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| Abstract: We discuss the decay of an unstable sfring-like solution in the Skyrme model.
Previously, we found this solution to havé ‘a string tension of approximately 0.85 GeV/fm. Here

" we show that conﬁgﬁrations of this kind occur wherever a fundamental Q.C.D. string would be
expected. We show that one always producés decaying tubes of energy density when pieces of a
Skyfmion vare separated in space. The string solution is vunsta,ble, we construct an horhotopy that
deforms it to the vacuum while monotonically decreasing its energy. During the decay a ba.ryon
current flows along the string, producing half a baryon and half an anti-baryon.Long strings can
decay via many different decay modes, some producing baryon anti-baryon pairs. Finally, we solve

the equation of motion for the initial infinitesimal fluctuations that cause the decay, finding the

form and growth rate of the unstable mode.

1 Thisb work was supported by the Director, Office of Energy Research, Division
of Nuclear Physics of the Office of High Energy and Nuclear Physics of the U.S. -
Department of Energy under Contract No. DE-AC03-76SF00088.



1. Introduction.

The Skyrme model provides a qualitatively appealing description of many of the properties of
the nucleon [1,2,3]. It has been used as a tool to investigate many interesting theoretical questions
[4], such as the nucleon nucleon interaction [5], pion nucleon scattering [6], chiral phase transitions
in dense matter [7], the strangeness content of the proton [8], and the structure of stra.ngé baryons
[9]. In this paper, we shall demonstrate that strihg—]jke configurations in the model have interesting
properties in. common with the Q.C.D. string. Since the effective theory contain no explicit quarks,
it would seem difficult to describe a string resulting say, from the separation of a quark from a
protbn in a collision. Nevertheless, baryon density exists explicitly in the theory, and one can
describe, for example, a baryon being torn in half in a high energy collision by separating two half
Skyrmions. Contimﬁty of the Skyrme field then demands that some configuration interpolates the
gap between these separated halves and to do so string-like configurations are natural candidates.

In a previous paper [10], we studied a string-like solution to the equations of motion in the
Skyrme model. There we showed that the equations of motion of the Skyrme model with a pion
mass term posses a solution with pseudo-cylindrical symmetry, translational symmetry along the
cylindrical axis, and baryon density that vanishes everywhere along its length. The solution has

the form

U = cos(f(p)) + ir*p*sin(f(p)) (1.1)

where p is the radial coordinate from the cylindrical axis and j* is the corresponding unit vector.
The equation of motion for f is easily solved, and the solution is found to have a string tension of
0.85 GeV/fm and an rms radius of about 1 fm, for the parameters used by Jackson and Rho [3] to
describe f, and grnn~. This is reviewed in section 2.

While fields of the form (1.1) do solve the static equations of motion, in section 3 we show
that the solution is unstable, and demonstrate that the decay proceeds by the generation of a
baryon current along the string. The current gives rise to the production of regions of baryon or
anti-baryon density and these regions terminate the string. This process is startlingly reminiscent

of the decay of Q.C.D. strings via the production of quark antiquark pairs. The two directions in

2



which baiyon current can flow along the string give rise to a variety of decay mechanisms. If along -
string decays at several places independently along its length, then either mesons or baryons can
result, depending on the direétions of the flow of baryon current at adjacent decay sites.

We want to stress the topological nature of our result, production of baryon anti-baryon den-
sity is the inevitable result of the decay of a surface to a point in _intgrnal space. Recently Ellis
and Kowalski [11] have used the topological structure of the Skyrme model and thermodynamic
assumptions to deduce Qualita.tive features of baryon production in jets. The thermodynamic meth-
ods ﬁsed there are not employed here, but in both cases baryon p‘roduction arises topologicé.lly from
the decay of exited chiral fields.

In section 4, we deduce the specific form of the instability causing the decay of the string by
deriving-and solving the eqﬁation of motion for such modes. The form of this mode is found to be
very similar to that of the homotopies constructed in section 3. The growth time for the unstable
mode is found to vary with the length of the string, about 0.5 fm/c for infinitely long strings, about
1 fm/c for strings 2 fm long. Strings with length below about 1.6 fm cannot dec&y at all by this
mechanism.

In section 5, we discuss the results, draw our conclusions and indicate directions for future

work.

2. The String Solution

In a previous paper, we found a static string-like solution to the equations of motion of the
Skyrme model. We will briefly review the structure of this solution.

