figure 1 shows hypothetical achievable regions and a trajectory 

of likelihood points for a reconstruction starting from the arbitrary 
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vector >.•(1) = >.•(2) = 13. The trajectory passes through the· 

feasibility region and continues toward the maximum likelihood. 

It is not a priori evident that the MLE solution invariably lies 

inside the feasibility shell. It was reported in Ref. 1 that the 

MLE solution did indeed lie inside the shell and this was confirmed 

in subsequent experimen~s, see e.g. Llacer and Veklerov [17], so 

long as we used computer simulated data starting from a uniform 

image. However, all attempts to obtain the same result while using 

data generated by a true PET instrument (ECAT-III of UCLA) 

failed to provide any reconstructed image that could be classified 

as feasible, which is another way of saying that the MLE solution 

appears to lie outside the feasibility shell. This observation was 

reported by us [18] and it led to further experiments. The results 

of these experiments helped us clarify the notion of feasibility and 

come up with a more practical stopping rule. 

3 Analysis of the Problem 

In simulation experiments, the same transition matrix p(b, d) 1s 

used both in the generation and in reconstruction phases. Hence, 

the only error handled by the reconstruction algorithm is the one 

caused by statistical fluctuations of the emission and detection 

processes. This is not the case in real tomography, where the 
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two transition matrices can be expected to be different. The data 

generation matrix, reflecting the true characteristics of the tomog

raphy instrument is not known precisely. In addition, it is usually 

necessary to correct the emission data with normalization factors 

to compensate for variations in detector gains, which are inherently 

unstable, and for absorption in the patient. 

Applying the corrections either to the transition matrix or to 

the data leads to the same results in linear reconstruction schemes. 

In a non-linear scheme, as in the MLE method, one can expect dif

ferent images for the two correction methods, as we indeed find, 

except for noiseless data. The correct approach, which we have 

used in all the reconstruction experiments reported in tllis paper, 

is to apply the corrections to the matrix terms since this is consis

tent with the definition of the matrix elements p(b, d). Since the 

correction coefficients can be any given numbers, the symmetry of 

the transition matrix [19, 20] which allows reduced storage space 

is lost and larger storage space and increased computation time 

have become necessary for the computations reported. 

Two series of experiments are described in tru;s section. These 

experiments are based on computer simulated source images wllich 

allowed us a careful measurement of the effect of some parameters 

on the final results, as described below. Reconstructions with real 
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data are presented in a later section. The first series demonstrates 

that, if the transition matrix used in the reconstruction process is 

not accurate enough, the process appears to bypass the feasibility 

region. The second series allows. us to gain an insight into this 

situation and suggests a solution. The source image that was used 

in both series was a simulated brain phantom described in Ref. 11, 

with 1 million counts total, shown in Fig. 2. 

1st Series of Experiments. This series consisted of a gen-:-

eration of projection data and subsequent reconstruction using 

two slightly different matrices, p 1(b,d) and p2(b,d), derived as fol-

lows. First, a transition matrix for the 512 crystal geometry of 

the ECAT -III tomograph was obtained by the Shepp-Vardi pre

scription (4]. Then we assumed that the individual detectors had 

gains uniformly distributed in the range (0.5, 2.0). The tube-gains 

were obtained as products of the corresponding detector gains and 

incorporated into the transition matrix. The result was matrix 

p 1(b, d) which was used to generate all the source projection data 

and to reconstruct the 'perfect'- case (case A). Matrix p 2 (b, d) was 

obtained by simulating small drifts in the individual detector gains 

with respect to the initial gains. Three ranges of random multi-

plicative drifts were studied: (0.95, 1.05)- (case B), (0.93, 1.07) 

(case C) and (0.90, 1.10) (case D), corresponding to rms drift val-

14 
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"ues of 2.88, 4.04 and 5. 77 %, ~espectively. 

