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1. INTRODUCTION 

ELECTROMAGNETIC DETECTORS* 

GLEN R. LAMBERTSON 

Accelerator and Fusion Research Division 
Lawrence Berkeley Laboratory 

1 Cyclotron Road. 
Berkeley, CA 94 720 USA 

Monitors of the particle beams in accelerators are most commonly electromagnetic devices that 
extract a small amount of energy from the beam but are substantially non-interfering. Of course, 
one aspect of the design of such detectors is the avoidance of spurious strong interactions that 
are undesired. Before examining in some detail the principles of these devices some illustrative 
examples of detector types will be mentioned. A very common type is the "capacitance" pickup 
(Fig. 1) which consists of an antenna or surface that is exposed to the electric field of the beam 
and connected to a signal amplifier or monitor. Variations in the position or intensity of the beam 
change the induced charges in the exposed electrode and are monitored by the external circuit. 
A so-called "magnetic" pickup would be a loop of conductor exposed to the changing magnetic 
field of the beam. The loop may have a core of magnetic material for increased sensitivity. If 
the loop is made in the form of a two-conductor TEM transmission line as illustrated in Fig. 2, 
it becomes the stripline or directional coupler, as used in electronic circuitry. It has the property 
that if the beam particles and the wave in the line travel at the same velocity, for example, c, 
the induced signal appears only at the upstream end and the downstream termination of the line 
plays no part in its function. This directional behavior may be visualized as being a result of the 
combination of capacitive and magnetic effects, or alternatively as current waves induced into the 
ends of the line. Contrasting with this is the response of a disc-loaded waveguide or a helix in 
which an induced signal can build up as the beam moves along the structure if the guide phase 
velocity and the beam velocity are made alike. One should notice that in order to extract energy 
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Fig. 1. Schematic capacitive pickup . 

* This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, 
High Energy Physics Division, U.S. Dept. of Energy, under Contract No. DE-AC03-76SF00098. 
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Fig. 2. Schematic stripline pickup. 

from the fields of the beam, all these passive devices must in fact interact with the electric fields 
E, not the magnetic field, B. Also none has response down to zero frequency. To these rules 
there are a few exceptions, such as (1) the de current transformer with a nonlinear magnetic 
material and active feedback, and (2) the deflection of a stream of electrons by the magnetic field 
of a beam. When excited by an external source, a pickup structure may be used as a kicker to 
produce a change in the longitudinal or transverse momentum of the particles in the beam. 

2. RESPONSE FUNCTIONS 

The electromagnetic detector is characterized primarily by the voltage, or power, available at 
its output terminal from a unit of beam current within some band of frequencies. A commonly 
used parameter is the transfer impedance, Zp, which is the complex ratio of the voltage Vp 
produced to the current of the beam, IB, at a given frequency. 

Vp 
Zp(w,v)= 

1
B. (2.1) 

The wave of beam current in the longitudinal, s-direction is IB ei(wt-ks), with velocity v = w fk. 
Because Zp will be seen to depend upon the output impedance Zc of the detector circuit, it is 
importan~ to state if that value is different from the usual value Ro = 50 ohm. If the phase of 
the response is not needed, then a useful quantity that is independent of output impedance is the 
power, available at the output, which is 

(2.2) 

Here we have introduced RnT2 , the longitudinal shunt impedance times the square of the transit 
time factor for the electrode when used as a kicker. This quantity which is a convenient measure 
of efficiency will be discussed more later. 

For a detector used to determine the transverse position x of a beam, the parameter of interest 
is the transverse impedance 

I 1 dVp 
Zp(w,v) =--

IB dx 

2 

(2.3) 
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usually written as 

Z,- Vp 
p--

lBX 
(2.4) 

for a beam displaced x away from a central position at which the detector output is zero. And, 

in analogy with the longitudinal case, we have the output power 

(2.5) 

in terms of a transverse shunt impedance R1_T2 . 

3. CONCEPTS OF IMAGES AND INDUCTION, SOME EXAMPLES 

In a straightforward approach to calculating the response of a pickup structure, one would 
assume that the motion of the beam particles is negligibly altered by their interaction with the 
pickup and then solve the electromagnetic boundary-value problem for the particular electrode 

geometry to obtain the voltages and currents ir: the electrodes. Except for very simple cases or 
for approximations, this can be an involved problem; for that reason, an alternative approach 

will be described later. However for pickup electrodes that are small compared to the wavelength 
of the signal, the concepts of image charges and currents and magnetic coupling are very useful; 
as intuitive solutions to boundary-value problems, these can guide one's understanding and in
ventiveness. For most accelerator applications, images in the conducting wall of the beam tube 
effectively duplicate in longitudinal distribution the currents in the beam. This correspondence 
between beam and image is in part a result of the relativistic foreshortening of the electromagnetic 
fields of high-velocity particles. Hence, if an electrode forms part of the beam tube surface we 
can estimate the charges and currents induced in it. 

