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1. Introduction 

1.1 Neural Networks 

Artificial neural networks were originally developed as an attempt to model the 

workings of the brain. Although these models have no where near the complexity of the 

brain or its ability, they nevertheless exhibit some interesting features that make them 

interesting tools for studying some of the problems that have so far proved intractable 

with more traditional techniques. They are currently being investigated for use in those 

problems requiring recognition and classification of complex patterns such as Image 

feature extraction, speech recognition, or natural language understanding. 

A neural net consists of a number of independent processing nodes (analogous to 

neurons) interconnected with weighted links (analogous to strength of synaptic signal). 

Each node executes in parallel, summing its weighted inputs and "firing" (i.e. putting a 

signal on the output links) whenever the weighted sum exceeds a threshold. The 

network "learns" by modifying the weights on the links in ways that bring the network 

closer to the desired response. In the typical network, after many training iterations it 

will have learned the desired response to the training set of data, and may have formed 

generalizations of the patterns that allow it to classify new and different examples using 

the same generalizations - often in spite of missirig data or noisy data. Good 

introductions to neural nets are the article by Lippmann [Lip87] and the book by 

Rumelhart and McClelland [RMt86]. 

1.2 Brief Objective of Project 

Many of the computing problems involved in the human genome project fall into 

the category of problems that a neural network might be expected to solve, including: 

the prediction of splice junctions in DNA sequences, the prediction of secondary and 

tertiary structures of proteins, and the categorization of gels. This project was a summer 

undergraduate computer science project under the direction of the second author. The 



objective of this 10 week project wa.s to explore how neural networks operate, what 

things affect this operation, and where they can play a role in the human genome 

project. The neural network software wa.s written or modified by the first author. The 

third author wa.s responsible for the programs to access the Genbank DNA sequence 

databank. 

2. The Splice Junction Problem 

For the purpose of exploring the operation of neural networks and determining 

what factors influence their performance, we concentrated on the splice junction 

problem. 

2.1 Description of the problem 

The splice junction problem involves determining the boundaries between the 

exons, those parts of the DNA that encode for protein, and the introns, where protein is 

not encoded. We attempted to find these boundaries by exploiting the pattern matching 

capabilities of neural networks. To simplify the ·problem we concentrated only on 5' 

termini (left hand boundaries) which contained the 'GT' marker. 

K. Nakata, M. Kanehisa, and C. Delisi worked on this problem using the 

perceptron [NKD85J. Their best result predicting human exon/intron boundaries using a 

human training set wa.s 91.4 percent. This wa.s obtained using 42 true sequences and 58 

false sequences for training and a window of 25 ba.ses to each side of the boundary. 

When they included periodicity information, in addition to the perceptron, the degree of 

prediction increased to 92.4 percent. 

We began by exploring the use of backpropagation which is the most widely used 

type of neural network for pattern matching. For implementing this type of network, 

we used the backpropagation package provided in the Rochester Connectionist 

Simulator (RCS) [GLM88]. In hopes of overcoming the inherent slowness of the 

backpropagation learning algorithm and to explicitly capture any higher order 
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correlations which may exist in the problem we decided to also explore the use of higher 

order networks [MG87 ,MGY87]. 

2. 2 Using Backpropagation 

Backpropagation neural networks have an input layer, one or more middle (hidden) 

layers, and an output layer of nodes. Each node of a layer is connected to every node in 

the layer directly above. Training is accomplished by setting the input nodes, letting the 

values propagate forward to the output nodes, comparing the output to the expected 

output, and propagating the errors back and changing the weights of the links to hidden 

and output layers. The hidden layer(s) allows backpropagation networks to capture 

nonlinear correlations in the patterns. 

The Rochester Connectionist Simulator is a neural network simulator written m C 

for Sun workstations. It provides routines which the user calls, generally from within a 

C program, to construct and operate a neural network. Links may be represented with 

either integer or floating point values. When integer values are used a graphical 

interface is available which is useful for investigating how the simulation proceeds or for 

debugging the network configuration. However, this interface decreases the speed of the 

network considerably. The Rochester software provides procedures for the 

backpropagation network to propagate the output errors back through the network 

layers. The error propagation function used by RCS is shown in figure 1. 