The parameter H quantifying the degree of feasibility in these 

three cases and in the 'perfect' case is shown in Fig. 3 as a function 

of the iteration number. The expected pattern whereby H reaches 

the feasibility region and then leaves it is exhibited only in case 

A. The two horizontal lines represent the 90 and 99% confidence 

levels of an image being feasible, according to our test. In case B, 

the parameter H reaches the feasibility region, although somewhat 

later than in case A, and then remains there. In cases C and 

D, H remains at higher levels, which is the pattern observed in 

experiments with real PET data in Ref. 12. 

2nd Series of Experiments. The purpose of this series was 

to find out whether the images generated in cases C and D are 

indeed not feasible or some of them are feasible but this fact is 

obscured by the matrix p 2(b, d) providing erroneous forward pro

jections which, in turn, determine the value of H. To this end, 

the reconstruction algorithm using the matrix p 2 (b, d) was stopped 

at iteration 25, at which point the current images were projected 

with the correct matrix Pl(b,d) and the parameters H were then 

immediately calculated. The low values of H obtained demon

strated that the images were actually feasible, but that .this fact 

was obscured by having used the distorted matrix p 2 (b, d) for the 
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projection needed for calculating H. The fact that the whole re

construction was being carried out with the distorted matrix did 

not make the image unfeasible. Alternatively, images classified by 

matrix p2 (b, d) as feasible in case B as late as iteration 85, were 

reclassified by matrix p 1(b, d) as unfeasible. 

The second part of this series was t4e reverse of the previous. 

Data generated by matrix p 1 were initially reconstructed by p 1 

and, after iteration 25, matrix p 2 was switched in. The value of H 

immediately jumped above the feasible region. 

All these results may be summarized as follows: If the transition 

matrix contains relatively small errors, the MLE algorithm will still 

produce feasible images, although this fact is not detected by the 

stopping rule formulated in Ref. 1, unless the forward projection 

is carried out with the exact matrix which is not available in prac

tice. The images at iteration 25 showed slight differences among 

themselves, depending on the matrix used for the reconstruction. 

These differences were, however, very slight and no systematic ef

fects could be discerned. 

4 A robust stopping rule 

The previous experiments demonstrate that the stopping rule is too 

sensitive to small inaccuracies in the transition matrix and suggest 
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a need fo~ a more robust rule. The stopping rule described below 

is a natural generalization of the one in Ref. 1. It is motivated 

by the fact that, in practice, the transition matrix can only be 

known approximately. In effect, the new robust stopping rule is 

equivalent to increasing the feasibility region. 

Let us associate an interval: 

with each .A*(d), and suppose that the true, but unknown, value 

of the forward projection, say J.l*(d), lies somewhere within this 

interval. The following statistical hypothesis will be tested: there 

exists a set J.l*(d), (d = 1, ... , D), such that n*(d), (d = 1, ... , D) 

could be a Poisson sample with the means 1-1 * (d). In other words, 

we will require that the data could have been generated not by 

the available forward projections as means of Poisson distributions 

but by some other projections lying in their vicinity and the test 

will prove or disprove their existence. The vicinity is .defined by 

the value of E( d) which quantifies the accuracy of the transition 

matrix. The question of selection of E( d) will be discussed in the 

next section. 

The implementation of the test of this statistical hypothesis is 

straightforward and, for brevity, we will assume .that the reader 

is familiar with the implementation of the test in Ref. 1. The 
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procedure described in Ref. 1 generates a histogram of r; •( d) ap

propriately scaled by A • (d). The procedure was such that if the 

distribution of n•(d) is indeed Poisson with-the means .A•(d), the 

histogram will contain almost the same number of tubes d in each 

class and the exact meaning of the. phrase 'almost the same num

ber' was defined in Ref. 1 in terms of the x2 distribution. 

In our case, the exact values of ~he means are unknown. It is 

known that if the hypothesis is true, they lie somewhere between 

.A•(d)(1-c(d)) and .A•(d)(1 +c(d)). Therefore, we are unable to as

sign each tube d to a specific class of the histogram. Rather, we can 

only determine the lowest and the highest classes of the histogram, 

h1(d) and h2 (d), respectively, corresponding to 5.•(d)(1 +c(d)) and 

.A•(d)(1 - c(d)), respectively, while the true, but unknown, class 

lies somewhere between h 1(d) and h2(d). 

