
. ' 1

LBL-25981 <'. ~

11[1 Lawrence Berkeley Laboratory
~ UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division R ':: ;; :: I V E 0

Neural Networks and the Human Genome Project o E c 1 ~~ 1989

u;::;,;;;J.\I"lY f·11\1D
S.D.G. Smith, M.S. Hutchinson, and M.A. Flies DC8UMENTS SECTION

February 1989

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed for two weeks .

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

.,.
Neural Networks

and the
Human Genome Project

LBL-25981

Scott D.G. Smith, Marjorie S. Hutchinson, and Mary Ann Flies

Advanced Development Projects
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
One Cyclotron Road
Berkeley, CA 94720

February 1989

This work is supported by the Office of Health and Environmental Research Program of the
Office of Energy Research, U.S. Department of Energy under contract number DE-AC03-
76SF00098.

Table of Contents

1 Introduction .. 01
1.1 Introduction to Neural Networks .. 01
1.2 Brief Objective of Project .. 01

2 The Splice Junction Problem ... 02
2.1 Description of the problem .. 02
2.2 Using backpropagation .. 03

2.2.1 Starting configuration .. 03
2.2.2 Effect of initial weight values ... 04
2.2.3 Effect of window size .. 05
2.2.4 Effect of size of the training set ... 06
2.2.5 Effect of varying equation constants .. 06
2.2.6 Effect of the number of hidden nodes .. 07
2.2. 7 Using floating point values ... 08
2.2.8 Combination of best parameters .. 08
2.2.9 Conclusion on backpropagation ... 08

2.3 Using higher order networks ... 10
2.3.1 Summary, theory, and initial configuration ... 10
2.3.2 Delta change learning rule .. 11
2.3.3 Percent change learning rule .. 12
2.3.4 Conclusion on higher order networks .. 13

2.4 Input data considerations .. 13
2.4.1 Use of duplicate sequences ... 13
2.4.2 Statistical accuracy of results .. 14

2.5 Future work on the exon/intron problem ... 14
2.5.1 Boundaries not marked by 'GT' .. 14
2.5.2 Searching for right hand boundaries ·; ... 15
2.5.3 Further work with backpropagation .. 15
2.5.4 Further work with higher order networks ... 16
2.5.5 Miscellaneous things to try .. 17

2.6 Conclusion and summary of results .. 18

3 Other Applications in the Human Genome Project 19
3.1 Secondary structure of proteins .. 19
3.2 Tertiary structure ... 19
3.3 Gel categorization .. 20

Appendix -- Using the Programs Written for the Project ... 22

References

Figures and Graphs

1. Introduction

1.1 Neural Networks

Artificial neural networks were originally developed as an attempt to model the

workings of the brain. Although these models have no where near the complexity of the

brain or its ability, they nevertheless exhibit some interesting features that make them

interesting tools for studying some of the problems that have so far proved intractable

with more traditional techniques. They are currently being investigated for use in those

problems requiring recognition and classification of complex patterns such as Image

feature extraction, speech recognition, or natural language understanding.

A neural net consists of a number of independent processing nodes (analogous to

neurons) interconnected with weighted links (analogous to strength of synaptic signal).

Each node executes in parallel, summing its weighted inputs and "firing" (i.e. putting a

signal on the output links) whenever the weighted sum exceeds a threshold. The

network "learns" by modifying the weights on the links in ways that bring the network

closer to the desired response. In the typical network, after many training iterations it

will have learned the desired response to the training set of data, and may have formed

generalizations of the patterns that allow it to classify new and different examples using

the same generalizations - often in spite of missirig data or noisy data. Good

introductions to neural nets are the article by Lippmann [Lip87] and the book by

Rumelhart and McClelland [RMt86].

1.2 Brief Objective of Project

Many of the computing problems involved in the human genome project fall into

the category of problems that a neural network might be expected to solve, including:

the prediction of splice junctions in DNA sequences, the prediction of secondary and

tertiary structures of proteins, and the categorization of gels. This project was a summer

undergraduate computer science project under the direction of the second author. The

objective of this 10 week project wa.s to explore how neural networks operate, what

things affect this operation, and where they can play a role in the human genome

project. The neural network software wa.s written or modified by the first author. The

third author wa.s responsible for the programs to access the Genbank DNA sequence

databank.

2. The Splice Junction Problem

For the purpose of exploring the operation of neural networks and determining

what factors influence their performance, we concentrated on the splice junction

problem.

2.1 Description of the problem

The splice junction problem involves determining the boundaries between the

exons, those parts of the DNA that encode for protein, and the introns, where protein is

not encoded. We attempted to find these boundaries by exploiting the pattern matching

capabilities of neural networks. To simplify the ·problem we concentrated only on 5'

termini (left hand boundaries) which contained the 'GT' marker.

K. Nakata, M. Kanehisa, and C. Delisi worked on this problem using the

perceptron [NKD85J. Their best result predicting human exon/intron boundaries using a

human training set wa.s 91.4 percent. This wa.s obtained using 42 true sequences and 58

false sequences for training and a window of 25 ba.ses to each side of the boundary.

When they included periodicity information, in addition to the perceptron, the degree of

prediction increased to 92.4 percent.

We began by exploring the use of backpropagation which is the most widely used

type of neural network for pattern matching. For implementing this type of network,

we used the backpropagation package provided in the Rochester Connectionist

Simulator (RCS) [GLM88]. In hopes of overcoming the inherent slowness of the

backpropagation learning algorithm and to explicitly capture any higher order

-2

"''

correlations which may exist in the problem we decided to also explore the use of higher

order networks [MG87 ,MGY87].

2. 2 Using Backpropagation

Backpropagation neural networks have an input layer, one or more middle (hidden)

layers, and an output layer of nodes. Each node of a layer is connected to every node in

the layer directly above. Training is accomplished by setting the input nodes, letting the

values propagate forward to the output nodes, comparing the output to the expected

output, and propagating the errors back and changing the weights of the links to hidden

and output layers. The hidden layer(s) allows backpropagation networks to capture

nonlinear correlations in the patterns.

