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Abstract 

The hadron to quark-gluon phase transition is studied in charge symmetric 
matter. Nuclear field theory describes the hadronic phase, including baryon 
resonances and thermal pions and kaons. The pion dispersion in medium is 
computed. The other phase is described as a gas of massless u and d quarks and 
gluons and massive s quarks, with or without gluon exchange .. The Rankine­
Hugoniot relation is employed to estimate the initial properties of matter pro­
duced in nuclear collisions as a function of energy. It is found that signals 
depending on pressure or entropy are poor ones and that the most dramatic 
differences between the hadronic phase and mixed phase occur in the temper­
ature and density. Di-lepton and photon signals ought therefore to be good 
ones. It is shown that the analogy of "melting" of hadrons in the plasma is 
incorrect as concerns formation of a plasma in nuclear collisions in contrast to 
the adiabatic heating of matter. Neither the phase diagram nor the properties 
of matter on the shock trajectory depend very much on the nuclear equation 
of state within the uncertainties with which it can be defined in terms of con­
ventional nuclear saturation properties, because the thermal energy dominates 
over these. The main dependances are on the hadron spectrum, the pion dis­
persion in medium, the bag constant and the QCD coupling constant. Within 
accepted uncertainties in the nuclear and plasma equations of state, the mixed · 
phase could be formed in collisions with laboratory kinetic energy as low as 2.5 
GeV. 
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1 Introduction 

The most reliable predictions concerning the phase transition between hadronic 
matter and quark-gluon plasma are those of lattice gauge theory, which is a nu­
merical solution of QCD [1,2]. Unfortunately, these predictions, for the foreseeable 
future do not encompass the actual physical means of investigating the phase transi­
tion in the laboratory. The lattice gauge calculations concern the adiabatic heating 
of uniform infinite matter. The experimental probe is a violent collision between 
nuclei. Indeed, up to the present, the lattice calculations pertain to a baryonless 
plasma, and are able to predict only one point in the phase diagram, the transition 
point at finite temperature but vanishing baryon density. The predicted transition 
temperature is T "' 200 MeV. The lac~ of precision in the prediction arises from 
uncertainties in relating the scale parameter of the calculation to the physical scale 
because of the numerical difficulties still encountered in applying the theory to the 
confined states of single hadrons whose masses set the scale. But most important 
for the motivation of the present investigation is the gulf between the problem 
solved by lattice theory, and the nature of the experimental probe. The collision 
of nuclei, say a central one, at a given laboratory energy produces matter of some 
corresponding definite temperature and baryon density, depending on the collision 
dynamics. It will then evolve toward disassembly, possibly along an isentropic path. 
The entire phase diagram is therefore not accessible. The injection points will lie 
on a trajectory, each point of which corresponds to a given laboratory energy. 

It is the purpose of this work, through models of the hadronic and quark gluon 
plasma phases, to investigate within reasonable parameterizations of each phase, the 
phase diagram, the trajectory in the phase diagram that is accessible in collisions 
of hadronic matter, and the properties of matter, and hence the possible signals, 
that correspond to the accessible region. Such a two model approach to studying 
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the phase transition has been investigated by a number of authors (see [3,4,5,6] and 
references therein). In this work we investigate a number of other features of this 
approach. On the hadronic side the well known bulk properties are the binding 
energy, saturation density and symmetry energy. In addition the effective nucleon 
mass at saturation is fairly established. There remains considerable debate over 
the compression modulus. On the quark side the principle uncertainty is the bag 
constant and the effect of interactions due to gluon exchange. Therefore J{, B and 
a 8 will be the main focus as concerns uncertainties in the equation of state. We 
shall also investigate the role played by baryon resonances and shall include the 
pion polarization in the medium through the excitation of delta particle - nucleon 
hole excitations and the correlations introduced by the short range nuclear force. 
An interesting problem arises in connection with the appropriate weighting of the 
pio~ modes, which is discussed in detail. 

Our investigation concerns the baryon rich plasma that is anticipated as a re­
sult of collisions at energies corresponding to the stopping of baryons within the 

. volume of the colliding nuclei. In the energy domain where nuclear stopping is ex­
pected, there are two plausible means of estimating the temperature and density at 
which matter initially is made at given laboratory energy. One corresponds to the 
Rankine-Hugoniot shock condition, and the other to perfect stopping in the over­
lapping Lorentz contracted volume of the colliding nuclei. We shall compare these 
conditions. As well, we will calculate the accessible region of the phase diagram 
for several assumptions concerning the properties of hadronic matter, the nuclear 
equation of state, and for several assumptions concerning the quark-gluon phase, 
the bag pressure and the strong interaction coupling constant. 

There is a region of the phase diagram that corresponds to a mixture of the two 
phases in equilibrium. There are commonly held assumptions concerning qualitative 
signals of the mixed phase. These are based on the observation that on an isotherm 
the pressure is constant as a function of energy throughout the mixed phase. While 
this is true, our first observation is that, unlike experiments on macroscopic sys­
tems, where the thermodynamic variables can be externally controlled, isotherms 
are not accessible in collisions. Our calculations of the trajectory of the injection 
point through the phase diagram that is probed as a function of laboratory energy 
correspond more closely to the actual nature of feasible experiments. 

Relativistic nuclear field theory provides a good description of the bulk proper­
ties of nuclear matter as well as a large number of single-particle properties of finite 
nuclei [7]. With appropriate extensions, the theory can be used to study matter 
away from the normal state, matter that is under extreme conditions of temper­
ature or density, such as is expected to be produced in relativistic nuclear collisions, 
and as formed in the collapse of a star just prior to the bounce that produces the 
supernova, and as exists in the cores of the neutron stars into which the remaining 
matter of the star subsides. We have studied some aspects of these problems in 
other papers, and refer to them for the formulation of the theory appropriate to 
the present application [8,9]. The new feature that we need here is the conservation 
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of strangeness, because the time scale of nuclear collisions is so short compared to 
the weak interaction scale that violates strangeness conservation. Strange baryons 
can be produced, but only in association with kaons, which do not decay during the 
collision, unlike the situation in neutron stars and supernova, where net strangeness 
can evolve, since it produces the lowest energy state of dense matter [10]. 

