
tr. 

j 
i 

·J 
I 

Submitted to Journal of Chemical Physics LBL-2578 
Preprint l'.Y 

SEMICLASSICAL THEORY OF COLLISIONALLY INDUCED 
FINE-STRUCTURE TRANSITIONS IN FLUORINE ATOMS 

Richard K. Preston, Chris Sloane and William H. Miller 

February 19 74 

Prepared for the U. S. Atomic Energy Commission 
under Contract W-7405-ENG-48 

RECEI V t::t..J 
LAWRENCE 

RADIATION lABORATORY 

MAR 5 1974 

LJBRARY ANO 
DOCUMENTS SECTfON 

TWO-WEEK lOAN COPY 

This is a Library Circulating Cop 
which may be borrowed for two ~eeks 
For a personal retention copy, call . 
Tech. Info. Division, Ext. 5545 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



"' 

" 

-iii- LBL-2578 

SEMICLASSICAL THEORY OF COLLISIONALLY INDUCED FINE-STRUCTURE 

* TRANSITIONS IN FLUORINE ATOMS 

+ 
Richard K. Preston, Chris Sloane, and William H. Miller· 

. . . 
Department of Chemistry, and Inorganic 
Materials Research Division, Lawrence 

Berkeley Laboratory; University of California, 
Berkeley, California 94720 

ABSTRACT 

A calculation of fine-structure transitions in F atoms 
+. . 

impinging on both Xe and H has been carried out using a novel 

semiclassical theory which was proposed recently by Miller and 

George. The theory has the advantage of being conceptionally 

simple and applicable to a wide class of situations. For Xe 

2 + F the cross section for the P
312 

2 
~ P

112 
excitation of F 

02 
rises from its threshold (0.05 eV) to a value of - 0.1 A at 

a collision energy of 0.5 eV. + The cross section for H + F 
02 

is much larger, reaching a value of - 1 A at a collision 

energy of 0.25 eV, in reasonable agreement with recent quantum 

mechanical calculations. 
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I. INTRODUCTION 

Fine-structure t-ransitions can play an important role in 
) 

·inelastic· atom-atom collisions at ·low energy, and there has been 

considerable theoretical effort expended in the,description of 

. 1-3 ' this phenomenon. . ·In the last year, for example,, two quantum 

mechanical studies have appeared which solve the coupled equations 

, numerically with realistic molecuLar interactions; Mies 4 investi-

+ . . . 5 ..., * 
gated transitions in the F + H -system while Reid studied the Na + He 

system. 
. 6,7- .. 

It has also been noted that fine-structure transitions 

can play a significant role in atom-diatom c-ollisions, such as 

(1.1) 

' 

by determining the fraction o.f incident ·atoms that actually. enter 

on the reactive potential energy_surface. 

This paper reports calc:ulations of cross sections for the 

low energy processes 

utilizing the semiclassical model recently proposed by Miller 

d 8 .an George. Fine-structure transitions present an interestins 
) 

and challengj~g test for the semiclassical model, for here there 
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is no obvious "avoided intersection~' of the adiabatic potential 

curves.- Nevertheless, the transition is localized and can be 
'-

described as taking place at a "complex crossing. point" of the 

adiabatic potentials. 9 

This semiclassical treatment is, of course, not as accurate 

as a fully quantum mechanical coupled channel calculation which 

can be-readily carried out for these atom-atom systems, but it 

' ' 
has the advantage ~hat it can be applied to more general colli-

sion systems, such as Eq. (1.1) above, while still incorporating 

the full classical mechanics {)£ all the' heavy particle degrees of 

,freedom. (A fully quantum mechanical coupled channel treatment 

for ~n atom-diatom system is unrealistic because of the large -

number of rotational and vibrational states of"the diatoni.) To 

the extent that the semiclassical desc~iption of electronic transi-

tions is accurate~ therefore, .there is the possibility of extending 

models such as Tully and Preston's trajectory "surface-hopping 

model"10 to treat no~adiabatic transitions between potential 
1 

energy surfaces that have no avoided intersection. 

Section II first summarizes the semiclassical theory as it' 

appl~es Fo atom-atom collisions, and the potential curves which 

are used are described in Section III. The results of the cal-

culations are presented and discussed in Section IV and Section 

-v, and-Section VI summarizes the results and conclusions. 

,• 

... 

'~ 



~ I 

-3-
/ 

IL SUMMARY OF SEMICLASSICAL THEORY. 