(a) Capacitive pickup. Apply this to the case of a small "button" electrode of area A on the 
surface of a beam tube of radius a. The linear charge density of the beam is IB/f3c; the button 
will then receive a charge 

as a result of an induced current 

A IB 
q=--

27ra (Jc 

. . jw A I 
Z =]Wq = --- B 

(Jc 21ra 
= jklglB 

(3.1) 

(3.2) 

where we have introduced an effective length l and a coverage factor g = A/27ral representing 
that fraction of the 21r angular space around the beam that is occupied by the electrode. This 
nomenclature will be useful later for larger electrodes. The response of the electrode of Fig. 1 is 
then the signal developed by this current in the RC circuit shown: 

z 
Vp= . 

-ft + jwC 
"k lg 

J -ft + jwC 
(3.3) 

and 

Z "k lg 
p = J 1 . . 

1l + JWC 
(3.4) 
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Above the frequency for which wRC >> 1 the capacitance effectively integrates the current to 
make the device a broadband monitor with response 

lg 
Zp ===> j3cC (3.5) 

(b) Stripline. The image current is useful in explaining the basic features of the response of 
a stripline pickup (Fig. 2). In this geometry the stripline receives a fraction g "' w /27ra of the 

image current. As a short pulse of the, assumed positive, beam current iB(t) reaches the upstream 
end, it repels positive charges into the output line and along the stripline. If the characteristic 
impedances of both these are ZL, a prompt signal of 1/2 ZwiB(t) is seen at the output and an 
equal pulse propagates downstream with velocity c. At time l/c later the beam, assumed to have 

velocity c, and the pulse arrive at the downstream end where the departing beam releases into the 
stripline a negative pulse - gi. One half of this cancels the positive current traveling downstream 
and one half survives to propagate upstream. It enters the output line at time 21/ c and is seen as a 
negative pulse of voltage -1/2 Z wi (upper Fig. 3). It is now easy to see what signals are produced 
if the beam velocity j3c were low. The output then will depend upon how the downstream end is 
terminated. In Fig. 3 are shown the signals for three cases of downstream termination. Lack of 
fidelity in the response results if reflections arise from imperfect impedance matching especially 
where the stripline joins the outgoing lines. The seemingly superfluous downstream matching 
resistor may be desired to absorb some of these reflections. If one Fourier analyzes the response 
for j3 = 1, the result is: 

(3.6) 

with k0 = w/c and at output ZL· This response is all real and a maximum at k 0 l = 1rj2, i.e., at 
l = >..j4. For this reason the device is often called a "quarter-wave loop." Zeroes in the response 
occur when the line length is a multiple of one-half wavelength. (These zeroes may be removed if 
the signals from the downstream end can be suppressed; this has been done with ferrite absorbers 
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Fig. 3. Stripline signals for various back terminations. 
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and by exponentially tapering the cross section of the stripline.1) As sketched in Fig. 2 the output 
of the stripline would depend upon the position of the beam in the tube through variation of the 

geometric factor g. Hence the difference signal from two striplines located on opposing sides of 
the beam can be used to monitor transverse position. Conversely, the sum signal from such a pair 

is very weakly responsive to position, or if a single electrode is widened to completely encircle 
the beam so as to make g = 1 in Eq. 3.6, the signal is nearly independent of beam position up to 

frequencies for which the wavelength is comparable with the tube circumference. 

(c) Magnetic loop. In the foregoing examination of the strip line loop, intuitively or by just 
knowing the answer we ignored effects of capacitive or magnetic induction in the central part of 
the electrode. It is true that these effects cancel or at least should not be added to the assumed 
image currents. But if the stripline were very short, it will be recognized as a magnetic pickup 
loop for which it would seem proper to consider the magnetic coupling to the beam current. 
To pursue that concept examine now the signal from a small loop made of a short stripline of 
conductor of width w enclosing area A. This loop at distance a from the beam will develop a 

voltage from dB/ dt of 

(3.7) 

Here Z0 is the impedance p, 0 c = 12011' ohm. To compare this with Eq. 3.6 for the longer stripline, 

insert in that relation 
ZL ~ ZoAflw 

g ~ wj21l'a 

sin k0 l ~ k0 l < < 1 

and we note that the result is identical to Eq. 3. 7. Thus, magnetic loops are part of the stripline 
family. The magnetic coupling may be increased by forming the loop around a core of permeable 
material such as ferrite that partially or fully encircles the beam. This effectively increases the 

line impedance ZL, lowers the line velocity, and shifts the first zero of the response to a lower 
frequency for a given line length. Nevertheless up to frequencies of about 400 MHz ferrite makes 
the stripline very compact. This feature has been applied in the pickups for stochastic cooling in 
the Antiproton Accumulator at CERN2 for the frequency band 50-to-500 MHz. 