The Rochester Connectionist Simulator is a neural network simulator written m C

for Sun workstations. It provides routines which the user calls, generally from within a

C program, to construct and operate a neural network. Links may be represented with

either integer or floating point values. When integer values are used a graphical

interface is available which is useful for investigating how the simulation proceeds or for

debugging the network configuration. However, this interface decreases the speed of the

network considerably. The Rochester software provides procedures for the

backpropagation network to propagate the output errors back through the network

layers. The error propagation function used by RCS is shown in figure 1.

Starting configuration

Four input nodes were used to encode each base, one each for Guanine, Adenine,

Cytosine, Thymine. Therefore, a window of five bases to either side of the boundary

would have an input layer of forty nodes. This is referred to as a "one of N" inpu~

scheme in which only one input is set out of each group of N (see figure 2). A number of

researchers, including Robert Hecht-Nielsen, have claimed that this is more effective than

a coded input representation because it makes the information available to the network

. 3 -

more explicit.

We used the following default conditions when testing the effects of different

changes: integer .values for links, training rate of 1, momentum of .5, temperature of 1,

window of 3 to the left of the boundary and 6 to the right, 1 hidden layer with 7 nodes,

and a training set of 200 of each true boundaries and spurious analogies. The meanings

of all the network parameters are discussed below and in greater detail in the RCS

manual [GLM88]. We trained the network on equal numbers of true and false boundaries

under the assumption that this would produce the most unbiased results.

With no changes to these parameters the network's best performance classified 92.6

percent of the true boundaries as true and 91.6 percent of the false boundaries as false.

However, generally it did not do this well. To test the effect of each of the different

parameters we varied one while keeping the others the same.

Effect of initial weight values

.
We started with the link weights set to random initial values between 200 and 800

(.2 and .8 after scaling by 1000, which the integer version of the RCS does). This is

what the example provided in the RCS backpropagation package uses. However, the

network would not learn and always gave the maximum activation of the output nodes

regardless of the input, even after training. Examining the link values before and after

training revealed that they did not change. The reason for this could be that for a

network with a window of 3 to the left and 6 to the right, each hidden node had 36

inputs with 9 of them set. With all of the weights being positive each hidden node had

an output of one. So, if there were 7 hidden nodes the output layer would receive 7

inputs each with a positive weight between .2 and .8 and so would give the maximum

output possible. The reason that the backpropagation example provided worked is that

it had only one input set at a time.

Switching the initial link values to zero allowed the network to learn. We later

tried setting the links to random values between -500 and 500. The change in training

4.

•

speed and output performance as a result of this change was uncertain, however, most

researchers suggest the use of random initial weights so that is what we used.

Effect of the window size

Window size refers to the number of bases to either side of the boundary which are

presented as input to the network. Since window size controls the amount of

information available to the network, it seems likely that it would have a large effect on

the performance of the network.

A number of researchers have proposed the existence of a consensus sequences for

the donor site (5' end of the intron) which occurs from 3 bases left to 6 bases right of the

boundary. It was for this reason that we concentrated on a window of that size.

However, using a window that small restricts the amount of information available to the

network. In hope of increasing the performance of the network by expanding the

amount of information available to the it, we tried using a window of 10 bases to each

side of the boundary. However, the results using this window were poorer than before

(see figure 3). This may have been due to an increase in the amount of irrelevant

information which the network could not effectively deal with.

The main drawback to using small windows is that the bases which are a large

distance from a 'GT' marker may affect whether or not it is a true exon/intron

boundary. However, attempts to use the backpropagation package provided with the

RCS on large windows of 50 bases to either side of the boundary were difficult due to

the slowness of the program. Even when not using the graphical interface it took

approximately five minutes to train for one iteration on a set with 200 true and 200 false

boundaries. We were able to train a network for 100 iterations with a window of 50 to

either side. As figure 3 shows, the results were still poorer than when using a window of

3 to the left and 6 to the right.

5

Effect of size of the training set

Increasing the size of the training set produced substantial improvements in the

performance of the network. Figure 4 shows the plots comparing the results for various

training sizes. The graphs clearly show that a network trained on a set of 200 of each

true and false boundaries performs better than one trained on a set of 100 of each. It is

a little more confusing with larger training sets. A network trained on a set of 400

appears to do better with catching false boundaries, but there is no clear improvement in

recognizing the true boundaries. It is yet more confusing with a training set of 600 (not

shown on the graph). The system stabilizes to a result that is no better than the smaller

training sets. Yet, in the first 50 iterations of training the results appear to be

considerably better. Therefore, it appears that training with larger sets improves the

performance of the network. However, there must be a point where increasing the size

of the training set will not help, but it is difficult to tell from our results where that

point is or if it has been reached.

Effect of varying equation constants

There are three main constants m backpropagation training: temperature,

momentum, and training rate. We tried varying these to see what effect they had on the

ability of the network to learn.

The temperature constant determines the slope of the sigmoid curve. The weighted

sum activation is divided by the temperature before the exponential is taken. The

default value for it is 1. When we used a network trained with a temperature of 0.7 the

percent false found false improved very slightly (see figure 5). However, the percent of

the true splice junctions found true declined. Furthermore, a network trained with a

temperature of 0.1 found all possible boundaries false even when they where actually

true boundaries.

The effect of the momentum term is-, as the name implies, to give a preference for

the current weight change to be in the same direction as the last change. The purpose

-6

io

of this is to prevent the network from becoming stuck in a local minimum. The default

value for the momentum is 0.5. Reducing the momentum to 0.3 produced an

improvement of around one to two percent in the percent false-found-false (see figure 6).

The change in the percent true-found-true is not obviously better. However, further

decreasing the momentum to 0.1 gave results equal to or poorer than the default value.

Also, increasing the momentum to 0.7 produced little change in the percent of false

boundaries found false but apparently decreased the performance on the true

boundaries. The significance of the improvement when using the momentum of 0.3 is

questionable because of the large variations in the performance during training.

