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ABSTRACT 

This work presents a phenomenological correction to improve a classical equation of state 

for representing phase equilibria and densities in the vapor-liquid critical region. This correction 

consists of two steps. The first step is a volume translation which locates the correct critical 

point; this volume translation also improves density predictions for pure fluids and mixtures. 

The second step provides a "nonclassical" contribution to the residual Helmholtz energy which 

accounts for density fluctuations near the critical point. For pure fluids, the nonclassical contri

bution flattens the coexistence curves and pressure-density isotherms near ~e critical point. For 

mixtures, the nonclassical contribution has only a small effect on the calculated coexistence 

curve; this effect is often masked by the choice of binary parameters in the classical equation 

which have a more profound effect on the calculated results . 
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Introduction 

For chemical process design, we need molecular-thermodynamic models which accurately 

represent the thermodynamic properties of fluids and fluid mixtures. Toward that end, much 

effort has been spent on the development. of equations of state; since these are continuous in the 

entire fluid-density range, they can be used to represent phase equilibria for mixtures containing 

both subcritical and supercritical fluids. Most commonly-used equations of state are of the van 

der Waals-type (e.g., Redlich-Kwong, Peng-Robinson). These so-called "classical" equations of 

state predict the existence of a vapor-liquid critical point but the predicted coordinates of the 

critical point are not in agreement with experiment. Further, classical equations of state fail to 
. 

represent correctly thermodynamic properties in the vicinity of the critical point; in particular, 

they predict coexistence curves and pressure-density isotherms that are insufficiently flat in the 

critical region and, in addition, they predict much smaller isochoric heat capacities than those 

observed experimentally. Th~s work presents a phenomenological correction for an equation of 

state of the van der Waals form to improve representation of thermodynamic properties in· the 

critical region. Application is here directed at mixtures encountered in petroleum and natural-

gas technology. 

Anomalous or "nonclassical" behavior of fluids in the critical region follows from large-

scale fluctuations of the order parameter; for fluids near their vapor-liquid critical points, the 

order parameter is the fluid density. A rigorous theory which describes nonclassical behavior of 

fluids in the critical region is the powerful renormalization-group (RG) theory by Wilson (1983) 

which provides critical exponents in scaling laws proposed by Widom (1965) for a pure fluid. 

For binary mixtures, critical exponents and scaling have been extensively discussed by Scott 

(1972, 1978). Sengers and Levelt-Sengers (1978, 1986) have presented comprehensive reviews 

of theories for fluids and fluid mixtures near critical points. 

The scaling laws and the resulting scaled equation of state for pure fluids (Shoefield, 1969) 

and for binary mixtures (see, for example, Leung and Griffiths, 1973; D' Arrigo et al., 1975; 

Moldover and Gallagher, 1978; Rainwater and Williamson, 1986) give correct limiting proper-
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ties at the critical point but they are valid only very near the critical point. Various procedures 

have been suggested to solve the crossover problem, i.e., to establish an equation of state which 

is useful both near and remote from critical conditions. 

For pure fluids, Chapela and Rowlinson (1974) pioneered the use of a switching function to 

shift from a scaled equation to a classical equation; unfortunately, a switching function produces 

spurious behavior in derivative properties such as the heat capacity. Fox (1983) developed a 

critical-region scaling method which transforms an analytic classical equation of state to a nonc

lassical equation that gives correct scaling behavior near the critical point while preserving clas

sical behavior outside the critical region. Erickson and Leland (1986) later modified Fox's 

mt:;thod and applied it to a 32-constant equation of the Benedict-Webb-Rubin form. These 

authors concluded that accurate scaling cannot be achieved if the classical equation shows 

significant inaccuracies outside the cntical region; further, some undesirable features of the clas

sicaf equation may be enhanced by the scaling method. Albright et al (1986) developed a "cross

over" formalism which joins the scaled· behavior and classical behavior in a theoretically con

sistent manner; however, this formalism requires a large number of system-dependent constants. 

