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The outstanding unresolved issue of the highly successful standard model is the origin of 

electroweak symmetry breaking and of the mechanism that determines its scale, namely the 

vacuum expectation value (ueu) v that is fixed by experiment at the value 

v = 4mfv/g1 = (v'2a,)-1 ~ ~TeV. (I) 

In this talk I will discuss aspects of two approaches to this problem. 

One approach is straightforward and down to earth: the search for experimental signa· 

lures, as discussed previously by Pierre Darriulat. This approach covers the energy scal('ll 

accessible to future and present laboratory experiments: roughly ( 10-9 - 11tl)GeV. The low

est energy of about an eV is characteristic o£ neutrino oscillation experiments, which have 

an indirect connection in that neutrino masses-if they exist-arise, like all other mas~, 

£rom gauge symmetry breaking. In terms o£ direct searches for the elementary lliggs particle 

o£ the minimal standard model, there has been a long-standing lower bound 1 on the Higgs 

mass o£ about 15 MeV £rom nuclear and atomic physics. 1£ the top quark mass isM large as 

suggested by analyses2 of B - B mixing data,3 much of the Higgs mMs range kine~atically 
accessible in B or [( decay is probably also ruled out.4 In £act arguments5 bMcd on standard 

cosmology forbid such a light Higgs particle unless the top quark is nearly as heavy as the 

W-in which case one-loop effects" involving the top quark should induce b-> s +II and/or 

s -+ d + H transitions at observable rates. LEP and SLe will soon probe lliggs masses u~• to 

ot',-1. rf 

those accessible in Z decay, and LEP II will probe beyond the Z mass through the process 

e+e- -> Z +II. . (2) 

Future facilities like the SSe, Lfle and eLie will be sensitive to a heavier Higgs via the 

decay II -> 2W or 2Z. There is an unfortunate window for Higgs masses in the range 

2ELE:P - mz < mH < 2miV which will probably be inaccessible at any of the present and 

planned facilities. Aside from this gap, the SSe will be able to probe the Higgs mechanism 

up into the TeV region, as I will discuss in the first part of my talk. Happily (and not 

accidentally), this coincides with the maximum energy scale where theory dictates that 

some associated phenomenon must show up. 

The second approach involves theoretical speculations, such aa technicolor and super

symmetry, that attempt to explain the TeV scale. Ideally, one would like to derive this 

scale-together with all of observed physical-from a Theory of Everything (TOE) that is 

perhaps manifest only at the Planck scale of about 1019GeV, and hence well beyond the 

reach of laboratory experiments. The second part of my talk will describe one attempt, 

based on superstring-inspired models, to descend from the Planck scale to the experimen

tally accessible scales of a TeV or less. 

THE STANDARD MODEL AND THE TEV SCALE 

In the minimal version of the standard model1 the electroweak gauge symmetry is broken 

by the introduction of a complex scalar Higgs doublet: 

with a potential energy density: 

~ = (::) = e;:;v C) 
~ 2 , v = -(p - v) 
4 

that depends only only on the modulus 

1~1;;; p;;; II+ v, 

(J) 

(4) 

(5) 

as illustrated in Fig. I. llere II is the physical lliggs field whose mass is determined by the 

potential of Fig. 1 as: 
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Figure 1 
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The tree potential of Equation 4. 

mh =2>.u2. (6) 

The gauge symmetry breaking arises through the gauge invariant scalar kinetic energy 

density obtained by the substitution: 

IJ,. -+ D,. = IJ,. + if. A, (7) 

IJ,.<plJ"ijJ -+ D,.v>D"ijJ 
91111 2 2 + -

= --w+w- + mzZ + mwW,. lJI'tp+ + .. ·. 
~ 

L:m~ (8) 

The expansion (8) contains in particular vector boson mass terms; the identification of the 

W mass directly determines the ueu 11 in terms of the Fermi constant GF which is known 

from the neutron {J-decay lifetime, Eq.(l). 

The physical spectrum is manifest in the U-gauge, or unitary gauge, where the 0 de

pendence of the last term in (3) is removed by a gauge transformation: 

cp-+ ~C). Cu = C(H, w, Z, ... ). (9) 

Higher order calculations are more easily performed in an R-gauge, or renonnalizable gauge, 

where the unphysical degrees of freedom 8; appear explicitly in the lagrangian: 

Cn = C(H,O;, W, Z, ... ). ( 10) 
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In the subsequent discussion I will make use of an "equivaleno::_e theorem" which states8 - 10 

that if one treats the 0; in Cn as if they were physical fields, S-matrix elements obtained with 

the 0; as external particles are the same, up to corrections of order m'fv.z/ Elv.z• asS-matrix 

elements with external longitudinally polarized W's and Z's (WL, ZL). 

