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ABSTRACT
The mass transfer of a dilute species in a liquid in a preopagating
erack is treated. The analysis includes the effect of convective
flow of the liquid. The results of the calculations show that the
crack tip is devoid of the minor species and that the mass flux of
. this component is also negligib;e in this region. Therefore, this

could not be the critical'species which causes cracking.
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Mass Transfer of Hlnor Components in & Propagating Crack

Intrbduetion

The failure 6f structural raterials suchias metals and their alloys
by stress corrosion cracking is & complex pnenomena which involves the
interplay of netellurglcal mechenlcal and env1ronA°nual 1nflhences
For an elloy of a partlcular metalWLrglcal condltlon in a constant
environrzent, the cruch propagation may be 1nvestlga ed as a functlon of
stress 1nten31ty; a mechanical variable, It is generally found for
titanium and aluminum alloys (l 2,3) that the rate of crack extension is .
dependent on the stress 1nten51ty at low stress levelu but becomes
- independent of the stress intensity at higher levels. The ptocess vhich
limits the crack velocity at high stress'intensities hasnbeen postn;ated’
to be a mass transfer limited process in the environment:(h,5,6).

If the crack velocity is limited by the rate of mass_transfer of a.  l ‘
critical species to the erack tip, it would be expected fhat the velocity .. -.
.would decrease as the concentration of the.species is decreased in the )
environment. In the limit of very small concentrationslof“thisuspepies,«
the crack velocity should anproach that found in the'puie‘environment
The present 1nvest1gatlon was undertaken to quantify thls relatlonshlp
between the cracking rate and thn mass transfer behav1or of dllute species.,
The results should make it possible to evaluate the role of such components
~_in a given stress corrosion cracking situation, |

The specific system chosen for study was Titenium-8% Aluminum- 1%
Molybdenum— l% Vanadium in molten LiCl-KCl eutectic. This alloy has been -
shovm to be suSceptible to cracking in this environment (7), with crack.
rates up to a plateau rate of 1 cm/sec. The eutectic was obtained
commerC1ally in very pure form, with water as the major contamlnant. The
‘concentration of water was spec1f1ed to be less than 0.1 ppm. Thus we
arc interested in the concentration and mass flux of this minor speeies'
(as o source of hydrozen) at the stress corrosion crdck tip in the molten
sadt. The results should indicate whether a hydrogen model for crack

¢xtension could account for the high cracking velocities observed.

* . : ; :

.+The stress intensity is related to the stress, flaw size, and specimen

' geometry for materials which obey the laws of 11near elastic fracture.
mcchanlcs (1, 2) ..
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Model

The physical model to be tfeated_here is sketched in Figure l;_vThe
crack is wedgé—shaped, with a geometrically-sharp tip, and.éxtends through
the thickness of the material., The coordinate system moves with the crack
- tip, so that ﬁhe sides of the crack appear to move with the velocity ‘
V (1 em/sec for LiC1-KCl) away from the tip. Thé:floﬁ pattern of the
liquid has been determined from a treatment of the fluid mechanics»bf:
the system (8) and is shown also in this figure. The assumption will be
adopted here that these velocity profilés are not chahged by the mass
transfer processeé which we are considering. This is juétified by the
small concentration of the species»of interest and may be Chécked by
using the results which are obtained beioﬁ. The inclusion of convective
effects on mass transfer has not‘been considered previéusly for stress- “
corrosion calculations. ' ' B

The steady-state'velocity'profiles in the liquid were found to bé,

for a small crack angle, zew,

' R : 2 :
v = - -g-{l—% 9——2—} (radial component) - : (1)
wlol . ey ‘
v =_E§ 150" (angular component) (2)
o a g .
- w : : ,

These relationships are valid near the crack tip and out to distances from
‘the crack tip of .~ ‘

IE



FIGURE 1. FLUID FLOW IN A PROPAGATINC CRACK
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With the phys1cal propertles of molten LiCl-KCl1 and 21 crack angle, 2 9

of 10 radlans, this amounts to
. ) . + .
r = Q10 3em).