For electronic )transitions in low energy atom-atom collisions' 

' . 8 
Miller and George'~ treatment reduces essentially to Stuckelberg's · 

. 11 . . 8 
model. (The principle emphasis of their work was to extend 

. this, withiri a dynamically exact description of heavy particle 

,_ 

dynamics, to more general, for example atom-diatom,_collision 

syst,ems.)" Thus if v
1 

(r)and v
2 

(r) are the adiabatic potential 

' 
curves for electronic.states 1 and 2, the 1-+ 2 electronic transi-

tion takes place along the classical trajectory which changes 

potential curves at the complex crossing point r*' _Le., the root 

of 

(2 .1) 

r* must be complex since adiabatic potential curves of the same 

symmetry do not cross. The probability amplitude ~for the transi-

tion i~ the exponential of the classical action along this 

trajectory, 

e i~/-1\ (2.2) 

since the trajectory is complex valued..:.-because it must pass 

through (or around)/ the complex crossing point-..:.the action ~-

_I 

is complex,- so that the transition probability is 

I i~/fi 2 . 
e I = exp ( -2Im~/-K) (2. 3) 
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This exponentially damped form for the non-adiabatic transition 

probability is reminiscent of a tunneling probability, and such 

8 9 
transitions actually emerge in Miller and George's theory ' as 

a "classically forbidden" process, a generalized kin9. of tunneling •. 

By taking account of conservation of angular momentum--the 

orbital angular momentum of relative, translational motion--atom-

atom collisions reduce to-one dimensional dynamical systems. 

The classical trajectories of the system are thus given explici_tly 

by quadrature: the action integral_ ~long a trajectory'is a radial 

phase integral, 

(2.4) 

where ~ (replaced by ~ + 1/i. in actual calculations) is the orbital 

angular momentum. ILr0 , t~e real part of --.th.e complex crossing 

point 

/ 

(2.5) -

is classically accessible on both adiabatic potentials (including 

the cen~rifugal potential)--i.e., if 

{2.6) 

i = 1, 2--th~n the radial trajectory actually passes the crossing 

• 
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region twi~e, once on the way in and once on the way out. Therefore 

the net amplitude, or S-matrix e-lement, for the 1 -+ 2 transition is 

the sum of two terms similar to that in Eq .- (2. 2) (setting .-h = 1): 

with 

s2 1 (i) =~Pi (1 - pi). exp ric~> Ci> 1 
t . - · in 

+~pi(1 - pi) exp ["i.cj> t (i)] 
ou 

~~-~~) ~ tL) "~ \ ~ - -I'll\ . 

ro 
+ 2! 'dr' k

2 
(r~) 

r2 

)2.1} 
' 1i/ ' + -t ...... ~ 

(2 .Sa)_ 

~· r r 
= - ~\- k r - k r + f dr'. k

1
- (r') + f dr' k

2 
(r') 

I 4/ 1 2 ·· \....__./' ro ro 

ro 
+ 2! dr' k

1 
(r')' 

r1 

k -= k (eo) 
i' i 

(2~8b) 

(2.9) 



-6-

where r + co in Eq. (2. 8); r 
1 

and r 
2 

are the class-ical turning 
. . 

points on v
1 

and v2 respectively. Pt in Eq. (2. 7) is of the 

form in Eq. (2.3), 

Pt = exp [-2Im~(R.)] (2.10) 

and it is easy to show that the imaginary pa~t of the action 

aloJ:?-8 the complex trajectory is 

Im~(R,) = Im f dr [k
1
(r)- k2 (r)] 

ro 

r* 
= -i/ · dr Re [k

1 
(r) - k2(r)] , 

ro 

, [Note that -idr is real and posit'ive in Eq. (2 .11) .] 
,I 

cf>in(R.) and cf>out(R.) in eqtmtion (2. 7) and (2.8) are the 

of the action integrals ~Llong this co.mplex trajectot'y. 

(2.11) 

The phases 

real parts 

The prob-

ability factor associated with each 'term in Eq. (2.7) corresponds 

to the fact that each trajectory makes a non-adiabatic transition 

during one passage through the crossing region and does not do so 

'during the other pa~sage. 

The cross section for the 1 + 2 transition is constructed from 

the S-matrix in the usual fashion: 

co 

(2 .12)/ 
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-
Because many ~'s contribute to the partial wave sum for atom-

atom collisions·, it is 'convenient (and essentially no approxi-
I 

mation) to replace the sum by integral,' whereby Eq. (2.12) 

becomes 

02 + 1 == /db 27Th p2 l_(b) 
. 0 ' ' ' 

(2.13) 

where' 

,, 
'; 

b = ~/kl 

P2,l{b) = ls2,1<~>12 (2.14) 

From Eq. (2.7) one has 

(2.15a) 

(2.15b) 

with 

r 
0 ro 

l' .. I dr kl (r) f dr k
2

_ (r) 0 

!· (2.16) 
r·. 
l ~ r2 

in many cases the interference term (the second term in Eq.' (2.15b)) 

is quenched by the imp~ct parameter integration, so that Eq. (2.15) 



- / 

-8-

,effectively becomes the classical result 

(2 .17) 