We can combine the experimental value ofGF with the results (1) and (6) of the minimal 

theofy to express the lliggs mass in the form: 

mH = ~~~:::::: 
4
),rr TeV. (11) 

Since perturbation theory converges11 only if >./4rr < 1, the conventional wisdom is that 

the Higgs mass is less than about a TeV. This conclusion leads to the well-known gauge 

hierarchy problem, which arises because scalar masses have quadratically divergent quantum 

corrections; e.g., at one loop 

llm!,, •• = oA2/16rr2
• (12) 

Technically, this is not a problem in the context of the renormalizable standard model; one 

simply sets the fully renormalized Higgs mass at its physical value, assumed to be less than 

a TeV. However a small Higgs mass is unnatural when the standard model is embedded in 

a more fundamental theory with much larger mass scales, like the GUT scale or the Planck 

scale. In this context we need a mechanism for damping the quadratic divergence in (12); 

this mechanism should be associated with a scale A such that 

oA 2 < (4rrTeV)2
. 

The scale A must therefore be less than about 10 TeV unless the numerical factor a contains 

some suppression factor. 

There are three standard mechanisms that are invoked for addressing the gauge hierarchy 

problem: 

a) Compositeness. The loop corrections ( 12) could be sufficiently damped if the standard 

model is an effective theory in which the known fermions, for example, are composite objects 

with an inverse radius of confinement less than about a TeV. This possibility is disfavored 

by already existing experimental data, and I will not discuss it further. Possibilities for a 

cnlllJKISileness scale much larger than the scale of electroweak symmetry breaking will be 

dismssctl at this mccling by Pati. 
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b) Tecbnicolor.13 This conjecture invokes new "technifermions" with gauge interactions 

that become strong at a scale 

A - Arc - 250GeV ~ v. (14) 

c) Supersymmetry13 (SUSY). In this case the effective cut--QIT is the superpartner mass 

splitting: 

. ·:.A- '"fermi""-'"""""':: msuSY (15) 

which should be less than a Tev. Experimental searches at e+e- colliders indicate a SUSY 

mass gap larger than 20 TeV and data from pp colliders suggest a mass gap larger than 90 

TeV. 

Why does SUSY help? Fermion masses are protected by chiral symmetry from large 

loop corrections. For every free massless fermion there is a global symmetry of the theory 

under which the left and right banded fermions undergo independent phase transformations: 

qL -+ e;"qL, qn -+ e;IJqn. (16) 

Because a massless fermion cannot be brought to rest, there is no communication between left 

and right spinning components. Gauge interactions preserve this chiral symmetry, so they 

cannot induce fermion m898es in higher order. This means that to all orders the quantum

corrected fermion mass is proportional to the bare m889. For example, a fermion with bare 

m889 '"F gets a one loop correction of the form 

6mF = mFAin(A/mF), (17) 

where A- a/4rr, so that even with a very large cut-ofT, the order of magnitude of a fermion 

m889 is fixed by its tree-level value. The role of SUSY is to tie scaliU' masses to the already 

protected fermion masses via Eq.(15). 

When gravity is taken into account, supersymmetry implies supergravity; 14 the mn.~sless 

spin-2 graviton G has a spin-~ superpartner, the gravitino G, whose nonvanishing mass is a 

measure of the scale of SUSY breaking. This would seem to imply a constraint 

m~.l!;TeV, (18) 

which is disfavored by cosmological arguments15 unless the gravitino is lighter than about 

a keV. Before discuBSing bow the bound (18) may be evaded, I will brieny consi1ler the 

technicolor hypothesis and discuBS electroweak physics at the TeV scale. 

5 
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Tecbnicolor is based on the empirical observation of quark condensation in QCD. That 

is, quark bilinears have a nonvanishing vev's: 

< ~1/J >- A~co - 1: f. 0, (19) 

that break the global chiral symmetry SU(NF)L x SU(NF)n, where NF is the number of 

quark navors, down to ordinary SU(NF), under which right IUld left handed fermions of the 

same navor trllllsform in the same way: a= {J in Eq.(l6). To each broken symmetry there 

corresponds a Goldstone boson; there are Nj - I in this case and they are identified with 

the observed pseudoscalar mesons. 