The static energy density arising from Skyrme’s Lagrangian [1] with a mass term is

£=LEpipi yo2ci ci 4 mip2lto_py, (2.1)
= 9 FePe sy pv wJw ’ .
where _
U = cos(f) + ir'#'sin(f), UU =1, (2.2)
B = _i%:(r‘Ufa,,U), | (23)
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i 3] i pk
C,, =€¢*BiB}, (2.4)

and, fr and m, are the decay constant and mass of the pion, respectively.

The equations of motion for static fields arising from (2.1) are

du[aB., + bBi(B.Bj — BiB})] - m? f2sin( =0, (2.5)

where @ = f2 and b = 8¢>.

In [10] we showed that the cylindrical form

U = cos(f(p)) + ir*p*sin(£(p)) » (2:6)
subject to the boundary conditions -
f)) =0, p=oo; f(O)=r, | (2.7)

satisfies the equations of motion (2.5), provided f satisfies

7+ 82y 4 Liq g8 oDy - miasin() =0, (29)

1

Using (2.6), the energy density (2.1) becomes
. in?(f), b ,sin®(f '
o= 50+ B L 2D i 2 - con() (29)

We then solved equation (2.8) using the parameters of Jackson and Rho [3], a = 93% MeV?, b =
8x0.00552 and m, = 137 MeV. Asymptotically, the solution is a bessel function, f — 1.2 K;(m,p).
The cylindrical form of the ansatz (2.6) is illustrated in Fig. 1, and the full solution for f is shown
in Fig. 2. The string-tension, o, of the solution is 858 MeV /fm, and the r.m.s. string tension

radius, < #? >L/2= 1.05 fm. Further details of the solution are presented in [10].
3. Production and Decay Properties of Skyrme Strings

We now argue that tubular configurations similar to those discussed in section 2 may be

expected to occur in many familiar circumstances. To do this, we investigate separated pieces of
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the same baryon, a.nd consider how the pion ﬁeld interpolates :between them. .Sim’ila.r arguments
can be made for for more genera.l circumstances where non- lntegral baryon charges are separated
in space. For exa.mple, in mesons with high angular momentum, the quark and anti-quark are
separated from each other.

We assume that by some mecha.msm (such as, e.g., a high-energy collision) a fraction of a
baryon, f4, has been separated from the remaining (1 f4). We therefore assume that space can be
éepa.rated into three regions A, B and C’ , by two plane surfaces, ¥4 and ¥ 5. Behind these surfaces
we find the fraction f4, and fp = (1 -{ A) in A and B, respectively. We iiow want to determine
the structure of the pion field in Cb (between 4 and ). We will now show that unless there is
 non-zero baryon density between 4 and Ip, thone must be, minimally, a tube of energy density
oonnecting A'to B of the same general type as the solution outlined in section 2. We will later show
that the alternative possibility (non-zero baryon density)i is just what is produced by the decay of
the tube.

It is easier to see these results if we oxploit the fact that, topologically, the intérna.l spoco is
eqlijiraleiit to a ball with points on the surface identified (this way of looking at the target space is
| naturally suggested by the stiucture of the hedgehog). We shown this in Fig. 3. For simplicity, we
study the case where the separated fractions of liaryon number, f 4 and fp cover simply connected
pieces of the ball, A’ and B’, respectively. The more complicated cases where these pieces are not
simply connected can be handled in essentially the same way. A' and B’ are complementary, and
sepaiated by a common surface, ¥'. We illustrate this in Fig. 4.

Points in the internal space represented by the surface £’ must be covered on X 4, since these
must be continuously connected to points not covered in A. The same holds for the surface Xp.

We now make a crucial distinction amongst the forms of the pion field that interpolate between
¥, and 5. We divide these fields into two classes: those that have non-zero baryon density
between ¥4 and T, and those that do not. For the moment we concentrate on the latter.

This restriction implys that,-on any spatiél surface, ¥, between X4 and X g, the internal space
surface, 2", is covered. To see this it is sufficient to notice that if some part of ¥ is not covered,

e.g. if o, is mapped into the surface T, in Fig. 5, then some net volume of the ball must have been
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' covered between T 4 and X, and uncovered between X, and X 5. But of course, covering a volume
of internal space is, by definition, prodvucing baryon or anti-baryon nﬁ;nber density. Considering
the integral over I, of the energy density of the tube, we can use the Skyrme-Bogomol’nyi bound,
[1,12], to show that this is bounded below by f2.4z:, where Ay is the area of X' (for the form (1.1) A
this bound yields about 550 MeV/fm). In the presence of the mass term in (2.1), we expect this
energy to be localized in a tube, similar in form to that of the solution (1.1), (notice that this form
is one example of the interpolating field we are describing, if we have half Skyrmions behind the
planes £4 and X g). We have established that, in the absence of baryon density between regions
A and B, we expect, minimally, a tube of energy density between them. We will show below,
that interpolating fields in the alternative class (those with non-zero winding density) are produced
when the tube dec@ys. |