Starting configuration 

Four input nodes were used to encode each base, one each for Guanine, Adenine, 

Cytosine, Thymine. Therefore, a window of five bases to either side of the boundary 

would have an input layer of forty nodes. This is referred to as a "one of N" inpu~ 

scheme in which only one input is set out of each group of N (see figure 2). A number of 

researchers, including Robert Hecht-Nielsen, have claimed that this is more effective than 

a coded input representation because it makes the information available to the network 
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more explicit. 

We used the following default conditions when testing the effects of different 

changes: integer .values for links, training rate of 1, momentum of .5, temperature of 1, 

window of 3 to the left of the boundary and 6 to the right, 1 hidden layer with 7 nodes, 

and a training set of 200 of each true boundaries and spurious analogies. The meanings 

of all the network parameters are discussed below and in greater detail in the RCS 

manual [GLM88]. We trained the network on equal numbers of true and false boundaries 

under the assumption that this would produce the most unbiased results. 

With no changes to these parameters the network's best performance classified 92.6 

percent of the true boundaries as true and 91.6 percent of the false boundaries as false. 

However, generally it did not do this well. To test the effect of each of the different 

parameters we varied one while keeping the others the same. 

Effect of initial weight values 

. 
We started with the link weights set to random initial values between 200 and 800 

(.2 and .8 after scaling by 1000, which the integer version of the RCS does). This is 

what the example provided in the RCS backpropagation package uses. However, the 

network would not learn and always gave the maximum activation of the output nodes 

regardless of the input, even after training. Examining the link values before and after 

training revealed that they did not change. The reason for this could be that for a 

network with a window of 3 to the left and 6 to the right, each hidden node had 36 

inputs with 9 of them set. With all of the weights being positive each hidden node had 

an output of one. So, if there were 7 hidden nodes the output layer would receive 7 

inputs each with a positive weight between .2 and .8 and so would give the maximum 

output possible. The reason that the backpropagation example provided worked is that 

it had only one input set at a time. 

Switching the initial link values to zero allowed the network to learn. We later 

tried setting the links to random values between -500 and 500. The change in training 
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speed and output performance as a result of this change was uncertain, however, most 

researchers suggest the use of random initial weights so that is what we used. 

Effect of the window size 

Window size refers to the number of bases to either side of the boundary which are 

presented as input to the network. Since window size controls the amount of 

information available to the network, it seems likely that it would have a large effect on 

the performance of the network. 

A number of researchers have proposed the existence of a consensus sequences for 

the donor site (5' end of the intron) which occurs from 3 bases left to 6 bases right of the 

boundary. It was for this reason that we concentrated on a window of that size. 

However, using a window that small restricts the amount of information available to the 

network. In hope of increasing the performance of the network by expanding the 

amount of information available to the it, we tried using a window of 10 bases to each 

side of the boundary. However, the results using this window were poorer than before 

(see figure 3). This may have been due to an increase in the amount of irrelevant 

information which the network could not effectively deal with. 

The main drawback to using small windows is that the bases which are a large 

distance from a 'GT' marker may affect whether or not it is a true exon/intron 

boundary. However, attempts to use the backpropagation package provided with the 

RCS on large windows of 50 bases to either side of the boundary were difficult due to 

the slowness of the program. Even when not using the graphical interface it took 

approximately five minutes to train for one iteration on a set with 200 true and 200 false 

boundaries. We were able to train a network for 100 iterations with a window of 50 to 

either side. As figure 3 shows, the results were still poorer than when using a window of 

3 to the left and 6 to the right. 
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Effect of size of the training set 

Increasing the size of the training set produced substantial improvements in the 

performance of the network. Figure 4 shows the plots comparing the results for various 

training sizes. The graphs clearly show that a network trained on a set of 200 of each 

true and false boundaries performs better than one trained on a set of 100 of each. It is 

a little more confusing with larger training sets. A network trained on a set of 400 

appears to do better with catching false boundaries, but there is no clear improvement in 

recognizing the true boundaries. It is yet more confusing with a training set of 600 (not 

shown on the graph). The system stabilizes to a result that is no better than the smaller 

training sets. Yet, in the first 50 iterations of training the results appear to be 

considerably better. Therefore, it appears that training with larger sets improves the 

performance of the network. However, there must be a point where increasing the size 

of the training set will not help, but it is difficult to tell from our results where that 

point is or if it has been reached. 