In addition to the scalar and vector mesons which mediate the baryon interac­
tions at the mean field level, we take account of the contribution to the energy and 
pressure of other mesons, most notably the pion and kaon through their thermal 
distributions. The interaction response of the pion to the medium is taken into 
account through its coupling to delta-particle, nucleon-hole excitations and their 
repeated scatterings, which is believed to be the dominant contribution to the pion 
dispersion. Charged pions and kaons contribute to the electric charge, and kaons 
to the strangeness, which has to be taken into account in the constraints that must 
be imposed to describe non-strange charge-symmetric matter, as is appropriate for 
high energy nuclear collision. 

We describe the quark gluon phase as a gas of massless up and down quarks and 
gluons and massive strange quarks. Again we are careful to conserve strangeness 
and electric charge. 

In the following sections, we describe first our calculation of the equation of 
state of matter in the hadronic phase, including the pion spectrum in the medium. 
The equation of state of the quark-gluon plasma is briefly discussed. Then we show 
and discuss the results of the investigation of the various aspects of the problem 
mentioned above. 

2 Hadronic Matter 

2.1 · Interacting Hadron Equation of State 

The extended Lagrangian is [8,9] 

£ = L~B[ifA81-£+igwBWI-£)-(mB-9uBa)]~B 
B 

- ~bmn(gua?- ~c(gua)4 + Hol-£aol-£a- m;a2
) 

- !w w1-£v + lm2 w wl-£ + · · · 4 1-£V 2 W 1-£ (1) 

Here ~B denotes a baryon spinor and the sum is over all the charge states of the 
baryon families, N, ~'A, :E, 3 as listed in table 1. The unstable baryon resonances 
are not included because the interactions through the meson exchange are explicitly 
incorporated [11]. The a- and w-mesons are Yukawa coupled to the baryon scalar 
density and vector current, and the p-meson is coupled to the total isospin current 
which however vanishes in symmetric matter. The other mesons are included as free 
thermal bosons and their Lagrangians are represented by the ellipsis. We include 
the pion dispersion in the medium due to N-1 ~excitations in calculating the boson 
distribution function. 
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The field equations for static uniform matter in the mean field approximation 
. are, for the mesons, 

and for the baryons, 

- bmn(9uCf )2 
- c(guCJ? + L: 9uB < 1/;'1/J > 

B 

L:9wB < '1/Jt'I/J > 
B 

L:9wB < 1fi1k'l/J > = 0 ===} Wk = 0 
B 

[1~'-(piL - 9wBW~t) - ( ffiB - 9uBCf)] '1/JB _.:_ 0. 

The baryon eigenvalues of momentum, k, for particle and antiparticle are, 

EB(k) EB(k)+9wBWo 

EB(k) - EB(k)- 9wBWo, 

with 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

For the present application we need the finite temperature solutions. The formu­
lation has been carried out earlier [8,9]. Since the time scale (unlike supernovae or 
neutron stars) is very short on the weak interaction time ( r f"'o,J 10-10 sec), strangeness 
is conserved throughout the duration of the collision and the evolution of its prod­
ucts. This does not mean that hyperons and kaons cannot occur in the hot dense 
matter that is formed, but only that the net strangeness is zero. Similarly, the total 
electric charge and the baryon number are conserved. For symmetric nuclear matter 
the charge density is q = p/2. These conservation laws can be enforced in the usual 
way, through the introduction of chemical potentials, /-tb, J-tq and J-ts, for (positive) 
baryon number, electric charge and strangeness, respectively. They together with 
the field amplitudes CJ, w0 , can be determined through the three equations expressing 
the conservation laws and the two field equations. They are, 

p 

p 

2 

0 

"2JB + 1 loo -1 2 L...J --
2
-bB (exp[(t:B(k)-J-LB)/T] + 1) k dk 

B .271" 0 

"2JB + 1 1oo -1 2 
L...J 

2 2 qB (exp[(t:B(k)-J-LB)/T] + 1) k dk 
B 71" o 

" 2J M + 1 100 
. -1 2 + L...J 

2 2 qM (exp[(wM(k)-J-tM)/T] -1) k dk 
M 71" 0 

2J B + 1 100 
- -1 L: 

2 2 
SB (exp[(t:B(k)-pB)/T] + 1) k2dk 

B 71" 0 

2JM + 1 100 
-1 + L: 

2 2 SM (exp[(wM(k)-pM)/T]- 1) k2dk 
M 71" o 

4 

(9) 

(10) 

(11) 



.. 

(13) 

The sums B and M run over all charge states of particles and antiparticles of the 
species listed in table 1. The chemical potential for a hadron species with baryon 
charge, bi, electric charge, qi, and strangeness quantum number, si, is 

(14) 

The antiparticle chemical potentials are the negative of these. 
The hadronic equation of state is, 

(15) 

€ 

'"""' 2J M + 1 ioo -1 2 + L..J 
2 2 

WM(k)(exp[(wM(k)-J.LM)/T] -1) k dk 
M 7r 0 

(16) 

In these equations, u and w0 denote the mean values of the scalar meson, and the 
time-like component of the w-meson. The space-like components vanish in isotropic 
matter. The net baryon density, is denoted by p. The energy for free mesons 

is WM( k) = JmJ..t + k2 • (We write an explicit expression for the pressure because 
p = -( 8E / 8V)s does not provide a convenient calculational scheme since T appears 
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as an extensive variable in € = E /V written above and the entropy varies along an 
isotherm.) 

