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displayed as a function of r. 
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I. Introduction 

Considerable attention has been paid in recent years to pion production 

in heavy ion collisions1-7 and pion-nucleus reactions, 8- 14 hoping that one can 

learn about nuclear structure and reaction mechanisms. This is because some 

of the useful properties of the pion as probe are: its lack of spin, its 

isospin triplet state (which is a powerful probe to the isospin character of 

the nucleus compared to the nucleon, which is a doublet isospin state), its 

striking property of scattering through the ~33 resonance (Tn~100-300 MeV) 

with large ratio of elementary cross section: ·da(n-p)/do(n-n) = 

do(n+n)/do(n+p) = 9, and the ease with which it can be detected and 

distinguished from other products of nuclear reactions. 

In heavy ion reaction models of pion behavior, the pions have usually 

been treated classically, despite their deBroglie wave length being greater 

than nucleon dimensions. In this paper we begin to assess quanta! effects for 

pions in nuclei. 

Once the pion has collided with the nucleus, its scattering via the 

potential that represents the pion-nucleus interaction must be considered. 

So, further experimental and theoretical work gave more information about the 

pion-nucleus optical potential. 15-28 The optical potential developed by 

Stricker et al 19 and Carr et al 19 has the interesting feature that it can 

describe both the picnic atoms and low energy pion-nucleus scattering with a 

parameter set not strongly changing with energy. However, they extended their 

analyses to higher energy regions 17 by properly taking into account the 

quasielastic scattering process. In their work the n-nucleus optical 

potential of Ericson and Ericson21 that fits picnic atom data is shown to 

reproduce low-energy scattering data by including the energy dependence of the 

coefficients, the nuclear density distribution p(r), and the effect due to 
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angular transformation terms (ATT), 22 which has a kinematic origin. The 

Lorentz-Lorenz Ericson-Ericson term (LLEE) seems to include most of the 

significant physics and to be the most convenient as a description of the low­

energy phenomena. The LLEE term is complicated since it acts on the product 

of the density distribution (p(r), p2(r), p(r)pp(r), where p and Pp are the 

nucleon and proton density distributions, respectively) and the pion wave 

function. In Ref. 13 an approximation was made by considering a sharp 

boundary representing the nuclear surface, setting p(r) to equal the nuclear 

density at the center of the nucleus, and letting the pion wave function be 

transparent with respect to the LLEE term, and hence this term acts only on 

the nuclear density. This approximation is justified, since the motivation is 

to cover a wide range of energies. Of course, if one is interested in 

propagation of pions through nuclei, low-energy pion-nucleus scattering, and 

picnic atoms, a special attention to the LLEE term must be paid because of its 

dynamical origin. 

II. Propagation of Pions Through Nuclei 

The problem of interaction of pions with nuclei (many-particle systems) 

at medium energies can be treated nonrelativistically based on Schroedinger 

mechanics. The treatment proved itself to be.reliable lowest-order 

approximation to the physics of the problem. Moreover, it meshes naturally 

with the nonrelativistic description of the nuclear structure. 

For a massive nucleus (of mass number A and charge Z) relative to a pion 

of mass mn(~=mnc2:140 MeV), the center of mass of the system, approximately, 

coincides with the center of mass of the nucleus (the ACM). Then the problem 

of propagating a pion with initial coordinate r 0 , relative to the center of 

the nucleus, and momentum P
0

:Mk0 , through a nucleus which is at rest in the 
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lab frame, can be described in the ACM frame by the following Schroedinger 

equation: 
* 2H 2 [E -V t(r,k ,;.;)l}'k .(r,k) = 0 , 

(iic) n op 0 o 

* where ~ is the pion reduced rest mass energy 

and En is the initial pion total c.m. energy identified by the initial 

variables r
0 

and p
0 

and given by 

In Eq. (1), and hereafter, unit vectors are identified by a caret(") 

above the vectors and operators by a tilde (~) above the variables. Also, 

vopt is given by 

A A 

Vopt(r,k0 ,r·k) = Uopt(r,k0 ,r·k) + Vc(r) , 

( 1 ) 

( 2) 

(3) 

where oopt is the optical potential operator that describes the interaction of 

* a fictitious particle of rest mass energy~ , momentum p(=iik), and coordinate 

r with respect to the center of the nucleus and Vc is the coulomb potential. 