Witten [13] first demonstrated that flux tubes in effective field theories from underlying SU(N)
gauge theories are not topologically stable. Therefore there must exist an homotopy that deforms
the solution (1.1) to the vacuum, U = 1 everywhere. Furthermore, although the form (1.1) provided
us with a genuine solution to the static equations of motion, it is not a stable solution. We now
provide an explicit homotopy which deforms the solution to the vacuum (we call this the “umbrella”
homotopy, for reasons that will become obvious). The homotopy is constructed in order to display,
as clearly as possible, that the energy density decreases at every stage of the process. It is clear
that we can lower theA energy of the solution we have found by rotating the pion field into the 2*
direction, since then all gradients of the field resulting from the turning of the vector p* around
the z axis vanish. Once this is accomplished, the function f(p) may be smoothly deformed to a

constant.

First we fold up the pion field vectors, like the spokes of an umbrella. For 0 < 7 < 1/2 we use
Ur = cos(f(p)) + it*[p° cos(Tm) + 2 sin(T)] sin(f(p)) . (3.1)

Now we decrease the chiral angle to zero. For 1/2 < 7 < 1 we put
Ur = cos(f) 4 ir*# sin(f) , (3.2)

where f = f(p)sin(rT). It is easy to see that, while the pion field vectors are being folded up,
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(2.1) gives, for 0 < T < 1/2

am=Lur e, =i rn, £n,m)= b0,
' (3.3)

and while the chiral angle is decreased to zero, for 1/2< 7 < 1, |
, - ‘
(1) = Lo (Tr), (1) =0, En, = md i1~ cos(f(p)sin(Tm))],  (34)

where we have split up the contributions of the second and fourth order, and pion mass terms. We
have neglected any kinetic terms that would arise if such a process occurred in time. |

Although we have demonstrated that the solution we have found is unstable, this is not reany

* an objection, since in Q.C.D., it is well known that strings break. Indeed, many of the applications

-of Q.C.D. string models consist in describing how strings break. We shall therefore concentrate our

attention on the decay of the string. As we will find, this process proceeds via the production of

baryon anti-baryon number density. One easy way to see this is to notice that, if one interprets 7

in the homotopy (3.1,3.2) as parametrizing a time variable, then as the‘deca.y of the string proceeds,

_a.'_ baryon number current flows along the string. The gradients of (3.1) can be written

~ B a i g, a : T . - a
B = f'p,B(1)* + El—llpgf—)cos(Tw)¢“B(2) + ws1n(f)-;l—t—t“B(3) , (3.5)
where 7 is regarded as an arbitrary parametrization of time, ¢, and
B(1)® = cos(T7)p® +sin(Tr)2° , B(2)* = cos(f)¢* + sin(f)[cos(T7)3* — sin(T7)p?] ,

and B(3)* = ¢***B(1)*B(2)° , | (3.6)

are orthonormal unit vectors in iso-space. The baryon number that crosses the surface ., between

T =0and T=1/2isthen

t1/2 I
B=["a / dSB"3, ,, D
to El . 7
where the baryon current B is given by
B euuaﬁ abc pa pb pe |
Bt = —We BuBaBﬁ ) (3.8)
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and tp and t,/; are the times corresponding to 7 = 0-and 7 = 1/2, respectlvely Puttmg (3.5) in

(3 7,3.8), it is then easy to show that
1/2 T
B= —/ chos(Tw)/ df sin®(f) = -1/2. (3.9)
0 T Jo

One can easily convince one’s self that between 7 = 1/2 and 7 = 1, no baryon current flows. The
result, (3.9), is independent of the exact form of the homotopy used to deform the string to the
vacuum. The only exception to this is the sign of B, which may be changed by choosing e.g., —2°
instead of #* in (3.1). This sign ambiguity has important consequences, as we will see.