The training rate constant (BPlearn for RCS) controls the speed with which the

network converges. The error propagation signal is multiplied by the training rate

before it is propagated. BPlearn has a default value of 1. Setting the training rate to

0.5 produced little change in the results (see figure 7). The best results at a training rate

of 0.1, on the other hand, was a slight improvement in both the percent true found true

and the percent false found false. However, the overall change is uncertain, with

improvements occurring in the percentage of correctly identified false boundaries being

accompanied by decreases in the the percentage of correctly identified true boundaries.

When we tried using a training rate of 0.01, the network was very slow in training and

after 550 iterations of the training set had made little progress.

Effect of the number of hidden nodes

The number of hidden nodes affects the ability of the network to generalize and the

performance of the trained network. Unfortunately, there is no good way to predict

what the optimal number of hidden nodes for a specific problem is going to be. It has

been suggested that the log of the number of inputs is a good approximation. This was

why we started with 7 hidden nodes. In order to test if this was the optimal number we

kept all other conditions the same and varied the number of hidden nodes. As figures 8

and 9 indicate, there does not seem to be a number of hidden nodes which produces

. 7 -

superior results. In fact, usmg zero hidden nodes does not appear to hurt the

performance. This indicates that there is no higher order information which this type of

network can utilize.

Using floating point values

Robert Hecht-Nielson has claimed that backpropagation can not perform well

unless floating point values are used in the simulation instead of integers. In order to

test the effect using floating point values has on the performance, we kept all of the

parameters constant but used fsim (the floating point version of RCS) instead of sim.

Training when using floating point values was extremely slow, taking thousands of

iterations before the results stopped changing (graph of results not included). The

changes in performance were continuous and gradual, unlike the drastic variations which

occur when using integer values. However, the performance with networks using floating

point values was poor even after training for large numbers of iterations.

Combination of best parameters

Attempts to utilize a combination of the best parameters to improve the

performance of the network produced mixed results. We first tried a network with the

training rate changed to 0.1, the momentum to 0.3, and the temperature to 0.7. After

training on a set with 200 of each true and false boundaries for 600 iterations it classified

93.5 percent .of the true boundaries correctly and 92.3 percent of the false boundaries

correctly. This is an improvement over the performance using the default values.

However, we next tried a network with a training rate .of 0.1, a momentum of 0.3, a

temperature of 0.5, and a training set of 600 of each true and false boundaries. The

performance with this network was worse than when using the default values.

Conclusion on backpropagation

The best result we obtained was 93.5 percent for the true boundaries and 92.3

percent for the false boundaries. The most important factors in the performance of the

. 8 .

networks seems to be the window size and the size of the training set, although a proper

combination of the equation constants is also important. The number of hidden nodes,

or even if any hidden nodes are used, does not seem to be of great importance. This

probably indicates that the only information which could be extracted was first order.

As many of the graphs show, the results often start out good, but decline m

performance after continued training. This could be due to the networks being

overtrained and memorizing unique features of the training set.

- 9 .

2. 3 Using Higher Order Networks

Summary, theory, and initial configuration

The hidden nodes used in a backpropagation network allow it to capture higher

order correlations. However, because assigning weights to these hidden nodes is

inherently inefficient, learning with backpropagation is very slow. Higher order networks

are built from nodes which explicitly capture higher order terms, thereby eliminating the

need for hidden units. Because hidden units are no longer needed, more efficient learning

algorithms can be used [MG87, MGY87]. The hope is that this would result in increased

learning speed and better performance in testing. Unfortunately, the RCS could not

store weights for higher order terms, so we wrote our own simulation software for higher

order networks.

The equation we used for calculating the output is as follows:

i=N i=Nk=N
Yi = E W1(i,i)x(j)+ E E W~i,j,k)x(j)x(k)+

j=I . j=U=j+I

N is the number of inputs, x(j) and x{k) are the values for inputs j and k, and y(i) is the

output for the ith higher order node. W
1
(i,j) is the first order weight for the ith output

and jth input. W
2
(i,j,k) is the second order weight for the ith output and the pair of

inputs i and j. A node is taken to be set if its output is greater than the constant

TestsTrueThresh, which is normally zero.

For testing the ability of higher order networks in discriminating exon/intron

boundaries we used a single higher order neuron. If this neuron gave an output greater

than TestsTrueThresh then the input was classified as a true boundary, otherwise it was

classified as a spurious analogy. We restricted the network to using only first and

second order terms in order to reduce the number of weights needed. Two different

learning rules are used with for this type of network, which we call delta change and

percent change.

- 10 .

Delta change learning rule

The first learning rule tried, an extension of the perceptron learning rule, involved

changing the weights by a constant delta. During training, if the output for a node was

less than a constant TrueThreshold, but was supposed to be true, then the weights are

changed according to the following function:

W 1(i ,j)' = W 1(i ,j) + x(j)delta

W2(i,j,k)' = W2(i,j,k)+x(j)x(k)delta

If the output for a node was greater that a constant FalseThreshold, but was supposed

to be false then the above function is used, but delta term is subtracted instead of

added. The values initially assigned to the constants delta, TrueThreshold, and

FalseThreshold were 100, 1000, and -1000 respectively. The link weights were initialized

to zero. A window of 3 to the left of the boundary and 6 to the right was used for

testing purposes.

The value used for the constant delta turned out to be very important. As figure

10 shows, the smaller the delta used, the better the percent false found false. However,

on the percent true found true, training with a delta of 10 did better than with a delta

of 1.

Similarly to the backpropagation experiments, using a windows of 10 and 50 node~

to either side of the boundary produced poorer results (see figure 11). Also, it appears

that a larger training set size produces better results, but it is less certain than with

backpropagation (see figure 12).

As the above equations show, the weights for this type of network are only changed

if the output was less than TrueThreshold for a true training example or if the output

was greater than FalseThreshold for a false training example. If these conditions are

never met then the network is distinguishing between true and false training examples

100 percent of the time and the weights will not change if training is continued. The

number of iterations for the network to converge in this way changes based on the

.11-

parameters of training. Smaller values of delta increase the number of iterations needed

for a network to converge, while larger windows decrease it.