The entropy density is also an important quantity, 

. (17) 

where the sum, i, is over the various baryon and meson species and their charge 
states. ( The particles states of the kaon are f{+ and 1{0 and the antiparticle states 
are J{- and K 0 .) The conservation laws for charge and strangeness, (q = p/2, S = 
0), can be used to simplify the sum in the last term, which is equal to p(J-lb + J-lq/2). 

The most important thermal meson contributions to the above expressions for 
p and € are the pion and kaon. Because the kaon interacts weakly, we use the free 

kaon dispersion, WK(k) = Jm'k + k2 • However the pion interacts strongly with 
the medium and its energy, w( k ), is strongly modified from the free dispersion, 

Jm; + k2 , as discussed below. 
In all of our calculations except for one that is discussed later for contrast, we 

include the baryon states of Table 1 which interact as in Eq.l through the Yukawa 
coupling of scalar ( u) and vector ( w) mesons, and as well include thermal pions and 
kaons. 

Table 1: Hadron states. Spin is J, charge is q and strangeness is s. 

m J q s 
(MeV) 

N 939 1/2 0,1 0 
~ 1232 3/2 -1,0,1,2 0 
A 1115 1/2 0 -1 
~ 1190 1/2 -1,0,1 -1 
..... 1315 1/2 -1,0 -2 ~ 

7r 139 0 -1,0,1 0 
K 494 0 0,1 1 

2.2 Coupling Constants and Equation of State 

The four coupling constants in the theory, g17 jm17 , gwfmw, b, c, are chosen so that the 
theory possesses the bulk properties of uniform symmetric matter, binding B/ A = 
16 MeV, saturation density p = 0.15 fm-3 . The compression modulus has been the 
subject of considerable debate. A decade ago it appeared to have been established­
as I< = 220 ± 20 MeV. Recent evidence suggests a value I< "' 300 MeV [12,13]. 
Evidence from high energy nuclear collisions is still provisional but suggests as high 
or higher value [14]. On the other hand the nucleon (Landau) effective mass at 
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saturation is believed to lie within rather narrow bounds of about m£andaufm "' 
0.83- 0.85 [15], implying a scalar effective mass at saturation of about m;at!m = 
(mn- 9uCisat)/m "'0.78- 0.8. where we relate the two effective masses by, 

* ( k ) ( * 2 k2 ).! mLandau = OE(k)j{)k kp = msat. + F 
2 (18) 

Since the range of uncertainty in m* is so small we take 0.8 in all of the calculations. 
Of course nuclear matter properties do not determine the hyperon couplings. For 
simplicity we have assumed universal coupling. 

In Fig.1 we show the equation of state corresponding to several values of m* at 
fixed J{ and vice versa. In the domain of validity of the theory, namely up to a 
few times nuclear density and below the transition to the quark-gluon plasma, both 
effect the form of the equation of state. For very high density m* is most important. 
The reason for this is that the vector repulsion dominates all other terms in the 
equation of state,1 and for given binding energy and saturation density, the vector 
coupling constant is uniquely determined by m* through, 

Eo _ B _ ( 9w ) 2 Jk2 *2 - - A + mn - - Po + o + msat. 
Po mw 

(19) 

.where the Fermi momentum at saturation, k0 , is related to the density in the usual 
·way, p0 = 2k3/(3rr2). (The above relation follows from the saturation condition 
8(Ejp)j8k = 0 evaluated at k = k0 and the field equation for w0 .) However as we 
shall see later, the transition to the quark-gluon plasma occurs at density far below 
where this asymptotic behavior governs the equation of state, and the relevant range 
of densities is shown in the figures. Since m* is known within such a narrow range 
as quoted above [15], the main uncertainty in the nuclear equation of state lies in 
the value of K. 

Table 2: Coupling constants for several K and forB/ A = 16 MeV, p = 0.15 fm-3 , 

asym = 32.5 MeV and m;at/m = 0.8. 

K (gu/mu)Z (gw/mw)2 (gpjmp)2 b c 
MeV (fm)2 (fm)2 (fm) 2 

220 9.678 4.356 5.025 0.01164 -0.004042 
250 9.216 4.356 5.025 0.008209 0.007385 
300 8.492 4.356 5.025 0.002084 0.02780 
350 7.820 4.356 5.025 -0.004618 0.05015 

1In the Astrophys. J. article of ref. [10] a careful analysis is given at eq.(62-63) and the sur­
rounding text. 
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The greatest influence of the baryon resonances occurs at finite temperature, 
espeCially high temperature, as shown in Fig.2. The form of the energy as a function 
of density shown there for finite temperature should not be mistaken as indicating 
a bound state. The pressure is everywhere positive on these isotherms despite the 
negative slope of the energy near the origin (recall the note following eq.16). The 
energy is finite at zero (net) baryon density because of thermal mesons and baryon 
pairs, which means that the energy per (net) baryon becomes large near the origin. 
The pion dispersion in matter is incorporated in these calculations as described in 
the next section. 

2.3 Pion Spectrum in Nuclear Matter 

The pion cannot exist in nuclear matter with the properties of the free pion because 
of its strong interaction with the medium as emphasized long ago by Migdal [16]. 
It exists in matter partly as itself and partly absorbed by a nucleon particle-hole or 
delta particle-nucleon hole excitation(~- N-1

) with the pion's quantum numbers. 
The pion spectrum, w( k) in nuclear matter is obtained as the poles of the pion 
propagator, V(k,w), in the medium, ie. as the solutions of 

v- 1(k,w)-:- w(k)2- m!- k2
- IT(k,w(k)) = 0 (20) 

where IT( k, w( k)) is the proper polarization and represents the square of the energy 
change caused by such processes mentioned. · The relativistic expression for the 
polarization, which reduces in the non-relativistic limit to the Lindhart function 
describing particle-hole excitations, has been obtained earlier [17]. However here 
we choose the more phenomenological approach of Migdal [16]. We approximate it 
by the dominant contribution, the pion coupling to the ~- N-1 excitations and 
their repeated scatterings in nuclear matter at density p, and include finite-size 
vertex cutoffs. The resonance polarization is the sum of two uncrossed and two 
crossed graphs containing a delta and a delta plus two pions in the intermediate 
state respectively. In symmetric nuclear matter the polarization for the 7r+, 1r0 , ?r­

are all equal. It is [16,18], 

8 (gb.k)2 WD.(k) 
Tires ~ -9 - p 2 2 (k) m1r w - wD. 