Effect of varying equation constants 

There are three main constants m backpropagation training: temperature, 

momentum, and training rate. We tried varying these to see what effect they had on the 

ability of the network to learn. 

The temperature constant determines the slope of the sigmoid curve. The weighted 

sum activation is divided by the temperature before the exponential is taken. The 

default value for it is 1. When we used a network trained with a temperature of 0.7 the 

percent false found false improved very slightly (see figure 5). However, the percent of 

the true splice junctions found true declined. Furthermore, a network trained with a 

temperature of 0.1 found all possible boundaries false even when they where actually 

true boundaries. 

The effect of the momentum term is-, as the name implies, to give a preference for 

the current weight change to be in the same direction as the last change. The purpose 
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of this is to prevent the network from becoming stuck in a local minimum. The default 

value for the momentum is 0.5. Reducing the momentum to 0.3 produced an 

improvement of around one to two percent in the percent false-found-false (see figure 6). 

The change in the percent true-found-true is not obviously better. However, further 

decreasing the momentum to 0.1 gave results equal to or poorer than the default value. 

Also, increasing the momentum to 0.7 produced little change in the percent of false 

boundaries found false but apparently decreased the performance on the true 

boundaries. The significance of the improvement when using the momentum of 0.3 is 

questionable because of the large variations in the performance during training. 

The training rate constant (BPlearn for RCS) controls the speed with which the 

network converges. The error propagation signal is multiplied by the training rate 

before it is propagated. BPlearn has a default value of 1. Setting the training rate to 

0.5 produced little change in the results (see figure 7). The best results at a training rate 

of 0.1, on the other hand, was a slight improvement in both the percent true found true 

and the percent false found false. However, the overall change is uncertain, with 

improvements occurring in the percentage of correctly identified false boundaries being 

accompanied by decreases in the the percentage of correctly identified true boundaries. 

When we tried using a training rate of 0.01, the network was very slow in training and 

after 550 iterations of the training set had made little progress. 

Effect of the number of hidden nodes 

The number of hidden nodes affects the ability of the network to generalize and the 

performance of the trained network. Unfortunately, there is no good way to predict 

what the optimal number of hidden nodes for a specific problem is going to be. It has 

been suggested that the log of the number of inputs is a good approximation. This was 

why we started with 7 hidden nodes. In order to test if this was the optimal number we 

kept all other conditions the same and varied the number of hidden nodes. As figures 8 

and 9 indicate, there does not seem to be a number of hidden nodes which produces 
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superior results. In fact, usmg zero hidden nodes does not appear to hurt the 

performance. This indicates that there is no higher order information which this type of 

network can utilize. 

Using floating point values 

Robert Hecht-Nielson has claimed that backpropagation can not perform well 

unless floating point values are used in the simulation instead of integers. In order to 

test the effect using floating point values has on the performance, we kept all of the 

parameters constant but used fsim (the floating point version of RCS) instead of sim. 

Training when using floating point values was extremely slow, taking thousands of 

iterations before the results stopped changing (graph of results not included). The 

changes in performance were continuous and gradual, unlike the drastic variations which 

occur when using integer values. However, the performance with networks using floating 

point values was poor even after training for large numbers of iterations. 

Combination of best parameters 

Attempts to utilize a combination of the best parameters to improve the 

performance of the network produced mixed results. We first tried a network with the 

training rate changed to 0.1, the momentum to 0.3, and the temperature to 0.7. After 

training on a set with 200 of each true and false boundaries for 600 iterations it classified 

93.5 percent .of the true boundaries correctly and 92.3 percent of the false boundaries 

correctly. This is an improvement over the performance using the default values. 

However, we next tried a network with a training rate .of 0.1, a momentum of 0.3, a 

temperature of 0.5, and a training set of 600 of each true and false boundaries. The 

performance with this network was worse than when using the default values. 

Conclusion on backpropagation 

The best result we obtained was 93.5 percent for the true boundaries and 92.3 

percent for the false boundaries. The most important factors in the performance of the 
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networks seems to be the window size and the size of the training set, although a proper 

combination of the equation constants is also important. The number of hidden nodes, 

or even if any hidden nodes are used, does not seem to be of great importance. This 

probably indicates that the only information which could be extracted was first order. 