Thus, we associate a pair of numbers, h 1(d) and h2(d), with 

each tube d. Then, instead of generating the histogram used in 

Ref. 1, we have to generate a two dimensional histogram, m(i,j), 

as follows: if the lowest and the highest clas-ses associated with a 

tube are h 1 and h2 , respectively, then we will increment the element 

m(ht, h2 ) by 1. It is easy to see "that all elements of the resulting 

histogram m(i,j) below its diagonal will be zero. 

The two dimensional histogram m( i, j) contains more uncer-
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tainty than the one dimensional histogram used in Ref. 1, because 

any tube assigned, for example, to the two dimensional ~lass (2, 5) 

can actually belong to any one dimensional class from 2 .through 

5. Our goal is to find out whether among all possible ways of 

resolving this uncertainty there exists one leading to a one dimen-

sional histogram consistent with the Poisson hypothesis; In other 

words, if each tube can be assigned to a specific class between its 

minimum and maximum classes in such a way that each class gets 

almost the same number of tubes, then the hypothesis should be 

accepted. 

Hence, the problem at hand reduces to the following problerri. A _ 

two dimensional triangular matrix N by N is given and the value of 

any of its non-diagonal elements m(i,j)(i < j) can be distributed 

arbitrarily among the classes of a one dimensional histogram from 

i through J by splitting into Xi ~ 0, Xi+l ~ 0; ... 1 Xj > 0, 

such that L,{=i Xk = m(i,j). We try to distribute them in such a 

way that the total number received by each i is as close to 

1 N N 
a= N I:I:m(i,j) 

i=l j=l 

as possible and then find out whether the resulting one dimensional 

distribution can pass the test described in Ref. 1. 

This problem has an efficient solution. Consider t~e following 

algorithm. 
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1. begin with row i of matrix m(i,j) equal to 1 

(a) begin with col urnn j of matrix m( i, j) equal to i 

(b) if the element m(i,j) is greater than a, proceed to Step 

2; otherwise proceed to Step (c) 

(c) increment j by 1 

(d) check whether transferring the entire amount m( i, j) to 

_ m(i,i) will increase m(i,i) to or above a: 

if not, transfer the entire amount, and proceed back to 

Step .(c), unless.j already equals N in which case go to 

Step 2; 

if yes, transfer only as much as necessary to bring m( i, i) 

up to a 

2. row i has been resolved; if i = N, stop; 

if not, transfer e~ch·remaining nonzero nondiagonal elements 

of row i to row i + 1 within the same column 

3. increment i by 1 and proceed back to Step 1. 

The algorithm resolv~s the uncertainty of the two dimensional 

histogram by distributing its elements as equitably as possible. 

Then we can use the same test as the one described in Ref. 1 to 

see if the resulting one dimensional histogram is flat enough, in 
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which case the hypothesis must be accepted; otherwise it is re-

jected. As we pointed out in Section 2, this is a limited test based 

on the simplifying assumption that the image and the data are sta..: 

tistically independent. The algorithm does not add a measurable 

amount of time to the reconstruction algorithm. 

5 Experiments with PET data 

Data from the UCLA ECAT-III tomograph for the Hoffman brain 

phantom described in Ref. 12 have been used to test the proposed 

'practical' stopping rule. Data sets totaling 1 million (1M), 3 mil

lion (3M), 12 million (12M) and 55 million (55M) counts per image 

were obtained. Data corresponding to real coincidence counts plus 

prompt random coincidences were obtained in files separate from 

the delayed random coincidences data [21]. ·The delayed coinci

dences were not subtracted dynamically from the data stream, in 

order to avoid using a non-Poisson data set. A normalization file 

of detector-pair gains as well as transmission data files were also 

available. Figure 4 shows the brain phantom, in which the ratio of 
' 

activity between the black vs. white areas is approximately 4:1. 