(21) 

The approximation sign above indicates the usual approximations including cance­
lation of the fermion momenta in the energy denominators. We keep the momentum 
dependance of the~- N-1 (resonance) dispers~on, WD., in its relativistic form, 

(22) 

The baryon masses here should be the scalar effective masses in matter, but for 
sake of illustration in this section we take them to have their vacuum values. 
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The repeated nuclear scatterings among ~ - N-1 states by the short range 
nuclear force characterized by the the Landau parameter, g', when summed, yield 
the proper polarization, 

( ( )) 
A2(k)1Ires(k,w) 

II k,w k = l- g'(m1r/gt:J.k)2A2(k)1Ires(k,w) 
(23) 

We include, as in Pandharipande [19], a vertex cutoff A(k ), 

A(k) = exp-(-k-)
2 

7m7r 
(24) 

The p-wave coupling strength, gt:J., of pions and nucleons to isobars is related 
in the quark model to the p-wave pion-nucleon coupling, J, by 9t:J. = (6V'J,j5)J, 
where P / ( 4rr) """ 0.08 [18]. The spin-isospin anti-symmetric Landau parameter for 
coupling of delta particle-nucleon hole states is g'""" 0. 7(gt:J./m'Jf: )2 [20]. 

By defining 

8 ( 9t:J.) 
2 

B(k,p) ;_ g m1r Wt:J.(k)A 2(k)p, (25) 

the inverse pion propagator can be written 

(26) 

which shows that there are two (positive) solutions, if k and pare finite. Otherwise 
for identically vanishing density, or infinite k, for which in both cases B = 0, only 
the free solution exists (in the second case because of the momentum cutoff). Let 
us refer to the two solutions as w 1(k) and w 2(k). They are, 

w~,1 = ~ [w.i + 1B + w; ± ..j(w1 + 1B- w;)2 + 4k2B]. (27) 

Both have to be taken into account and we show how to do this below .. For small 
k they have the limiting values, 

w'Jf:(O) = m1r 

Jw1(0) + ~B = V(m1- m;)2 + 1B 

and for large k, 

lim w1(k) = Wt:J.(k) 
k-+oo · 

lim w2(k) = w1r(k) 
k-+oo 

(28) 

(29) 

(30) 

(31) 

So at small k, we see that w1 is pion-like while for large kit is ~-like, and conversely 
for w2 • 
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For various values of the nuclear density we show the pion dispersion, w( k) in 
Fig.3. One solution (for fixed density p) lies below the envelope defined by the free 

dispersion, w'lr(k) = Jm; + k2, and the resonance dispersion, Wt.(k), and the other 
lies above, referred to earlier as w1(k) and w2(k) respectively. In the limit of small 
(but not identically zero) density, neither solution represents the free dispersion at 
all k, since 

1. (k) { w'lr( k) 
lmWt = (k) 

p--+0 Wt. 

. { Wt.(k) 
hmw2(k) = (k) 
p--+0 W1r 

if k < ko 
if k > ko 

if k < ko 
if k > ko 

(32) 

(33) 

where k0 denotes the value of k at which the free and resonance dispersions cross. 
Associated with this switch in behavior near k0 are the weights for the pion-like 
component in the excitations 1 and 2. These weights, Ai(k,p), will be proportional 
to the residues of the propagator (see appendix to ref. [17]) and the proportionality 
must be such that the temperature distribution for the free spectrum is recovered 
at vanishing density p. The residues are given by 1/(fJV-1 (k,w)f8wi), i = 1,2, 
and the proportionality factor can be found as 2wi. Thus the weight of the pion-like 
component in the mode i is, 

(34) 

We can obtain the explicit expression for the weights, 

A·(k ) -1- PB(k,p) 
' ,p- [wl(k)-wi(k)-!B(k,p)]2+k2B(k,p) 

(35) 

and the sum rule, 

(36) 

This is most easily proven by rewriting the numerator of the inverse propagator 
Eq.26 in terms of its zeros, thus, 

(37) 

whence the sum rule can be directly calculated. The weight, A 2(k,p), is shown in 
Fig. 4 for the same densities as in Fig. 3. For vanishing density the weight becomes 
a step function at ko. For all densities however the weights interchange the dominant 
character of the mode near k0 , with the pion-like component residing mostly in w1 

for k < ko and in w2 otherwise except in the vicinity of k0 , where the weights are 
both about one half. Therefore, it is incorrect, in principle, to take account only 
of the w1 solution as representing the pion excitation in high temperature matter 
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which can excite large k, because even though it lies lower in energy and has a larger 
thermal weight, it has vanishingly small spectral weight At(k, p) for the pion-like 
component when k is large. The weights discussed here are essential for processes 
that involve the identification of the pion component like di-lepton production from 
7r+7r- annihilation [21]. 

The proper polarization and the spectrum of excitations with the pion quantum 
number was calculated above for symmetric nuclear matter assuming only neutrons 
and protons in occupied thermal states and allowing for pion absorption to form a 
delta in the intermediate state. In matter at high temperature and density, other 
baryon states will also be occupied, and because of the increasing scalar field as 
a function of density or temperature (decreasing effective mass), anti baryon states 
will also be occupied. It is very difficult to calculate these medium effects on the 
pion. We shall make only gross estimates of their effect on the polarization. We 
will include only the delta particle -nucleon hole excitations and also the antidelta 
particle-antinucleon hole excitations, in the scheme above. In the present work 
the contribution of the other baryon resonances to the pion polarization will be 
neglected. We do take into account in the subsequent calculations the effective 
nucleon and delta masses, m'B = mB- guu, as appear in the resonance dispersion. 