Eq. (2.7) applies orily if r 0 is classically accessible on 

both adiabatic potential curves (i.e., r
1

, r 2 < r 0); if_it is 

classically acces~ible on neither ~r1 , r 2 > r 0), then the transi

tion must proceed by tunneling. In this case the transition 

involv~s only one complex trajectory, and. the S-matrix element 

is thus given by 

s2 1 (1) = exp [i~(1)] , 

where 

or 

r 
~(1) = - k

1
r - k

2
r +I 

r* 

-r 
~(1) = - k r - k2r + f 

1 
rl 

rl 

r 
dr' k

1 
(r') + f 

r* 

r 
dr' k (r') + f 

1 r2 

r2 

dr' k (r') 
2 

- if dr' K (r') + if dr' K2 (r') ' 1 
r* r*-

/ where r ~ oo, and where 

(2.18) 

(2.19) 

(2.20) 

--
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(2.21) 

The transition probability is then given by 

P2 1{b) = exp [-21m~(~)] 
' 

. ' (2.22) 

and from Eq. (2.20) one finds 

r2 rl 
Im!p(~) = I dr K

2
(r) I dr K1(r) 

"\ 

. ro ro 

r* 
il dr' Im [K2(r)- K

1
(r)] (2.23) 

ro 

For the intermediate situation that. r 0 is classically accessible 

on the lower po~ential v
1 

but inaccessible on the upper potential 

v2--i.e., r
1 

< r
0 

< r 2--one needs a uniform semiclassical expres-

sion which interpolates between Eqs.- (2.7)-(2.8) and Eqs.J (2.18)-

(2.22). This is not difficult; however, and is.described in the 

Appendix •. 

At sufficiently high collision energy it is. possible to. 

simplify the above expressions. With regard to Eq. ·(2 .11), for 

example'; note that 

. 2 2 
- k2 (r) = [k1 (r) - k 2 (r) ] I '[k1 (r) + k

2
(r)] 

~m . . 
= 2 /1V(r) I [k1 (r) + k2(r)] 

...ri 

·~ 6.V(r) 1 -llv (2.24) 
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where· 
I , 

(2.25), 

is the average velocity at r
0 
•. Eq. (2 .11) then becomes 

r* 
Im~(R,) = ~v)-1 (-i)J dr b.V(r)- (2.26) 

r.o 

An even cruder, but simpler (and therefore more popular) hig~ 

energy a,pproximation results .if one takes the average velocirY 

v to be the free particle velocity 

. 1/2 . -
where v "= (2E/m) is tl:,e asymptotic velocity. At high collision 

energy it isJalso necessary to modify the expression for Pt (see 

Section IV). 
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III. ADIABATIC POTENTIAL CURVES. 

To deseribe' the fine-structure transition 

J 

(3-.1) 

where A is a rare gas atom, one needs the Born-Oppenheimer · 

potential curves which take acco~nt of spin-orbit coupling 

in the F atom. A full, ab initio calculation including spin-, - . 
orbit interactions is a considerable undertaking, but the 

' ' ' -

following simplified approach is usually reasonably accurate. 

The Born-Oppenheimer electronic Hamiltonian (i.e.,. the full 
j \ 

Hamiltonian minus the kinetic energy of the nuclei) is of the 

forui 

(3.2) 

where H is an ordinary electrostatic Hamiltonian (electronic stat 

kinetic energy plus the coulomb interactions of electrons and 

nuclei) and H
50 

~a spin-orbit operator for an isolated F atom: 

(3.3) 

where L and S are electronic orbital and spin operators for the 

-1 
F atom and ~ = 404 em . is the fine-structure splitting in an 
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igolated F atom. If lj,mj> denotes states of total electronic 

angular momentum and its z-projection, then it is not difficult 

to show that the matrix representation of the 'electrostatic 
' . 

Hamiltonian/ in this basis, is 

<j 'm 'I H I j mj> = j stat 0 ' ' mj ,m_. 
' 'J' 

(3.4) 

where the C's are Clebsch-Gordan coefficients and vlmR.I are the 

eigenvalues of the el~ctrostatic Hamiltonian; i.e~, v
0
(r) and

v1 (r) are'the -~ and IT potential curves, ·resl?~ctively, for F - A 

obtained by ignoring spin- orbi_t coupling. The spin- orbit 

Hamiltonian is completely diagonal in this representation: 

• (3.5) 

The total Hamiltonian is thus completely diagonal in m and 
' ' ' .j 

is designated as 
e 

H (mj) 
j ',j (3.6) 

.. 

I 



J.. . . 

/. 

.-13.:.. 
/ 

3 I . . . 3 I 

For m. = 
2 

__ , j and j' cari only take on the value l' so that the m_atrix 
J ' -

,is' one ciimensional. · Thus 

(3 .,7) 

"/. 

\ . 

is one of the eigenvalues. _ For mj = ·1/2, j and j' can ta~e ·on . 

values 1/2 and- 3/2, so H(l/2 ~ is two dimensio~al witp _elements 
::::: 

(3.8a) 

'......,_· .. 

{) 
... ' 

1 - . 

. 2 . 2 
H3 3 = 3 vr (3~81>) 

. ' 

H (~). H (t). --Ji(v - v") 
1 3 , 3 1 , . '3 II ~.. 

(3.8c). 