The authors cited have attempted to construct an equation which represents both singular 

scaling behavior and analytical classical behavior. Such equations are unattractive for engineer

ing applications because they are mathematically complex, and they often require a large number 

of system-dependent parameters. Moreover, it is not clear how such equations can be extended 

to mixtures; at present, most work in this area is limited to pure components. 

Our goal here is not to solve the "crossover" problem rigorously but to develop an analyti

cal equation of state which reasonably represents thermodynamic properties and phase equilibria 

both near and far from the critical region. Toward that end, we propose a phenomenological 

correction to a commonly used two-parameter equation of state by taking into account the effect 

of density fluctuations. However, to determine quantitatively the effect of density fluctuations on 

phase behavior, the classical equation must first predict reasonably accurate phase equilibria out

side the critical region, and it must locate the true critical point correctly. 
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For a pure fluid, the critical point is identified by three coordinates: Tc, P c and vc. For clas-

sical equations of the van der Waals form, the two adjustable parameters for the critical isothenn 

correctly represent the critical temperature and one of the other two coordinates. As shown in 

Figure 1, if the equation-of-state parameters are obtained from the experimental critical tempera-

ture and critical volume, the predicted critical pressure is too high. Similarly, if the parameters 

are obtained from the experimental critical temperature and pressure, the predicted critical den-

sity is too low. 

We propose two corrections for these classical equations. To enable the equation to locate 

the critical point correctly, the first correction uses a linear transformation in the volume coordi-

nate (also called volume translation). The second correction is a "nonclassical" contribution to 

the residual Helmholtz energy which accounts for density fluctuations in the critical region. To 

illustrate, we apply our corrections to the Soave-Redlich-Kwong (SRK) equation (Soave, 1972). 

Our work differs from that of Brandani and Pra~snitz (1981) and of Larsen and Prausnitz 

(1980); these authors used a single empirical correction which is not easily extended to mixtures. 

Volume Translation for a Pure Fluid 

Volume translation was first proposed by Manin (1967) to improve critical compressibility 

predictions for the van der Waals equation; Martin's proposal was revived by Peneloux et al 

(1982) for improving liquid-density prediction for the SRK equation for reduced temperatures 

below 0.7. Our procedure is a refinement of that of Peneloux et al (1982); we also consider 

temperatures above 0.7, including the critical region. Mathias et al. (1988) recently proposed a 

volume-translation procedure similar to ours for improving density-predictions from the Peng-

Robinson equation of state. 

The SRK equation is 

p = _!!!__ _ a(T) 
v- b v (v+b) 

(1) 

where a (T) and b are adjustable parameters and R is the universal gas constant. Experimental 
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critical temperature and critical pressure are used to calculate parameters b and a (Tc). The effect 

of temperature on parameter a (T) is determined from correlations proposed by Soave (1972, 

1979). 

Saturated liquid volumes (densities) predicted from the SRK equation are displaced from 

the experimental values; for a pure component, this displacement increases as conditions 

approach critical and reaches a maximum near the critical point. The volume translated, there-

fore, must be a function of the "distance" between a state point and the critical point. For a 

pure component, a suitable variable for characterizing this distance is the slope of the pressure-

density isotherm, (CJP ICJp )T; this slope also determines if the system is intrinsically stable in a 

homogene~us phase. Th~ locus of the limit of intrinsic stability, (CJP ICJp )T = 0, is the spinodal 

curve; the critical point is a stable state on the spinodal curve. Based on the intrinsic stability, 

we define a dimensionless distance 

d = _1_. ( ()pSRK l 
RTc CJp T 

(2) 

where Tc is the experimental critical temperature, and p is the molar density. To avoid iterative 

solutions, d is calculated from the original SRK equation, P SRK. 

To preserve vapor pressures predicted from the original SRK equation, we constrain dis-

tance d to depend only on temperature. For subcritical temperatures, d is evaluated at the 

saturated liquid density; for supercritical temperatures, d is evaluated at the critical isochore. 

Distance d is zero at the critical temperature and positive elsewhere. 

Once an appropriate distance variable is chosen, the true volume v is then translated from 

the "apparent" volume v predicted from the SRK equation as a function of the distance variable. 

