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ABSTRACT 

The mass transfer of a dilute species in a liquid in a propagating 

crack is treated. The analysis includes the effect of convective 

flow of the liquid. The results of the calculations show that the 

crack tip is devoid of the minor species and that the mass flux of 

this component is also negligible in this region. Therefore, this 

could not be the critical species which causes cracking. 
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Har.s Transfer of Ninor Components in a Propagating Crack 

Introductio!l. 

The failure of structural materials such as metals and their alloys 

by stress corrosion cracki:1g is a complex phenomena which involves the 

interplay of metallurgical, mechanical, and enviro~~~ntal .in~luences. 

For an alloy of a particular metall~Gical conditiqn in a constant 

environment, the crack propagation may be _investigated as a function of 
-)(· 

stress intensity, a mecha:nical variable. It is generally found for 

titanium and aluminum alloys (1,2,3) that the r~te of crack extension is 

dependent on the stress intensity at low stress levels but becomes 

independent of the stress intensity at higher levels. The process ~mich 

limits the crack velocity at high stress intensities has been po~t~ated 

to be a mass transfer limited process in the .environment .(4,5,6). 

If the crack velocity is limited by the rate of mass transfer <?f, a. 

critical ·species to the crack tip, it would be expected that the. velocity, 

. \rould decrease as the concentration of the .species is decreased in the 

environment. In the limit of very small concentrations ofthisspecies,. 

the crack velocity should approach that found in the pure environment. 

The present investigation was undertaken to quantifY this relationship 

between the cracking rate and the mass transfer behavior of dilute species. 

~1e results should make it possible to evaluate the role of such components 

in a given stress corrosion cracking situation. 

The specific system chosen for study \·ras Titanium-8» AlU!Ilinum- 1'% 
Molybdenum- li Vanadium in molten LiCl-KCl eutectic. This alloy has been 

shovm to be susceptible to cracking in this environment (7), with crack 

rates up to a plateau rate of 1 em/sec. The eutectic vras obtained 

commercially in very pure form, ~ri th vrater as the major contaminant. The 

concentration of '\orater vras specified to be less than 0.1 ppm. Thus vre 

arc interested in the concentration and mass flux of this minor species 

{ns a source of hydro.:;en) at the stress corrosion crack tipin the molten 

t;alt. 'l'he results should indicate 'V.'hether a hydrogen :rr.odel for crack 

extension eould account for the high crackinG velocities observed, 

·X· 
, • 'l'he stress intensity is related to the stress, f'lm·r size, and specimen 

geometry for materials which obey the lmrs of linear elastic fracture 
mechanics {1,2). 
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Model 

The physical model to be treated here is sketched in Figure 1. The 

crack is wedge-shaped, with a geometrically-sharp tip, and extends through 

the thickness of the material. The coordinate system moves with the crack 

tip, so that the sides of the crack appear to move with the velocity 

V (1 em/sec for LiCl-KCl) away from the tip. The flo•-r pattern of the 

liquid has been determined from. a treatment of the fluid mechanics of 

the system (8) and is shown also in this figure. The assumption vrill be· 

adopted here that these velocity profiles are not changed by the mass 

transfer processes which we are considering. This is justified by the 

small concentration of the species of interest and may be checked by 

using the results which are obtained below. The inclusion of convective 

effects on mass transfer has not been considered previously for stress-

corrosion calculations. •. 

The steady-state velocity profiles in the liquid were found to be, 

for a small crack angle, 29 , . . w 

vr = - ~ { 1-3 :
2

2 } (radial. component) 
w 

·(1) 

(2) 

These relationships are. valid near the crack tip and out to distances from 

·the crack tip of 

r = o/47-T) 0 

\ Bw V 
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r~ 

FIGURE 1. FLUID FLOW IN A PROPAGATING CRACK 
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With the physical properties of molten LiCl-KCl and a crack angle, 2 9 , 
-2 w 

of 10 radians, this amounts to 

. +3 
r = 0(10 · em). 