Acting with Vopt on 'k
0

(r,k) we have: 

(4) 

and then one can write Vopt as: 

-1 -
Vopt(r,k0 ,r·k) = 'ko (r,k)Vopt(r,k0 ,r·k),k

0
(r,k) 

-1 -
= 'k (r,k)Uopt(r,k0 ,r·k)!k(r,k) + Vc(r) 

0 0 

(5) 

where 

• 
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With the help of Eq. (4) we can write Eq. (1) as: 

where 

(V
2

+ K
2

) Yk (r,k) = 0 , 
0 

The wave number K is a complex variable if Vopt is complex and it can be 

written as: 

K = k + iK 

In Eq. (8) k is the real part of the wave number and K is th~ complex 
' 

one. 

A solution of the form 

w ( k) - iKr(k·r) (f t K 1 ) xk r, - e , or constan on y , 
0 . 

A 

(6) 

(7) 

(8) 

(9) 

will satisfy Eq. (6) if K is constant, with k as a unit vector specifying the 

direction of propagation of the pion wave function (k = kk) inside a slab of 

uniform nuclear material. In our case Vopt' and hence K, is not constant but 

varies smoothly with r. In this case it is reasonable to use the first order 

WKB approximation for En>ReVopt' and write the solution of Eq. (6) as: 

Yk (r,k) = exp {i ~k (r,k·r)(k·r)} , (9a) 
0 0 

where 
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incoming (r~r ) 
0 

~ = 
r r (9b) 

f ° Kk (r' ,k'·r')dr' + 
0 

f Kk (r' ,k'·r')dr' 
rt o 

This approximation is valid only if v2 ~ remains relatively small, which is 

true if the potential does not vary too violently. In Eq. (9b) k' is the pion 

wave vector at a point specified by r' and rt is the distance of closest 

approach (rt = o in the case of radial pion propagation). Also, the 

integration is done on the trajectory at the center of the pion wave packet. 

This result expresses the fact that inside the nucleus the original 

external wave, of propagation vector k0 , has been replaced by a new wave 

directed along k, and K replaces k0 . In discussing this modification it is 

essential to realize that the complex wave number K - k + iK does not merely 

represent a change in the numerical value of the wave propagation vector, but 

in fact embodies a new physical feature in the propagation among the 
' 

scatterers, namely, absorption; and the presence of K represents a loss in the 

propagated pion beam due to encounters with the scatterers. ·One should notice 

that, in Eqs. (7-8), the dependence of K on variables like r, ... etc. is 

omitted for simplicity since that dependence is clear. This omission will be 

used hereafter for functions like refractive index, wave function etc. when it 

is convenient. 

III. Pion-nucleus Interaction and the Optics Approach 

In optics there exists a completely analogous equation to Eq. (6), which 

is the equation describing the propagation of electromagnetic waves23 in a 

conducting medium with permittivity e, permeability ~, and conductivity a (see 

pg. 612, Eq. (11, XII) of Born and Wolf, Ref. 23). In a problem of this type 

one has to consider the attenuation of electromagnetic waves through the 

conducting medium. 

• 
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Indeed it emerges that much of the essential physics of our pion-nucleus 

interaction resembles optics, and one can learn a great deal about medium-

energy interactions from the optics analogy. We could attempt to explain, 

briefly, the analogy between the quantum mechanical problem of pion-nucleus 

interaction in medium energies and the electromagnetic propagation in a 

conducting medium by defining the complex index of refraction24 of the nucleus 

with respect to the pion as: 

= K/k (10a) 
0 

* 
= { (:~)2 [En-Vopt(r,ko,;.k)]}i/ko 

Accordingly, .one can define: 

where 

r A A \J 0
nR(r',k

0
,k'·r')dr' 

LR =LJrr0 n (r' k k'•r;)dr'+ Jrn (r' k k'·r')dr' 
R ' o' R ' o' 

rt rt 

incoming (r:sr ) 
0 

and similar relations hold for L 1 by replacing nR by n1 in the last 

( 10b) 