An easier and more intuitive way of seeing this result is to use the picfure of the internal space
as a ball. At any given time ¢, X, is mapped into a surface X'(t) in the ball. As the decay proceeds
via (3.1,3.2), X'(t) is deformed from an equatorial slice through the ball to a point on its surface.
This is shown in Fig. 6. The quantity of baryon number crossing ¥, during the decay is then just
the fractional volume of the ball swept out by the surface X'(¢). It is then clear that, independent
of the details of the homotopy used, the net quantity of baryon number that crosses the surface X,
is one half. Further, since we have transferred baryon number one half across X,, we must have
created a deficit of one half on the other side of X,. |

The homotopy (3.1) and (3.2) demonstrates the classical instability in the solution, but it does
not deal with the boundary conditions at the ends of the tube. We will now study this problem.
For the sake of definiteness, we will consider the case where two half Skyrmions are separated by
a distance 2! along the z axis. We therefore hold the field fixed in the form (2.16) on two surfaces
¥4 at z = X! respectively. Between these surfaces the field is free to decay. However, with these
~ boundary conditions, the decay cannot proceed uniformly along the length of the string, since then
we would encounter discontinuities on X4, where the tube joins the half Skyrmions.

As noted above, there are two possible directions in which the baryon current can flow, +3°. If
the string is long enough, there is no reason to suppose that this direction need be chosen uniformly
along the length of the string. However, we will consider the simplést cases first, where there is only
| one di.rection for the whole string. After we have dealt with these, the other cases, where different
directions are chosen at several places along the string, will be constructed from them by patching

copies of them together in a chain.
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When the decay direction is the same along its length, — 3¢, the string can decay as a whole
with the exception of the ends. We now provide an interpolating form that gives an explicit picture
- of what happens there. Since we are chiefly interested in the baryon number flow, we shall not
attémpt to 6ptimize its dynamical structure. To éerform the interpolation, use the following trick:

Imagine a skyrmion at z = -[, and then stretch it out more and more yiolently in the 2
direction, as the field stretches it becomes more and more cylindrical in form. One can picture the
interpolation as merely a less and less violent stretching until a complete half Skyrmion is pulied
back between z = —! and 2 = 0. Note that this naturally incorporates the condition that one half

unit of baryon number flows across the surface z = 0. To achieve this is simple, take 0 < 7 < 1

and now write for 0 > 2 > -l
U'(z,9,2,T) = lCOS(f (1)) + iT’:f""(T) sin(f(r'(T))) , £3v.iO)
where we define /(7 as |
(T = 28 4y + A(T)F, with Z(T) = tanh"Y(T(z + DI, | (3.11)

and f is the chiral angle function having the property f(X) — 0, as X — oo; and f(X) —
7, as X — 0 . Notice that, for T = 0, 2/(0) = 0 for all 0 > 2z > —I, and the field is the cylindrical
one (1.1), whereas for 7 = 1, the field is that of a distorted half Skyrmion

Ui_(2,9,2,1) = cos(f(r'(1))) +i'# (1) sin(£(r'(1))) , (3.12)

where now z/(1) = tanh™'((z + 1)/l) . Note what happens as 7 — 1. At z = —I, z’(T) = 0 for
all 7, but at z = 0, we ﬁndr instead z’-= tanh™}(T) > 0 as T —» 1. In pa.rt|icula.r, at z = 0, the
vacuum state (U = +1) reaches in all the way to the z axis. If we follow the ;volution of the pion
field on the plane z = 0, we see that due to the definition of 7" in (3.11), the pion field vectors
rotate into the z* direction, and eventually shrink in size to zero ma.gnitudé.
Now we specify how to handle the region I > z > 0. The simplest thing to do is write for
I>2>-1 | |
Ul(z,y,2,T7)=U'(z,y,-2,T) , (3.13)
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i.e. use reflection about z = 0. Note that internal space vectors do not change sign under this,

but derivatives of the field in the z direction do. In consequence we guarantee both continuity

at z = 0 and the change of sign of the Jacobian across the plane z = 0. Thus we create half an ‘

anti-Skyrmion between z = 0 and z = +1. The geometry of the decay process is illustrated in Fig.
7. | | |

While (3.10,11,13) are sufficient for our purpose, the gradieﬁts are not optimal. In particular,
there is a discontinuity in the gradient at z = 0, this can be removed by using e.g., 2/(T) =
tanh™! [T sin (r(z +1)/2!)] in (3.12).

Given the original half Skyrmions on the ends of the string we can expect the half anti-Skyrmion
and half Skyrmion at z = +I to annihilate to produce pions. At the other end of the tube, there
is _now a whole Skyrmion at z = —[. Therefore this case corresponds tb the decay of the string
into mesons. Note that decay cannot proceed until there is at least enough energy in the string to
create a half Skyrmion and a half anti-Skyrmion, ¢.e. about the Skyrmion mass. This puts a lower
' limit on the length of the string of about 1.7 fm using the values of the string tension and Skyrmion
mass obtained from the Jackson-Rho parameters.