A one-parameter inverse-linear function describes this translation: 

v=v-c-c5 ( 11 
] 

c 1l + d 
(3) 

where c is the constant translation used by Peneloux et al (1982) to correct for densities remote 

II 
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from critical and where 11 is a universal constant determined from regression of coexistence data 

for pure fluids: 11 =0.35. The volume shift at the critical temperature, De, is given by 

(4) 

where Tc, Pc and zc are the experimental critical temperature, pressure and co~pressibility fac-

..... 

tor, respectively; z!RK has the universal value l/3. 

Since the distance variable chosen is only temperature-dependent, the translation of the 

SRK equation is linear in volume. This linearity provides a highly useful advantage. As pointed 

out by Peneloux et al (1982), linear translation preserves the vapor-pressure curve predicted 

from the original SRK equation. Preservation of vapor pressures allows use of the original tern-

perature dependence a (T) proposed by Soave. 

Nonclassical Contribution to Residual Helmholtz Energy for a Pure Fluid 

Once volume translation locates the true critical point, we introduce a near-critical correc-

tion to flatten the coexistence curve in the vicinity of the critical point. We call this near-critical 

correction "nonclassical" since it accounts for density fluctuations near the critical point. The 

nonclassical correction is for the residual Helmholtz energy; derivatives of the residual 

Helmholtz energy provide the equation of state, residual chemical potential, and residual 

enthalpy. 

The molar residual Helmholtz energy, ar, is the difference between the molar Helmholtz 

energy of the real fluid and that of an ideal gas at the same temperature and density: 

ar =a - aid. We assume that the true residual Helmholtz energy is the sum of a classical con-

·• tribution, ac, and a nonclassical contribution, aNC: 

(5) 

where we obtain ac from integrating the volume-translated SRK equation. 
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Since aNC is due to density fluctuations, it should be a maximum at the true critical point 

and decay to zero according to a characteristic distance from true the critical point. Upon study-

ing the observed curvature of the critical isotherm for carbon dioxide, we find that distance d in 

volume translation does not adequately characterize the distance for both vapor and liquid due to 

asymmetry in the curvature. Upon dividing d by the reduced density, pipe, we obtain a d~men-

sionless distance variable, D : 

D =: (ap:-vl (:;J (6) 

where pSRK-VT is the volume-translated SRK equation. Since D is an explicit function of both 

temperature and density, it can be calculated without iterations. Distance D is zero at the true 

critical point and positive elsewhere in all physically meaningful PVT space. 

For the reduced, molar nonclassical Helmholtz energy, we assume an exponential function 

which satisfies the necessary boundary conditions and provides good decay properties: 

(7) 

where a':.c is a constant representing the maximum nonclassical contribution at the true critical 

point and w is a constant reflecting how fast the function decays as a system moves away from 

the true critical point. To fix both a':.c and w, we have correlated coexistence data for ten pure 

fluids indicated in Table 1; a':.c = 7·10-4, and w = 90. Appendix A gives details on data reduc-

tion. 

Results for Pure Fluids 

We compare experimental results for the coexistence curve and the critical isotherm with 

those calculated from: (1) the original SRK equation, (2) SRK equation with volume translation 

(SRK-VT), and (3) SRK equation with volume translation and nonclassical Helmholtz energy 

(SRK-VT-NC). For all figures shown here, pressure and density are reduced by the respective 
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criticals. 

To illustrate, Figures 2, 3, and 4 show, respectively, coexistence curves for methane, water, 

and n-butane; Volume translation shifts the top of the coexistence curve from the apparent criti-

cal point to the true critical point. Since volume translation preserves the vapor pressure curve, 

the length of the vapor-liquid volume tie line is unchanged as a result of volume translation. 

However, since linear transformation in volume implies nonlinear transformation in density, 

volume translation results in lengthened tie lines in the two-phase region of a pressure-density 

diagram. The nonclassical contribution further flattens the coexistence curves, giving good 

agreement with experiment in the critical region. 