(10c) 

equation. Squaring Eq. (10a) we obtain, upon equating the real and imaginary 

parts, the following relations: 

* 2 JJ Re[E 
(Hck )2 n 

0 

( 11) 

Im[ E - V t] , n op ( 12) 
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There is difficulty in obtaining an expression for nR and n1 from Eqs. (11) 

and (12) if full inclusion of the LLEE term in Vopt is to be considered. This 

difficulty arises from the fact that Vopt depends on the wave solution 

itself. However, this difficulty can be circumvented by adopting the eikonal 

approximation, as will be shown later, and hence an expression for nR and n1 

can be obtained. This means that with this approximation, Eq. (10) enables us 

to write the pion wave function in the pion-nucleus interaction region in 

terms of the real and imaginary parts of the refractive index of the nucleus 

as: 

where 

lf'k (r,k) 
0 

xk (r,k} = e 
0 

- xk (r,k)~k (r,k) (13) 
0 0 

-k L
1
(r,k ,r·k)(k·r) 

0 0 
(14} 

is the attenuation amplitude, which is in the form of exponential function, 

for the pion local plane wave: 

ik LR(r,k ,r·k}(k·r) 
~k (r,k} = e 0 0 

(15} 
0 

The probability, dP, of finding the pion per unit volume at point r, which is 

1'¥1 2 , becomes 

dPk (r,r·k} 
0 

-2k L
1
(r,k ,r·k}(k·r} 

= e o o 

-sir = e 

where r resembles the mean free path, for a pion wave traveling through a 

(16} 

medium of constant density, since in this case dP falls to 1/e of its value 

after· the wave has gone a distance r (see Fig. 1). Thus the probability of 

finding the pion diminishes exponentially with s and it is characterized by 

the local pion mean free path which is defined as: 

.. 
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X(local mean free path) = 1/[2k l<n 1(r,k ,r·k)>ll . 
0 0 

(17) 

The fraction of absorbed pions is 1 - x2 . 

In reality we do not have a local pion plane wave, as given by Eqs. (13-

17), but a pion wave packet of width ~r in r around a particular pion 

coordinate (with ~r << the dimension of the nucleus) and a spread ~k in k 

around k0 when r~m (with ~k << k0 ). However, the measurable physical 

quantities do not depend on the shape of the wave packet, and we may carry out 

our investigation to the pion-nucleus interaction in the time-independent 

framework of Eq. (1). 

Now, as the pion wave with wave vector k0 approaches the nucleus from a 

large distance, the imaginary parts of the index of refraction n1 are 

initially zero; and hence the mean free path X is infinite. This situation 

changes as the pion wave reaches the nucleus. The pion absorption process 

will start to take place, and hence n1 acquires values greater than zero, 

resulting in a finite smaller value of X as compared to the case where r~m. 

On the other hand, because of the dependence of n1 on the coordinate r of the 

pion with respect to the center of the nucleus and on the angle between the 

two vectors r and k, X will also depend on direction and energy of the pion 

wave. The same concept applies to the pion· probability density, since it 

depends on X or simply on n1 . In summary, calculations of the pion 

probability density are not straightforward, since the refractive index 

depends on the wave function. Thus, one needs to solve Eqs. (11-12) for nR 

and ni and use them for calculating L1 . This implies that one should get 

detailed information about the propagation of the pion wave packet through the 

nucleus. That is, one must calculate k·r along the propagation of the pion 

wave packet. In radial propagation k·r is known for both the incoming and 

outgoing waves. 
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IV. The Eikonal Approximation 

The fact that Vopt in Eqs. (11-12) depends on the wave function itself, 

which has an attenuation amplitude x, forced us to seek a reasonable 

approximation for the case where x varies very slowly. The approximation is 

appropriate where the essential physics of the pion-nucleus interaction 

resembles optics. One sensible and physically acceptable approximation, 

especially after introducing the nuclear refractive index, is the eikonal 

approximation, 25 which is used sqccessfully in optics. 23 As in optics, it is 

found that it is convenient to define a real scalar function of position known 

as "the optical path," where constant optical path may be called the 

geometrical wavefront (plane of constant phase). This idea is adopted here in 

Eq. (15) by defining: 