As many of the graphs show, the results often start out good, but decline m 

performance after continued training. This could be due to the networks being 

overtrained and memorizing unique features of the training set. 
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2. 3 Using Higher Order Networks 

Summary, theory, and initial configuration 

The hidden nodes used in a backpropagation network allow it to capture higher 

order correlations. However, because assigning weights to these hidden nodes is 

inherently inefficient, learning with backpropagation is very slow. Higher order networks 

are built from nodes which explicitly capture higher order terms, thereby eliminating the 

need for hidden units. Because hidden units are no longer needed, more efficient learning 

algorithms can be used [MG87, MGY87]. The hope is that this would result in increased 

learning speed and better performance in testing. Unfortunately, the RCS could not 

store weights for higher order terms, so we wrote our own simulation software for higher 

order networks. 

The equation we used for calculating the output is as follows: 

i=N i=Nk=N 
Yi = E W1(i,i)x(j)+ E E W~i,j,k)x(j)x(k)+ 

j=I . j=U=j+I 

N is the number of inputs, x(j) and x{k) are the values for inputs j and k, and y(i) is the 

output for the ith higher order node. W
1
(i,j) is the first order weight for the ith output 

and jth input. W
2
(i,j,k) is the second order weight for the ith output and the pair of 

inputs i and j. A node is taken to be set if its output is greater than the constant 

TestsTrueThresh, which is normally zero. 

For testing the ability of higher order networks in discriminating exon/intron 

boundaries we used a single higher order neuron. If this neuron gave an output greater 

than TestsTrueThresh then the input was classified as a true boundary, otherwise it was 

classified as a spurious analogy. We restricted the network to using only first and 

second order terms in order to reduce the number of weights needed. Two different 

learning rules are used with for this type of network, which we call delta change and 

percent change. 
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Delta change learning rule 

The first learning rule tried, an extension of the perceptron learning rule, involved 

changing the weights by a constant delta. During training, if the output for a node was 

less than a constant TrueThreshold, but was supposed to be true, then the weights are 

changed according to the following function: 

W 1(i ,j)' = W 1(i ,j) + x(j)delta 

W2(i,j,k)' = W2(i,j,k)+x(j)x(k)delta 

If the output for a node was greater that a constant FalseThreshold, but was supposed 

to be false then the above function is used, but delta term is subtracted instead of 

added. The values initially assigned to the constants delta, TrueThreshold, and 

FalseThreshold were 100, 1000, and -1000 respectively. The link weights were initialized 

to zero. A window of 3 to the left of the boundary and 6 to the right was used for 

testing purposes. 

The value used for the constant delta turned out to be very important. As figure 

10 shows, the smaller the delta used, the better the percent false found false. However, 

on the percent true found true, training with a delta of 10 did better than with a delta 

of 1. 

Similarly to the backpropagation experiments, using a windows of 10 and 50 node~ 

to either side of the boundary produced poorer results (see figure 11 ). Also, it appears 

that a larger training set size produces better results, but it is less certain than with 

backpropagation (see figure 12). 

As the above equations show, the weights for this type of network are only changed 

if the output was less than TrueThreshold for a true training example or if the output 

was greater than FalseThreshold for a false training example. If these conditions are 

never met then the network is distinguishing between true and false training examples 

100 percent of the time and the weights will not change if training is continued. The 

number of iterations for the network to converge in this way changes based on the 
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parameters of training. Smaller values of delta increase the number of iterations needed 

for a network to converge, while larger windows decrease it. 

Using only first order terms (which corresponds to using a perceptron) actually 

improved the performance of the network. The best performance was with a training 

set of 600 and a window of 3 to the left and 6 to the right of the boundary. This 

network classified 95.3 percent of the true boundaries as true and 92.2 percent of the 

false boundaries as false. This is a large improvement over the back propagation results 

but the absence of second order terms indicates that there is probably no higher order 

information available in this problem which the network can distinguish. 