At greater distances f'rom the crack tip, inertial and pressure forces 

determine the fluid-flow characteristics, except near the crack walls 

where viscous forces are also important. · l-ie shall not be interested in 

such large distances f'rom the crack tip except for completeness. Also, 

seepage of liquid in from the sides of the crack for plates of finite 

thickness becomes important at distances from the crack tip where the 

thickness is of the same order as e r. w 
The equation of convective diffusion for this system is, at steady-

state, 

. ( 2 . 2) v ~- + ~ .Q.£ = D . ~ c + ! .2£ + _! C1 c . 
ror rae 2 r()l' 2 2 . ar . r as . 

where c = concentration 

D = diffusion coefficient 

and vr' v
9 

are given by (1) and (2) .. 

The boundary conditions are 

c = 0 at crack wall · 

c ~ c at e = o, r ~ ~. 
CIO 

An auxiliary condition is 

. ~ = 0 at 9 = o, 

(3) 

(4) 

{5) 

{6) 

since by symmetry there is no transfer of .material across the crack center 

line. Equation (3) is valid for uncharged species, or for charged specie~ 

where migratj_on effects are not important. Migration ma~es no substantial 

contribution to equation (3) for our case because the concentration of 
. . . + + -any m1nor species is small as compared to that of K , Li , and Cl • The 
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boundary conditions are appropriate when the species, n2o, is bein~ 

consumed (reduced) at limiting current. Since most of the stress

corrosion tests have been ca!'ried ·out under potentiostatic conditions,· 

almost to the .lithium deposition potential,- this is· justified. 

As additional justification-for the treatment tci follow, one may 

note that this is a simple system mathematically, and yet the results 

should be realistic. The results should also provide insight into the 

kind of improvements that could be made for future investigations. 

Mathematical Treatment 

For cracks of small angle, the 9-dimension can be scaled accordingly, 

and the distance from the crack tip can be made dimensionless in such ~ 

way that different regions of mass transfer are revealed. 

Introduction of the new variables 

r* = 

into equation (3) yields 

rV (e )2 
D w 

2 
_ .!(1_39*2) ac + ~* (1-9-K- _) ac 

2 or-JC· 2 r* oS-K· 

2 0 c + 1 ac 
( 

2 ) 9
w or*2 r*. ()r-K· .. (7) 

'l'he last two terms, which contain the contribution of radial diffusion, 

may be discarded except for very small values of r-K-. Since appreciable· ·

mass transfer occurs only at lar~cr values of r*, we neglect these radial

diffusion terms in the remainder of this work. 

The radial convection term (first term on the left) aPd the angular 

diffusion term (first term on the ric;ht) are the most important ter:ns in 

this region of the crack. The second term on the left (angular convection) 

will become important at larger values of r-x·. Attemptinr; a sepal'ation of 
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variables on the two dominant terms leads one to expect a solution of 

the i"orrri 

e-K/r* . 
c...., r(e*) ' s 

r* 

where K is the separation constant, and f is a function to be determined. 

The expectation that the angular convection term vrould become important 

at larger values of r* suggests that additional terms could be added to 

this solution in the form 

-K/r* -K/r* 2 -K/r* 
c...., e . f (e*) + r* e f (e*) + r* e f (e*) + 

r*s o r*s 1 r*s 2 

This can be recognized as an ordinary perturbation analysis and 

treatment of equation (7). We are finally lead to adopt the form 

-K/r* L 
c = e 1/2 . (r*)n f (e*) 

r-K· n 
n=o 

where K is a constant and the f 's are functions to be determined. 
n 

Substitution into the equation of convective diffusion gives 

f ' + ! (1-39*2) K f = 0 0 . 2 0 

f = 0 at 9* = 1, f 1 ~ 0 at 8*·= o. 
0 0 

(8) 

(9) 

K is an eigenvalue, and f is arbitrarily set equal to 1 at 8* = o. For 
0 

n = 1, 2, 3, ---, 

\'lith this form for c, the neglected radial-diffusion terms beco:ne of the 

same order as the retained terms when r* is of order e • 
w 
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The solution to the equation (9) is 

(ll) 

where 
1

F
1

(b, d, x) is the confluent hypergeometric function. The function 

has a series form (9) 

K is chosen such that 

f = 0 at 9* = 1 
0 

(i.e., 1F1 = 0 at 9* = 1). 