Based on Eq. (18), Eqs. (14-15) can be written as 

and 

'l'k 
0 

ljlk = exp(ik
0

4») 
0 

We now employ a phenomenological approximation method to find the 

( 18) 

( 19) 

(20) 

( 21) 

relation that $must satisfy. Substituting Eq. (21) into Eq. (6) to obtain, 

upon equating the real parts on both sides of the resulting equation and 

neglecting the term which contains k~2 x- 1 v2 x , an equation which 41 must 

satisfy: 

(22) 
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Eq. (22) is known as the eikonal equation. 23 Also, we obtain, upon 

equating the imaginary parts of the same resulting equation and neglecting the 

term which contains x- 1vx , the following relation: 

(23) 

In obtaining Eq. (22), the slow variation of x allows us to neglect terms 

containing v2x since it is essentially zero even if k0 is not large. Of 

course, this app.roximation is more justified for small pion wave length (large 

k0 ). Also, in obtaining Eq. (23), the term containing x- 1vx is neglected 

since vx is essentially zero on the tail of nuclear density and very small 

compared to the rest of Eq. (23) inside the nucleus, as we will see later. We 

will see how useful the two Eqs. (22-23) are in calculating nR and ni if the 

LLEE term of the optical potential is to be included. 

The eikonal equation allows us to define a unit vector which is directed 

along the trajectory of the center of the pion wave packet. This trajectory 

can be defined as the orthogonal trajectories to the pion geometrical wave 

front ~ = constant. If r is the pion position vector from the center of the 

nucleus at point, P, on a trajectory and s the length of the trajectory 

measured from a fixed point, p0 , on it (fig. 1), then 

A dr 2 2 -l 
k = ds = -[nR- ni] v~ · (24) 

Eq. (24) will allow nR and ni to depend on the angle between rand k vectors 

(as we will see later) if the LLEE term is involved. Also, from the 

definition of gradient we get: 

(25) 

Eq. (25) can be used to find the phase ~ along the trajectory of the center of 

the pion wave packet. Although ~ depends on nR and ni along the path length, 
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s, for the case of zero impact parameter it can be calculated with the help of 

the phase equation, Eq. (25), since s:r in this case. The phase for this 

special case will be given by 

incoming (r~r ) (25a) 
. 0 

4a(r,k ,+1) = 
0 

r 2 2 1 r 2 2 1 J 0 (nR- n1]2"dr + J (nR- n1]2"dr outgoing (r>O) (25b) 
0 0 

where we set e(r0 ,k0 ,-1) to be zero. Note that, when we st~rt the pion at 

large r0 where Uopt~o, nR must be 1 if Vc = 0 and n1 should be zero. 

V. Nuclear Refractive Index 

The aim of this section is to find an expression for nR and n1 based on 

the optical potential developed by, first, Stricker, Carr and McManus 19 (SCM) 

and, second, by Carr, McManus and Stricker 18 (CMS). The CMS potential is of 

interest to us, since w-atom data, pion-nucleus scattering data and pion-

nucleus absorption data are all described by one set of nearly energy 

independent parameters. The treatment will be general for any nucleus of mass 

number A, Z protons, and N neutrons, and also all terms, including the 

nonlocal LLEE term, will be considered. It is convenient to write the CMS 

optical potential as a sum of local and nonlocal terms: 

where 

l(r) 

2 2n(Hc ) 
-
Ill 

A A 

{l(r) + lLLEE(r,k
0

,r·k)} 

f;~(r) = f
1
b(r) (single pion-nucleon scattering term), 

f!b(r) = f2B(r) (pion absorption term), 

(26) 
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2< -1 2 -1 2 LAT(r) = i(1-f1 )V c(r) + i(1-f2 )V C(r) (angle transformation term), 

lLLEE= -V·[L(r)/{1+(jn)AL(r)}Jv (Lorentz-Lorenz Ericson-Ericson nonlocal term), 

b(r) = 6 p(r)-E b1op(r) , 
0 n 

B(r) 

c(r) = c p(r) - E c 1op(r), o n 

C(r) 