Percent change learning function 

The percent change learning rule involves moving a certain percent of the distance 

to the correct output each time. This percent is controlled by the constant 

LearningRate. If the output for a node was supposed to be true, but was less than 

TrueThreshold then the weights are changed according to the following function: 

W 1(i ,j )' = W 1(i ,i) + x (j )*LearningRate* (True Threshold - W 1(i ,j)) 

W 2(i,j,k)' = W2(i,j,k)+x(i)*x(k)*LearningRate*(TrueTh~eshold- W 1(i,j,k)) 

The same function is used if the output is supposed to be false and was greater than 

FalseThreshold, except the constant FalseThreshold is used in place of TrueThreshold. 

As figure 13 shows, networks using this learning rule produce testing results with 

very large variations. The testing percentages do not appear to converge, at least in the 

first 500 iterations. The graphs also show that smaller values for the LearningRate 

produce less variations in the output performance, with the exception of a LearningRate 

of 1 which produced a constant performance which was very poor. The variation is even 

worse when one considers that even after 500 iterations the performance can change by 

15 to 20 percent in one iteration for a network with a LearningRate of 0.5. 

Because of the drastic variations in the performance of this learning rule, 

comparing it with the performance of the delta change learning rule is difficult . 
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However, it does not appear to produce better predictive results. 

Conclusion on higher order networks 

The higher order network did not produce better results than using 

backpropagation as was hoped it would. This may be due to a lack of higher order 

correlations in the problem. This hypothesis is supported by the result that using only 

first order terms improves the predictive ability of the network. However, one 

advantage of higher order networks over backpropagation is that the weight values 

produced in a higher order network can readily be interpreted to determine the relative 

importance of different bases in distinguishing between true and false boundaries. Two 

output nodes, one for each true and false boundaries, should be used if this is done. 

Such interpretation of weights is extremely difficult with backpropagation. 

2.4 Input Data Consider-ations 

We have two main considerations about the validity of the sample sequences used 

for training and testing. 

Use of duplicate sequences 

Sometimes GenBank entries contain repeats of the same sequence for one reason or 

another. If a sequence was repeated for the same gene entry, with the same boundaries, 

we only included it once. However, other sequences were listed twice, under different 

genes, with different boundaries. We don't know whether these were the same gene 

listed twice, or just a similar sequence naturally occurring twice. In the training file used 

for a window of 50 to each side we removed these, and noticed that they accounted for 

about 10% of the sequences. In the training files used for the networks with a window 

of 10 to each side and the ones used for the networks with a window of 3 to the left and 

6 to the right we did not remove them. So, these networks may have been doubly 

trained on as many as 10% of the sequences. Further study of GenBank entries on this 
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point is recommended. 

The testing file contained SIX of the boundaries on which the network had been 

trained when the training set size was 400 or greater. To our knowledge, no other 

sequence used for testing a network was contained in the file on which that particular 

network was trained. Every effort was made to insure that overlapping sequences were 

not used. However, the files were not compared for such duplicates as described in the 

previous paragraph. 

Statistical accuracy of results 

While we quote exact percents for the results in this paper, it should be noted that· 

there was large variations in the testing results while the network was training. In 

addition, the sequences chosen for inclusion in the test sets may not be random enough. 

They were selected from at least five different GenBank/primate files in each case, but 

they only contained a total of 170 true Exon/Intron boundaries. We don't know whether 

this represents a truly random sample representative of all sequences. 

2.5 Future Work On the Exonj Intron Problem 

Boundaries not marked by 'GT' 

A number of researchers have noted that there are exon/intron boundaries which 

do not have the 'GT' marker. There are three reasons why identification of these "non 

GT" splice junctions probably should not be attempted until other improvement have 

been made. 

The first is that the number of these boundaries is likely to be small. In the testing 

set which we used there were only three boundaries which did not have the 'GT' marker. 

An important thing to notice is that this is far smaller than the number of true 

boundaries which the network classified as false. So, searching for boundaries without 

the 'GT' marker makes little sense until the percentage of true found true approaches 
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100. 

Another consideration is that if we test all sequences the time to test a sequence 

will be around sixteen times as great since the network must test every positions not just 

those marked by 'GT'. So, there needs to be increases in the speed of the network before 

this can be attempted. 

Finally, the number of false boundaries found true is likely to be 16 times as great, 

while the number of true boundaries found will only increase by a few. So, the number 

of false boundaries found as true will likely greatly overwhelm the true boundaries. 