Table 1. Deviations in Calculated Saturated Liquid Densities for Ten Pure Fluids 

SRK: Original SRK EOS . 
SRK-VT-NC: SRK EOS with volume translation and nonclassical Helmholtz energy 

Reduced Temperature %Avg.Abs.Dev. in Liq.Dens. 

Component Range SRK SRK-VT-NC 

2 Methane 0.48- 0.997 . 6.1 2.6 

Ethane 0.42- 0.999 8.8 2.1 

Propane 0.26- 0.987 8.2 2.0 

n-Butane 0.32- 0.988 9.6 1.7 
Ethene 0.56- 0.998 8.7 3.1 
Propene 0.51 - 0.998 7.2 1.4 

Carbon Dioxide 0.72- 0.999 13.1 1.1 

Nitrogen 0.51 - 0.998 5.7 2.4 

W:ater 0.45 - 0.997 28.2 3.0 
Hydrogen Sulfide 0.77- 0.992 12.1 0.9 

Table 1 presents deviations in calculated saturated liquid densities for ten components over 

temperature ranges both within and outside the critical region. Since the critical region 

comprises only a small fraction of the temperature range shown, the deviations reflect mostly the 

non-critical region; it is evident that volume translation not only locates the correct critical 

point, but significantly improves liquid-density predictions over a wide temperature range. Since 

vapor volumes are much larger than liquid volumes, volume translation has a much smaller 
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effect on vapor densities. 

Figure 5 shows a plot for estimating critical exponent f3 over a small reduced temperature 

range. Critical exponent f3 is defined along the coexistence curve in the asymptotic limit of the 

critical point: 

(8) 

where Tr and Pr are, respectively, reduced temperature and reduced density. 

The renormalization-group theory predicts f3 = 0.33 for all fluids that belong to the 3-D 

Ising-like universality class. Experimental observations give similar values for f3 (Levelt 

Sengers. 1974). Since the definition of f3 applies only in the singular asymptotic limit of the crit-

ical point. Figure 5 gives only an "apparent" f3 for the temperature range indicated; this apparent 

f3 reflects the flatness of the coexistence curve. 

Figure 6 compares calculated and experimental critical isotherms for carbon dioxide . 

• 
Volume translation shifts the inflection point of the isotherm from the apparent critical point to 

the true critical point and also somewhat flattens the isotherm. The nonclassical contribution 

further flattens the isotherm by contributing positive pressure to the vapor-like region and nega-

tive pressure to the liquid-like region; the nonclassical contribution to pressure is zero at the true 

critical point. Appendix B discusses the effect of volume translation and nonclassical contribu-

tion on the isochoric heat capacity. 

Extension to Mixtures 

For a simple mixture, the critical-temperature locus and the critical-pressure locus predicted 

by the SRK equation are reasonably accurate (see, for example, Heidemann and Khalil, 1980). 

However, the predicted critical-volume locus is usually displaced from the experimental data. 

We now apply our two-step correction for pure fluids to mixtures. 

Mixture Distance Functionfor Volume Translation 
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To extend the proposed corrections to mixtures, we must first choose an appropriate vari

able which characterizes the distance between a state point and a point on the critical locus. To 

obtain a direct extension from pure fluids, we use the intrinsic-stability limit for a mixture (see, 

for example, Modell and Reid, 1983) as a guide to define the distance variable. To illustrate, we 

describe here the distance variable for a binary mixture . 

The limit of intrinsic stability for a binary mixture is often expressed in terms of a Gibbs

energy derivative: 

(fxf] (9) 

However, when a pressure-explicit equation of state is used to correlate fluid properties, the 

most convenient form for the stability criterion uses the Helmholtz energy. Beegle et al. (1974) 

showed that, by considering different ordering of independent variables in the fundamental equa

tion of thermodynamics and by taking different Legendre transforms of the fundamental equa

tion, the stability criterion may be expressed in terms of other thermodynamic func~ons, includ

ing the Helmholtz energy. Further, depending on the choice of composition variables in the fun

damental equation, the stability criterion may use either mole fractions or mole numbers as 

working variables. 