Using only first order terms (which corresponds to using a perceptron) actually

improved the performance of the network. The best performance was with a training

set of 600 and a window of 3 to the left and 6 to the right of the boundary. This

network classified 95.3 percent of the true boundaries as true and 92.2 percent of the

false boundaries as false. This is a large improvement over the back propagation results

but the absence of second order terms indicates that there is probably no higher order

information available in this problem which the network can distinguish.

Percent change learning function

The percent change learning rule involves moving a certain percent of the distance

to the correct output each time. This percent is controlled by the constant

LearningRate. If the output for a node was supposed to be true, but was less than

TrueThreshold then the weights are changed according to the following function:

W 1(i ,j)' = W 1(i ,i) + x (j)*LearningRate* (True Threshold - W 1(i ,j))

W 2(i,j,k)' = W2(i,j,k)+x(i)*x(k)*LearningRate*(TrueTh~eshold- W 1(i,j,k))

The same function is used if the output is supposed to be false and was greater than

FalseThreshold, except the constant FalseThreshold is used in place of TrueThreshold.

As figure 13 shows, networks using this learning rule produce testing results with

very large variations. The testing percentages do not appear to converge, at least in the

first 500 iterations. The graphs also show that smaller values for the LearningRate

produce less variations in the output performance, with the exception of a LearningRate

of 1 which produced a constant performance which was very poor. The variation is even

worse when one considers that even after 500 iterations the performance can change by

15 to 20 percent in one iteration for a network with a LearningRate of 0.5.

Because of the drastic variations in the performance of this learning rule,

comparing it with the performance of the delta change learning rule is difficult .

. 12 ..

...

However, it does not appear to produce better predictive results.

Conclusion on higher order networks

The higher order network did not produce better results than using

backpropagation as was hoped it would. This may be due to a lack of higher order

correlations in the problem. This hypothesis is supported by the result that using only

first order terms improves the predictive ability of the network. However, one

advantage of higher order networks over backpropagation is that the weight values

produced in a higher order network can readily be interpreted to determine the relative

importance of different bases in distinguishing between true and false boundaries. Two

output nodes, one for each true and false boundaries, should be used if this is done.

Such interpretation of weights is extremely difficult with backpropagation.

2.4 Input Data Consider-ations

We have two main considerations about the validity of the sample sequences used

for training and testing.

Use of duplicate sequences

Sometimes GenBank entries contain repeats of the same sequence for one reason or

another. If a sequence was repeated for the same gene entry, with the same boundaries,

we only included it once. However, other sequences were listed twice, under different

genes, with different boundaries. We don't know whether these were the same gene

listed twice, or just a similar sequence naturally occurring twice. In the training file used

for a window of 50 to each side we removed these, and noticed that they accounted for

about 10% of the sequences. In the training files used for the networks with a window

of 10 to each side and the ones used for the networks with a window of 3 to the left and

6 to the right we did not remove them. So, these networks may have been doubly

trained on as many as 10% of the sequences. Further study of GenBank entries on this

13 -

point is recommended.

The testing file contained SIX of the boundaries on which the network had been

trained when the training set size was 400 or greater. To our knowledge, no other

sequence used for testing a network was contained in the file on which that particular

network was trained. Every effort was made to insure that overlapping sequences were

not used. However, the files were not compared for such duplicates as described in the

previous paragraph.

Statistical accuracy of results

While we quote exact percents for the results in this paper, it should be noted that·

there was large variations in the testing results while the network was training. In

addition, the sequences chosen for inclusion in the test sets may not be random enough.

They were selected from at least five different GenBank/primate files in each case, but

they only contained a total of 170 true Exon/Intron boundaries. We don't know whether

this represents a truly random sample representative of all sequences.

2.5 Future Work On the Exonj Intron Problem

Boundaries not marked by 'GT'

A number of researchers have noted that there are exon/intron boundaries which

do not have the 'GT' marker. There are three reasons why identification of these "non

GT" splice junctions probably should not be attempted until other improvement have

been made.

The first is that the number of these boundaries is likely to be small. In the testing

set which we used there were only three boundaries which did not have the 'GT' marker.

An important thing to notice is that this is far smaller than the number of true

boundaries which the network classified as false. So, searching for boundaries without

the 'GT' marker makes little sense until the percentage of true found true approaches

- 14 -

•

100.

Another consideration is that if we test all sequences the time to test a sequence

will be around sixteen times as great since the network must test every positions not just

those marked by 'GT'. So, there needs to be increases in the speed of the network before

this can be attempted.

Finally, the number of false boundaries found true is likely to be 16 times as great,

while the number of true boundaries found will only increase by a few. So, the number

of false boundaries found as true will likely greatly overwhelm the true boundaries.

Therefore, this problem should probably not be attempted unless there are large

reductions in the number of false boundaries found true.

Searching for right hand boundaries

Finding the right hand boundary {3' termini) should be very similar to the problem

described above of finding the left hand boundary. However, instead of looking for the

'GT' marker after the boundary, one should look for an 'AG' marker before it.

Unfortunately, there may be a larger number of left hand boundaries without 'AG' than

there are right hand boundaries without 'GT'. One can either train a network which

will recognize both left and right hand boundaries (set up a new output for the right

hand boundaries) or train different networks for recognizing each type of boundary.

Both methods should probably be tried to see which gives the best result.

Further Work with Backpropagation

The number of hidden nodes used had a large effect on the performance of the

network. However, all we were able to do was selectively test certain numbers of hidden

nodes and compare the results. This gives only a gross approximation of the optimal

number of hidden nodes. However, J. Sietsma and R.J.F. Dow described a method of

pruning a network to get the smallest number of hidden nodes required for the problem

[SD88]. Using their method may result in a more efficient network which produces

. 15

better results.

Bac·kpropagation networks require two hidden layers to capture arbitrarily complex

functions. Because of this we attempted to use two hidden layers w_ith 7 nodes each (see

figure 14). However, we got no improvement in the results in spite of suggestions by

some researchers that an improvement of a couple of percent could be obtained in some

problems. In addition after training for 400-600 iterations, the networks we used with

two hidden layers would suddenly start finding all positions with a 'GT' marker as true

boundaries even when they were not. We advise exploring the use of two hidden layers

further to try to explain these results. Also, it has been suggested that training of two

hidden nodes could be accomplished by first training one layer while keeping the weights

on the other constant, then training the second layer while keeping the first locked.