The case where the direction of the baryon current is +3' can be obtained from (3.10,11,13)
by using |

2(T)=—tanh™(T(z4+ /1), 0<T <1, (3.14)

in (3.11). This just exchanges the positions of the half Skyrmion and the half anti-Skyrmion.

To discuss more complicated decays, that will be relevant for long strings, we will introduce an

abbreviated diagramatic notation to characterize the possibilities. In this notation, the diagrams

(HZZIH) = (D)) or (HZTT2H) = (+1-)(++)

represent the simplest ppssibilities: the decay of the string, ~~~, with half Skyrmion endcaps, (+|
and [+), via production of a half Skyrmion and a half anti-Skyrmion, |+)(—] or |-)(+|. The end
result is a Skyrmion, (+|+) and mesons e.g. (—|+).

For more complex decays, we can patch togéther chains of the elements |+)(—| and |-)(+].

The four diagrams corresponding to choosing two decay directions along the length of the string
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are shown below.

(H77777T 1) = (YA (3.160)
HTTTT ) - D @asy)
(HITTmTm 1) = 1) (3.16¢)
(HITTTTm ) = (HH-)EH)  (3169)

Three of these diagrams, (3.16a,c,d) correspond to producing a Skyrmion plus meéons, with the

skyrmion produced at different places é.long the string. However, diagram (3.1bb) is different, and

v corresponds to the production of an anti-Skyrmion in the center of the string, and one Skyrmion at
* each end. Note that such a mode is not possible unless there is at least enough energy in the string

" to produce the mass of the Skyrmion anti-Skyrmion pair. Using the parameters in (2.1) adopted

here [3], thjs.requires the s‘tring to be at least 3.3 fm long. From (3.16a-d), it should be clear that
theie are ma.ny possible decay modes of the string, corresponding to the production of different
nuinbers of mesons and baryon anti-baryon pairs at different places along the string. Ba.ryoxis and -
anti-baryons are correlated in an alternatiﬁg sequence down the string for allv decay modes, but

elements in the sequence can be separated by any number of mesonic objects, e.g.,
(T2 ) = (H=)EHH ) =) - (3.17)

We note in passing thé.t an uninterupted alternating sequence of baryons and antibaryons is essen-
tially similar to the ansatz of [14], putting m = 1 and removing the rather un-natural modulus sign
in equation (9) there.

We can make contact with the program of reference [11], by estimating the probability of a long
string producing baryon anti-baryon pairs. If we assume that such a string decays, independently,
at ng sites along its length, and that strings of the form (1.1) decay with equal probability for
the baryon current to flow in either direction along the string, then the probability of producing a
baryon or anti-baryon between any two decay sites is the 1/2. The average number of baryons plus
anti-baryons produced between ny decay sites is therefore (ng —1)/2. For string-like configurations

whose form is not that of (1.1) the probability for the baryon current to flow in either direction
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need not be symmetrical, and the probability of producing a baryon between any two decay sites is
decreased. If the probability to produce baryon current flowing in the two directions are Py =1 [2+¢€
and P- = 1/2 — ¢, then the probability to produce a baryon between two decay sites is 1/2 — 2¢2.

We will comment further on this matter in section 5.

Examining Fig. 7, we can see that reversing the order of the sequence, we have an explicit
set of configurations that lead to the annihilation of baryon density. We expect that when a
B — B pair with the appropriate relative rotation (7 about the separation axis) approach to a
distance on the order of a fermi, the string-like configurations discussed here become relevant. The
‘sequence (d,c,b,a) in Fig. 7 shows clearly how the gra,dients‘in the z direction are removed by the
formation of a string. Thus, string-like configurations may be important intermediate stages in

B — B annihilation processes.

4. Fluctuations around the Skyrme String.

In the last section, we looked at the decay properties of the Skyrme string using very general
arguments. This was possible since we were chiefly interested in demonstrating the instability of
the string and its connection with the production of baryon density. In this section we investigate
the exact form of the fluctuations around the solution that cause the decay of the string. Whilst
we can make more precise statements concerning this problem, they are of less general relevance,
since they are only applicable to the string solution discussed in section 2, and not to the more
generic tubular configurations. We first find the most general form of infinitesimal fluctuations
about the string solution, and then write the linearized equations of motion for them. This system

is block diagonal in the basis we choose, consisting of one matrix governing modes of translation,

rotation and vibration of the string, and one other isolated equation. Through analogy with the

two dimensional skyrmion, we argue that fluctuations that correspond to vibrations of the string

cannot lower its enei'gy. The remaining equation posses’ an unstable mode similar in form to the
homotopies of section 2.