2•2 2'2 '· 

' the eigenvalues of this·2 by 2'matrix are easily found to be 

'·, 

Since 

R.:lm vi: (r) =· R.im VII (r)' = 0 
r;-+oo I""~ 

, . .(3.10). 

,( I '-

,.,_ 

' -._· . 
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these two eigenvalues asymptotically become 

(3.11) 

2 2 ) 
the energy levels of P112 and P3/2 F ato~s, respectively, 

referred to atom A and the "center of gravity" of the F(2P) 

manifold. 

The 2P
312 

+ 
2P

112 
transition thus takes place within the 

m = 1/2 block of the Hamiltonian matrix. 
j c 

denote the two adiabatic potential curves givert by Eq. (3.9), 

then the complex crossing point is the root of 

=· 0' (3 .12) 

· which is also equivalent to 

(3.13) 

• 

If ll is fairly large, as it is in the. present case, then the 

crossing point will "occur at sufficiently small r for the r - rr 

splitting to be determined by electron exchange interactions. 

In such cases the splitting is often well approximated as a simple 

exponential function 



r . . , 

.. 

) 
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(3.14) 

and with this form one sees that the roots of Eq. (3.13) are 

-1 1 
± i cos "'- ( - 3)] (3.15) 

. With the E - IT splitting assUI11ed to have the form in Eq. (3 .14) 

it is possible to evaluate the imaginary part of the action 

interval explicitly within the high energy approximation: 

r* 
Im~ (~)/~ = (~v)-1 (-i)! dr 6V(r) 

ro 

and with Eq: (3.14) and Eq. (3.15) this becomes 

. 1 
; CCJS -1(- 3) 

I "- c·n) IM 6 f dX [ 2iX + ! iX + l] 1/2 . m'~' ,. I'll ::: -flvJ. e . 3 e . 
0 

(~'IT) 6 =---rivA 

(3.16) 

(3.17) 

so that the high energy approximation to the non-adiabatic 

transition probability is 
) 

pR, a exp. [- 2Im~ (£) /.fl] 

= exp (- j'IT -fl~A ) (3.18) 

I 

. •' \ 
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1 b . d b N"l. . l a resu t o ta~ne y ~<lt~n. At energies so large th~t Pi 
is not small compared to 1, however, it is necessary to use a. 

. \ . 

renormalized version which takes proper account of crossing 

points further from the real ax,is; this has been discussed 

. 12 
by Nikitin~ and for the present case is 

pR. = [exp (-'2Iril<I>) - exp (-3Im<I>)]/[l- exp (-3Im¢)] .(3.19) 

In order to apply the semiclassical expressions summarized 

.. in Section II, either ~xactly or. within the. high energy approxi-

) -

mat-ion, it is necessary to analytically continue the adiabatic 

potential functions _v1 (r) and v2(r), first in order to find the 

complex root of Eq. (2.1) and then in order to evaluate the 

integrals in Eq. (2 .11) or Eq ~- (2. 26) ; only f:.V (r) must be 

analytically continued in order to_ compute the_ approximate 

result [(Eq. 2.26)], whereas both v1 (r) and v2 (r) are separately 

required in the more correct version, Eq. (2.11). It.is often 

possible to fit the adi,abatic potential functions to simple 

analytic forms, as was discussed above, and in such cases the 

analytic continuation of the adiabatic potential curves to 

complex r -is trivial. Other simple paramaterized. models often· 

used' for f:.V(r) are the Landau-Zener mode~ll,l3 

2 2 2 l/2 
AV(r) "" fa + f (r - r

0
) ] (3.20) 
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b.V(r) 
2 2 -2~r l/ 2 

= [!::. + 4A e · ] · 

where a; f, !'::.; A, and A..are constant. 

(3.21) 

In general, however, the analytic continuation of V1 (r) and 

v2{r) is not so straight-forward, particularly so if they are 

the numerical output of a Born-Oppenheimer eigenvalue calculation. 

In many cases one may be able to fit the potential curves calcu-

lated for real r to a simple functional form and then use this 

.analytic fit to determine the potential also for complex r. One 

would expect this to be reliable for complex values of r not too 

far from the real axis. 

The most general way of analytically continuing the potential 

curves to complex values .of r is. to return to the electronic 

secular equation from which they come; i.e., the adiabatic 

potential curves Vi(r) are the roots of the secular equation 

(3.22) 

Hij(r) is the N x N matrix of the electronic Hamiltonian in an 

N-dimensional electronic basis set which depends parametrically 

on the nuclear separation r; these matrix elements, being combina-

tions of coulomb and exchange intervals, are manifestly analytic 

func~ions of r and can be directly evaluated for complex r. The 
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secular determinant is a Nth order polynomial in V, and theN 

eigenvalues are the roots of this polynomial. For N = 2, for 

example, one can find the two roots of the quadratic equation 

·--
explicitly; 

V(r) = ;rH
11 

(r) + H22 (r)] 

(3.23) 

For N > 2 it is not easy to write down the N roots of Eq. (3.22) 

explicitly, but·there are many operational procedures for finding 

them. The important·point is that the eigenvalues {Vi(r)} are 

an algebraic function -of the electronic matrix elements H .. (r). 
1J 

One thus analytically continues H.:(r) to complex values of r 
1J 

by inspection and obt~ins {Vi(r)} by finding the·roots of Eq. 