Condensation of negative pions will occur if J.L1r- attains the value of the minimum 
of w1(k) from below. However the symmetry energy favors Pn ~ pp implying that 
J.ln ~ J.lp, while from Eq. 14, J.L1r- = J.ln - J.lp ~ 0. In symmetric nuclear matter 
this is true for the other charge states of the pion also. Hence in this model of 
the proper polarization with the coupling 1 = g'(m1r/gt::..)2 = 0.7, pions do not 
condense below a density p > 3 fm-3

, as can be seen in Fig.3. 2 This is far above 
the density expected for the quark-gluon phase transition. Otherwise, the pion 
energy in the medium is clearly strongly modified at higher p from its free value, 
w'Tr(k) = Jm; + k2 , and we can anticipate that there is a tendency to raise the 
energy at which the phase transition will occur because of the energy trapped in 
low frequency thermally excited pions. 

3 Quark-Gluon Matter 

We describe the quark-gluon phase by the asymptotically free equation of state cor­
responding to a thermal mixture of massless u and d quarks and gluons and massive 
strange quarks with m 8 = 150 MeV. An equal mixture of u and d quarks automat­
ically has an electric charge to baryon ratio of 1/2, and this is not changed with 
the addition of a strangeness conserving mixture of s and s quarks. Each quark 
flavor contributes the following to the pressure, energy density, baryon density and 

2The situation is quite different in neutron stars where charge neutrality (which is a consequence 
of the fact that the Coulomb force is much stronger than the weak gravitational force which binds 
the star) assures that JJn > jJp. In this case negative pion condensation is a real possibility. 
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.entropy density: 

where EJ(k) = Jm} + k2 and 

n(k,p~) = (exp[(E1(k)- J.LJ)/T + 1)-1 

(38) 

(39) 

(40) 

(41) 

(42) 

is the Fermi distribution function. The bag pressure is denoted by B, and represents 
the positive energy shift per unit volume in the deconfined vacuum relative to the 
confined vacuum. The quark degeneracy for each flavor is rf = 2spin X 3color· For 
massless quarks these have the explicit forms; 

7 1 1 
p -1r2T4 + -T2p2 + _J.L4 _ B (43) 

60 2 f 47r2 f 

€ 3p+4B (44) 

p 1 ( 2 J.L}) - T J.LJ +-3 7r2 
(45) 

7 
s - -1r2T3 + Tp2 (46) 

15 f 

For the massless Bose gas of gluons of degeneracy 2(N'1- 1), we similarly obtain 
the contributions; 

p 
87r2 T4 
45 

(47) 

€ 3p (48) 

s 
327r2 T3 
45 

(49) 

For massless quarks and gluons, we thus have, for example, 

87r
2 

( 7 1 1 ) P = -T4 +""" -1r2T4 + -T2 J.L2 + _J.L4 _ B 
45 7 60 2 f 47r2 f 

(50) 

The lowest order gluon interactions have been calculated [22,23,24), and result 
in the following modification, 

p = 

12 

.. 



and corresponding changes in €,' s = 8pj8T and p = l LJ 8pf8J1J· The coupling 
constant is denoted by a 8 : 

For a charge symmetric quark gas (q = p/2) with vanishing strangeness content, 
we must set 

Jls = Q . (52) 

(Many authors have employed a common chemical potential for all flavors and apply 
a factor N1 to the quark contributions to the €, p etc. This is incorrect for N1 = 3, 
since such matter is neither charge symmetric nor has it zero strangeness.) 

4 , Results 

4.1 Interpretation 

In a complete theory of matter, it is possible (in principle) to calculate the thermo­
dynamic variables at all densities, including the mixed phase region in cases where 
a first order phase transition occurs. The pressure on an isotherm as a function of 
density is illustrated in Fig.5 for such a case, by the solid line. The solid line between 
the end points of the mixed phase, (M, M') is actually not the physical state of the 
system, although it represents a solution of the theory. As is well known the physical 
state will consist of an equal pressure mixture of the two phases of matter at M and 
M' (the dashed line). These points correspond to the Gibbs criteria, which are the 
equality of pressure, temperature and baryon chemical potential (3J1u = 3J1d = Jlb) 
in the two phases. The pressure remains constant in the mixed phase, and the other 
properties such as the energy, entropy, etc at a particular density between M and 
M' are equal to the volume mixture of the values at the end points. It should be 
noted that the highest density at which matter in the hadronic phase exists is the 
density corresponding to the point M. Since a complete solution of QCD for baryon 
rich matter will not be available for the foreseeable future, such a detailed curve 
for the phase transition between hadron and quark-gluon phase cannot be calcu­
lated in the region MM' (and the one solid one drawn is schematic). Instead we 
have two incomplete theories, nuclear field theory for the hadron phase and the free 
quark-gluon model of the second phase. The first does not describe the transition 
to an asymptotically free assembly of quarks and gluons at high energy density, and 
the second does not become a description of a confined assembly of hadrons at low 
energy density. The line HMH' shows the pressure in the hadron model and the 
line Q'M'Q shows it for the quark model. The physical path in the mixed phase, 
MM' can of course be identified by the Gibbs criteria. If indeed a phase transition 
does· occur, the superheated portion of the hadron curve, MH' has no meaning, and 
approximates the true but unknown superheated state only in the vicinity of M. A 
similar statement holds for the supercooled quark phase M'Q'. In the report that 
follows, we shall show the portions of the hadron phase corresponding to MH' to 
show the properties of matter if no phase transition can occur under· the conditions 
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studied, in order to contrast them with the properties that would obtain if there is 
a phase transition. · 

The phase diagram is most easily constructed by searching for the intersections 
of isotherms in the two phases in the p- J.l plane. The density, energy, etc can then 
be calculated at the end points of the two phases since they correspond to the J.l of 
the mixed phase which is the intersection. The phase diagram in the T - p plane 
is shown in Fig.6, with the hadron, mixed and quark-gluon phases indicated. This 
corresponds to the particular choice of I<= 300 MeV, and B 114 = 250 MeV, as for 
Fig.5. We show later how variations in these change the phase diagram. All the 
hadron states of Table 1 are included. 