As described in Appendix C, we write the fundamental equation for a binary with the fol

lowing ordering of independent variables: 

U=U(S,V,n1,n) (10) 

where U, S, V and n are the total internal energy, total entropy, total volume, and total number 

of moles, respectively; n1 is the number of moles of component 1. 

Based on the first-order Legendre transform of Eq. 10 with respect to entropy, the stability 

criterion may be expressed in terms of derivatives of the molar Helmholtz energy a (Model and 

Reid, 1983): 

';,: 

. { 
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=0 (11) 

where the subscripts denote differentiation variables; subscript v indicates the molar volume, and 

subscript 1 indicates the mole fraction of component 1. 

Based on this stability criterion, we define a dimensionless distance variable for a binary 

mixture which, in the pure-component limit, properly reduces to that for a pure fluid, as shown 

in Appendix C: 

[ 
(JpSRK l [ 1 l 

iJp T- RTcM p2 
(12) 

where TcM is the critical temperature for the mixture. As for pure fluid~. to avoid iterative solu-

tions, dM is calculated from the original SRK equation. 

In the limit of either pure 1 or pure 2, a11 becomes infinite; in that event, dM reduces to 

distance d for a pure fluid. 

Volume Translation for Mixtures 

As a direct extension from pure fluids, volume translation for a mixture is a function of 

v = v - c., - ~, .. [" :d., l (13) 

where we use a linear mixing rule for eM, eM = I,xiei, as proposed by P~neloux et al (1982); 

DcM• as discussed below, is the constant needed to locate the correct critical volumes for a mix-

ture. 

To determine DcM• we must first consider the path traveled by a thermodynamic state as it 

approaches the critical state; or equivalently, we must specify the particular point on the critical 

line (surface) that is the end of the path. Upon studying deviations in calculated volumes for 

several binary mixtures, it appears that the isopleth (constant composition) path is the most suit-
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able; for a given state, the end of the path is the critical point having the same composition as 

that of the given state. Therefore, 8eM is a function only of composition, .:!: 

(14) 

where veM~) is the apparent mixture critical volume predicted from the SRK equation and 

veM~) is the true critical volume. 

For a given composition, the apparent critical volume, v eM, is calculated using computa-

tional algorithms developed by Heidemann and Khalil (1980). To estimate the true critical 

volume, veM• we use a correlation proposed by Chueh and Prausnitz (1967): 

VeM = L ej Ve; + L L ei ej Vjj (15) 
i i j 

where ve; is the critical volume of pure i; vii is a binary parameter characteristic of the i-j 

interaction, and vii = vii = 0; ei is the surface fraction of i defined by 

(16) 

L xi v~ 
i 

where xi is mole fraction. 

As for pure fluids, to preserve the original vapor-liquid equilibria, the contribution from 

volume translation to the chemical potential of each component must be the same for the coex-

isting phases~ Therefore, both 8eM and dM are evaluated at liquid-phase conditions only. 

Nonclassical Helmholtz Energy for Mixtures 

To account for density fluctuations for mixtures, we represent the nonclassical Helmholtz 

energy by the same expression as that for pure fluids: 

aNC 
-T- = a~c exp (-wD~) 
ReM 

(17) 

where TeM is the critical temperature of the mixture; a~c and w are the same universal constants 

as those for pure fluids. As a direct extension from pure fluids, distance DM is related to the dis-
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tance dM (Eq. 12) used in volume translation: 

(18) 

where PcM is the critical density of the mixture, PcM=llvcM; the volume-translated SRK equation 

is used to evaluate DM· 

Equation-of-State Parameters for Mixtures 

To calculate phase equilibria for mixtures, the equation-of-state parameters for mixtures, 

am and bm• are calculated using conventional mixing rules: 

a -"" ""z· z· (a·· a··) 112 (1- k··) m - k k I ) U )) I) 
(19) 

i j 

and. 

b··+b·· 
"" "" II J J bm = ~ k Z; Zj ( 

2 
) (1 - l;j) 

I J 
(20) 

where z is mole fraction; a;;. a11 , b;; •. and bii are pure-component parameters; and k;1 and 1;1 are 

binary parameters characteristic of i-j interaction; k;; = k11 = 0 and I;; = 111 = 0. 