(3.22); if the appropriate "eigenvalue finder" is used, then 

the only changes that need be made·in the computer program is 

simply to declare all quantities, Hij and V, to be the COHPLEX 

Fortran variables and proceed with the same algebraic manipu-

lations as if one were finding real eigenvalues. George and 

Morokuma
15 

have carried out such calculations. 

Another interesting point is that the N different adiabatic 

potential curves {Vi(r)} are actually theN different branches, 

or Riemann sheets of the same analytic function. For N = 2, 

for example, this is seen explicitly in Eq. (3.23), where the 

two eigenvalues result because of the double-valued character 
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of the square root function. Similarly, there are three roots 

to a three by three secular equation because of the triple-

valuedness of the cube root function, and in general the N 
• 

roots of the secular equ~tion are a re~ult of the N-f6ld 

multivaluedness of the Nth root function.. In· truth, there-

fore, there is just one adiabatic potential energy function,' 

but.it happens to be multivalued; within the Stuckelberg model 

transitions between different adiabatic electronic states occur 

by complex-valued classical trajectories that go around branch 

points of the multivalued potential function and thus change 

from one Riemann sheet (i.e., electronic state) to another. 

Another interesting feature of this semiclassical description 

of nonadiabatic transitions is that nowhere do Born-Oppenheimer 

coupling terms enter into the picture explicitly; the transition 

probabj_lity given by Eq. (2.7)- (2.15), for example, involves 

only the adiabatic potential curves V.(r). This means that all 
. 1 

information regarding the n6nadiabatic coupling terms which is 

required for the semiclassical model is contained implicitly in 

the analytic structure of the (multivalued) adiabatic_potential 

function. This point will be illustrated more fully with the 

example discussed in Section IV. 
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IV. RESULTS FOR F + Xe. 

2 2 
Figure 1 shows the difference of the l: and II states of 

. 16 
Xe ~ F as c~lculated by Liskow, Schaefer, Bagus, and Liu. 

Over the range of interest the potential difference is fit 

well by a single exponential, i.e., by Eq. (3 .14), where the 

"best fit" parameters are 

A = 48.2 hartrees 

-1 
A = 1.65 a 

0 

The complex crossing point is thus given by Eq. (3.15), which 

with these values of the parameters is 

r* = [6.15 ± i(1.16)] a 
0 

(4.1) 

Figure 2 shows the impact parameter dependence of the 

transition probability:computed from the "exact" version of 

the-semiclassical expressions [Eqs. (2.7) - (2.16)] at a· 

typical "high" collision energy (1.0 eV); the inset shows more 

detail of the large impact parameter'region where the transi-

tion takes place by tunneling [Eq. (2.18)-(2.23)]. · The dashed line 

shows the "classical" result [Eq. (2.17)] obtained by discarding 

the interference term in Eq. (2.15b). It is clear from the 

figure.that the tunneling contribution is neglible at thi~ 

energy and that there are enough oscillations in the transition 

probability for the impact parameter integration to quench the 

interference term. It is also clear, howeve,r, that interference 



.. 

-21-

effects (Stuckelberg oscillations) should be quite prominent in 

the inelastic differential cross section. Figure 3 shows a 

similar plot for a "low" collision energy (0.1 eV), and one 

sees that the omission of interference is less justifi~ble 

here. Impact parameter averages cover a multitude of sins, 

however; and even here the cross section obtained from the 

"classical" probability function in Fig. 3 is in error by 

only 20%; by 0.2 eV the error drops to 10%. Again, the class-

ical version af the theory, i.e., the neglect af interference, 

would be much less satisfactory for the differential cross 

section. 

2 2 Figure 4 shows the cross section for the P
312 

~ P
112 

excitation of F atom as a: function of relative collision energy. 

[The cross sections shown in this paper include a sum and average 

over the mj-components of the electronic angular momentum of the 

F atom; since only the mj ± ~ components give rise the transi

. 1 
tion,·a factor of2 must he supplied to the cross section formulae 

of Section II when considering the excitation process. This factor 

1 of 2 is included in all displayed cross sections.] The dashed 

curve is the result of the "exact" version of the theory, and 

the solid curve the classical version which omits interference. 

One sees that only a slight oscillatory structure survives the 

impact parameter average, and it would probably be unobservable 

under realistic experimental conditions. 

Although there are other effects which must be taken into 

account at high (non-thermal) collision energies--primarily the 
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coriolis interaction--it is of practical interest to see at what 

energy the simpler high energy approximation to the semiclassical 

expressions becomes valid. Utilizing the renormalized p~ given by 

Eq. (3.19) and taking vas the free particle velocity [Eq. (2.27)], 

the.cross section is given by (including the statistical factor of 

ro - t~ - 3~ - 2~ - 3~ -2 
cr1 3 = (~) !