In addition to the spontaneous chiral symmetry breaking induced by the vev ( 19), cbiral 

symmetry is explicitly broken by nonvanishing quark masses. In the real world, the up and 

down quark masses are small with respect to the QCD mass scale as determined by /w or 

llqco. Therefore cbiral symmetry is a good approximation for NF = 2, with the SU(3) 

triplet of pions as the Goldstone bosons. In this. case the quark bilinear vev of Eq.(19) 

transforms as a doublet under the electroweak g1lUge group SU(2)r. >< U(1). In the absence 

of any other source of electroweak symmetry breaking, the vector bosons IV, Z would acquire 

ma.'ISes of about 30 MeV by "eating" the pions, which would become their longitudinally 

polarized components. 

Tecbnicolor mimics QCD by replacing gluons by technigluons, quarks by techniquarks 

and pions by tecbnipions. The difference is in the scale at which the tecbnicolor interaction 

becomes strong: 

IIQco -fw ~ 100MeV -+Arc- v ~ 250GeV, (20) 

so that 

mw ~ JOMeV __. mw ~ BOGeV. (21) 

and the technipions become the longitudinruly polarized components of JV, Z. 

Let us return now to the "Mexican flat" potential of Fig. I, and consider what happens 

when the lliggs mass m,, and therefore the coupling constant~. becomes Mbitrarily large.". 

Quite generally, if V' is an n-component complex spinor: 

~{} 
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the lagrangian 

" "" ~( 2 2 2 C. = u,.'{Ju rp - 4 p - v ) (22) 

is invariant under the global orthogonal group S0(2n). Consider first the case n = I, with 

'fJ = :i2ei8/•. (23) 

If we let the coupling constant ~ -+ oo the field variable p is fixed at its ground-state value 

p=v, V i9/v 
'fJ-+ -lie (24) 

because quantum excitations about that value cost an infinite amount of energy. Then the 

remaining nontrivial part of the lagrangian, i.e. the kinetic energy term 

I c. -+ 28,.80"8 (25) 

describes a free massless particle. In the general case n > I, 

~~ ~,·~(} ~,·,{) (26) 

where 8 is an n >< n traceless her~itian matrix with 2n - I independent elements that 

correspond to the massless Goldstone boson fields Oi that arise when S0(2n) is broken 

spontaneously to S0(2n - 1). Then since 8 does not commute with its derivatives, the 

kinetic energy term in {22) is non trivial and contains derivative interactions: 

1 i c oioi ) c.-+ -a,.8 lJ"9'(6i; + ~ . 
2 V -v 

(27) 

This yields scattering amplitudes that increase with the center of mass energy E as E 2/v2, 

and partial wave tree unitarity is violated11 for E'):;.,jiv. 

For n = 2, that is, for the spontaneous symmetry breaking pattern 

S0{4) £!! SU{2) >< SU{2) -+ SO(J) £!! SU(2), (28) 

the lagrangian (27) describes the effective low energy (E:!f;GeV ~ m., etc.) theory for QCD 

with the identification 

lTJ,2,3 .... 01,2.3 

7 
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or 

~r,t,,~r0 .... 0,t,,fP. 

In the case that mH >> v, the same lagrangian describes the effective low energy (mw << 
E:!f;.TeV) theory for the longitudinally polarized vector bosons of the electroweak sector: 18•0 

wt.~ ..... o,!,,f1l. 

Strong w,_, z,_ scattering would occur9 at colliders via the Bremsstrahlung and rescat

tering mechanism of Fig. 2. The production rates for pp-+ z,_z,_ and WtWi plus anything 

! 
l 

I 

.... 
.. ''" ·-

~ 

Xwl,zl 
~ 

Figure 2 

Vector boson fusion process for diboson production via 

strong w,_, w,_ rescattering in fermion collisions. 
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..,,_ .. , .. ,,. .. , Figure 3•• 'n,__ .. '' 

IVt IVi and z,_z,_ pair production rates17 in pp collisions At . ../i = 20 

and 40TeV with a rapidity cut IYI < 1.5 and a cut-offA = 3TeV 
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calculated) have been neglected. Higher orders in the loop expansion entail higher powers of 

(A/47rv) ~ (A/7rTeV),ao the loop expansion converges for A~TeV. The one-loop corrected 

rates should therefore be approximately correct over the center~f-mass energy region 

m~v << E3 << A3~3TeV, 

where the cut~IT A represents the scale at which the effective theory defined by (27) breaks 

down. For example, A could be the actual physical Higgs mass m, or the mass scale 

of a richer resonance epectrum. Below this scale, the yields of Fig. 3 would produce an 

enhancement of the processes 

pp-t (~~)+X 
wz 

(29) 

relative to the "background" arising from qq annihilation into W, Z pairs, which scales M 

E-2 • An enhancement for invariant pair masses E > (.5- l)TeV should be observable0•18 

at the SSC operating at maximum design energy and luminosity. Note that the final states 

in (29) include W*W:i: pairs, which occur at a lower rate, but have no quark annihilation 

background. 