The normalization and transmission corrections were incorpo-

rated into the transition matrix. All reconstructions were carried 

out with the Shepp-Vardi prescription for the transition matrix [4], 
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with an image plane of 128 x 128 pixels of 2.03 mm sides. 

An important question was the selection of the values for E( d) 

which quantify the inaccuracy of the transition matrix. The ex

periments showed reasonable results for 1M count sets if E( d) was 

around 0.065. 

However, the data sets with more counts required a slightly 

larger value for E. This fact follows from a peculiarity of the Poisson 

distribution whereby the larger its mean, the smaller its standard 

deviation in· relative terms. Therefore, if E is 10% of the mean 

and the mean is 100, for example, then the relaxed interval for the 

mean is (90, 110). However, ifthe real value of n• should be 115, 

it will still be accepted, because it is consistent with the mean of 

110 and a standard deviation of 10.49. If the mean is 10000, the 

relaxed interval for the mean is (9000, 11000), but the effective 

interval or the interval of acceptable n• will be narrower in relative 

terms. If the real value of n• should be 11500, it would not be likely 

to be consistent with a mean of 11000 and a standard deviation 

of 104.88. In other words, in order to achieve the same effective 

interval, we have to relax the means more when they are high. 

The contribution of this effect is secondary compared to the 

main effect caused by the error in the transition matrix, but it 

should be taken into account when the total number of counts in 
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data sets varies within a wide ·range. We found that the following 

empirical values for € result in reasonable stopping rule: 0.108 for 

3M counts, 0.171 for 12M counts, 0.234 for 55M counts. This is 

admittedly an ad hoc procedure and we hope other researchers can 

find a more elegant solution. 

Figure 5 depicts the behavior of the H function as a function 

of the iteration number. As could be expected, it takes mo~e iter

ations to trigger the stopping rule for data sets with more counts: 

approximately 29 iterations for a 1M set, 39 iterations for a 3M 

set, 55 for a 12M set and 73 for a 55M set. 

In Fig. 6 we show images resulting from the reconstructions 

with the Hoffrllan brain phantom. The four rows corresponq to 

the 1M, 3M, 12M and 55M count images, respectively, while the 

first column shows an image at an iteration number substantially 

before the feasibility region, the second column shows the images 

at the approxim~te entrance to the region and in the third column 

we show iteration 100 which is past the entrance to that region in 

all cases. The images in the center column have good sharpness 

and the image deterioration process has not yet set in. 
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6 Conclusions 

At the beginning of the paper we have indicated that there are 

three different approaches to remedy the observed deterioration of 

MLE images at high munber of iterations: 

• The likelihood criterion can be modified. This should be a 

very pr<?mising avenue that is not yet very well explored. It 

is principally based on Bayesian reconstruction techniques in 

which the function to be maximized is the product of the like

lihood with an a priori distribution. Geman and McClure [22) 

have been working on this idea with interesting results using 

a Gibbs energy prior distribution. Skilling and Gull [23] are 

using an entropy prior distribution with apparent success in 

a var:iety of image restoration and reconstruction modalities. 

• Searching.for solutions among a set of 'smooth' images. The 

principal exponent of this approach is the method of sieves of 

Snyder and Miller [24). 

• Halting the iterative process before the deterioration occurs. 

With our initial work on the stopping rule for MLE method [1) 

and the description of the feasibility region in the present paper 

we have shown unequivocally that the MLE method of reconstruc-

tion, left alone, will lead to images that are not consistent with 
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the physical process that generated the data. The reason for tllis 

effect ,is most easily grasped if one realizes that maximizing the 

likelihood of the data given an image (the reconstlllcted one) is 

only one part of the Bayesian reconstruction criterion that requires 

the maximization of the probability of an image given the data. 

This idea has been the driving force behind the work of the groups 

working on Bayesian reconstlllction methods. The search for solu

tions among a set of smooth images by the method of sieves can be 

·successful in practice and is known to converge to a unique image. 

One objection can be raised: there is a parameter that determines 

the degree of smoothness accepted and the wrong choice of that 

parameter can lead to images that are inconsistent with the data, 

i.e., that are unfeasible. 