The results for backpropagation might also be improved by training with a better

combination of backpropagation constants. While the combinations which we tried gave

mixed results, those may not be the best possible values. Using the floating point
. .

version with different constant values should also be tried. In addition, the effect of the

bias unit, which is another parameter in backpropagation, should be explored.

Further Work with Higher Order Networks

Position invariant networks give the same result regardless of the location of a

pattern in the input space. The output function used by a higher order position

invariant network is:

i=N i=M i=N
Yi = W 1(i) ~ x(j) + ~ W 2(i,d.f) ~ x(i)x(.i+di) +

i=l dj=l i=l

The advantage of a position invariant network is that the feature of interest does no~

have to be centered in the window. This could be especially valuable in the exon/intron

problem since some of the boundary indicators may not occur in a specific location with

reference to the boundary, but instead may just be near it. Thus, position invariant

networks may be very effective at testing if an exon/intron boundary existed in a certain

. 16 ..

..

region of say 100 bases. If this gave very accurate results then it could also be used to

cut down on the number of false boundaries found true when using the networks

described above. Also, testing would be faster since the size of the window would

control how often a sequence would have to be tested (i.e. every 100 bases for a window

of 100). It would also be able to find those boundaries which do not have a 'GT'

marker.

Terrence Sejnowski suggested in a conversation with one of us that, since three

DNA bases encode for one codon, it may be that third order terms have significance in

the determining if a exon/intron boundary actually occurs at a 'GT' marker. However,

our results with the number of hidden nodes and the good performance when using only

a first order perceptron suggest that there is no significance to higher order terms. In

addition, the number of weights that including third order would require is very large in

the general case. However, weights could be stored for only consecutive triples since

codons are three consecutive bases. Thus, only 3N-2 weights would have to be added,

where N is the size of the window. Similarly, it might improve the results to only store

second order weights for consecutive pairs since this could reduce the amount of

irrelevant information.

We have not demonstrated that either of the higher order learning algorithms

which we used are mathematically equivalent to the one used by T. Maxwell, C. Giles,

and Y. Lee. This should be attempted and if they are not equivalent then the one they

used should be tried.

Miscellaneous things to try

Early results indicated that the networks trained on equal numbers of true and

false boundaries had difficulty in classifying false boundaries as true. So, we decided to

train networks on the entire sequence rather than equal numbers of true and false

boundaries. That procedure worked by reading in the positions of the true boundaries,

scanning the sequence and for each position with a 'GT' marker, checking if it is a true

17.

or false boundary and training accordingly. Assuming random distribution the sequence

'GT' should occur every sixteen bases. Since donor sites do not occur with nearly this

frequency, the network is trained on many more false boundaries than true ones. It was

hoped that this would reduce the number of false boundaries which were found to be

true by the network. The few results that we had on this came from using both small

training and test sets. They seemed to indicate an improvement in the percent false

found true. This should be explored further. However, it seems likely that the

performance on true boundaries would decline.

As figure 4 shows, the size of the training set has a large effect on the performance

of a backpropagation network. While the effect of increasing the size of the training set

from 400 to 600 of each true and false boundaries is unclear it seems likely the a much

larger training set, one of a few thousand boundaries, would improve performance.

One way in which the performance of the network may be improved is to set all

those weights whose absolute value is less than a small threshold to zero. This is done

because small weights can hurt the performance of a network. We wrote a procedure to

do this for higher order networks and preliminary testing indicated that it can improv~

the performance slightly. Zeroing of the weights m the higher order and

backpropagation networks should be tried further.

2. 6 Conclusion and Summary of Results

The best results we obtained were using only first order terms with the higher order

network. This corresponds to using a perceptron. The network was trained on a set of

600 of each true and false boundaries and used a window of 3 bases to the left and 6

bases to the right. It classified 95.3 percent of the true boundaries as true and 92.2

percent of the false boundaries as false. This compares with the 91.4 percent obtained

by K. Nakata, M. Kanehisa, and C. Delisi [NKD85] using a perceptron with a window of

50 bases to each side. The difference between the their best result and ours is probably

- 18

due to the larger training set and smaller window size we used. The fact that the result

obtained using only first order terms were at least as good as those using

backpropagation indicates that there are no higher order correlations of use in this

problem. This is further supported by the observation that the number of hidden nodes

seemed to have little effect with backpropagation.

3. Other Applications in the Human Genome Project

3.1 Secondary Structure of Proteins

Determining the structure of proteins using traditional means, such as X-ray

crystallography can be very time-consuming. Therefore, predicting secondary structure

of proteins from their primary amino acid sequence is of great interest to structural

biologists. Ning Qian and Terrence J. Sejnowski have demonstrated the applicability of

neural networks to this problem [QS88]. They obtained an accuracy of 64.3% using a

backpropagation network with a window of 13 bases and 40 hidden nodes. However,

they also estimated that a maximum accuracy of 70% is possible using local information.

This could be tested by seeing if a higher order network does any better than a

perceptron.

One possibility for improving the accuracy is to have feedback from a network

which determines the localized tertiary structure into the input of the network

determining secondary structure. It makes sense that this would improve performance

because the existence of a certain tertiary feature may affect the secondary structure at

that point.

3.2 Tertiary Structure of Proteins

One of the most straightforward ways of predicting tertiary structure is to use a

backpropagation network with the primary amino acid sequence as the input and the

distances between each amino acid as the output. However, there are a number of

19-

drawbacks to this idea. One problem is that this involves a very large number of nodes

and links since the number of outputs is the square of the number of amino acids in the

input. Also, we have doubts as to whether a backpropagation network can perform a

mapping from an input space to a higher dimensional output space. Finally, it would be

extremely difficult if not impossible to reconstruct the tertiary structure of the protein

from the distances between the amino acids. The angles as well as the distances between

amino acids could be included in the output to make reconstruction of the tertiary

structure easier. However, this would increase the dimension of the output.