At greater distances from the crack tip, inertial and pressure forces
determine the fluld—flow characterlstlcs, except near the ‘crack walls .
where viscous forces are alsoc important. ke shall not be 1nterested in
.such large dlstances from the crack tip except for completeness. Also,
seepage of 11qu1d in from the sides of the crack for plates of finite. :
thickness becomes important at dlstances from the crack t1p where the
thickness is of the same order as 0,%- B '

The equatlon of convective dlffus1on for thls system is, at steady—

state,
v, & . _ﬁ.ﬁ_ ( S l,é_ _%.é_%> (3)
r r ' .
where ¢ = concentration
D= diffusion coefficient
and Vi,,Vé'are given by (1) and (2).
The boundagy conditions are
c=0 at'crack wall o (W)
c-acwa.te=0,,r—ou. - (5)
An auxiliary condition is
2 oatg - | ~(6)

since byeSymmetry there is no transfer of material across the crack center
"lipe. Equation (3) is valid for uncharged =pecies, or for charged species
where nmigration effects are not important. Mlgratlon makes no substantial
contribution to equation (3) for our case because the concentratlon of

any minor species is small as compared to that of K ) Ll_,.and Cl™. The



boundary conditions are appropriate when the species}vnzd, is béing
consumed (reduced) et limiting current. Since most of the stress-
- corrosion tests have beén carriéd'out under potentiostatic conditions,
almost to the 1lithium deposition potential, this iS'justified.

As additional justificétiqn'for the treatment to fdllbw,‘dne may -
note that this is a simple system matheﬁatically, and yet the results
should be realistic. The results should also provide insight into the

‘kind of improvements that could be made for‘future investigations.

Mathematlcal Treatment

For cracks of small angle, the §- dlmen51on can be scaled accordlngly,
and the dlstance from the crack tip can be made dlmen31onless in such a
vay that different regions of mass transfer are revealed.

Introduction of the new variables

- e* = (8/8,)
vV o \2
?* = 5 (6,)

into_equation,(3)vyié1ds

. ) ) 2 E 3
(1 39* ) }e ﬁ&:gf_l 8c_ _

2 r¥ = 36%

1 32°+92<——53—"1; 1 ac>
r*2 69*2 W ar*? r¥* 3r¥ | . (7)
The last two terms, which contain the contribution of-rﬁdial diffusion, i
may be-discarded except forrvery small values of r¥. Since appreciablc““
mass transfer occurs only at larger values of r¥, we ncglect these radlal-
diffusion terms 1n the remainder of this work.

The radial convection term (first term on thc left) ard the angular
diffusicn term (flrut term on the right) are the most: 1mportant terms in
_thls region of ihe crack. The second term on the lcft (angular convecticn)

will become important at larger values of r¥. Attempting a separation of



S =6 .
varlables on the two dominant terms leads one to expect a solut1on of

the form

-K/* .
K f(e*)

C ~
T

where K is the separation constant, and T is a functlon to be determined.

The expectatlon that the angular convection term would becOme importent

at larger values of r¥ suggests that addltlonal terms could be added to

this solutlon in the form

-K/r* -K/r* 9 aKfrx . _
¢~ f@ﬂ*—*3——-ﬂmﬂ&r*3~;—%mﬂ+.”.;

%S ¥ e
This can be recognized as an ordinary perturbation analysis and

treatment of equation (7). We are finally_lead to adopt the form

, Z COREACON o ®

n=o

vhere K is a constant and’the'fh‘s are functions to be determined,

'Substitution'into the equation of convective difquiQn’givés

. 1, 2 .
LA - - * =
£ 2.(1 3%°) K £, =0
- S ) (9)
f,=08t g% =1, f /=0at gk =0 '

K is an eigenvalue, and £_ is arbitrarily set equal to 1 at g* = 0. For
n= l,’ 2, 3, ===, -

1 o . 1., .2 1, .0 e
: 5(1-39% K £ = 50%(-e¥7)7 - 5(2-30% )(n—3/_2)fn_l =g,. (10)

With this form for c, the neglected radial-diffusion terms become of the

same order. as the retained terms when r¥ 3ig of order ew'