Also, a is chosen arbitrarily so that 
0 

f = 1 at 9* = o. 
0 

(13) 

The solution will be renormalized by ''matching'' with the outer diffusion 

layer solution (see below). 

For the solution to the nonhomogeneous equation 

we try* 

9* 9* 
r = h (o-l<·)J. e f' (9*)de- f

0
(e*)f g h (e*)de +.B f' (e-l<·). (l4) 

n o no no no· 
0 0 

·.*Here h = f (e*) 
0 0 

equation. 

9-1(-

1 de* --"'--~- is a second solution of the homogeneous 
0 f 

2(9*) 
0 



-8-

Since f i::; 
0 

an cicensolution of the homoeeneous equation, a solution is 

possible only if 

g f d9 = 0. n o 

This is true for n = 1, and it is this requirement that dictates the pmrer s 

of r-J<- -in the leading term of the solution in equation 8. The value of· B n 
in the 2bove soJutio:1 rr:~~t be selected to meet the requirc:nent 

1 

1 g f dS = 0. n+l o 
. ! 

Although equation i2 provides an analytic solution to equation .9 for 

each eigenvalue K, it is not in a convenient form for the calculation of 

the higher f 1 S. From equation 13 it is also difficult to determine the 
. n 

eigenvalues accurately, but it does allow one to estimate the eigenvalues. 

Therefore, a r.t.unerical technique discussed by Newman ( 10) was used for the 

calculation of eigenvalues and eigenfunctions. This then allowed the 

numerical integration of the ordinary, inhomogeneous, lirH~ar, second order 

differential equation ( 10) for the f 1 s. The eigenvalues so obtained ·vrere 
n 

checked by using condition (13). 
The equation for f , equation 9 is an ordinary, homogeneous, second-o . 

order differential equation. It is nonlinear, however, since K is unknown. 

A second differential equation is introduced 

dK 
de-l<- = o, (15) 

and both f and K are unknowns. 
0 

Equations (9) and (15) are a nonlinear 

system of two, coupled, ordinary differential equations with boundary 

conditions 

f = 0 at e-l(- = 1 
0 

f = 1 at 9* = 0 
0 

f I = 0 at e-l(- = 0. 
0 
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The equations can be linearized about a trial solution, producing a series 

0~ coupled, linear differential equations. In finite difference form these 

giv7 coupled, tridiagonal matrices which can be solved on a high-speed, digital 

computer. The nonlinear problem can then be solved by iteration (see Newman 

(ll)). 

The solution for f is then determined numerically by evaluating the 
n 

integrals in equation 14. The linearly independent solution ~or the homo-. 
geneous equation 9 w-as actually determined by finite difference methods, but 

uith different boundary conditions from those used for f
0

• 

The mass fluxto the Halls is determined from the derivatives of the 

f's at the wall. 

The results o~ these calculations are shown on Figure 2 and Table 1. In 

Figure 2, only the first three f's·Sre plott~d although the first nine were 

used to calculate the concentration profiles. f has a rather simple behavior, 
0 

beginning at the value of 1 at the crack centerline and decreasing to 0 at 

the \\rail. The higher terms have a more complicated behavior. For small 

values of r*, the first term in the series (t:quation 8) is dominant and 
)' . 

involves only f • For larger.r*, the higher terms become important and· 
0 

serve to give a concPntration profile which shows the greatest change near 

the wall. This is shown in Figure 3 for two different values of r* At. 

the largest value of r* (r* = 20), the concentration profile is compared to 

that calculatf!d from the boundary layer results (next section) to demonstrate 

how '\-Tell the two agree. More will be said about this later. 