An alternate approach is to test proteins for the existence of particular active sites.

One possible way to do this is to use a position invariant higher order network with the

amino acid sequence of the entire protein as the input. Position invariance is helpful

because the sequences making up the active site may be from entirely different parts of

the protein and the locations of them may vary from protein to protein.

Another method is to look for certain localized tertiary or super-secondary

structures. This could be done with a similar method to that used by Sejnowski when

he worked on secondary structure with backpropagation networks. However, a larger

window would probably be needed. Perceptrons and higher order networks could also be

tried.

3.3 Gel Categorization

Gels are used by biologists to determine the lengths of protein fragments. The

farther the fragment moves through the gel the smaller the fragment is. The fragments

show up on the gels as bands in different columns. What is needed is a way to group

together those gels in which the band patterns are similar. The problem is that the

patterns may be shifted, compressed, or deformed in other ways. So, networks which

use a pixel by pixel comparison to classify pattern, such as Hebbian, Hopfield, and

Grossberg networks, will not work well for this problem (See [Lip87] or [RMt86] for

information about these other types of networks). In that sense the problem is similar to

20

recogmzmg handwritten characters, so using the Neocognitron [Fuk88] may be a good

approach. However, a faster simulation than RCS or hardware networks are needed

before that complex a network can be used practically.

One gel recognition problem is to recognize a characteristic gel containing only 1 or

2 bands per column. It should be possible to attack this problem using traditional

pattern recognition networks, such as backpropagation.

21

Appendix -- Using the Programs Written for the Project

Programs written for Rochester software

The Rochester software is executed by typing "sim" for the integer version, "fsim"

for the floating point version, and "gsim" for the graphics simulator. The procedures we

wrote are executed by typing "call" and the command line for the procedure. For

example to build a network called "IE" type "call build IE". It is useful to turn off the

message that prints the number of cycles executed by using the command "echo off''.

The files "build" and "buildS" are used with "gsim" by using the command "read".

These files build the network, display the nodes, and set the mouse keys.

Programs written for higher order networks

The program HigherOrder simulates higher order neural networks Running it is

mostly self explanatory. The program must be edited and recompiled to change the size

of the window, the number of outputs, or the order of the network. To turn on the

printing of the diagnostic messages type "set PrintDiagnostics I".

- 22

References

[Fuk88] K. Fukushima. Neocognitron: a hierarchical neural network capable of visual pattern
recognition. Neural Networks, 1(2):119-130, 1988.

[GLM88] Nigel H. Goddard, Kenton J. Lynne, and Toby Mintz. Rochester Connectionist Simu­
lator. Technical Report TR233, University of Rochester Computer Science Department,
Rochester, New York, 1988.

[Lip87] R. Lippmann. An introduction to computing with neural nets. IEEE ASSP, 4-22, April
1987.

[MG87) T. Maxwell and C. Giles. Learning, invariance, and generalization in high-order neural
networks. Applied Optics, 26(23):4972-4978, December 1987.

[MGY87] T. Maxwell, C. Giles, and Y.Lee. Generalization in neural networks: the contiguity
problem. In Proceedings of the First Annual IEEE Neural Network Conference, pages 41-
46, San Diego, Ca., 1987.

[NKD85) K. Nakata, M. Kanehisa, and C. DeLisi. Prediction of splice junctions in mRNA sequences.
Nucleic Acids Research, 13(14):5327-5341, 1985.

[QS88] N. Qian and J. J. Sejnowski. Predicting the secondary structure of globular proteins using
neural network models. J. Mol. Bioi., 202:865-884, 1988.

[RMt86] D. E. Rumelhart, J. L. McClelland, and the PDP Research Group. Parallel Distributed
Processing: Explorations in the Microstructure of Cognition. Volume 1, MIT Press, Cam­
bridge, Massachusetts, 1986.

[SD88] J. Sietsma and R.J.F. Dow. Neural net pruning- why and how. In Proceedings of the
IEEE Second Annual Conference on Neural Networks, pages 1325-1333, July 1988.

23

Code for Rochester.
Backpropagation Error Function

"FLirT
un_o(up)
Unit •up;
{

FLIIT

Link

delta,
delta.v;
•lp;

1••-------··
•• activation code ••
•• . •I

i~(TestnqP(up, FCR.V.liDJUG))
. { up->potential • up->ou~ • .,->sitaa->nl.u;

IP~wd(up);

}.else
I•• ••
•• error-propagation code ••
•• ••I

}
}

de1ta • (IPlearn • (up->aitaa->clata) • (up->o1ltp1l't) •.
(IP.OIE- ap->o~))/(BP.OIE • IP.OIE);

~or(lp • up->sit••->inpuu; lp !• lULL; lp • lp->uxt)
{ daltav • ((delta • •(lp->nl.u))/IP.OIE)

}

+ Bhoaent1111 • lp->d&ta;
lp->weight +~ cleltaw;
lp->c!a.ta • cleltav:
•(FLIIT •)(lp->link_~).+• (delta • lp->wei&kt)/IP.OJE;

IPenclrev(up);

Figure 1

Code used for the Rochester backpropagation error function. Shows the use of
the constants BPlearn and BPmomentum. ·

24

t.,)
VI

"

True False

.
eoooo•ooooeooo•ooooeeooo•ooooo•ooo•

I
I 0 0 0 0 I 0 0 0 0 I 0 0 0 I 0 0 0 0 I I 0 0 0 I 0 0 0 0 0 I 0 0 0 I 0

I
A

I I I I . . I I I
c o. I 0 T . A A 0

. . .. - .

Figure 2

Schematic diagram of the backpropagation neural network used for the project.
In this example, there are 27 input nodes, 7 hidden nodes and two output nodes.
The input example shows a. 9 base pa.ir sequence to be tested a.nd the coding of
each base pair with 4 nodes. The splice junction boundary is indicated with the
"/".