The lagrangian (27) [including gauge coupling~~ via the eubstitution (7)) WM obtained 

as a limit of a renormalizable theory, and the rates ehown in Fig. 3 can be obtained19 as 

well by performing the calculations in that theory, and then laking the limit m, _. oo. One 

obtains identical reeulls in this way making the identification mn = A. 

However,lhe reeulls are much more general than the standard model. They are valid10 

in any model in which the symmetry breaking &ector-I.e. the &ector of the eaten Goldstone 

bosons-has a global SU(2) >< SU(2) that assures the tree level relation: 

mlv = 1. 
p=: m}COB30., 

(30) 

Radiative corrections to (30) arise from gauge and Yukawa couplings that explicitly break 

the chiral symmetry. Therefore, if there is no Higga particle--or other state connected with 

the symmetry breaking mechanism-lighter than a TeV, the rates shown in Fig. 3 are quite 

generally valid up to corrections of order mw/E, (E/A)2 and p- l-and up to resonance 

effects. Depending on how closely a strongly interacting ,ymmetry breaking sector mimics 

9 
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the pion sector, one could expect, for example "(as in technicolor), a J = l resonance with 

mass 
tl 

mJ,.I ~ /.mP ~ 2TeV. (31) 

What's wrong with a strongly interacting minimal model symmetry breaking sector with 

m, >> TeV1 Aside from theoretical considerations that cast doubt on the consistency of a 

self-interacting scalar field theory, we cannot evade the gauge hierarchy problem in this way 

because we run into the same problem with quantum corrections. At one loop the effective . 

low energy lagrangian (27) is modified according to31 

Ccr.,,;.,.r _. ZCct + O(ln(A/v)) + finite. 

The factor 
Z = 1 + (l- N) A

3 

16w3 u3 

can be absorbed into a renormalization of the 2n - I fields 9; 

V'n... = z'"'· vn... = ztv. 

For n = 4 the renormalized ueu is related to the bare one by 

I the veu u: 

vn.., = (t - Al _2 ) v = (t - [~]J) u, 
u2 3271" 2 47ru . 

(32) 

(33) 

(34) 

(35) 

which cannot •naturally" be kept small if the correction-i.e. the cut~ff -is arbitrarily 

large. In the minimal model, the cut~ff is the Higga mass itself, and the corrections will be 

~0(1) for v ~ !TeV only if 

m,~wTeV. (36) 

The bottom line is that eome mechanism is needed lo damp quadratically divergent radiati,·e 

corrections and provide an understanding of the observed scale of 250 GeV. 

To gain further insight into possible mechanisms for suppressing scalar masses, consider 

why the pion is eo light. A good empirical formula for the pion mass is: 

'J- n1tl,d 1 

'"·- T."',· (3i) 

The ~quarro pion mass is suppresl!Cd by the ratio of the explicit chiral symmetry break

ing scale (the light quark mass m •. ~) relative to the scale (/.) of spontaneous symmetry 

10 
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breaking, Eq.(l9), that forces the existence of a would-be·massless Goldstone boson. This 

dimensionless ratio is scaled by the physical cut~ff, A ~ mp, of the effective low energy pion 

theory. 

To see how a similar mechanism could supplement the role of supersymmetry in sup

pressing elementary scalar masses, consider the action for N free, massless real scalars min

imally coupled to gravity: 

Sa=~ j ttz../9 (g"~lJ,.cplJ~cp- m~R), (38) 

where g,.~ is the space-time metric and R is the space-time curvature. Graviton exchange, 

Fig. 4a, gives a contribution to scalar self energies. In unbroken supergravity these contri

butions are exactly cancelled by gravitino exchange, Fig. 4b. When SUSY is broken and the 

gravitino acquires a mass, the cancellation is no longer exact, and one expects a contribution 

to the scalar masses of order 

__ .,_- ··-~-,---~- + 
_.__o~~- + 

G 
_4>c -0-! __ 

~. 

+ __ 0~! 
( bl 

lu 

Figure 4 

Contributions to scalar (cp) self energy from (o) gravition (G) and (b) 

gravitino (G)Ioops. In Fig. 6b )(; is the fermionic superpartner of cp;. 

mt Al 
m , ..... .;..JL_ 

ocolar 16ll'2 mJ.. 

+ ... 

(39) 

If there is no other scale in the theory, the cut-i>ff is presumably equal to the Planck mass 

mp, suggesting (instead of (18)) the bound 

mc~lOTeV (40) 

to assure scalar masses below a TeV. 