4.2 Approximation to Dynamics 

As discussed in the introduction, it is not possible experimentally to trace the 
properties on isotherms when the only way of preparing the matter is a collision. 
The collision dynamics, for each laboratory energy, will determine the initial state of 
the system. We make two approximation~ to the dynamics, one by assuming planar 
hydrodynamics so that a shock zone is formed, and the properties of matter in the 
zone are then prescribed in terms of the equation of state by the Rankine-Hugoniot 
relation, 

€/ p . ,_:--
Eo/Po 

(53) 

and the other by assuming that the colliding nuclei stop each other in their over-
lapping Lorentz contracted volume, · 

p = 2[po, (54) 

where r is the Lorentz factor. These two scenarios will approximate the initial or 
injection point in the phase diagram for each laboratory energy. The trajectory of 
such injection points· in the case of hydrodynamics is known as the Taub or shock 
adiabat. From the injection point corresponding to a particular bombarding energy, 
the system will start to evolve since it exists at high pressure and energy density. 
We approximate the evolution as the path of constant entropy, which we can refer to 
as quasi-hydrodynamics, since each elementary volume of matter will pass through 
the same states as would be traced in a hydrodynamic evolution. What we lack in 
tliis description is the space-time history. 

4.3 Phase Transition Dependance on Hadron Spectrum 

We show a sample of our results relating to the question of the role played by baryon 
states beyond the nucleons. These include the ~ and the hyperons, A, 'E, 3. Their 
presence will raise the energy required to heat matter to a given temperature, and 
under certain circumstances can lead to an abnormal phase transition [8,9,25,26]. 
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In Fig. 7 the only baryons are nucleons interacting through the scalar and vector 
meson fields. The thermal pions with the two modes discussed earlier are also 
included. However because of strangeness conservation on the short time scale of 
the nuclear reaction, thermal kaons do not appear. In Fig.8 the deltas and hyperons 
and thermal kaons are included as well. In both cases we use K = 300 MeV and 
m;atfm = 0.8 for the hadronic equation of state, and a bag constant B 114 = 275 MeV 
and as= 0 for the quark-gluon equation of state. The top panel in each figure shows 
the phase diagram in the T- p plane. The solid lines denote the phase boundaries. 
The low T - p region is the hadronic phase, the region between the two boundaries 
is the mixed phase, and the high T- p region is the quark-gluon phase. The broken 
lines denote the trajectories that are the injection points accessible to experiment 
as approximated by the Rankine-Hugoniot shock relation. The dotted line denotes 
the continuation of the hadronic shock trajectory if no transition to quark-gluon 
phase were to take place. The squares denote the end points of the mixed phase on 
the shock trajectory. In the other panels of the figures, the temperature, pressure, 
density and entropy per baryon are shown on the shock trajectories as functions 
of the laboratory kinetic energy per projectile nucleon (fixed target) related to the 
energy per nucleon in the center of mass of the composite system, E/ p by, 

Eo 2 
Elab = 2-('Y -1), 

Po 

Ejp 
(=--

Eo/ Po 
.(55) 

These figures show the conditions in which matter is created in a collision, assuming 
shock dynamics. The figures are qualitatively similar if instead we assume perfect 
stopping in the overlapping Lorentz contracted volume of the colliding nuclei. 

We shall discuss the implications of these figures in the next section. Here 
our purpose 1s to note that the baryon resonances play a very important part in 
defining the phase diagram and especially in determining the energy at which the 
mixed phase can first be made. The resonances shift the laboratory kinetic energy 
to higher energy by about a factor two for the present value of K and B. This is 
so approximately independent of these two parameters. 

In particular, depending on how strong a role the baryon resonances play, the 
mixed phase threshold occurs as low as 4 Ge V laboratory kinetic energy (fixed 
target) to as high as 8 GeV, for the bag constant B 114 = 285 MeV. For a value of 
B 114 = 200 MeV, the mixed phase begins at 1 GeV to 2 GeV depending on the role 
of the resonances. 

4.4 Properties on the Shock Trajectory 

In Figs. 7 and 8 we showed the properties of matter that are initially produced in 
a collision assuming shock dynamics and K = 300 MeV and B = 275 MeV. We 
discuss the implications of these results. We recall first of all the constancy of the 
pressure through the mixed phase on an isotherm, which has given rise to the sug­
gestion of a plateau in transverse momentum of spectator fragments. As noted in 
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the introduction, one cannot probe isotherms in collisions, and the consequence of 
this is clearly seen in the figure. The pressure rises monotonically and with very 
little change in slope as a function of energy as the phase boundaries are crossed. 
The difference in pressures that matter would have if it remained in the hadron 
phase or if it underwent transition to the mixed and quark-gluon phase are very . 
nearly the same, differing by less than ten percent. Nevertheless it is possible that 
the discontinuity in slope at the ends of the mixed phase, could, in the hydrody­
namic flow of the participant region, produce a flattened region in the transverse 
momentum of spectator fragments. Likewise the entropy signal of a phase transition 
is very weak. At first these results may seem unexpected, inasmuch as the degrees 
of freedom are more numerous in the quark-gluon phase, suggesting lower pressure 
and higher entropy. However for the same reason, for given energy, the temper­
ature of the quark-gluon phase is falls throughout the mixed phase as a function of 
increasing bombarding energy, which explains the above. In fact, the temperature 
and the density are the two properties that undergo the greatest discontinuity in 
behavior as the threshold for the mixed phase is reached. Observables that depend 
sensitively on these changes in behavior will be the most favorable for detecting 
the quark-gluon phase. Di-lepton production seems especially favorable. The high 
temperature of the hadronic phase, if it persists above the transition point to mixed 
phase, will enhance di-leptons from 71'+ -71'- annihilation. Differences in the photon 
production may also be a strong signal. These and other results will be the subject 
of a future publication. (It is interesting to note that the same qualitative features 
noted above, like the fall of T through the mixed phase were also observed in the 
calculations of a phase transition of a different type [27].) 