Therefore, this problem should probably not be attempted unless there are large 

reductions in the number of false boundaries found true. 

Searching for right hand boundaries 

Finding the right hand boundary {3' termini) should be very similar to the problem 

described above of finding the left hand boundary. However, instead of looking for the 

'GT' marker after the boundary, one should look for an 'AG' marker before it. 

Unfortunately, there may be a larger number of left hand boundaries without 'AG' than 

there are right hand boundaries without 'GT'. One can either train a network which 

will recognize both left and right hand boundaries (set up a new output for the right 

hand boundaries) or train different networks for recognizing each type of boundary. 

Both methods should probably be tried to see which gives the best result. 

Further Work with Backpropagation 

The number of hidden nodes used had a large effect on the performance of the 

network. However, all we were able to do was selectively test certain numbers of hidden 

nodes and compare the results. This gives only a gross approximation of the optimal 

number of hidden nodes. However, J. Sietsma and R.J.F. Dow described a method of 

pruning a network to get the smallest number of hidden nodes required for the problem 

[SD88]. Using their method may result in a more efficient network which produces 
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better results. 

Bac·kpropagation networks require two hidden layers to capture arbitrarily complex 

functions. Because of this we attempted to use two hidden layers w_ith 7 nodes each (see 

figure 14). However, we got no improvement in the results in spite of suggestions by 

some researchers that an improvement of a couple of percent could be obtained in some 

problems. In addition after training for 400-600 iterations, the networks we used with 

two hidden layers would suddenly start finding all positions with a 'GT' marker as true 

boundaries even when they were not. We advise exploring the use of two hidden layers 

further to try to explain these results. Also, it has been suggested that training of two 

hidden nodes could be accomplished by first training one layer while keeping the weights 

on the other constant, then training the second layer while keeping the first locked. 

The results for backpropagation might also be improved by training with a better 

combination of backpropagation constants. While the combinations which we tried gave 

mixed results, those may not be the best possible values. Using the floating point 
. . 

version with different constant values should also be tried. In addition, the effect of the 

bias unit, which is another parameter in backpropagation, should be explored. 

Further Work with Higher Order Networks 

Position invariant networks give the same result regardless of the location of a 

pattern in the input space. The output function used by a higher order position 

invariant network is: 

i=N i=M i=N 
Yi = W 1(i) ~ x(j) + ~ W 2(i,d.f) ~ x(i)x(.i+di) + 

i=l dj=l i=l 

The advantage of a position invariant network is that the feature of interest does no~ 

have to be centered in the window. This could be especially valuable in the exon/intron 

problem since some of the boundary indicators may not occur in a specific location with 

reference to the boundary, but instead may just be near it. Thus, position invariant 

networks may be very effective at testing if an exon/intron boundary existed in a certain 
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region of say 100 bases. If this gave very accurate results then it could also be used to 

cut down on the number of false boundaries found true when using the networks 

described above. Also, testing would be faster since the size of the window would 

control how often a sequence would have to be tested (i.e. every 100 bases for a window 

of 100). It would also be able to find those boundaries which do not have a 'GT' 

marker. 

Terrence Sejnowski suggested in a conversation with one of us that, since three 

DNA bases encode for one codon, it may be that third order terms have significance in 

the determining if a exon/intron boundary actually occurs at a 'GT' marker. However, 

our results with the number of hidden nodes and the good performance when using only 

a first order perceptron suggest that there is no significance to higher order terms. In 

addition, the number of weights that including third order would require is very large in 

the general case. However, weights could be stored for only consecutive triples since 

codons are three consecutive bases. Thus, only 3N-2 weights would have to be added, 

where N is the size of the window. Similarly, it might improve the results to only store 

second order weights for consecutive pairs since this could reduce the amount of 

irrelevant information. 

We have not demonstrated that either of the higher order learning algorithms 

which we used are mathematically equivalent to the one used by T. Maxwell, C. Giles, 

and Y. Lee. This should be attempted and if they are not equivalent then the one they 

used should be tried. 