0 
db (21Th) 2 (e -e ) (1 - e ) (1 - e ) 

2+-2 

2 1Tb. 
E; "" 3 ~VA (l 

b2 ~1/2 
--) 2 

ro 

(4. 2) 

(4.3) 

where the interference term and the tunneling contribution has 

been discarded. ·· A suitable change of integration variables cast 

this into a more useful form: 

2 ro2 f[(E/E_)l/21 (Jl 3 = ~ -u 
- +--2 2 

(4.4) 

where· 

. 2 
E 1 . t!~) 

0 = ~ >fi/\ (4.5) 

and f(x) ·is the dimensionless function (a reduced cross section) 

of the dimensionless variable x (a reduced velocity) : 
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oo - 2 y/x 
f(x) = f dy 4y-3 (e 

-3 y/x -2 y/x 

2 
3 

- 3y/x -2 
x (1 - e. ) 

One can show that 

f (x) - 1 
2 "-1 

-3x 

-e 

x-+oo 

27 4 
- ~ x exp(- 3x) , x -+ 0 

) (1 - e ) 

(4.6) 

(4. 7) 

Figure 5 shows this function f(x) •. For the present case of 

Xe - F the characteristic cross section has the value 

2 . 2 2 = 7.·4 Aoz g"T r 0 = 26.4 a0 . (4. 8) 

and the characteristic energy E0 of Eq. (4.5) is 

EO =5.06 eV (4.9) 

Figure 6 shows the reduced cross section f(x) in more 

detail in the low energy region, compared to the "classical" 

2 2 
results of Fig. 4 (divided by~ r

0 
). Above 0.5 eV collision 

energy one sees that the high energy approximation is essentially 

exact, but be.low 0.5 eV it is important to take account of the 

full dynamics correctly. 
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In order to gain some insight into the nature of the 

semiclassical description of nonadiabatic transitions it is 

interesting to look explictly at the nonadiabatic coupling 

which would be required if the coupled channel Schroedinger 

equation were to be solved in the adiabatic representation. 

Apart from constants the interaction which couples adiabatic 

states 1 and·2 is 

(4.10) 

where q denotes all electronic coordinates and{'¥.} are adiabatic 
1 

electronic wavefunctions. If one ignores nonadiabatic effects 

in the 
2r and 

2rr electronic states themselves, then '¥1 and '¥ 2 

are of the form 

(4.11) 

where xl and x2 are the r and n electronic states; the r - dependent 

coefficient matrix is the unitary matrix which diagorializes the two 

by two Hamiltonian matrix of Eq. (3.8). It is then a simple matter 

to show that 

' ' t.H(r) H12 (r) - t.H. (r) .H12(r) 
= ----------~2~----~.--~2~--~ 

t.H(r) + 4H12 (r) 
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where 

L\H(r) = n22 (r) - H11 (r) (4.12) 

This quantity is shown in Figure 7; it takes on its maximum 

precisely at r 0 , the real part ·Of the complex crossing point, 

and this is the quantum mechanical manifestation of the fact 

that nonadiabatic transitions are localized in the region 

about r
0

• Even though coupling terms such as these are not 

needed for the semiclassical theory, the analytic structure 

of the adiabatic potential function--which ~ needed--effectively 

has this information contained in it. 
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V. RESULTS FOR F + H+. 

While the work on Xe + F was in progress Mies'
4 

paper on 

+ H + F appeared and thtis provided the possibility of a direct 

comparison o~ the s~miclassical model with a quantu~ mechanical 

coupled-channel calculation. Such comparisons for atom-atom 

collision systems will be important for establishing the validity 

of the semiclassical model since this will not be.possible in 

the case of atom-diatom collisions. 

We at first attempted to use Mies' analytic fits17 to the 

2 2 18 + 
rand II states of HF and find the roots of Eq. (3.12). 

This was not possible, however, for these analytic fits were 

too structured--similar to·high order Lagrangian interpolation--

so that their analytic continuation into the complex plane was 

unstable. If the r - II difference itself is plotted on a semilog 

scale (as shown in Figure 8), however, one sees a rather simple 

functional form. Over the significant range of internuclear· 

distance the logarithm of the difference is .fit well by a 

quadratic, implying a gaussian fit to the E - II splitting: 

. ->..r + yr2 
= A e 

where t-he parameters are 

A = 0.4676 hartrees 

>.. = 

. y-

--1 
1.001 ao 

-2 
0.03814 ao 

(5 .1) 
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Since the TI potential curve lies below the E curve in this case, 

~Eq. (3.13) for the complex crossing point is rcplacedby 

(5. 2) 

and with the functional form in Eq. (5.1) one finds the root 

r 
of Eq. (5.2) to be' 

where 

with the above parameters this gives· 

r* = [7.25 ± i (2.75)] a0 

Fi~ure 9 shows the ~ross section for 

(5. 3) 

as a function of the relative collision energy; the individual 

4 points are th~ values of Mies' quantum mechanical calculations, 

18 
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and although not spectacular, the agreement is seen to be reasonable. 