Results for Mixtures 

We compare phase equilibria and densities calculated from the corrected equation of state 

with those calculated from the original SRK equation and with experimental data. In general, as 

for pure fluids, volume translation improves predicted liquid densities both within and outside 

the critical region, and has little effect on vapor densities. However, in most cases, the nonclas-

sica! correction does not have an appreciable effect on calculated results; as shown below, binary 

parameter k;1 and Iij have a more profound effect. 

Figure 7a compares a calculated and experimental pressure-density isotherm for the 

ethane/propene binary at 311 K. Figure 7a illustrates the typical results from volume translation 

for a simple mixture containing components that are similar in size. The constant volume 
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translation (CVT) proposed by Peneloux et al (1982) slightly improves the predicted liquid den

sities. The distance-dependent translation further improves predicted densities both near and far 

from the critical point; it also shifts the mixture critical point toward better agreement with 

experiment. Figure 7b shows this isotherm in pressure-composition (P-x-y) coordinates; for 

this simple mixture, the SRK equation adequately represents phase equilibria with a near-zero 

kiJ· For this mixture, the nonclassical contribution does not have any significant effect on the 

calculated results. 

Figure 8 shows the calculated P-x-y isotherm for the methane/carbon dioxide binary at 

230K. As for most mixtures studied here, the effect of the nonclassical contribution on phase 

equilibria is evident only very near the critical point. Figure 9 shows an enlargement of the crit

ical region for this system; the nonclassical contribution lengthens the x-y tie line, giving 

slightly better agreement with experiment. 

For a highly asymmetric mixture, such as a light gas/heavy hydrocarbon system, calculated 

phase equilibria and densities depend strongly on the binary parameters. Figure 10 illustrates 

the effect of kiJ and liJ on the calculated P-x-y diagram for the carbon dioxide/n-decane binary 

at 344K. Using only kiJ• the calculated P-x curve is able to represent the experimental data 

either remote from or near the critical region, but not both. However, a small negative hJ alters 

the slope of the calculated P-x curve and makes it possible to represent data both near and far 

from the critical point. Since calculated phase equilibria are sensitive to the choice of binary 

parameters, a nonclassical contribution here is superfluous. 

To demonstrate the effect of volume translation on the calculated densities for an asym

metric mixture, Figure 11 compares experimental pressure-density curves for the carbon 

dioxide/n-decane system at 344K with those calculated from the SRK and SRK-VT equations. 

As for simple mixtures, volume translation significantly improves liquid-density prediction both 

near and far from the critical region; it also shifts the predicted critical density toward the exper

imental critical density. However, as indicated in Figure 11, there is still a slight discrepancy 

between the predicted and the experimental critical density. This discrepancy may be attributed 
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to limitations in Chueh's correlation for estimating critical volume. Unless critical-volume data 

are available, the critical points for a mixture cannot be located exactly because their locations 

depend on the correlation used to estimate them. 

Conclusions 

A phenomenological correction is proposed for a van der Waals-type classical equation of 

state to represent thermodynamic properties both near and far from the critical region. The 

corr~ction uses volume translation to locate the critical point more accurately and a nonclassical 

Helmholtz energy to account for density fluctuations near the critical point. The proposed 

volume translation and nonclassical contribution use universal parameters applicable to pure 

fluids and mixtures. For illustration, the correction bas been applied to the SRK equation; how

ever, the correction described here may be applied to any e~uation of state of the van der Waals 

form. 

For pure fluids, the corrected equation reproduces the experimental critical point exactly 

and provides more accurate densities both near and remote from the critical region. Near the 

critical point, the corrected equation gives coexistence curves and pressure-density isotherms 

flatter than those obtained from the original classical equation; it can also represent more accu

rately the isochoric heat capacities in the critical region. 

For mixtures, volume translation improves density predictions both near and far from the 

critical region; it also locates the critical density of a mixture more accurately than does the ori

ginal equation. However, in general, the nonclassical contribution does not have an appreciable 

effect on calculated phase equilibria because the choice of binary parameters in the classical 

equation has a dominant effect on calculated results. For highly asymmetric mixtures, where 

SRK is seriously deficient (indicated by the large values of the binary parameters), the nonclassi

cal contribution is superfluous. 