The solution to the equatlon (9) is

(o]

1 X K N o
1/8 - Q3 g%° X_X ~ -
: 2 2.1 ’ K..2
f = a.o ( ) T— > -é’ %-6* ‘ (ll)
where'lFl(b, d, x) is the confluent hypergeometric‘functjon. ‘The fupctionf
has & series form (9) IR
. . | b b (b+l) 2 "0‘ PP o ’ .
=1+ 2x+ + ,
1Fy (s 45 x) 1Y a>* " srd(eny * | (22)

K is chosen such that

v
=

fo = 0 at g*
(i.e., JFp=0atex=1). . (13)

Also, &_ is chosen arbitrarily so that

3

f =1 at g% = 0.
o]

<

The solution will be renormalized by "matching” with the oﬁter diffusion
layer solution (see below), | ' R

- For the solution to the nonhomogeneous équation

1 2\
1" + = - =
fn 2(1 3p*°)K fn g

n
we ﬁry*
n_(6%) [ EXCOLNENCD f g n (a0 +.3.2_(6%).
. v : ¥ : .
#Here h0'= f (e*) J(. @ex is a second solutlon of the homogeneous
°" T % 1 %(e%) |

.equation,
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Since fo is an‘eigehéolution of the homogeneous equation, a solution is.
possible only if o '
' 1l

[ gnfo dg = 0.
This is true for n = 1, and it is this requirement that dictates the power s
of r¥ in the leading term of the solution in equation 8. The value of B -

in {the zbove solution rast be selected to meet the requirement -
1 .

.,/c: €n+1 f,de =0. -

Although equation 12 provides an analytic.solufion to équation 9>for

T

each eigenvalue K, it is not in a convenient form for'the calculation of
tbe higher fn's. .From equation 13 it is also difficult tovdetermine the
eigenvalues accurately, but it does allow one to estimate the eigenvalues.
Therefore, & rumerical technique discussed by Newmen (10) was used for the
calculetion of eigenvalues and eigénfunctions. This then aliowed the
nunmerical integratibn of the ordinary, inhomogeneous, linear, second order
- differential equation.(lo) for the f 's. _The'eigenvalugs so obtained wvere
checked by using condition (13). v ' ‘

The equation-for'fb, equatidn 9 is anlordinary,.homogeneous,'second-
order differential equation. ‘It is nonlinear, however, since K is unknown.

A second differential equatidnvis introduced

dx

’&'é';f =0, B (15)

“and both f_ and K are unknowns . Equations (9) .and (15) are a nonlinear

system of two, coupled, ordihéry differential equations with boundary

conditions
fo = 0 at g% = 1
fo, 1l atg
f ' =0atg¥-=



~0-

The equétions can be linearized about a trialvsolution, producihg a series’

6f coupled, linear differential equatione. In finite difference form these
giv: coupled, ﬁridiagenal matrices which can be solved on a high-speed, digital
computer. The nonlinear problem can then be solved by iferetion (see Newman
(11)). ) | L |

The solutlon for f is then determlned numerically by evaluating the
~integrals in equatlon lh The linearly independent solution for the homo-
geneous equatlon 9 was actually determined by finite dlf’erence methods, but
with different boundary conditions from those used for f ."

The mass flux to the walls 1s determlned from the derlvatlves ‘of the
f's at the wall., o ' _

The results of these eaiculations are'shownjbn Figﬁre‘z and Table 1. 1In
Figure 2, only the Tirst three f's are plotted although the'firét nine were
used'tO'calculate the concentration'profiles.‘ fo has a rather simpleé behavior,
beginning at the value of 1 at the crack centerline and decreasing to O at
‘the wall. The higher terms have a more complicated behavior. ' For small
valuee of r*, the first term in the series (equation 8) is'dppinant and
involves only f . For larger r*, the higher terms beCome‘im?ortant and:
serve to give a concentratlon profile Wthh shows the greatest change near
the wall. This is shown in ‘Figure 3 for two different values of r¥* At
.fhe 1argest.value~of r¥ (r¥ = 20), the concentration profile is compared to
that caiculeted from‘the boundary layer results (next seetion)_to demonstrate
' how well the two agree. More will be said about this later. '