12
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The equations of motion for vthe. Skyrme model can be written
i i ni i i Qi 2 21T . : ’
0,[aB, + bB}(B, B} — BiB})] + m,,f,,-2—[—z‘r Ul=0. 4.1)
where now greek indices indicate four vectors. We now substitute the form
B, =B, +7., (4.2)

where Bfu are the gradients of the string, and nz are the gradients of an infinitesimal fluctuation

around the string. If the fluctuation of U is considered to be
U=U,+4, . (43)
vwherev U, is the string solution, and A the fluctuation, then to first order bin A
w¢=U%A+A%ﬂ. ‘ - (44)

We will consider the ﬁeld to be fixed on plane surfaces at +L/2 = +/, and at infinity, so that A =0

~ on these surfaces. Substituting (4.2-4) into (4.1) [15], we find the linearized equation of motion for

the fluctuations

O,lan} + bri(BL, B, - BL, B, + bBi, (1L By + Bl — ni B, — Bhuri))+m2 22 iria] = 0.
(4.5)

The most general form of the ﬂuctuat.ion is constrained by the condition (2.2). Using (4.3) gives,

to first order in A

vla+atu,=0. (4.6)

This expresses the fact that we can only fluctuate in the tangent volume to the sphere in internal

épace. We can satisfy this if we cﬁwse A to be of the form
A =641 4 6540 4+ 6343, . , (4.7)

where §,, 6; and 63 are arbitrary infinitesimal continuous functions obeying the boudary conditions,

and

Ay =sin(f) + ir'picos(f), A= ir'd* , and Aj = ir'3 . (4.8)
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These are explicitly constructed to lie in three orthogonal directions in the tangent volume. Notice

that A; produces local changes in the chiral angle, A; rotates the pioﬁ vector about the z axis,
“and Aj has the game general character as the homotopy (3.1).

Substituting (4.7-8) into (4.5) reveals, (after a lot of algebra) a remarkable result. The equa-

- tions of mqtion for é3 are completely decoupled from those for §; and 6;. We argue below that

fluctuations of the form

A= §1A1 4 624, , (49)

can only raise the energy of the configuration. Therefore we neglect them and concentrate on
fluctuations of the form

A = 83A; . ’ (4.10)

This vastly simplifies matters, since we need consider only one equation for one function, rather
than a coupled set of three equation‘_svfor three functions.

To see that the fluctuations A raise the energy, recall the picture of the internal space as a ball.
The solution (1.1) covers an equatorial surface in the ball. Then it is clear that fluctuations like A
consist of distortions of (1.1) that still cover the same surface. Using the arguments of section 3, we
can see that such fluctuations maintain the tubular structure of the field. For the moment consider
the energy density in a.ﬁy plane at constant z. Let us divide the contributions into two pieces, those
coming from the z component of gradients of the field, and those that do not. With the exception
of the gradients in the z direction, this problem reduces to that of the two-dimensional Skyrme
model with a mass term, where one expects the 2 — D skyrmion (whose form is essentially identical
to (1.1)) to be the lowest energy static winding number one solution. Neglecting the contribution
of terms depending on the gr_adielits in the 2z direction, the lowest energy configuration would be
given by A = 0. Now consider the effect of gradients in the z direction. The gradients of the field
contribute to the energy density in the form of positive definite squares of combinations of them.
Hence any additional gradients raise the energy. Thus, taking into account the gradients of the
field in the z direction, we find our previous conclusion, A = 0 is strengthened.

We therefore concentrate on the case where A is given by A. Using (4.10) and (4.8) in (4.4),
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we ﬁnd
sin f -

— OLBO) + FhuaBE) - SENN 1)

where now
By =4, By = (& sin f+ ¢cos f), 'B(s)" = (%' cos f — ¢'sin f) . (4.11a)

‘Substituting (4.8,4.10) and (4.11) into (4.5) gives only one non trivial equation for &

([ +bsm f](a 2)+[1+bsmf

a p?