1 1 fo ..... 0 ,- ... + and ... -, t · 1 E = o, + , - • .. .. .. respec 1 ve y, · 
·n 

op(r) = p (r) - p (r) = p(r) - 2p (r)' n p p 

Here w is the pion reduced energy, 

w = 1/[1/w + 1/(AM c2)]; 
n 

f 1 and f2 are kinematic factors, 

f 1 : (1 + E)/(1 + E/A), 

6 is the effective s-wave scattering length in the nucleus, 
0 

L(r) -1 -1 = f 1 c(r) + f 2 C(r); 
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the densities p(r), Pp(r) and Pn(r) are normalized to A, Z and N respectively; 

.the parameters b
0

, b 1, c
0

, c 1, B
0

, a1, C
0

, c1 and A are taken from Carr's17,13 

fit to the pion-nucleus scattering cross-sections. 

It is interesting at this point to start the pion at some large distance 

r 0 where Uopt ~ 0 in order to find nR and n1 for all values of O~r~r0 outside 

and inside the nucleus. By taking this condition into consideration, then 

substitution of Eq. (26) into Eqs. (11-13) will yield: 

(27) 

and 

(28) 

_l 2.' 
In Appendix A the term fLLEE= , .LLLEE' will be expressed in terms of nR and 

n1 , and its results can be used in Eqs. (26-28) to find- (after some algebraic 

manipulation): 

where 

n = Q/W, 

Q = l{[-B ± [B2 - 4AC]l]/(2A)} 2 , (the positive sign is used for our 

radial propagation) 

A : 1 + h~ + h~ - 2h 1 , 

(29) 

(30) 



.. 

* 
h1 = 

4n}J 

w 

* 
h2 = 

4n}J 

w 

* 
i.1 = 41l}J 

w 

* 
i.2 = 

41l}J 

w 

D = 

!i = 

B = r·k/k , 
0 

Re f, 

Im f, 

Re df 
dr 

df 
Im dr ' 

f = L(r)/[1 + (4n/3)AL(r)] • 
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Re f(r), 

Of course, all the variables listed above have r dependence and some of 

them depends on k0 and r·k, but this dependence is omitted for simplicity. 

Also, f(r) = ,-1l(r)f and the Lorentz-Lorenz Ericson-Ericson function L(r) are 

defined by the CMS optical potential given by Eq. {26). 

VI. Application to Nuclei Having Woods-Saxon Form 

The nucleon and proton distributions, p(r) and Pp(r), for a particular 

nucleus may be represented quite accurately by a Woods-Saxon (or fermi) 

distribution 

r - R 
p(r) = p 1[ 1 + exp(. 0 

)] , with a=0.54 fm for all nuclei, o a 
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R = [1.12 A
113

- 0.33 A-
113

)fm, 
0 

P (r) 
p 

r-R 
= p

0
p/[1 + exp(---a~:·P~)), with ap=0.454 fm for all nuclei, 

The matter density p(r) is normalized such that fp(r)dT = A and 

fp (r)dT = Z. For the Lanthanum nucleus 139La these normalizations give 
p 

( 31) 

p0 =0.162 nucleons/fm3, R0 = 5.74 fm, Pop=0.066 protons/fm3 and R0 p=5.81 fm. 

Figure 2 shows how the densities for all nucleons, for neutrons, and for 

protons vary with r in the case of 139La. 

In calculating nR and n1 from Eqs. (29-30) one needs to evaluate Vc(r), 

df 
dr' and f(r) at any value of r using Eq. (31) for p(r) and. Pp(r) at any value 

of r. First, for the total coulomb potential energy of a charged pion at any 

value O~r.~m one can use: 

V ( r) 
c 

= f Ze 2 £,t-l 

2 1 r 2 
4ne £ [r- f p (r')r 'dr' 

n o p 

R zero 
+ f p (r')r'dr') 

r p 

if r>R zero 

if r<R zero, 

wher-e Rzero is the radius at which Pp is essentially zero, i.e., 

pp(r~Rzero) = 0 · 

Second, for~~ and f(r) one can relate them to ~~{r) and v2p(r), and 

similar forms for Pp(r). Hence, for a Woods-Saxon distribution these 

derivatives are simply given by: 

Q.e. _l 
= -a p(r)(1-p(r)/p ), dr 0 

and 
V2p {2r 

_l _l }~ = -a [1 - 2p(r)/p
0

] dr . 