However the action (38) (as well as its supersymmetric extension) is invariant under 

global SO(N) transformations among the scalar fields. This means that the fully quantum 

corrected effective lagrangian can depend on the scalar fields only through invariant field 

operators: 

Lefl = LeiJ(L lcp;l2 
1 L IJ,.cp;IJ";p', ... ). (41) 

i 
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If the lagrangian (41) is such that the energy density is minimized for a scalar field configu

ration with 

< ,.,,, >,; 0, (42) 

the global SO(N) symmetry will be spontaneously broken to SO(N- I) and there must be 

N- I massless Goldstone bosons. Explicitly, one can use an SO(N) transformation to cast 

the vev's of the scalar fields in the form 

<•>{l (43) 

Then only cp1 acquires a mass of the order of (39), and the other scalara remain strictly 

massless to all ordersn in the effective theory defined by the supenymmetric extension of 

the action (38). 

In the real world scalars have other interactions, in particular gauge interactions, that 

explicitly break the global SO(N) symmetry and might induce scalar masses of order aA2• 

Suppose however that the gravitino acquires a mass through the vev of a gauge singlet 

scalar and that SUSY is unbroken in the gauge sector. One loop contributions to the scalar 

masses from the gauge-gaugino sector cancel because of SUSY. At two loops there can be 

contributions involving both the gravity sector, which knows that SUSY is broken, and the 

gauge sector, which breaks SO(N). Their combined effects might be expected to generate 

scalar masses of order 
a A, 

2 -1· '"""'tar"" (41f)3mp (44) 

implying a bound 

'"6~10STeV, (45) 

which at least is weak enough to avoid problems with cosmology.23 

One anticipated source of scalar masses at the two-loop level is from gaugino masses 

generated at one loop, which are o priori of the form: 

Al m'L 
"'a= orna-2 + -f(bln(A2/rn~) +c) 

mp mp 
(·16) 

with o,b,c of order 1/16 .. 2 • However it was noted14 some time ago that gravitino loop 

contributions to the coefficients a and b of the din~rgent terms cancel. If this were the only 

12 



two-loop contribution to the scalar masses, it would suggest 

o m'!. 0 ] _Q 

m!.,, •• "' 471" ma"' (4~r)3m~. (<17) 

giving a bound 

"'" ~ l014
GeV. (18) 

In fact, it was subsequently shown15 that the gravitino loop contributions to m 1 cancel 

completely. On the other hand, the real world is still more complicated. Sca.lars also have 

Yukawa couplings-needed in the standard model to generate fermion masses-but the above 

discussion illustrates how the cancellations provided by supersymmetry may combine forces 

with partial global symmetries of gravitational couplings so as to strongly suppress scalar 

masses. In the remainder of this talk I will discuss a cla.'lt'l of models suggested by superstring 

theory28•17 that possess such features. 

SUPERSTRING-INSPIRED MODELS 

The most popular candidate at present for the TOE is a string theory, according to which 

elementary "particles" are not particles at all, but rather the lowest vibrational modes of 

tiny strings that have an extension o£ the order of the Planck length, about I0-33cm. When 

supersymmetry is included, this "superstring" theory provides the only known possibility 

for a consistent quantum theory of gravity. It suggests that space-time is actually ten 

dimensional, but with six dimensions curled up with a radius comparable to the Planck 

length. 

Effective four dimensional field theoriesD suggested by superstrings typically have gauge 

groups much larger thBD that of the standard model. Part of the symmetry can be broken 

by the so-called llosotanl or Wilson-loop mechanism,29 in which lines L of gauge nux are 

trapped around holes in the compact six dimensional maJiifold: 

< [JL"'A.., >~0, (<1!1) 

where m = 4, ... , 9 is a Lorentz index in the compact manifold. In the four dimensional theory 

the vev ( 49) has the effect of an adjoint lliggs. The gauge bosons corresponding to the broken 

symmetries acquire masses on the order of the compactification scale fiGUT· The remaining 

unbroken gauge group is assumed to be broken further to the standard model hy conventional 

Higgs mechanisms; the corresponding gauge bosons may have masses in the TeV region and 

13 
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thus be observable at proposed supercolliders. There may also be additional generations of 

quark and leptons, depending on the topology of the compact manifold. "Massless" modes 

in four dimensions-i.e. those that end up with masses much smaller than the Planck scale

correspond to zero eigenfunctions of the Laplacian on the compact manifold: 

9 cP 
E JT'P=O. 
"':4 z'" 

(50) 

The number of solutions depends on the number of holes in the manifold. In the following I 

will denote by y; the complex scalars (squarks, sleptons, Higgs, ... ) of the "observed" sector. 