To account for the effect of density fluctuations in the critical region, the uncorrected equa

tion of state must very accurately represent the propenies for both pure fluids and mixtures in 
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regions remote from critical. Many classical equations, including SRK, are deficient in regions 

other than critical; they give a large extended "critical" region where deficiencies are not due to 

density fluctuations. If we use an equation of state that can represent very accurately the proper

ties of pure fluids and mixtures remote from critical, the true critical region is so small that it 

may not be important for engineering applications. 
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Notation 

a molar Helmholtz energy 

ar molar residual Helmholtz energy 

A total Helmholtz energy 

a (T) temperature-dependent energy parameter in SRK equation ~' 

a':,c nonclassical Helmholtz energy at the critical point 

b size parameter in SRK equation 

c constant volume translation for pure fluids 

eM constant volume translation for mixtures 

d pure-component distance for volume translation 

dM mixture .distance for volume translation 

R. universal gas constant 

TcM critical temperature of a mixture 

vcM critical volume of a mixture 

v apparent molar volume calculated from the original SRK equation 

w decay constant in nonclassical-Helmholtz-energy function 

zc critical compressibility factor of a pure fluid 

Greek Letters 

f3 critical exponent 

De volume translation at the pure-fluid critical point 

DcM volume translation at a mixture critical point 
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TJ universal constant in volume-translation function 

PcM critical density of a mixture 

ei surface fraction of i in Chueh's correlation 

Superscripts and Subscripts 

SRK SRK equation 

SRK-VT volume-translated SRK equation 

C classical 

NC nonclassical 
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Appendix A Data Reduction for Pure Fluids 

Before determining parameter rr for volume translation and parameters af,.C and w for 

near-critical correction from experimental data, we first consider the possibility of obtaining 

these parameters from criteria for criticality. For a pure component, criticality requires 

( i3P) = ( iJ2 P) = O. 
dp T dp2 T 

(A-1) 

For the corrected equation of state, these two derivatives include terms containing distance 

d and density-derivatives of d which all vanish at the critical point. Since critical-state criteria 

are automatically satisfied due to the definition of distance d, the parameters must be determined 

from regression of experimental data. 

To avoid arbitrary definition of the critical-region boundary, parameters rr, af,.c, and w are 

fitted simultaneously to coe~istent vapor and liquid density data over a wide temperature range. 

' To place emphasis on phase-equilibrium _properties, PVT data are not included in the fit; inclu-

sion of PVT data may distort the parameters depending on the range and distribution of the data. 

The value and the goodness-of-fit for rr is found to be independent of parameters af,.C and 

w in nonclassical contribution. However, a~c and w, as expected, are correlated and they do not 

exist as a unique pair. Fortunately, calculated results are not sensitive to small, simultaneous 

changes in parameters af,.C and w. The use of universal parameters for volume translation and 

for the nonclassical contribution eliminates the need for arbitrary mixing rules in Equations 3 

and 7. 
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Appendix B Isochoric Heat Capacity Along the Critical lsochore 

The isochoric heat capacity of a real fluid may be expressed by a sum of an ideal-gas con-

tribution and a residual contribution: Cv = C~ + c;. The residual heat capacity is related to the 

molar residual Helmholtz energy, a' by 

C' = -T ( i)la') 
v iJT2 v 

(B-1) 

For the corrected equation, a' is the molar residual Helmholtz energy obtained from the 

volume-translated SRK equation plus the nonclassical contribution. Figure B-1 shows c; as a 

function of reduced temperature along the critical isochore for carbon dioxide. The original SRK 

equation, like all classical equations, predicts an essentially fiat c; vs. T, curve. Volume trans-

lation gives a rise in c; in the critical region. The nonclassical Helmholtz energy further 

increases c; near the critical point, but contributes negatively at intermediate temperatures; this 

negative contribution is inevitable due to the existence of an inflection point in Eq. 7. 