In Fjgure 4 is shown the concentration profile dow.n.the crack center 

line. From these results it is seen that at r* = 0(1) the concentration 

is o.lready very small, and by the time r-X· becomes of the order of 9 , Hhere w 
the radial diffusion terms become important in equation 7, c/c is of the 

. -347 . = 
order of 10 • 

These calculations were made fo~ ·the first eigenvalue, K, where 
0 

K
0 

= 7.65902. 

The next higher eigenvalue was found to be 

IS. = 150.03633. 
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Table 1 

Derivates of the fn' s at the Wall (9* = 1) 

f I = - 1.0830 
0 

fl 
I = - 0.07550 

f2 I 8'.866 X 
-4 . 

= - 10 . 

fl l. 744 X 
5 

3 = + 10- ~-

f41 =-- 3.297 X 1o-7· 

f5 
I + L335 

~8 . 
= X 10 . 

f6 
•I = 6.893 X 10-10 

~ 

f7 
I = + 4.501 X 10-11 

f I = - 3~455 X 10-12 
8 
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The complete solution vrould be expected to be a linear co:nbination of the 

ci'gensolutions wlth the associated eicenvalues. Since the solution for 

K
1 

could not be matched with the boundary layer region, and the concentra

tion profiles across the crack showed an oscillatory behavior, with the 

concentration even becoming negative, the contribution of ~his solution 

to the complete solution must be negligible. Higher eigenvalues and eigen

solutions vrere expected to show similar behavior and therefore were ignored. 

The lowest solution v.~s judged to be quite adequate for matching all the 

bound3ry conditions. 

Dif'fusion layer region 

For large values of r*, the concentration profile showed the greatest 

variation near the crack wall, and the concentration approached a constant 

value near the crack center line. The boundary-layer type behavior leads 

one to search for such a region which vrould describe the asymptotic charac

teristics of the region just examined for l?Xge values of r*. 

Adopt the variables 

r* = r* 

y = r*(l-a·*). 

Introducing these variables into (7) and ignoring the radial diffusion terms, 

we have 

! t2 + 6Y 
2 1 r* 

(L)2l ac 3 r-K· i or* 

.Now, terms of order y/r* and higher are neglected to-yield 

with boundary conditions 

2 
.Q_£_(}C 
or-K-- 2 

OY 

c = 0 nt y = 0 

c = c as y ... co. 
CIO 

(16) 

(17) 
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Implicit in these assumptions is the expectation that most of the concentra

tion variation Will occur near the wall in thi~ region. Also, the second 

boundary condition above expresses that the concentration approaches a 

constnnt far from the crack waJ.l, and that this constant is the bulk 

concentration. 

Since this is a diffusion-layer region, we try a similarity transforma

tion of 17. The similarity variable is 

y 
11 • g(r-l(·) 

and equation 17 is transformed into two ordinary differential equations 

·2 de ~+ 27')- = 0 
d 2 d'Tl 

T') 

~= dr* . 2 

The solutions to these equations are 

2c Jn 2 .· 
= ~ . e-x dx = c /rr . . 

0 

1/2 g = (4r* + ~r *) 
0 

(18) 

(19). 

(20) 

(21). 

Equation 20 is the error function solutibn whi'ch is commonly encountered 

in diffusion-layer problems and is tabulated by ~bramo~dtz and Stegun (12). 
The constant r * in (21) may be arbitrarily chosen to give the best 11match" 

0 . . 

with the solution from the region where r* = 0(1) (see for exa."llple Van Dyke (13)). 

The concentration profile given by (20) has been shoi·m already in Figure 

3. The comparison there indicates that the diffusion-layer solution provides 

a good description of the asymptotic behavior of (8) for values of r* of 

about 20 and above. 

In Figure 5 the flux to the wall is plotted as a function of r*. The 

solid line was calculated from the solution obtained in the.r*- 0(1) reGion. 