A plateau in temperature as a function of energy is frequently mentioned as 
a qualitative signal of the mixed phase, based on the notion of 'melting' (as of 
ice in water). The analogy is inaccurate inasmuch as the melting of the hadrons 
in a sequence of increasingly higher energy nuclear collisions is not a sequence 
of measurements at constant ·pressure (as in the heating of a pan of ice in the 
atmosphere). We have seen instead, as in Fig.8, that the initial conditions, as 
estimated by the Rankine-Hugoniot shock condition, are characterized by rising 
pressure and falling temperature as the bombarding energy is increased through 
the mixed phase. The transverse momentum is usually considered as a measure 
of the temperature. However the particle momentum of the participant region is 
determined by both the temperature and the boost provided by the collective flow 
induced by the high pressure of the expanding matter. The fall ofT and rise of p, 
with increasing bombarding energy have opposite effects on the particle transverse 
momentum and may give rise to a plateau or perhaps a fall in Pl.. through the 
mixed phase, but not for the reason commonly given and certainly a plateau in 
temperature cannot be expected. 
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4.5 Dependance on Bag Pressure 

For fixed value of the nuclear compression K = 300 MeV, and other saturation 
properties as discussed earlier, including the nucleon effective mass at saturation 
which is rather well determined, we show in Figs.9 to 12 the phase diagram and 
properties on the shock trajectory for four values of the bag pressure, B and a 
fifth one in Fig.S. For reference, B 114 = 145 MeV is found to give an overall fit 
to the baryon mass spectrum that is reasonable [28], while B 114 = 175 MeV better 
reproduces the average of the nucleon and delta mass [29]. On the other hand, from 
these figures, B 114 = 250 - 275 MeV, better reproduces the transition temperature 
T rv 200 MeV suggested by lattice gauge calculations for the phase transition in 
baryonless matter. The figures shows an interesting diversity of forms for the phase 
diagram, depending on B. We shall place more emphasis on values of B that give 
the baryonless phase transition at T rv 200 MeV. It is clear that the value of B that 
best reproduces the hadron mass spectrum in the MIT bag model gives much too 
low a transition temperature. 

However we draw special attention to Figs.10 and 11 which have a baryonless 
phase transition at T rv 160- 170 MeV, which is not so far below the expectations 
of lattice gauge simulations that these results can be ruled out, especially given the 
uncertainty in the energy scale of the lattice calculations. The phase boundaries in 
these cases are of special interest, since the baryonless transition is in the range of 
lattice QCD, but falls rapidly in T as the density increases, so that the mixed phase 
appears as low as T = 115 MeV, p = 4.7p0 and Elab = 2.5 GeV. 

For each K there is a maximum B above which the behavior is unphysical in 
the sense that below a critical baryon density Pc no transition to the quark phase 
occurs, and above this density the system alternates between the two phases as the 

. temperature is increased. This however is an artifact of the two-model approach 
to the phase transition. On an isotherm in the p - J.l plane the isotherms for the 
two phases intersect more than once. It is more plausible that once the critical 
conditions for transition from hadronic to quark matter are exceeded, the system 
remains in the second phase for all higher conditions. Such a situation is shown in 
Fig.13 in the T- p plane. 

4.6 Dependance on G luon Exchange 

Corrections to the simple equation of state of free quarks and gluons from gluon 
exchange are uncertain, but we include a sample calculation in which lowest order 
perturbation interaction ~s taken into account with as = 0.2 in Fig.14. Comparison 
with Fig.12 shows that interactions raise the laboratory energy at which the mixed 
phase is reached by about fifty percent. 
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4. 7 Dependance on Nuclear Compression J{ 

We compare similar results to those discussed in the last section for other values of 
the nuclear compression modulus, K = 220 and 250 MeV, in Figs.15 16. These can 
be compared with the results for K = 300 MeV and the corresponding B in Figs.11 
and 12 respectively. Very little sensitivity to K is evident in these results and this 
is true forK within the range"" 220-350 MeV except at the larger Bas discussed 
in an earlier section. 

The relative insensitivity to the uncertainties in the nuclear equation of state 
as represented by K (and m* within its range of uncertainty), can be understood 
from Figs.1, 2 where we see that the thermal energy is much bigger than the energy 
differences due to uncertainties inK or m*. 

4.8 Dependance on Pion Spectrum in Medium 

We saw in an earlier section that the pion spectrum is strongly altered in the 
medium. Indeed there are two important excitations having the pion quantum 
numbers, which at low k are pion-like and delta-like, and which interchange their 
character at higher k, above k0 • In all of the calculations discussed above we have 
included both modes, using for the Landau parameter, g'(m1rfgt::.)2 = 0.7. The 
thermal pions will be especially important in high temperature matter and this is 
born by comparing Fig.17 for which the free pion dispersion is used and Fig.8 where 
both pion excitations are included according to section 2.3. We see that the mixed 
phase is shifted to higher energy, since it corresponds to temperatures in the range 
T = 155-175. 

Besides the Landau parameter, g'(m1r/gt::.) 2 = 0.7, we also tried a smaller value, 
0.5, but the change was negligible, suggesting that the most important part of the 
medium correction is the low to moderate density, high k region corresponding to 
the large isobar component where the rescattering effect is smaller. 