@f'e ““‘fn( )+[+f”1(,a¢2>

. b . sin? 2 92
Ha gt sulzf)](— o0t o)

L4 20 4 120 2] i con ) =0 @)

W_hen f =0, this reduces to the Klein-Gordon equation. Since f is a function only of p, equation

(4.12) separates completely, and cén be solved with the functions
5 = T(2) Z(z) #(¢) R(p) ,

T(t) = €™, () = etimed my = integer,

Z(2) = cos(k;z2), k; = @E—}—)z, or Z(z) =sin(k,2), k, = LZW-, n = integer , = (4.13)

where Z(z) obeys the boundary conditions at z = +L /2. Putting (4.13) into (4.12) gives:

bsin? f bsin f sin f 10
(0+2%; ]<32>+[ + 2oy - L2 2

. m2
~f4 207+ Dy - 14 ) (52

sin® f sin® f

z]'-miamf)R@)=0,, (4.14)

by, gy, b
[1+-f*]+f U+;
where we define the reduced eigenvalue,

Q=024 k?. , (4.15)
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Since we are interested in the most unstable mode, we will seek the solution where k, = /L,
my = 0, and Q is real, positive;' and as large as possible. So we set my = 0, and examine the
limits of (4.14) for large and small p. Since f(p) — 0 for p = o0, and f — 7 — ap for p — 0, we
find that we can solve (4.14) with the Bessel functions, Ko(x1p) and Jo(s2p) for large and small p

respectively, where

m2 + 2a%(1 + bo?[a) — D?(1 + 2b¢:¢2/a))1/2

m = VATEE, and = ( T+ ba'/a)

Using these limits, we have solved equation (4.14) for R(p) and for the largest possible value of

(4.16)

072, Using the solution discussed in section 2, obtained using the values of J a,ékson and Rho [3] for

. d, b and My, We find 02 = 3.78 fm 2. The solution is shown in Fig. 8. Notice that the magnitude
of R(p) decreases moﬁotonically, and dies away ekponentia.lly for large p, the r.m.s. radius is about
~ 2 fm.

The minimum length for which decay can occur can be calculated from the reduced eigenvalue

02, using (4.15) and k, = 7r/L, we find

L) =/ -‘3”;—“”2 . (4.17)

For Q’? = 3.78 fm™?, the numerator in the square root goes negative at a critical length of L. =
1.62 fm (very close to the length of string containing the mass of one skyrmion) and below this
length, the string is stable. The characteristic time for the instability to grow is given by r(L) =
1/Q(L), which diverges at L = L., but decreases rapidly above L. so that for L = 2 fm, 'r = 0.87 fm.
In the limit L — oo we find 7 — 0.51 fm. '

Since the possible va.lﬁes of k, afe all integer multiples of this fundamental value x/L, the
higher modes in z all have critical lengths which are likewise integer multiples of this fundamental
~ one. Note that for higher values of k,, the function Z(z) goes negative, implying that the decay |

direction reverses and the baryon current flows in opposite directions in different parts of the string.

5. Discussion and Conclusions

Our purpose in this paper has been to demonstrate that string-like configurations in the Skyrme
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model have intriguing properties in common with the Q.C.D. string. We have shown that these
configurations arise naturally when objects with complimentary baryon number fractions are sep-
arated. We héve examined the decay of these configurations in some detail, and found that this
process is inevitably accompanied by the productioﬁ of baryon-antibaryon number density. This
production occurs wherever and Qhenever the striﬁg snaps, a feature'startlingly femjniscent of the
produétion of qﬁark anti-quark pairs in Q.C.D. string models. We can restate these results in a
particularly clear way using the arguements of section 3. Topological charge is confined into integer
lumps. When fractions of a baryon (say fand (1 - f)) are seperated from each other without
production of charge anti—ch;mye density then the energy of such a configuration will increase at
least linearly with the seperation. To circumvent this result, it is necessé,ry to pfoduce top910gicél
charge-anticharge density between the seperated fractions. This charge anti-charge density screens

the original topological charge density. This fits very nicely with the conjecture advanced by Witten
[13].
We have tried to keep the discussion as general as possible, and have considered the properties'

of the decay of tube-like configurations that are topological in origin. Our reasons for doing so are

" simple. While one may not believe the precise dynamical properties of the Skyrme model alone,

- we believe that since the topological content of the model is, to a large part, independent of these

details, they should hold when modifications to the model are ma.de. Thus, whilst we have the
concrete example of the string solution of section 2 in mind, many of our arguments are specifically
designed to be ahplicable to quite general configurations covering surfaces in internal space. It .

is therefore worth stressing that most of the arguments in section 3 are based on continuity and

topology alone.