(32) 

(33) 
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VII. Numerical Results and Discussion 

We have carried out numerical calculations mainly for neutral pions on 

lanthanum-139 with some negative pion calculations also. Lanthanum has served 

as both beam and target in a number of Berkeley BEVALAC experiments, so it has 

special interest. In this paper we will not try to relate results to 

particular experimental data sets. Indeed, neutral pion data are rare in 

heavy ion work due to experimental difficulties, but it is natural to begin 

theoretical studies of quanta! effects with neutral pions so as to avoid 

complications of the Coulomb interaction. 

In Fig. 2 we show the Woods-Saxon density distributions used in the 

calculations. These curves give an orientation as to the radial distance 

scale·for comparison with later figures. 

We have solved for wave functions and potentials in the eikonal 

approximation described. The initial conditions are an inward moving wave at 

zero impact parameter (leftward-moving from the right margin on the displayed 

figures). The solutions are equivalent to a left-moving plane wave on a slab 

of nuclear matter with diffuse boundaries and of thickness equal to the 

lanthanum nuclear diameter. 

Figure 3 stacks vertically the plots of various calculated quantities for 

36 MeV neutral pions. Note that the nuclear center is in the middle, so the 

right-hand entrance surface as well as the left-hand exit surface are 

displayed. This figure shows the real and imaginary parts of the CMS optical 

potential, the corresponding refractive index and the damped oscillating wave 

function with its envelope. The fraction of the pion wave absorbed is shown 

in the lowest plot (Fig. 4e). Note that the wave amplitude envelope falls to 

about 10% of its incident value, corresponding to 99% absorption traversing 
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the La nucleus. It is of interest to check this result with our earlier 

calculations in constant density nuclear matter. (Mehrem et al.) Fig. of 

Ref. 13 gives a mean free path in nuclear matter of about 2.5 fm at 36 MeV. 

Taking the diameter for mass 139 from Eq. (32) we get 11.47 fm between the 

half-density points. That is, the pion path traverses 4.59 mean free paths 

for an attenuation to 1.02%, in good agreement with the newer calculations 

displayed in Fig. 3. That the present more sophisticated treatment of the 

diffuse nuclear surface and the gradient terms in the LLEE potential gives the 

same answer for over all attenuation would not have been obvious. In 

particular we note that the imaginary part of the optical potential (Fig. 3a) 

and consequently the imaginary part of the refractive index (Fig. 3c) strongly 

peak in the nuclear surface region. The real parts show an oscillation at the 

surface resulting from the combination of density~dependent and density­

squared-dependent terms and the radial gradients. The net real potential at 

36 MeV is about 8 MeV attractive in the interior. Fig. 2 of Ref. 13 shows the 

real potential for neutral pions on Pb-207 nearly zero, going repulsive at 

lower energies and attractive at higher energies. The small difference 

between the older and newer calculations may arise from slightly different 

density distributions assumed for Pb-207 and La-139. Unlike ordinary optics 

the refractive index can be less than 1, since the wave number can be smaller 

than in vacuum for regions of net repulsive potential. 

The behavior of the complex optical potential for increasing incident 

pion energies is shown in Fig. 4. The interior real potential becomes 

increasingly attractive as a consequence of the p-wave pion-nucleon 

attraction. The oscillations due to gradient terms in the surface become less 

pronounced, though there is a persistence of the surface-peaking in the 

imaginary component. 
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Our simple eikonal approximation (equivalently lowest-order WKB) runs 

into difficulty at lower energies, where the interior repulsive interaction 

gives rise to classically forbidden regions and turning points. Without a 

wave function the LLEE term in the optical potential cannot be evaluated. We 

show in Fig. 5 the optical potential and refractive index for 10 MeV, 

excluding the nuclear interior. Potential parameters for the pionic atom are 

used. It is evident that a surface absorption and a slight surface attraction 

persists in the outer surface before the interior repulsion begins to 

dominate. 