5 Summary 

We have studied a two part model of the transition between hadron and quark-gluon 
phases of matter in the energy domain of nuclear stopping. The hadronic phase is 
described by nuclear field theory including among the baryons, the nucleons deltas 
and hyperons, interacting through the scalar and vector meson fields. Pions and 
kaons were included as thermal populations and in the case of pions their spectrum 
in the medium due to ~-N-1 (and the corresponding antiparticle) excitations was 
calculated. The quark-gluon plasma phase was described by the equation of state for 
massless u and d quarks and gluons and massive s quarks, including interactions in 
lowest order perturbation theory. For this two part model we calculated the phase 
diagram and the shock trajectory through it as an example of the injection point 
of the collision dynamics. We stressed that the dynamics of the collision does not 
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permit the experimental exploration of the entire phase diagram. Matter properties 
at the injection point as a function of bombarding energy were calculated through 
hadron to mixed to quark-gluon phase. Most remarkable was the fall in temperature 
through the mixed phase with increasing bombarding energy. Di-leptons should 
provide a means of detecting the fall as compared to a continued rise in T in a pure 
hadronic phase. 

A strong dependance on the hadronic spectrum was found to be registered in the 
phase diagram and the properties of matter on the shock trajectory. A significant 
dependance on the modification of the pion spectrum from its free to in medium 
one was also found. The first is a hundred percent increase in the threshold energy 
of the mixed phase, and the second a forty percent increase. 

The hadronic equation of state is prescribed at all densities in nuclear field theory 
by the properties at saturation, since these define the coupling constants except for 
those of the higher baryon states (deltas and hyperons). The greatest uncertainty 
concerns the compression modulus. The nucleon effective mass at saturation has the 
potential of effecting the high density equation of state even more, but we believe 
that it is pinned down to a narrow range. The effect of both, within their range of 
uncertainty, on the finite temperature equation of state that is probed in collisions 
is largely masked by the thermal energy, and little sensitivity of the phase diagram 
or the properties of matter on the shock trajectory is found. 

Beside the hadronic spectrum and the pion medium effects, the phase diagram 
is most strongly effected by the bag constant and the QCD coupling constant. 

In these calculations the highest density at which matter in the hadronic phase 
can be produced is 3. 7 to 7. 7 times nuclear density, depending on the factors dis­
cussed above. The corresponding temperature for the finite baryon density matter 
is T"' 150-180 MeV, for those bag constants that yield a baryonless phase transi­
tion at T"' 200 MeV. To the extent that the baryonless phase transition at T"' 150 
MeV is compatible with lattice QCD, then the threshold of the mixed phase could 
occur at Laboratory kinetic energy as low as 2.5 GeV with T"' 100 MeV, but oth­
erwise could occur as high as 9 GeV. Both are compatible with the uncertainties in 
the plasma equation of state as inferred from the baryonless transition temperature, 
and depend very little on uncertainties with which the nuclear equation of state can 
be defined in terms of conventional nuclear properties at saturation, because of the 
dominance of the thermal energy. 

Although the application here is to laboratory energies corresponding to nu­
clear stopping, t-he general nature of the results apply also to situations of partial 
transparency. In this latter case, the relation between the laboratory energy and 
the energy density of the created matter are not simply related, and depend on 
the degree of transparency. Our energy scales should therefore be replaced by the 
corresponding energy density, which would have then to be related by a plausible 
model to the beam energy. In other words, in the general situation, the energy scale 
on our figures should be considered as multiplied by an unknown scaling factor. 
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Figure 7: In top panel phase 
boundaries (solid lines) and the 
shock trajectories (broken). Other 
panels show properties of mat­
ter along the shock trajectory.· 
Hadronic phase includes nucleons, 
mean field mesons and thermal pi­
ons in medium. B 114 = 275 MeV, 
K = 300 MeV 
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Figure 8: In 
top panel phase boundaries (solid 
lines) and the shock trajectories 
(broken). Other panels show prop­
erties of matter along the shock 
trajectory. Hadronic phase in­
cludes nucleons, deltas, hyperons, 
mean field mesons and thermal 
pions (with medium effects) and 
kaons. B 114 = 275 MeV, K = 300 
MeV 
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Figure 9: Same as Fig. 8 but 
B 114 = 175. 
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Figure 10: Sarrie as _Fig. 8 but · 
B 114 = 200. 

0 2 4 6 8 
150 I I I I 

/ . , 

.... / 
> 

~... . , . 

Q) 

~ 100-
I ...... ~~ . 

I 
I- I 

I 

50 I 
1. 5 

- 1-

E 
-
Q.. 0.5- // 

lj 

I 
I 

I 

~ 
I 

I 

,' .... 
I •• 

~ 

,/ 

10 

.,/ 

O;-~-r-~~· -~~~~~~~~~~ 
0 2 4 6 8 10 

Elab (GeV) 

31 

>· 
Q) 

~ 

150 

I -; 
I 

I 
. 100 

I-

50+-~~~~-,~~~~~ 

0 2 

0 2 4 6 8 10 
1000+-~~~~~~~~~~~~'~ 

M 

E --> 
Q) 

~ 

a.. 

~ 
(/). 

BOO 

600 

400 

200 / 

.··./ . , 

.·/ 
.. /' 

.. rf" . , ., 
:­

,) 

0'' 

v/ 
0~------------------~ 
12~------------------~ 

/~. 
/·'······ 

.·~" 
ft.;.· .... 

10-

6-

4- / 
I 

2-1 
~-

o~~~~~r-r-I~TI~~~~~ 

0 2 4 6 8 10 

Elab (GeV) 

XBL 891-206 



Figure 11: Same as Fig. 8 but 
B 114 = 225. 
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Figure 13: Same as Fig. 8 but 
B 114 = 300 MeV. 
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•• 
Figure 14: Showing effect of inter­
actions in the quark-gluon phase 
for 0:' 8 = 0.2. Compare with Fig.l2. 
In both cases, B 114 = 250 MeV and 
K = 300 MeV. 
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Figure 16: Same as Fig. 12 but 
}{ = 250. 
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Figure 17: Same as Fig. 8 but in­
stead of in medium pions, the free 
pion spectrum is used. 
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