The analysis of section 4 is an exception to that approach, and we expect the time and length

scales deduced there to be subject to modification when additional dynamical factors are taken

"into account. Since the emergy of the solution is lowered when it decays, this process must be

accompanied by the emission of pions. The dynamical details of the decay will also be effected if
the couplings of other mesons to the pion field are included. To see how these details could be

modified, consider, very roughly, the effect of coupling the w meson to the baryon current in the

17



manner of Adkins and Nappi [16]. Since the baryon density in the static string solution vanishes
everywhere, the w meson does not couple to it - for this reason we expect that the solution itself
will survive unscathed in such a theory. Howevér, when the string begins to decay a baryon current
develops in the z direction, and this acts as a source for the 2 component of the w field. We must
then take into account the possibility of the emission of w mesons. Given these uncertainties, the

most probable decay time for a string of a given length is likely to be longer than the time-scale

calculated here.

Several problems remain before one can hope to firmly associate the string-like configurations
discussed here with Q.C.D. strings. One of the most serious of tilese is that the string tension
and decay time for the string (1.1) are O(N) and O(1), respectively. The predicted size of these
quantities for the fundamental string are [17) O(1) and O(1/N), respectively. However, when
N = 3, the diﬂ'e;ence between removing 1 quark from a baryon, and removing 1/2 the quarks
(i.e. N/2), is small. If, instead of separating a baryon into two halves, we had removed 1/3 of the
baryonic charge, we would certainly have lowered the string tension. However, in practice, not by
too much. For example use the form (3.1), and put sin(77) = 1/3, then the energy density (3.3)
is very little changed from its value at Tr = 0, since cos?>(77) = 8/9. Of course, this change will
destroy the symmetry between the two decay modes of the string and alter the probabilities for
baryon production as noted in section 3. Moreover, there is no time independent solution to the

equations of motion with this form.

However, if the connection of the Skyrme string to the Q.C.D. string can be made stronger
[18], many applications suggest themselves. For example, in modeling the relativistic heavy ion
collisions performed at CERN, frequent use is made of string models [19]. The density of strings
arising from individual nucleon nucleon collisions in these models is on the order of 2/fm®. It is
therefore of urgent practical interes_t to understand the interactions that are possible between these
strings. The interaction between Skyrme strings can be studied iﬁ the same way as the interactions
between skyrmions and two-dimensional skyrmions, using the product ansatz [5] or lattice methods
[7,19]. The latter suggests interesting possibilities. When the density of two-dimensional skyrmions

gets large, a phase transition takes place restoring chiral symmetry and the skyrmions lose their

18
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Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.
Fig. 6.

Fig. 7.

Fig. 8.

Figure Captions

The geometrical form of the string solution. The outline represents a section of the cylindrical
surface for which U = ir*p®, the arrows represent the direction of the pion field vector, and the line
through the center of the cylinder represents the line where U = —1.

The chiral angle, f, for the solution to equation (2.8), using m, = 137 MeV, and the parameters
of Jackson and Rho [3], € = 0.00552, fr = 93 MeV. The solid curve is the numerical solution, the
dashed curve is the asymptotic form f(p) = 1.1972 K1(mgp).

The internal space organized as a ball. All points on the surface of the ball are identified as the
single point U = 1. The circle with arrows represents the sphere on which U = ir‘#*.

The internal space organized as a ball, showing the surface X' separating the complimentary regions
A’ and B'.

The surfaces £’ and X, in internal space, surrounding a volume covered between them.

The surfaces S’ in internal space, as the homotopy (3.1) proceeds. T = 0 is top left, and 7 increases
clockwise to 7 = 1/2 at bottom left. When 7 = 1 /2, the surface has swept out 1/2 of the volume
of the internal space. |

A sequence of illustrative snapshots of the ?:hjral field of the string se;an in cross section through
the z-axis as it decays according to the homotopy (3.10-12,3.18). The field has rotational symmetry
about ‘the z-axis at all times and is fixed at the left and right edges of the boxes. Open circles
fepresent the field U = —1, crosses U = +1,ra,nd--:'the vectors represent the pion field vector. The
decay proceeds clockwise from top left. a) The initial state of the string with translational symmetry
in the z direction. b) The decay starts, and the field vectors around z = 0 rotate towards the z*
direction. A baryon current develops in the —z direction. ¢) The decay proceeds and the baryon
density begins to accumulate. d) Very near the end.of the decay, a half skyrmion and a half anti-
skyrmipn have accumulated on the left and right hand edges of the box, respectively. Near the
center of the box, the field has nearly reached the vacuum value.

R(p), the radial form of the decay mode against radius is shown in the solid curve. Also shown for

comparison in the dashed curves are the asymptotic forms Jo(x2p), and Ko(x1p).
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