In addition, superstring-inspired models contain a "hidden sector" of particles that 

couple to ordinary matter only with gravitational strength. These include the dilaton ~ of . 
ten dimensionalsupergravity and various scalars aseociated with the topology of the compact 

manifold. One of these is the "breathing mode" or "compadon" u whose vev determines 

the overPJI size of the compact manifold: 

r"' 8~rG,., < e1 
.. >...,.:: mf.1 < e2 

.. >.., •. (51) 

The scalars 

"= 2ReS = 2.(>-fe"", t = 2ReT = 2~fe .. + fyl2
, (52) 

form30 two gauge singlet chiral supermultiplets together with their fermionic partners and 

two pseudoscalars that are the four dimensional relic.t of an antisymmetric tensor field AM,.,, 

AI, N = 0, ... 9, of the ten dimensional theory: 

8,.ImS ere t:;._..,A..,, 

lmT ex t
1"'Ar..,, (53) 

where t 1"' = 0, ±I is a normalized antisymmetric tensor. 

In heterotic string27 inspired models there is also a hidden matter SE"Ctor assumed to 

consist only of the gauge bosons and their gaugino superpartners. The hidden gauge group 

is ~ or some suhgroup thereof. If it is at least as large as SU(3) it is Mymplotically free 

and therefore becomes strongly coupled, like QCD, at 110me scale A •. One expects31 that, as 

in QCD, the strongly coupled fermions (the hidden gauginOfl) conden5e at this sca.le: 

d g >:".:~""'ex h ~ 0. (S.I) 

11 
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The vev (54) spontaneously breaks supersymmetry. Another conjectured33 source of SUSY 

breaking is a nonvanishing vev of the antisymmetric three-form ll1mn = B!Amn: 

< H >....,occ~O (55) 

via a mechanism similar to the gauge symmetry breaking via Wilson loops, Eq.(49), except 

that the 1/-flux is trapped over a three dimensional surfaceS in the compact 6-manifold, 

and satisfies a quantization condition33 of the form: 

<Is d51m"Himn >= 2~rn. (56) 

Either nonvanshing vev (54) or (55) by itself would induce a positive cosmological con

stant, but together they can conspire to cancel the vacuum energy in the presence of SUSY 

breaking. Dine et al.32 used these ideas to obtain an effective supergravity theory for the 

observed sector in four dimensions with a scalar potential which is schematically of the form 

(in reduced Planck mass units: m~ = I): 

V = ;(t -IYI3
)-

3 
{ (t -·IYI3)(g2 IYI4 + G} lul4' + !Gyy3 + c + /(-')hn (57) 

where g and Gy generically represent the gauge and Yukawa coupling constants, respectively. 

Note that the potential (57) is the sum of three positive semi~efinite terms. The first two 

terms, proportional to IYI\ force y; = O•at the ground state. Then the third term, 

1 
V(y = 0) = 3lc + /(-')hl3 = U, 

"' 
(58) 

determines a relation among the parameters c and h and the vev of 3: 

< c + /(.,)h >=< ut >= o. (59) 

The tree level vacuum has the following features: 

a) The cosmological constant vanishes: 

< V>=<U >=0. (60) 

b) The gauge nonsinglet scalar masses vanish: 

, CPV 
mw = ( 8yl )...,. = 0 (61) 
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because the only quadratic dependence on the y; is in the mpltiplicative factor (t - 1!!13 ) 

whose coefficient vanishes at the ground state. This feature is related:J.t.:JS to the fact that 

the potential (57) is partially invariant under a nonlinearly realized "Heisenberg" symmetry 

under which the scalars transform as: 

6y; = o;, 6t = y;o; + ojy;, (62) 

with the y; as Goldstone bosons. Since this symmetry is explicitly broken by gauge and 

Yukawa couplings, one would expect scalar masses to be generated by quantum corrections. 

c) The gauginos of the observable sector are massless; their masses can be 'shown to be 

given by 

m 1 =<lUi I>= 0. (63) 

As a result the gauge interactions will not induce scalar masses at one loop. 

d) There are no ."A-terms", that is, terms cubic in y that are proportional to the· 

"superpotential" W(y), represented schematically in (57) by the term Gyy3 • Specifically, we 

have 

V = l.,.:.tt-!Gyy3 + Uil3 + O(y4) = 2Gyy3 < .,-t,-!ut > +.... (64) 

The first term on the right in the expansion (64) is the A-term. Its vanishing, as for gaugino 

masses, is directly related to the vanishing of the cosmological constant, Eq.(60). 