What our work proposes is a method to obtain useful images 

from the MLE alone by the use of th~ prior knowledge that the 

image at some point in the iteration procedure should be feasible, 

i.e., it is physically consistent with the initial data. This prior 

knowledge cannot readily be cast in the form of a prior distribution 

for a Bayesian reconstruction. For that reason we test for feasibility 

after each iteration of the unmodified MLE. 

The prospect of stopping a maximization problem with a unique 

maximum before that maximum has been reached can certainly 
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raise some objections. The most important argument against such 

procedure is that the resulting image could then depend on the 

initial value of the image field. We do understand that objection 

and we claim, at this time, only that starting from a uniform image 

field, the MLE passes through a region of feasibility with useful. 

images and that the passage through the region of feasibility can 

be tested. 

We feel that as a result of our work, medical research groups that 

are using the MLE method for image reconstruction and are uneasy 

about having to stop the process after a number of iterations can 

feel at ease, whether they implement the stopping rule or not. 

They may already be choosing to stop at a point where the images 

are feasible, i.e., consistent with the data. Whether these images 

are the 'best' that can be obtained from the available data remains 

to be established and we are continuing work on the subject. 

Acknowledgments 

The authors are grateful to an anonymous referee for his or her, 

valuable comments. 

This work has been supported by a grant from the National 

Cancer Institute (CA-39501) and the U.S. Department of Energy 

under Contract No. DE-AC03-76SF00098. 

26 



-

References 

1. E. Veklerov, J. Llacer, "Stopping rtile for the MLE algorithm 

based on statistical hypothesis testing," IEEE Trans. on ·Med. 

Imaging, vol. MI-6, pp. 313- 319, 1987. 

2. T. Hebert, R. Leahy, M. Singh, "Fast MLE for SPECT using an 

intermediate polar representation and a stopping criterion," IEEE 

Trans. Nucl. Sci., Feb., 1988. 

3. M. Defrise, "Possible criteria for choosing the number of it

erations in some iterative reconstruction methods," Proc. NATO 

Advanced Summer lnst. on Mathematics and Computer Science 

in Med. Imag., El Ciocco, Italy, Springer-Verlag, 1986. 

4. L. A. Shepp, Y. Vardi, "Maximum likelihood reconstruction for 

emission tomography," IEEE Trans. Med. Imaging, vol. MI-l, pp. 

113 - 122, 1982. 

5. H. J. Trussell, "Convergence criteria for iterative resoration 

methods," IEEE Trans. ASSP, Feb., 1983. 

6. H .. J. Trussell, M. R. Civanlar, "The feasible solution in signal 

restoration," IEEE Trans. ASSP, Apr., 1984. 

7. M. I. Sezan, H. Stark, "Image restoration by the method of 

convex projections: part 2- Applications and numerical results," 

IEEE Trans. Med. Imaging, vol. MI-l, Oct., 1982. 

8. H. J. Trussell, H. Orun-Ozturk, M. R. Civanlar, "Errors in back

projection methods in computerized tomography," IEEE Trans. 

Med. Imaging, vol. MI-6, Sep., 1987. 

9. B. P. Medoff, W. R. Brody, M. Nassi, A. Macovski, "Itera-

27 



tive convolution backprojection algorithms for image reconstruc

tion from limited data," J. Opt. Soc. Am, Nov., 1983. 

10. R. K. Ward, B. E. A. Saleh, "Deblurring random blur," IEEE 

Trans. ASSP, Oct., 1987. 

11. J. Skilling, R. K. Bryan, "Maximum entropy image reconstruc

tion: general algorithm," Mon. Not. R. Astr. Soc, 211, pp. 111-

124, 1984. 

12. J. G. Ables, "Maximum entropy spectral analysis," Astron. 

Astrophys. Suppl., 15, pp. 383 -393, 1974. 

13. S. F. Gull, G. J. Daniell, "Image reconstruction from incom

plete and noisy data," Nature, 272, pp. 686- 690, 1978. 