The dotted line was calculated fram the diffusion-layer results. There is 

a good match for values of r* greater than about 10. This coli.ld be viewed 

as the inner limit of validity of the diffusion layer results. One also 

notes that for r* = 0(1), the nux b~s decreased markcclly.to ncar zero. 

For r-l(· = o(ew), the flux is so small as to be insicnif'lcant. 
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Matching of results 

Figure 3 and 5 indicate that the results from the two regions agree and 

may be "matched".. The procedure for do~ng this was as follows. It was noted 

that the concentration along the crack center line approached an asymptotic 

value as r* approached 20 (see Figure 4). This value is the bulk concentra

tion, c . Using c/c "-+ 1 as r* _. 20(8* = 0), one may renormalize equation 8 
co CX) 

(essentially renormalize f at 9~- = 0). This normalization factor was 
0 

5.580046. This value of the constant was then used to calculate the concen-

tration profile across the crack. The agreement between the inner region 

and the diffusion layer region was good at large r*. It was found that the 

match could be improved, however, by choosing a value of r * (see equation 
0 

21) of 

r * = 2.015897. 
0 

The results have been given in Figures 3 arrl 5. The justification for 

choosing this constant to give the best match has been discussed by 

Van Dyke (13). Thus, equatj_on 8 gives an adequate description of the results 

for 8 . < r* < 20. The diffusion-layer solution should be used for larger w -
values of r*. 

Other regions 

Far from the crack tip, outside the diffusion layer, the concentration 

is constant and is identical to the bulk concentration. That is, there is 

no effect of diffusion in this region and no other mechanism to create 

concentration differences. 

For values of r-l(- of the order of e , all terms in equation 7 are important. 
w 

. The concentration and flux to the wall have already decreased to such a lovr 

.level that one can ignore them for the purposes of this paper. For r-x- == o(e ) , . w 

r ::: 0(~) = 0(10-3 em). 8 v . 
w 
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At still smaller values of r*, i.e., r* = o(e 2) or r :=::1 10-5 em, only w 
the diffusion terms are iJnportant in equation 7. Here aeain, the exceedingly 

small values of concentration and flux make this region unimportant for the 

present treatment. 

Smmnary 

As a summary, Figure 6 indicates the different regions that have been 

revealed in this invest:ic.:ltion and the different modes of mass transfer in 

them. Again, for distances nearer the crack tip than 10~3 em, the solution 

is essentially devoid of the reactive species. 

Conclusions 

From the results of this study, it may be concluded that minor components 

being consumed in a crack at rates limited by mass transfer have vanishingly 

small concentrations near the crack tip. It is unlikely that such species 

would be important as critical species in crack extens1ion processes. Hore 

specifically, small amounts of OH-, H2o, or o2 dissolved in molten LiCl-KCl 

can not be critical species in the cracking of Ti 8-1-1. 

It is tempting to extrapolate the results to solutions of higher con

centration. One would be led to conclude that none of the reactive species 

could get to the crack tip, no matter what the bulk concentration. However, 

this conclusion is probably not justified, because it is doubtful if the 

same analysis could be used for more concentrated solutions. One could 

expect in such solutions that the mass transfer processes could change the 

f~uid-flow characteristics, Y.r:ith results vlhich might be quite different 

than those found here. 

other extensions of the present treatment intended for future consider~ 

ations are: 

{1) the inclusion of more complicated boundary conditions such as 

the hindered electrochemical kinetics of the rrnll reactions; 

{2) inclusion of the effects of dissolution at the rmll; 

{3) treatment of dissolution at the crack tip, with cathodic reactions 

on the rrnll, and; 

{4) ex-tension to geometries vri th 1'rounded" crack tips o 
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Nomenclature 

concentration (moles/cm3) 

diffusion co_efficient (cm2 /sec} 

functions defined in equation (8) 

confluent hypergeometric 'function 

functions defined in equation (10) 

function defined in footnote, page 7 

constant defined in equation (8) 

radial dimension (em) 

dimensionless variable 

radial cn~ponent of liquid velocity in 
crack (em/sec) 1 

angular component of liquid.velocity in 
crack (em/sec) 

velocity of crack propagation (em/sec) 

dimensionless variable 

angular dimension 

crack angle 

reduced variable 

similarity variable 

2 fluid kinematic viscosity (em /sec) 



-21-. 