In Figure It is shown the concentratlon profile down the crack center
line. From these results it is seen that at r¥ = 0(1) the concentration
is already very small, and by the time r* becomes of the order of 6, vwhere
the radial diffusion terms become 1mportant in equatlon 7, c/c 1s of the

order of 10 3&7 '

These calculations were: made for the first eigenvalue, Ko, where

= 7. 65902

The next hlgher eigenvalue was found to be -

K = 150.03633.'
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" Table 1

‘Derivates of the f_'s at the Wall (g% =1) .

]
t

1.0830

+y
"
H

- - 0.07550
- 8.866 x 207

1

£t e+ L x 2070
.

'+-1u335 x 1of8;"

V ,3;297fx'iof

n

fg' = - 6.893 x 10410' o
s o0
' - 3.455 x 10712

"
1

fn
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The complete solution would be expected tb be a linear cdmbination of the
eigensolutions with the associated eigenvalues. Since the solutlon for

Kl could not be matched with the boundary layer region, gnd the concentra-
tion profiles across the crack showed en oscillatory behavior, with the
concentratlon even b=com1ng negative, the contribution of thls solutlon

to the complete solution must be negligible. Higher elgenvalues and eigen-
solutions were expected to show similar behaviér and theréfbre’were ignored.
The lowest solution was Judged to be quite adequate for matching all the

boundary conditions.

Diffusion layer region

. For large'values of r*, the concentratidﬁlprofile showed the greatést
variation near the crack wall, and the concentfation approached a constant
value near the crack center line. The boundary-layer type‘behavior leads
one to Search for such a region whichbwould describe the asymptotic charac-
teristics of the region just examined for large values of r*,

Adopt the variables

' r* = r*
o oy = rx(1-g%).
_Introducing‘these variables into (7) and ignoring the radial diffusion terms,
we have _ C ‘ o
.l 6y
- 42+

5 % 2 3( ) ar*

2137 - 2 )3 e e (26)

2 r¥ Y ay2 e

.Now, terms of order y/f* and higher are neglected to-yield
L=22 | (x7)

with boundary conditions

0
1
1)
o
0
e
!
8
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Implicit in these assumptions is the expectation that most of the concentra-

’_ tion variation will occur near the wall in thln reglon. AlSo, the second

boundary condition above expresses that the concentration &pproaches a

constant far from the crack wall, and that this constant is the bulk

contentratlon.
Slnce this is a diffusion-layer reglon, we try a 51mllar1ty transforma--

tion Qf 17. The s1m11ar1ty variable is
- v ‘.
) n g‘r-x’
and equation 17 is transformed into two ordinary differential equations

12

9__ + 2ﬂ gc =0 - (18)
3 n _ | _ :
n .
| dg ; - ‘ '
~gdr* - 2 . . ’ (19)-
‘The solutions to these equations are
- e n
2qm -x2 S - :
¢ =—= e dx = c“erf(n). EE (20)
(3 | '

| Equation 20 i$ the error function solution which is commonly encountered
in diffﬁsiOn-layer problems and is tabulated by Abramowitz and Stegun (12).
The constant fo* in (21) may be arbitrarily.chosen to give the best "match”
with the solution from the region where r¥ = O(1) (see for example Van Dyke (13)).
o The concentratioh profile given by (20) has been shown already in Figure
3. The comparison there indicates that the diffusion-layer éolution provides
a good description of the asymptotic behav1or of (8) for values of r* of
| about 20 and above. | A

In Flgure 5 the flux to the wall is plotted as a functlon of r¥, The

solid line was calculated from the solutlon obtalned in the. ¥ = O(l) region;
The dotted line was calculated from the dlffu31on—layer results. Thére is
& good match for values of r¥ greater than about 10. This could be V1ewed
&s the inner limit of validity of the diffusion layer results. One also
notes that for r* = 0(1), the flux has decreased markedly to near zero.