In the asymptotic limit of the critical point, the isochoric heat capacity diverges weakly 

along the critical isochore according to the power law: 

C v = I T, - 1 I -a (B-2) 

where a = 0.1 for real fluids. For classical fluids, a = 0, and thus Cv is finite at the critical 

point. 

If it is desirable for Cv to have the proper divergence at the critical point, the nonclassical 

Helmholtz energy may be multiplied by an exponential function which has a divergent second 

derivative at the critical point, i.e., Eq. 7 may be modified to 

(B-3) 

where w1 is an adjustable parameter and where a = 0.1. 
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Figure C-1. Isochoric heat capacity for carbon dioxide at reduced density 0.992. 



- 21 -

The nonclassical contribution to c: now contains a singular term which diverges at the 

critical point according to a. With w1 = w, the additional exponential function contributes only 

very near the critical point; it does not affect significantly c: away from the critical point nor 

does it affect coexistent and PVT properties. 
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Appendix C Mixture Distance Function from the Stability Criterion 

Depending on the set of variables used in the thermodynamic fundamental equation, a sta-

bility criterion employing the Helmholtz energy may be expressed in terms of either mole 

numbers or mole fractions (Modell and Reid, 1983). We derive here distance dm from the stabil-

ity criterion that utilizes mole fractions and discuss the reason for selecting this criterion. To 

illustrate, we consider only a binary mixture. 

When the fundamental equation uses the total mole number, n, as one of its independent 

variables [Eq. (10)], the stability criterion consists of mole-fraction derivatives of the molar 

Helmholtz energy [Eq. (11)]: 

= 0. (C-1) 

In the limit of pure 1 or pure 2, au becomes infinite. If the determinant of this matrix is 

divided by a 11 , we obtain the quantity Q: 

2 
avl 

Q = aY\1- -. 
au 

. (C-2) 

In either pure-component limit, Q reduces to avv which is related to the pure-component 

distance variable, (()P ICJp )r: 

(C-3) 

We divide Q by RTcM p 2 to obtain the dimensionless distance dm for a binary mixture 

(Eq. (12)]: 

(C-4) 

To investigate the possible use of the stability criterion in mole-number derivatives, we 

rewrite the fundamental equation employing mole numbers of all individual components: 

U = U (S, V, n1, n2 ). (C-5) 
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The stability limit from Eq. (C-5) consists of mole-number derivatives of the total 

Helmholtz energy A : 

Aw Avt 

Avt Au 
=0 (C-6) 

where subscript 1 refers to differentiation with respect to the number of moles of component 1, 

and subscript V refers to differentiation with respect to the total volume. 

Au represents the change of chemical potential of component 1 with respect to its mole 

number, (dJ..L 1/an1)r,112, which diverges in the limit of pure 1. However, in the limit of pure 2, 

Au remains finite. The distance variable derived from Eq. C-6 is not suitable, since it reduces 

to the pure-component distance only at one end of the binary mixture. 
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Coexistence curve in the critical region: classical vs. observed. 

Coexistence curve for methane in the region 0.96 < Tr < 1.0. 

Coexistence curve for water in the region 0.94 < Tr < 1.0. •Modified tempera
ture dependence for SRK parameter "a" for polar and quantum fluids (Soave, 
1979). 

Coexistence curve for n-butane in the region 0.94 < Tr < 1.0. 

Critical exponent f3 for n-butane in the region 0.95 < Tr < 1.0. 

Critical isotherm for carbon dioxide. 

Vapor-liquid equilibria for ethane(l)/propene at 311K. (a) Pressure-density 
diagram; (b) pressure-composition diagram. 

Pressure-composition diagram for methane(l)/carbon dioxide at 230K. 

Pressure-composition diagram for methane(l)/carbon dioxide at 230K in the 
vicinity of the critical point. 

Pressure-composition diagram for carbon dioxide(l)/n-decane at 344K: effect of 
binary parameters. 

Pressure-density diagram for carbon dioxide(1)/n-decane at 344K. 
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Figure 1. Coexistence curve in the critical region: classical vs. observed. 
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