14. R. Narayan, R. Nityananda, "Maximumentropyimage restora

tion in astronomy," Ann. Rev. Astron. Astrophys., 24, pp. 127-

170, 1986. 

15. J. Reiter, J. Pfleiderer, "Improvement of MEM-deconvolution 

by an additional constraint," Astron. Astrophys, 166, pp. 381 -

392, 1986. 

16. J. Freund, Mathematical Statistics, Prentice-Hall, 1971 

17. J. Llacer, E. Veklerov, The maximum likelihood estimator 

method of image reconstruction: its fundamental characteristics 

and their origin. Proc. of the Xth Information Processing in 

Medical Imaging (IMPI) International Conference, Utrecht, the 

Netherlands, 1987. 

18. E. Veklerov, J. Ll'acer, E. Hoffman, "MLE reconstruction of a 

brain phantom using a Monte Carlo transition matrix and a sta

tistical stopping rule," IEEE Trans. Nucl. Sci., Feb., 1988. 

28 



19. J. Llacer, S. Andreae, E. Veklerov, E. Hoffman, "Towards a 

practical implementation of the MLE algorithm for positron emis

sion tomography," IEEE Trans. Nucl. Sci., Feb., 1986. 

20. L. Kaufman, "Implementing and .accelerating the EM al

gorithm for positron emission tomography," IEEE Trans. Med. 

Imaging, vol. MI-6, Mar., 1987. 

21~ C. W. Williams, M. C. Crabtree and S. G. Burgiss, "Design 

and performance characteristics of a positiop. emission computed 

axial tomograph- ECAT-11," IEEE Trans. Nucl. Sci., NS-26,No. 

1, 619-627 (1979) 

22. S. Geman and D.E. McClure, "Statistical methods for tomo

graphic image reconstruction", Proceedings of the 46th Session of 

the lSI, Bulletin of the lSI, vol 52, 1987. 

23: J. Skilling and S.F. Gull, to be published in Proceedings of 

the AMS-IMS-SIAM Joint Summer Conference of Spatial Statis

tics and Imaging, June 1988. 

24. D.L. Snyder and M.l. Miller, "The use of sieves to stabilize im-· 

_ages produced with the EM algorithm for e!llission tomography", 

IEEE Trans. Nucl. Sci., NS-32, No. 5, 1985. 

29 



.. , ... , .... , .... , ... ;, .... , .... , .... , 

F'EAsmiLITY 
. SHELL 

"l""'"'j 

r 
~ r 
1 
l 
T • .j 

j 
+ 
± ...... 

• 
~ 
1 

1 
f 

MLE TRAJECTORY t 

t-u-......U..u...o../-'-'-'...L..o..uf•.u....Lo.~~~~u~•L.O..i-L.L.<-'F..o.!.o...o..L,tLu...o.l.<~la~~ .... 2.00 •• co 1.00 e. aa I D. DO 12.QQ 14.00 11.00 ILOO :!O.OQ 

,\( 

XBL 887-2476 

Figure 1 

30 



XBB 888-7769 

Figure 2 

31 



400. 

0 

C. DO 10.00 20. DO 30. DO 40.00 so. co 60. DO 70. co 80.00 

JTERRT ION NUHBER 

XBL 8 8 7 - 2630 

Figure 3 

32 



XBL sss-2850 

Figure 4 

33 



\ 
I 
I 
\ 

\ 
\ 
I 

D 

\ 

HEPIRTH~N "''UMBER 

Figure 5 

34 

-,-j--,__,.--, -~ -r--r-r-T ·...-t---r -~,..,-T""Tj 

~ 

-
1 
i 

' -'-
1 

I 
i 
+ 

XBL 887-2629 



f 

35 



t 

36 



-
---~ ~· 

LAWRENCE BERKELEY LAB ORA TORY 
TECHNICAL INFORMATION DEPARTMENT 

UNIVERSITY OF CALIFORNIA 
BERKELEY, CALIFORNIA 94720 

~). r.~~_:_ 