Because of the strong attractive-potential wells irt both the [and IT 

18 + states of H - F, the present semiclassical model~-which ignores 

the coriolis interaction--is not expected to be as ~pplicable here 

as it is for F plus closed-shell neutral atoms and molecules for 

which the interaction is predominantly repulsive. 



...:29-

VI. CONCLUDING REMARKS. 

The semiclassical model for non-adiabatic electronic transitions 

provides an interesting and simple picture of such processe~: the 

transition takes place along a classical trajectory which passes 

~hrough a complex crossing point of the adiabatic pot~ntial curves. 

The particularly interesting aspect of the examples present~d in 

this paper is that the adiabatic potential curves have no "avoided 

intersection" for real r, so that it might have been thought that 

no such semiclassical treatment was possible. As has been seen, 

however, complex crossing points exist even for these cases, and 

the semiclassical theory seems to provide a good description of 

the non-adiabatic process. 

For the Xe - F example the cross section is small at thermal 

h · 1 0 1 A
02 

11• · f 0 5 V energy·, reac ~ng on y - • at a co ~s~on energy o · • e • 

If the cross section for F + H2
6 ' 7 were of a similar magnitude, 

then for thermal energy collisions the best zero-th order approximation 

would be to assume that no non-adiabatic transitions occur. In 

the thermal energy regime below 0.5 eV it is important to include 

the full heavy particle dynamics of the cronsing encounter, al-

though t~e high energy approximation is accurate above 0.5 eV. 

For H+ - F the cross sect·ion is much larger., which is perhaps 

expected on account of the charged species. This example also 

shows some.of the practical difficulties that can arise when 

applying the semiclassical theory, namely the necessity of analyti-

cally continuing the adiabatic potential curves into the complex 

plane. 
I 

I 
If the potential curves have a simple shape, as for Xe- F, 
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then it should be possible to fit them to simple functional forms 

and extrapolate these analytic fits to complex r; if the required 

fit is too structured, however, this approach may not be possible. 

The most general solution to this problem is to calculate the 

potential curves directly in the complex plane, as George and 

15 Morokuma · have done, but this of course adds to the overall 

complexity of the calculation. Whether this kind of practical 

difficulty proves to be common or rare will not be known until 

more examples have been studied. 

In conclusion, the semiclassical model for non-adiabatic 

electronic transitions appears to be a useful technique for 

describing these processes, particularly so at thermal energy 

whe~it is important to incorporate the full heavy particle 

dynamics. Since all dynamics is treated classically, only the 

superposition principle of quantum mechanics being included, it 

is possible to use the model in conjunction with numerically 

computed classical trajectories for more complex systems, e.g., 

atom-diatom collisions, and we anticipate future work in this 

direction. 
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APPENDIX: A UNIFORM APPROXINATION FOR WEAK TRANSITIONS 

Referring to Figur~ 10, Eq. (2.7) - (2.8) and Eq. (2.18) - (2~19) 

are the semiclassical approximation to the S-matrix for E >> E2 and 

E << E
1

, respectively. Since th~ effective potentials sketched in 

Fig. 10 increase with increasing impact parameter, E1 and E2 do 

also, so that one would like to have an expression which is valid 

uniformly forE> E2 , E
1 

< E < E2 , and E < E
1

. Here we show how 

such an expression can be constructed for the near-adiabatic limit 

<ls2 , 1 1
2 

<< 1) which is usually the situation at low energy. Rather 

than being a uniform asymptotic approximation in the rigorous sense 

of the word--which we cannot prove--the result has more the status 

of a useful interpolation formula •. 

By making use of the known asymptotic expressions for the Airy 

. 19 
function --namely 

(A.l) 

Ai<i> (A.2) 

-for z, z real and>> l--one can easily show that Eq. (2.7) and 

(2.18) are equivalent (in the near-adiabatic limit) to 

r 
s2,1 = exp[-iklr- ik2r + i/ dr

1

kl(r
1

) + 
rl 

r* r* 
I I 

+ i/ dr k
1 
(r ) 

I I 
- i/ dr k2 (r )] 

ro ro 
(A. 3a) 
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(r)]}2/3 (A. 3b) 

for E > E2 , and 

r* r* 
- ! dr 

1 
K

1 
(r 

1
) + 

ro 
I I ! dr K2(r )] 2TI1'

2z 114 Ai(z) (A.4a) 
ro 

-z = (r) ]}2/3 (A. 4b) 

for E < E1 , respectively. Eqs. (A.3) and (A.4) are so similar 

that at first glance one might think that they are the desired 

uniform expression as they stand. For this to be the case it 

would be necessary for Eq. (A.4) to result from Eq. (A.3), for 

example, as E is decreased continuously from above E2 to below 

E1 ; i.e., Eq. (A.3) and (A.4) should be the analytic continuation 

of each other. If for E < E one chooses 
n 

k (r) = i K (r) 
n n t 

then the correct exponential factor is obtained for Eq. (A.4), and 

for E < E1 the variable z of Eq. (A.3b) becomes 

- i2/3 
'z "" z 

;., 
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where z = lzl is given by Eq. (A.4b). 
2 