I
0

Cf)
c
0 :=oo
Ve> c-
=~
..,~

G>G>
V'O ---C.>.
Cl'lu
1:~
00
Zv
~

Cf)'O
I:G> o-----v-a:: I:
=G> -,:s!
G>>. v----v
c.~
Cl'lt::
~8

Effect of Window Size
and Number of Training Iterations

90

WlrtJoN SiZe:

~ 3 left, 6 right

eo ••••• 10eachside

• 50 eact'! side

70

60+-~~~--~~~--~~--~~~----~----~

0 20

100

90

eo

70

60

50

40

30
0 20

40 60 eo
Number of Training tteratlons

40 60 eo

Number of Training Iterations

100

100

120

WlrOaN SiZe:

~ 3 left, 6 right
• • .. • 10eachside

• 50eachside

120

Figure 3

The effect of varying the size of the input window on the performance of the
backpropaga.tion network. The network was trained with a. training set
containing 200 true and 200 fa.lse examples. It was trained for ea.ch of the
indicated number of iterations and then was tested with a. separate test sequence
set for which the correct results are a.lso known. The percent correct responses
was calculated a.nd plotted against the number of training iterations. The best
results were obtained with the 9 basepair window, 3 bases to the left of the 'GT'
a.nd 6 to the right. With ea.ch window size the network quickly fea.ches a. level of
performance after which further training is ineffective.

26

..

Cl'l"' =~
. 2!; ..,_ ..,_
v c
=~ =-o .., ·-
~~ v...-
·- v
Q.~
Cf)Q

~v

Effect of Training Set Size
and Numb~r of Training Iterations

96~--------------------------------------~

94

92

90

88

••• •G.
f!f ••

,
•

.

··-··· ,· ...
" - ··•·· , -....

86+---~~--~~------~----~----~--~~
0

94

92

90

88

86

84

82
0

100 200 300 400

Number of Training Iterations

13. · . . . ·. . .
!:)... ···•····•····•····•····•····• .. ·-m·· .

100 200

\

' ' ' \
' ' "'" ._ ... _.., '

300 400

Number of Training Iterations

500 600

'•

500 600

Number each of slice
and non splice juctlons:

• • •• • 100

····-m···· 200

• 400

Number each of splice
and non splice juctions:

- -·- 100

····1ll···· 200
• 400

Figure 4

The effect of the size of the training set on the performance of the
backpropagation network. The percent correct responses was calculated and
plotted against the number of training iterations for each of three training set
sizes. Poor results were obtained with the training set of 100 true and 100 false
examples. Improved results were seen with 200. Further increases in the training
set size were not obviously better.

27

Cl),
Ca,
0·-·---- ·-v--cc
=G.> -,:2
G.>;>.. v-·----v
Q.a>
tnt:
~8

Figure 5

Effect of Different Temperature
and Trainin Iterations

200~--------~------~'-------------------~

150

100
D • .. I II ug.u II I &••••Q-••••Q••••c:J-••••c:Jt••••<::J

50

0~--~~~~--~--~--r-~~~------~--~~

0 100 200 300 400 500 600

Number of Training Iterations

100
&··· • s- • • • • W • • • • a- • • • • ,;- • •. • e-. •. • e- • • • • <£Jt • • • • e- • • • • m • • •

80

60

40

20

0 D 11t

-20
0 100 200 300 400 500 600

Number of Training Iterations

Temperature:

.......... . 1

• ••• IQ••.. . 5

• .7

Temperature:

.......... . 1

••••1:!1•. •• . 5

• .7

Effect of using different values for the temperature constant, a parameter in the
Rochester backpropagation software. See text for an explanation.

28

..

Figure 6

Effect of Momentum
and Training Iterations

94~----------~----------~

Cl)
c 93
.2 "0
rJ.JG,)
V•-
cl!:::: = rJ.J 92 --:~;
G>"' v·-= >. 91 Q.:l
c,nv

c~
0 0 90
Zv
~

~ .•..•..•. : ·.
• ••

89+-~~~~~~--~~--~~

Momentum:

.1
.......... .3

·····-m···· .5
• .7

0 1 00 200 300 400 500 600

Number of Training Iterations

Effect. of Momentum
and Training Iterations

94~----------------------~

92

90

88

86

84

ID .
.

• "r:1 e-••l:l••e••a••9••1:l ·• . . . ·~
~ .1:1. ..•.. •• •m
•• •• •••••

••••

82+---~~~~~--~~~--~

Momentum:
.1

••••••••• .3
••• •1!1•... . 5

• .7

0 1 00 200 300 400 500 600

Number of Training Iterations

Effect of using different values for the momentum constant in the
backpropagation error function. See text for an explanation.

29

(,t)
c
0 ·- ., ... ~ u,_
c-
=:o
-:~c
~~ .,
.~·-->.. 0..-
V')~

c~
00
Zu
~

94

93

92

91

90
89 •
88

0

Effect of Learning Rate and
Training Iterations

··•·····•····· . •···· ···•·····•· ····•····· ' .•..
a • • -e• • • a • • -r.- • •a •• 'D• _ •IJ •• ~

100 200 300 400 500

Number of Trainina Iterations

• • -a• • Rate 1.0
.......... Rate .5

• Rate .1

600

96~--------~---------------------------.

94

92

90

6

' •• • I
':. . ·. ' · .. . ' ·.' ~ . , . ·.·

••••a-li••••••

• • -a• • Rate 1.0
.......... Rate .5

• Rate .1

88+-~~-r--~-,--~--~~--~--~-.--~~

0 100 200 300 400 500 600

Number of Trainina Iterations

Figure 7

Effect of using different values for the training rate constant, BPlearn, in the
backpropagation error function. See text for an explanation.

30

\ ~

..

(I)
c~
0~ ·-·-.. "-u·-
c~
=~
..,~

~·-
u>-=u
Q.~
t/')t:

'W ~8

Effect of Number of Hidden Nodes
and Number of Training lteratio ns:

93~--~

92

91

90

I ... ,
I '"''"' I

\1!1 • ••• .. ·.
_.• I •
~ I • •• . . . I

I
. . . .

,
•

,
I

m•••••m•••••m··· ··m•••••m·····m·····m·····m

89+-----~--~--~------~----~--~--~--~~

0

96

95

94

93

92

91

90

89

88
0

Figure 8

•
'

I

' ~'
"• I ·.I ...