d) The vev of the field t is undetermined at tree level, and so, therefore are the vari

ous scales of theory. These are the compactification scale (or GUT scale, where all gauge 

couplings-both hidden and observed- are unified): 

AGUT- r-• - e_,.,mp =< (.!t)- 1 >, (65) 

the scale of hidden gaugino condensation: 

-6 1 -JS 
!I.e- e >tor /\aliT-< (.!t)- erp{ 

2
/Ju ) >, (66) 

aud the gravitino mass: 

m., =< (.!1 3 )-'j(.,,h) >. (67) 

Biuetruy, Dawson, llinchliiTe ami I have studied38 one-loop corrections to the effective 

lht'<lry described above. These are of course infinite, because the theory is nonrenormalizable. 
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However, if the underlying theory is finite, the apparent divergences of t.hc elfcdivf' throry 

should be damped at the physical scales /\ 0 and Aaur above which the effective low cncrgy · 

theory is not valid. We can hope that, as for the (gauged37 or ungauged21 ) nonlinear sigma

model of Eq.(27), loop corrections evaluated using the effective low encrgy theory correctly 

reproduce the low energy limi~ of loop corrections to the underlying (finite or renormalizable) 

theory, when the CUt-Qrr 1\ i~ replaced by the appropriate physical scale. This scale is known 

only as to order of magnitude-the precise value of the cut-off depends on the details of the 

way in which contributions from the physics above that scale cancel the apparent divergences. 

We have therefore introduced "uncertainty factors" '1 in our analysis, e.g. 1\ --+ 'ltAe or 

'121\aur. to cover our ignorance. 

Quite generally, we found that the ground state equations for the one-loop corrected 

effective potential admit three possible solutions: 

1) The potential is unbounded from below, which means an infinite, negative cosmologi

cal constant, and the gravitino mass is infinite. This is obviously not a physically acceptable 

solution. 

2) There is a unique global minimum with vanishing cosmological constant and vanishing 

gravitino mass. This is equally unacceptable because if SUSY is unbroken at tree level, it 

cannot be broken perturbatively to any order. The point is that, aside from the constraint 

(58), the nonperturbatively induced vet/a (54) and (55) are undetermined at the classical 

level. If the classical degeneracy is lifted at one-loop in a WRY that forces them to vanish, 

higher order corrections cannot change this situation. 

3) The potential is positive semi-definite with a degenerate ground state. The gravitino 

mass (67) can be nonvanishing but its value, as well as that of the other scales, (65) ;md (66), 

·remains undetermined. However most of the tree le.vel degeneracy is lifted, so that ratios 

of scale9 are determined at one loop. Moreover, because of the quantization condition (56), 

the vacuum degeneracy-which is conceivably related to the vanishing of the cosmological 

constant-is discrete for a given compact manifold. This means that there is not an a.•soci· 

ated massless Goldstone boson, as would be the case for a continuous vacuum dq~cneracy, 

if it persisted to all orders in perturbation theory. 

The content of the (hidden plus observed) matter spectrum det.ermines whether of not 

1) is the case. If it is not, Ute choice between 2) and 3) depends on the details of the cut-olf 

mechanism, i.e., on the "uncertainty parameters", which for consistency should be of tl1e 
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order of unity. We searched numerically for solutions of type 3), which indeed were found 

for 'I ~ I and values of the gauge coupling constant at the GUT scale: 

0GUT =< (4ru)-l >~ (0.06- J). (68) 

The potential for a sample solution is shown in Fig. 5 in the (c,t- 1 ex m~3) plane. For a 

given topology of the compact manifold, allowed vaccua correspond to intersections of the 

< V = 0 > valley in the potential with lines of constant c: 

Figure 5 

The one-loop effective potential in the (c,t- 1) plane for fixed values of the 

other dynamical variables in the case where a minimum exists for finite m0 . 

c = n6c, 

where the quantization condition (56) determines the increment 6c: 

6c ~ JoJf. 

(69) 

(iO) 

The factor loJ in (70) comes from various factors of ,.. , and I is the inverse ratio of the 

surface integral over dS in (56) to the square root of the six-dimensional volume integral 

over the compact manifold /llfl: 

f = l.lr . .f:r#) l I Is dS'm"frm" ~I. (II) 

Onre the value of cis fixe<! (possibly by cosmology?), all the scales of the erfccth·E' low energy 

thC<lry nre fixal; we lind for the numerirnl solutions: 

I I 
"'~ ~ 3/\c ~ 101\aur- (0.07- 1.8)mp/vrc. (i2) 
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where pact of the uncertainty is connected with the size of the gauge group in the hidden 

sector {the larger the group, the smaller the gravitino mass). Using (70) and (71) this gives 

ma ~ (2- 60) X I0-3mp/,fii- (0.4- 12) X 1016GeV/../ii. (73) 