The - - root function is . 3 

triple-valued 

·i2/3 in/3 = e ' 
-in/3 e , or -1 

and to obtain the correct result for Eq. (A.4a) it is clear 

h h h b h . 2/3 1 t at one must c oose t e ranc l. = - • The problem, however, 

is that as E is decreased continuously from above E2 to below E1 , 

a continuous variation of z--which is clearly necessary to have a 

if 1 l .d i 1 d t the branch i 2/ 3 -- ei7T/3 or un orm y va l. express on-- ea s o 

e-in/~ not the desired branch i 213 = -1. Analytic continuation 

of Eq. (A.3) to values of E below E
1

, therefore, does E£! lead to 

the correct result, Eq. (A.4), and is thus not the desired uniform 

expression. 

To remedy the situation one invokes 19 the identity 

·' (A.S) 

for the Airy function in Eq. (A.3a). Now as E is decreased to 

values below E1 one chooses z to be 

- in/3 
z = z e . 

for the first term in Eq. (A.S), and 

- -in/3 z == z e 

for the second term in Eq. (A.S). Since 

-in/3 + in/3 1 e e = 
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The RHS of Eq. · (A.S) becomes Ai(z), so that Eq. (A.4) is obtained. 

To summarize, the desired uniform expression is 

r r 
' ' ' (r') s2,1 = exp[-iklr -ik2r + i f dr kl (r ) + i f dr k2 

rl r2 

r* r* 
27Tl/2 f dr ' ' f dr ' (r')] 1/8 + i 'kl (r ) --i k2 (zlz2) 

ro ro 

(A. 6) 

where r -+ oo; for E > E2, z1 = z2 = z, z real and positive, defined 

by Eq. (A.3b). ForE< E2, z1 and z2 are complex, being different 

branches of the multivalued function z; z
1 

is the branch which 

becomes z eirr/3 for E < E
1

, and z
2 

is the branch which becomes 

-irr/3 
z e Via Eq. (A.6), therefore, Eqs. (A.3) and (A.4) are 

now seen to be analytic continuations of each other, and one also 

has a .well-behaved expression for the intermediate region E
1 

< E < E2. 
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FIGURE CAPTIONS. 

. . 2 . 2 • 2 
The difference of the TI and l: potential curves of Xe - F( P) 

as a function of internuclear distance.. The points are those 

calculated by Liskow, et al. (ref. 16), .and the curve is the 

exponential function Aexp(-;\r), with;\= 1.65 a..,..\ A= 48.2 
0 

hartrees. 
2 . 2 

The transition probability for Xe + F( P
312

) -+ Xe + F( P112) 

as a function of impact parameter at an initial collision 

energy of 1 eV. The solid line· (including the insert) is the 

result of the complete semiclassical expression [Eqs. (2.10), 

(2.11), (2.15)] 

, and the dashed line the classical result [Eqs. (2.10), 

(2.11), (2.17)] which omits interference and tunneling. 

3. Same as Figure 2 except for a collision energyof 0.1 eV. 

4. The cross section for Xe + F(2P312) -+ Xe + F(2P112) as a: 

function of initial collision energy; the arrow indicates the 

threshold. The solid curve is the classical result which 

omits interference and tunneling, and the dashed curve.the 

result of the complete semiclassical expressions. 

5. The reduced cross section of Eq. (4.6) - (4.7) which is obtained 

in the high energy approximation, as a function of the reduced 

velocity. 

6. 
2 2 .· 2 

The cross section, in units of 9 nr0 , for .Xe + F( P312 ) -+ 

2 
Xe + f( P112) as a function of the reduced velocity. The solid 

curve is the "classical" version of the semiciassical result 



-38-

(i.e. , the same as the solid curve in Fig. 4) , and the dashed 

curve is the high energy approximation to.it; i.e., the dashed 

curve is the function f(x) of Eq. (4.6)- (4.7) with x- (E/E ) 112
• 

0 

7. The non--adiabatic coupling matrix element for Xe + F, defined 

by Eqs. (4.10) - (4.12), as a function of internuclear distance. 

8. The difference of 2rr and 2r potential curves of H+ - F(2P) as a 

function of internuclear distance. The points are the calcula-

tion of Wahl et al. -- (ref. 18), and the solid curve the gaussian 

fit of Eq. (5 .1). 

9. The + 2 -+ H+ + 2 cross section for H + F( p3/2) F( pl/2) as a function 

of initial collision energy; the arrow indicates the threshold 

for the transition. The points are the quantum mechanical values 

of Mies (ref. 4). 

10. A sketch of two adiabatic potential curves. r 0 is the real part 

of the· complex crossing point; for E > E
2

, E1 < E < E2 , or E < E1 , 

r 0 is classically accessible oti both potential curve~, only on 

v1 (r), or on neither potential curve, respectively. 
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