For r¥ = 0(p ), the flux is so small as to be insignificant.
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~Matching of results ‘ _
Figure 3 and 5 indicate that the results from the two regions agree and

" may be "matched"”. The procedure for doing this was as fplléws. It was noted
that the concentration along the crack center line approééhed an ésymptgtiq
value as r¥ approached 20 (see Figur?_h); This value is”the»bulk'concentra—
tion, c . Using c/c = 1 as r* - 20(p* = 0), one may renormalize equation 8
(essentially renormalize f at g% = 0). This normalization factor was
5.5800&6. This value of the constant was then used to calculate the concen-
tration profile across the crack. The_agreement between the inner region
and the diffusion léyer regioh'waS'good at large r*, It ﬁés found that the
~match could be 1mproved however, by ch0051ng a value of T, * (see equatlon

21) of

r * = 2.015807.

-Thetrésults have been given iﬁ Figures 3 amd 5. The justification for.
ch0081ng this constant to give the best match has been dlscussed by

‘Van Dyke (13) . Thus, equation 8 gives an adequate descrlptlon of the results
for 0, < r¥* < 20. The diffusion-layer solutlog should be used for larger

values of r¥.

Other regioﬂs

Far from the crack tip, outside the diffusion layer, the concentration‘
is constant and is identical to the bulk concentration. That -is, there is
no cfféct of diffusion in this region and no other mechaniSm to creaté
concentration dlfferences o _ | | e
. For values of r¥* of the order of 0 , all terms in equatlon T are 1mportant.
.The concentration and flux to the wall have already decreased to such a low -
levél that one can ignore them for the purposes of.tbls paper. For r¥* = O(ew),-

+

r ¥O(-é-])—\7 =0(07>
: W



-18-

. : ) o, B -
At still smaller values of r¥, i.e., r¥* = 0(9w ) or r o 10 2 cm, only
the diffusion terms are important in equation 7. Here again, the exceedingly
small values of concentration and flux make this region unimportant for the

present treatment.

Summary

As a summary, Figure 6 indicates the different regions that have been

revealed in this investigation and the different modes of mass transfer in

-3

them. Again, for distances nearer the crack tip than lO cm, the solution

is essentially devoid of the reactlve spec1es.

Conclusions

From the results of this study, it may be concluded that minor components
being consumed in a crack at rates limited by mass transfer'have vanishingly
small concentrations'near the crack tip. It is unlikely that such species
would be important as critical species in crack exten81on processes. More
specifically, small amounts of OH~, H20 or O2 dlssolved in molten LiCl- KCl
can not be critical species in the cracking of Ti 8-1-1. ' '

It is tempting to extrapolate the results to solutions of higher_conA
centration. One would be led to conclude that none of the reactive species
could'get to the crack tip, no matter what the buik eoncentration, However, =
. this conclusion is probably not justified, because it is doubtful if the |
same analy51s could be used for more concentrated solutions: One could
expect in such solutions that the mass transfer processes coﬁld change the
fluid-flow characteristics, with results which mlght be qulte dlfferent
than those found here. ' ‘

Other extensions_of the pfesent treatment intended for fﬁtuie consider-
ations are: | | | ' |

(1). the inclusion of more cemplicated boundary conditions such as

the hindered electrochemical kinetics of the wall reactions;

(2) inclusion of the effects of dissolution at the well;

-~ (3) treatment of dissolution at the crack tip, with cathodic reactions
' on the wall, and; |

(4) extension to geometries with "rounded" crack tips.
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LARGE r*
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FIGURE 6. REGIONS OF MASS TRANSFER
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Nomenclature

concentration (moles/cm3)
diffusion coefficient (cmz/sec) |
functions defined in equation (8) -

confluent hypergeometric function

functions defined in equation (10)

vfﬁnction defined in footnote, page 7

constant defined in equation (8)
redial dimension (cm)
dimensionless variable

radial camponent of liquid velocity in
crack (em/sec) /

angular component of liquid. veloclty in
crack (cm/sec)

velocity of crack propagation (cm/sec)

dimensionless variable

engular dimension

~ crack ahglé

reduced variable
similarity variable

fluid kinematic viscosity (cm2/sec)
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