Miscellaneous things to try 

Early results indicated that the networks trained on equal numbers of true and 

false boundaries had difficulty in classifying false boundaries as true. So, we decided to 

train networks on the entire sequence rather than equal numbers of true and false 

boundaries. That procedure worked by reading in the positions of the true boundaries, 

scanning the sequence and for each position with a 'GT' marker, checking if it is a true 
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or false boundary and training accordingly. Assuming random distribution the sequence 

'GT' should occur every sixteen bases. Since donor sites do not occur with nearly this 

frequency, the network is trained on many more false boundaries than true ones. It was 

hoped that this would reduce the number of false boundaries which were found to be 

true by the network. The few results that we had on this came from using both small 

training and test sets. They seemed to indicate an improvement in the percent false 

found true. This should be explored further. However, it seems likely that the 

performance on true boundaries would decline. 

As figure 4 shows, the size of the training set has a large effect on the performance 

of a backpropagation network. While the effect of increasing the size of the training set 

from 400 to 600 of each true and false boundaries is unclear it seems likely the a much 

larger training set, one of a few thousand boundaries, would improve performance. 

One way in which the performance of the network may be improved is to set all 

those weights whose absolute value is less than a small threshold to zero. This is done 

because small weights can hurt the performance of a network. We wrote a procedure to 

do this for higher order networks and preliminary testing indicated that it can improv~ 

the performance slightly. Zeroing of the weights m the higher order and 

backpropagation networks should be tried further. 

2. 6 Conclusion and Summary of Results 

The best results we obtained were using only first order terms with the higher order 

network. This corresponds to using a perceptron. The network was trained on a set of 

600 of each true and false boundaries and used a window of 3 bases to the left and 6 

bases to the right. It classified 95.3 percent of the true boundaries as true and 92.2 

percent of the false boundaries as false. This compares with the 91.4 percent obtained 

by K. Nakata, M. Kanehisa, and C. Delisi [NKD85] using a perceptron with a window of 

50 bases to each side. The difference between the their best result and ours is probably 
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due to the larger training set and smaller window size we used. The fact that the result 

obtained using only first order terms were at least as good as those using 

backpropagation indicates that there are no higher order correlations of use in this 

problem. This is further supported by the observation that the number of hidden nodes 

seemed to have little effect with backpropagation. 

3. Other Applications in the Human Genome Project 

3.1 Secondary Structure of Proteins 

Determining the structure of proteins using traditional means, such as X-ray 

crystallography can be very time-consuming. Therefore, predicting secondary structure 

of proteins from their primary amino acid sequence is of great interest to structural 

biologists. Ning Qian and Terrence J. Sejnowski have demonstrated the applicability of 

neural networks to this problem [QS88]. They obtained an accuracy of 64.3% using a 

backpropagation network with a window of 13 bases and 40 hidden nodes. However, 

they also estimated that a maximum accuracy of 70% is possible using local information. 

This could be tested by seeing if a higher order network does any better than a 

perceptron. 

One possibility for improving the accuracy is to have feedback from a network 

which determines the localized tertiary structure into the input of the network 

determining secondary structure. It makes sense that this would improve performance 

because the existence of a certain tertiary feature may affect the secondary structure at 

that point. 

3.2 Tertiary Structure of Proteins 

One of the most straightforward ways of predicting tertiary structure is to use a 

backpropagation network with the primary amino acid sequence as the input and the 

distances between each amino acid as the output. However, there are a number of 
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drawbacks to this idea. One problem is that this involves a very large number of nodes 

and links since the number of outputs is the square of the number of amino acids in the 

input. Also, we have doubts as to whether a backpropagation network can perform a 

mapping from an input space to a higher dimensional output space. Finally, it would be 

extremely difficult if not impossible to reconstruct the tertiary structure of the protein 

from the distances between the amino acids. The angles as well as the distances between 

amino acids could be included in the output to make reconstruction of the tertiary 

structure easier. However, this would increase the dimension of the output. 

An alternate approach is to test proteins for the existence of particular active sites. 

One possible way to do this is to use a position invariant higher order network with the 

amino acid sequence of the entire protein as the input. Position invariance is helpful 

because the sequences making up the active site may be from entirely different parts of 

the protein and the locations of them may vary from protein to protein. 

Another method is to look for certain localized tertiary or super-secondary 

structures. This could be done with a similar method to that used by Sejnowski when 

he worked on secondary structure with backpropagation networks. However, a larger 

window would probably be needed. Perceptrons and higher order networks could also be 

tried. 