100 200 300 400 500

Number of Training Iterations

...
r. , ..
'lil. ..a-••••9••••1!1-••••-m-••••e••••G.
1.--"-=··-·.· - -. • ••• ·m .. --... --· --.. -..
100 200 300 400 500

Number of Training Iterations

600

600

Number of
Hidden Nodes:

--·-- 0
····-m···· 7

D 30

Number of
Hidden Nodes:
...... 0

····-m···· 7
D 30

Effect of varying the number of hidden nodes. The network was tested after
every 50 iterations for a total of 500 iterations.

31

Cl)
c
0 .,,
u<l> =·-=l!::
--:~--c
<I> <I> u, =·-
0.>-.
Cf):i:l
cu
0~
Zo
~u

Cl),
c<l>
0·-·----·-u,..
cc = <I> --:~:2
<1>>-, u-,_..._
-u
0.(1>
cnt::
~8

94

93

92

91

90

89

88

87

86
0

96

94

92

90

88

86

84

82
0

Figure 9

Effect of Number of Hidden Nodes
and Number of Training Iterations:

I

~ ,
p

••••• .. ·· ··., ..• · · ··,.

.: 'tf •
20 40 60 80

Number of Training Iterations

•

r~
~-~

I ~ " • .,. I
I ~ 'b

100

I ··.. _."'-. .•
~ ~

~ \. ..:- ·.. ..•. / ·

20

. . ,.. ·. : ·.,.. .: .,.

40 60

..... :
••••

80

Number of Training Iterations

100

120

120

Number of
Hidden Nodes:
- -o-- 7
- 9-- 15
.......... 20

40

Number of
Hidden Nodes:
- -o-- 7.
- 9-- 15
.......... 20

40

Another graph showing the effect of varying the number of hidden nodes. In
these experiments the network was tested after every 10 iterations for a total of
100 iterations.

32

CI)"' c Q>
0·-·---- ·-u--cc
=Q> -,:2
G>>. u-·----u
Q.Q>
tnt:
~8

90

89

88
0

88

86

84

"'-.

Delta Change Learning Rule
Effect of changing delta

• • • • • • • •

100 200 300 400 500

Number of Training Iterations

600

82+-~~~--~~~----~~--~--~~--~~

0 100 200 300 400 500 600

Number of Training Iterations

Figure 10

--e-- delta 1
delta 10

a delta 100

-e-- delta 1
delta 10

• delta 100

The effect of varying the constant delta on the performance of a higher order
network using the delta change learning rule.

33

Q.>.
vn::;
c v
0~
Zo
~v

(,t)'t\1
c<11
0·-·-"'--- ·-v._
c=
=<11 ""':):2
<11>. v-·----v
Q.~
Cf)t:
~8

Delta Change Learning Rule
Effect of Window Size

100~--~

95

.. ; •..........•. :

90

• • • • • • • • • •
85

so~~~--~~~~--~~~~--~~~~~~~~~

0 20 40 60 80 100 120

Number of Training Iterations

100

95
•······ ,

..
' ..

90 '•··········•···············-.....
..... · ··········~

85

80

75

70
0 20 40 60 80 100 120

Number of Training Iterations

Figure ll

Window Size:

········•······· 3 left, 6 right
--&-- 10 each side

50 each side

Window Size:

········•······· 3 left, 6 right
m 10 each side

50 each side

The effect of varying the window size on the performance of a. higher order
network using the delta change learning rule.

34

U)
c
0 :c,
Ve>
C·-
=~
~~
G>G>
V't' =·-Q.>;

Cf.l:i:i
cv
0 ~
Zo
~v

94

93

92

91

90

89

88
0

...........
Delta Change Learning Rule
Effect of Training Set Size

. ,_
•• .. .__.

..... ,_
••
··~··

• m

.. ,_
·~···

200 400 600 800 1000

Number of Training Iterations

1200

92~--~

90

88

86

84
~ .·
~ .·•· .·•

. ·

.· ,

!

82~--~--~----~--~--~~~~~~--~~~~~

0 200 400 600 800 1000 1200

Number of Training Iterations

Figure 12

Number each of splice
and non splice junctions

in the training set:

• • om• • 200
.......... 400

D 600

Number each of splice
and non splice junctions

in the training set:

• • om• • 200
.......... 400·

D 600

The effect of varying the size of the training set size on the performance of a
higher order network using the delta change !earning rule.

35

(I) C"' Oa> ·-·----u·-
=~
=a>
""'"0
a>'-
u>..
=:;
Q.U

tn~
~0 u

90

80

Percent Change Learning Rule
Effect of changing the Learning Rate

70~~~~--~--~~---r--~-,------~~~~

0 100 200 300 400 500 600

Number of Training Iterations

90

80

70

. so

50~--~----~--~--~--r-~--~--~--~----~

0 100 200 300 400 500 600

Number of Training Iterations

Figure 13

--a- LeamingAate 1
LeamingRate . 1

a LeamingRate .5
LeamingRate.01

--a- LeamingRate 1
LeamingRate . 1

D LeamingRate .5
LeamingRate.01

The effect of varying the learning rate constant on the performance of a higher
order network using the percent change learning rule.

36

2 Hidden Layers with 7 Nodes Each

100~------------------------------------~ . __,_

80-

60

40-

20-

--- -· -· 'f
'

' I

'

I

'

'
o+-~~~~~~~~~~~~~~~~~~~~

0 200 400 600 800 1000 1200

Number of Training Iterations

110~--------------------------------------~

100

90

80

~ ... ~ ... ·-·-·~ ..
I
I

70+-~~-r~~~--~--~--~~--~-r~~~

0 200 400 600 800 1000 1200

Number of Training Iterations

Figure 14

s Trial 1
• • •· • Trial 2

s Trial 1
- • •·- Trial 2

The results from using a backpropagation network with two hidden layers of
seven nodes each.

37

~- _ __,.

LAWRENCE BERKELEY LABORATORY
TECHNICAL INFORMATION DEPARTMENT .

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

~-r:'