List of Figure Titles 

Figure 1 Fluid Flow in e. Propagating Crack 

Figure 2 f (e*) for First Eigenvalue n 

Figure 3 Concentration Profiles Across Crack 

Figure 4 Conc·entration Profile AlonG Crack Center Line 

·Figure 5 Flux to the Wall 

Figure 6 Regions of Mass Transfer 



1. 

2. 

4. 

5. 

6. 

8. 

9. 

10. 

11. 

12. 

13. 

-22-
REFERENC:&S 

M J Blackburn J A Feene·y and T R Beck "Stress· Corros~on Cracking . . ' .. ' .. ' .... 
of Ti to.niu.nl Alloys,'' Advances in Corrosion Science a.'1d Corrosion Enr,ineer-
inG, Vol. 3, 1>1. G. Fonto.na and R. vl. Staehle, Eds. 
Plenum Press, New York, 1973. 

Harkus o. Speidel and Michael V. Hyatt, ''Stress-Corrosion Cracking of 
High Strength Alu.minum Alloys," Vol. 2, Advances in Corrosion Science 
and Corro~;io:1 Enr::Lneering, M. G. Fontana and R. i·l. Staehle, .Eds., 
l'1emun .Press, Ilc'.v Yorl-~, 1972. 

M. J. Blackburn, rl. H. Sreyrl., and J. A. Feeney, "Engineering Aspects 
of the Stress Corrosion Crad:ing of Titanium Alloys," in State of the 
Art: Stress Corrosioh Cracking, B. F. Brown, Editor. 

S. l-1. Wiederhorn, "Influence of l·later Vapor on Crack Propagation in 
Soda-Lime Glass," J. Arner.Cer.Soc. 50, 407-1,4, 1967. 

T. R. Beck and E. A. Grens, "An Electrochemical Mass-Transport-Kinetic 
Model for Stress-Corrosion Cracking of Titanium, 11 J .Electrochem. Soc .116, 
177 (1969). 

T. R. Beck' ''Electrochemical Models for sec of Titanium, II in The Theory 
of Stress Corrosion Cracking in Alloys, J. C. Scully, Ed., Brussels, 
NATO, 1971. 

W. H. Smyr1 and M. J. Blackburn, "Stress Corrosion Cracking in Holten 
Salts," Proceedings of the International Symnosium on Stress Corrosion 
~·!echanisms in 'l'i taniur.1 Alloys, Atlanta, Georgia, January 1971 (to be 
published) . 

John Nev..man and W. H. Smyrl, ''Fluid Flow in a Propagating Crack," 
Met.Trans. (accepted for publication). 

P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Part I, 
McGraw-Hill, Inc., Nev..T York, 1953, p. 6o4. · 

John Nev..man, "The Fundamental Principles of Current Distribution e.nd 
Mass Transport in Electrochemical Cells," Electronanalytical Chemistru. 
VoL 6, pp. 187-352, A. J. Bard, Ed, Marcel Dekker, Inc. Nevr York 1973. 

John Nev;man, ''Numerical Solution of Coupled, Ordinary Differential 
Equations,'' Ind. Engr. Chern. Fund. 7, 514 (1958) 

H. Abramo>·ritz and I. A. Stegun, Handbook of Hathematical }'unctions, 
Dover Publications, Inc., New York, 1905o 

N. VanDyke, Perturbation Jvlethods in Fluid Mcchaniqs, Academic Press, 
New York, 1964. 



~----------------LEGAL NOTICE------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, s"ubcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



t'~ II' 

TECHNICAL INFORMATION-DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

-·- ""'{._ (\~ 

~-