3.3 Gel Categorization 

Gels are used by biologists to determine the lengths of protein fragments. The 

farther the fragment moves through the gel the smaller the fragment is. The fragments 

show up on the gels as bands in different columns. What is needed is a way to group 

together those gels in which the band patterns are similar. The problem is that the 

patterns may be shifted, compressed, or deformed in other ways. So, networks which 

use a pixel by pixel comparison to classify pattern, such as Hebbian, Hopfield, and 

Grossberg networks, will not work well for this problem (See [Lip87] or [RMt86] for 

information about these other types of networks). In that sense the problem is similar to 
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recogmzmg handwritten characters, so using the Neocognitron [Fuk88] may be a good 

approach. However, a faster simulation than RCS or hardware networks are needed 

before that complex a network can be used practically. 

One gel recognition problem is to recognize a characteristic gel containing only 1 or 

2 bands per column. It should be possible to attack this problem using traditional 

pattern recognition networks, such as backpropagation. 
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Appendix -- Using the Programs Written for the Project 

Programs written for Rochester software 

The Rochester software is executed by typing "sim" for the integer version, "fsim" 

for the floating point version, and "gsim" for the graphics simulator. The procedures we 

wrote are executed by typing "call" and the command line for the procedure. For 

example to build a network called "IE" type "call build IE". It is useful to turn off the 

message that prints the number of cycles executed by using the command "echo off''. 

The files "build" and "buildS" are used with "gsim" by using the command "read". 

These files build the network, display the nodes, and set the mouse keys. 

Programs written for higher order networks 

The program HigherOrder simulates higher order neural networks Running it is 

mostly self explanatory. The program must be edited and recompiled to change the size 

of the window, the number of outputs, or the order of the network. To turn on the 

printing of the diagnostic messages type "set PrintDiagnostics I". 
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Code for Rochester. 
Backpropagation Error Function 

"FLirT 
un_o(up) 
Unit •up; 
{ 

FLIIT 

Link 

delta, 
delta.v; 
•lp; 

1••-------·· 
•• activation code •• 
•• . •I 

i~(TestnqP(up, FCR.V.liDJUG)) 
. { up->potential • up->ou~ • .,->sitaa->nl.u; 

IP~wd(up); 

}.else 
I•• •• 
•• error-propagation code •• 
•• ••I 

} 
} 

de1ta • (IPlearn • (up->aitaa->clata) • (up->o1ltp1l't) •. 
(IP.OIE- ap->o~))/(BP.OIE • IP.OIE); 

~or(lp • up->sit••->inpuu; lp !• lULL; lp • lp->uxt) 
{ daltav • ((delta • •(lp->nl.u))/IP.OIE) 

} 

+ Bhoaent1111 • lp->d&ta; 
lp->weight +~ cleltaw; 
lp->c!a.ta • cleltav: 
•(FLIIT •)(lp->link_~).+• (delta • lp->wei&kt)/IP.OJE; 

IPenclrev(up); 

Figure 1 

Code used for the Rochester backpropagation error function. Shows the use of 
the constants BPlearn and BPmomentum. · 
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Schematic diagram of the backpropagation neural network used for the project. 
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The effect of varying the size of the input window on the performance of the 
backpropaga.tion network. The network was trained with a. training set 
containing 200 true and 200 fa.lse examples. It was trained for ea.ch of the 
indicated number of iterations and then was tested with a. separate test sequence 
set for which the correct results are a.lso known. The percent correct responses 
was calculated a.nd plotted against the number of training iterations. The best 
results were obtained with the 9 basepair window, 3 bases to the left of the 'GT' 
a.nd 6 to the right. With ea.ch window size the network quickly fea.ches a. level of 
performance after which further training is ineffective. 
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The effect of the size of the training set on the performance of the 
backpropagation network. The percent correct responses was calculated and 
plotted against the number of training iterations for each of three training set 
sizes. Poor results were obtained with the training set of 100 true and 100 false 
examples. Improved results were seen with 200. Further increases in the training 
set size were not obviously better. 
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Effect of using different values for the training rate constant, BPlearn, in the 
backpropagation error function. See text for an explanation. 
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The results from using a backpropagation network with two hidden layers of 
seven nodes each. 
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