Assuming a solution of type 3), we can expand the effective one-loop corrected la

grangian around its ground state configuration to study sort supersymmetry breaking terms 

in the observable sector. To do this we have to consider two different energy scales of the 

effective four dimensional theory. The tree potential (57) is valid below the scale Ac of gaug

ino condensation. Loop corrections for this effective theory in fact generate no observable 

soft SUSY breaking for reasons very similar to those operative at tree level. Scalar masses 

vanish at one loop38 due to a combination of elfects:35 SUSY prevents the gauge and Yukawa 

sectors from generating one-loop scalar masses; the partial Heisenberg symmetry, Eq.(62), 

forbids mass terms to arise from the coupling of scalars to the gauge singlet sector; and 

finally matter-hidden sector interFerence ter11111 vanish due to the tree level condition (59). 

The vanishing of gaugino masses and A-terms at one loop, as at tree level, is directly related 

to the vanishing of the cosmological constant at that order.38 

Between the scale Ac and the compactification scale AGUT, the effective theory is a four 

dimensional supergravity theory with freely propagating hidden gauginos: h = 0 in Eq.(57). 

Including one-loop corrections from this region does not change38 the general features of the 

possible solutions 1)- 3) above. (In fact these additional corrections appear to be necessary 

to avoid36 the unacceptable case39 1).) Their contributions to soft SUSY breaking in the 

observable sector have not yet been fully evaluated. Here I will offer some educated guesses 

as to the result, and assign my own personal confidence levels to the various possibilities. 

In this spirit, I predict (95% c.l.) that one-loop corrections in the effective four dimensional 

field theory generate no scalar masses or A-terms. The situation regarding gaugino masses 

is more uncertain; the possibilities are: 

1) (10% c.l.) Gaugino masses get quadratically divergent corrections and are therefore 

of order 
m-Al 

mj- G GUT (4rrmp)l - (109
- 3 x 1013) TeV 

113/l' 

This would in turn generate a two-loop scalar Higgs mass of order 

(
80- 2500)

3 

(mHh-toop ,Jni TeV. 
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(74) 

(75) 

·-· ~'-"· 

2) (40% c.l.) Gaugino masses are at most logarithmically divergent at one loop and 

there fore of order15 

m3 
mg- ___jL_- (10'- 3 x 1011) Tev 

(4rrmp)l 113/l' 

generating a lliggs mass of order 

)

3 

17-550 TeV. (mHh-toop- ( ,fni 

(16) 

(77) 

The numerical estimates in Eqs. (74)-(77) are based on the results (69)-(73) of our 

analysis36 using a specific approximation to the <!ne-loop potential. To the extent that 

this numerical analysis can be trusted (which is much less reliable than the more general 

qualitative results), we need a factor ranging between 15 and 2500 (modulo various other 

uncertainties) in the parameter ../c oc ,Jni, in order to get a Higgs mass less than .a TeV. 

or course n and therefore c could be arbitrarily large, and therefore me arbitrarily small. 

However Eq.(72) suggests that me cannot be much below the GUT scale, which we expect 

to be closer to the Planck scale than to the TeV scale. It is interesting that the minimum 

value of c suggested by (70) and (71) assures as least a mild hierarchy among the Planck 

scale and the GUT or gravitino mass scale, which could be magnified, via, e.g. Eq.(ii), into 

a sufficiently large hierarchy between those scales and the scale of electroweak symmetry 

breaking. 

llowever there is a third possibility, namely 

3) (50% c.l.) No gaugino masses ace generated by one-loop corrections in the effective 

four dimensional field theory. Then scalar masses may occur only at a very high order in 

perturbation theory, with many factors of (4~r)-1 - 10-1 accounting for the observed gauge 

hierarchy. or course there may be other sources00 of two-loop contributions to scalar masses, 

but~ we don't fully understand the origin of cancellations that occur at the one-loop level, 

there is no way of guessing the contributions of higher order t'ffects. It may turn out that tht" 

dominant contribution to scalar masses comes from higher 1\aluza-h:lt"in or string modes, 

t'ntailing high<'r pow<'rs of rne/rnr as supprt"Ssion factors. 

The m;\in lesson to J,., drawn from this discussion is th.~t there ace a variety of mech

anisms in clfectin• supt•rgra,·ity tht'<>ri{'!l inspirCtl by superstrings that might prO<Iuce an 

dedrowt·ak hrcaking st·ale that is very much •maller that the natural scale or the tht'Ory, 

n;uuely Uu:- Planck ma-'s. 
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