Finally, in Fig. 6 we show the optical potential and refractive index 

plots for negative pions of 10 MeV incident energy. The extra Coulomb energy 

for pions in the interior avoids the difficulties mentioned in connection with 

neutral pions in Fig. 5. The overall potential shows a repulsion in the outer 

half of the nucleus; and the absorptive imaginary potential is, as always, 

surface-peaked. 

We do not presume to improve upon the earlier optical potential 

calculations of pion nuclear scattering, except to afford some insight into 

the results by examination of the potentials and some wave propagation 

examples. There are some minor troublesome problems and cautions with respect 

to use of these complex optical potentials at kinetic energies so low that 

classically forbidden regions appear. In such regions the DEL-SQUARED 

operator in the LLEE term changes sign, and imaginary terms change from 

absorptive to source terms, and as discussed in Ref. 13 the negative mean free 

paths encountered by Hecking (Ref. 26) could come from this problem. It may 

be that this problem has no practical effect on the pionic atom and scattering 

calculations of Carr et al., since surface absorption is always so strong. 

However, positive pion scattering theory at low kinetic energies bears re-
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examination. To apply quanta! corrections to pion production on heavy nuclei, 

whether by nuclear or antiprotonic interactions, will force us to deal with 

all energies of pions, including the lowest energy pions. In this connection 

there may be situations of pion propagation through hot nuclear matter where 

imaginary potential source terms are appropriate to treat the stimulated 

emission or pion-laser action. 

There have been earlier speculations that "bumps" in heavy-ion produced 

pion spectra might arise from quanta! interference effects or partial pion 

orbiting in the nuclear surface. We hope to go on in a later paper to explore 

trajectories with non-zero angular momentum, but the prospects for "orbiting" 

on cold nuclear fragments seem minimal in view of the weak or repulsive 

potenti~ls at low pion velocities and the strength of the absorption. An 

interesting extension of pion optical potential methods would be the treatment 

of pion propagation in hot nuclear matter at different densities and 

composition. That absorption will decrease and change sign as temperature 

increases seems obvious, but the temperature dependence of this and other 

optical potential parameters needs more fundamental theoretical work. 
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Appendix A 

Evaluation of the Lorentz-Lorenz Ericson-Ericson Term 

The Lorentz-Lorenz Ericson-Ericson term defined by 

can take the form27 
_l 

= -'l' V·[fll'l'] 
(A 1) 

_l 2 
: -'l' [fV 'l' + Vf·V'l'], 

where f is defined in the text. From the definition of 'l' which is given by 

Eq. (21) one can find that 

(A2) 

and hence 

2 2 
v 'l' ~ k 'l'[iv ~-k v~-v~]. 

0 0 

with the use of the eikonal approximation given by Eqs. (22-23), we can write, 

The second term of Eq. (A1) can be simply given by: 

Vf·V'l' ~ ik 'l' f' r·V~. 
0 

Now, with the help of Eq. (24) we can write Vf·V'l' as 

Finally, the LLEE term will take the following form: 

(A3) 

(A4) 

(A5) 
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Figure Legends 

Fig. 1. Schematic drawing of pion trajectory in nuclear field. 

Fig. 2. Nucleon density distributions used in calculations. 

Fig. 3. For incident neutral pions of 36 MeV kinetic energy and normal 

incidence on 139La {a) Real and imaginary components of the effective 

optical potential, {b) Real part of the refractive index, {c) 

Imaginary part of the refractive index, {d) real part of the left­

going wave, with envelope, and (e) probability of the pion wave 

being absorbed. Note that the pion ray goes through the center of 

the nucleus and that·the nuclear center is in the middle of the 

abscissa. 

Fig. 4. The pion optical potential for normal incidence neutral pions of 

higher kinetic energies of {a) 50 MeV, (b) 67 MeV, and (c) 80 MeV. 

Fig. 5. The pion optical potential and refractive index for normal incidence 

neutral pions of 10 MeV kinetic energy (Carr parameters for picnic 

atom used). The plot covers only the exterior of the nucleus, since 

a classically forbidden region due to S-wave repulsion is encountered 

at smaller radii. 

Fig. 6. Same as Fig. 5, except for negative pion of 10 MeV kinetic energy. 

There is no classically forbidden region, so the entire radial 

distance range is displayed. 
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