(d) D.C. current transformer. The magnetic loop is, of course, a transformer and may be made 
with multiple turns around a core to provide a strong signal at high output impedance. The 
high impedance is not a problem for low signal frequencies and the beam current transformer 
has been developed for sensitive monitoring of the lower-frequency beam currents. The response 
of the current transformer can be extended down to zero frequency by detecting the nonlinear 
magnetization of a core of permalloy. One winding on the core is strongly excited with a modulator 
current at perhaps 250 Hz. This excitation of the core, sensed on a secondary winding, is analyzed 
for second harmonic content. Any net demagnetization by the beam current will magnetically bias 
the operating point on the B - H curve of the core material and produce second harmonic. The 
second harmonic response is returned to zero by feedback to a third de bias winding; the current 
required in that winding is then a measure of the de beam current it is opposing. To avoid the 
250Hz modulation coupling to the beam, two oppositely-wound cores are used. This arrangement 
can measure de and low frequency beam currents as small as a few p,A. The frequency of the 
system may be extended by adding a third or more cores to sense the ac beam currents as shown 
in Fig. 4~ 3 Rejecting contamination by the modulation frequency requires special circuits if the 
extended frequency response is desired. 
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Signal Out 

C2 

Feed back 

Modulator 
(250Hz) 

Fig. 4. DC current transformer circuit. 

(e) Wall current monitor. If the conducting beam tube is interrupted by a gap, the ac image 
currents will develop a voltage across whatever external impedance bridges the gap. This external 
impedance may be an r.f. cavity for selected high frequencies or a band of resistors for a very 
broad frequency response. The resistively-loaded gap should be enclosed by an inductively-loaded 
cavity (Fig. 5) to avoid signals from sources external to the beam tube and to keep beam signals 
from radiating into the surrounding equipment. Typically the resistive band is an array of 50 
or 100 resistors in parallel making a total resistance R :::;j 1 ohm or less. The voltage developed 
across the gap is then RIB and is sampled at two or four points around the circumference by 
50-ohm cables. The low-frequency cutoff w = R/ L is limited by the inductance L of the ferrite
loaded cavity. The gap capacitance and parasitic inductances distort the high frequency response, 
typically limiting the usable frequency to about 1.5 GHz. Such a wall-current monitor will also 
show a difference in voltage across the diameter if a bunched beam passes in the tube off-center. 
At low frequencies this difference signal is reduced by azimuthal redistribution of the non-uniform 
wall currents flowing towards the gap. The gap can be viewed as an azimuthal slot line loaded 
by conductance per unit length of G' = (21l'aR)-1 and specific inductance L'.4 Attenuation of 
currents flowing along this line will preserve the azimuthal distribution above a frequency for 
which 

wL121l'a >SR. (3.8) 

(f) Resonant cavity. A detector with narrow band width would be formed by a gap loaded by a 
high-Q resonant cavity. The impedance offered to the wall current will be the shunt impedance 
of the cavity as loaded by the detector output load. One half of the power extracted from the 
beam is available as signal. But the analysis of a cavity is more adequately dealt with using the 
alternative method to which we now turn. 

4. USEFUL THEOREMS 

(a) Reciprocity. For obtaining the pickup impedance function, application of the Lorentz reci
procity theorem can transform the boundary-value problem containing the beam current into the 
usually easier calculation of the response of a beam when the structure is powered externally and 
used as an accelerating or deflecting electrode, commonly called a kicker. The calculation then 
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Fig. 5. Resistive wall-current monitor. 

proceeds in three separable steps: first, the calculation or estimation of the longitudinal electric 
field along beam trajectory in the kicker, second, the evaluation of the integrated longitudinal 
electric field (kick) that would act upon a particle that travels upstream, and third, a simple 
multiplication of this kick by Zc/2 to obtain the transfer impedance. 

The reciprocity theorem relates the electromagneticfields within a volume, which result in
dependently from two different sources of excitation, in our case the kicker power supply and the 
beam current, designated by subscripts K and B. The volume is bounded by surfaceS. The basic 
form of the theorem, in which fields and currents are expressed as complex phasors or vectors 
with time dependence eiwt, is5 

j(EKxfin-EnxHK)·dS = j(En·J~-EK·ln)dvol. ( 4.1) 

S v~ 

In the schematic diagram of a pickup in Fig. 6 the outgoing signal Vn generated by In is the 
pickup signal that earlier we have called Vp. The characteristic impedance of the signal port is 
Zc; it may be a coaxial cable of this impedance. The inwardly traveling kicker driving voltage 
VK is also at impedance Zc. VK produces the fields EK and BK and, only in resistive media 
in the structure, the currents J K. This implies we ignore any perturbations of the beam current 
caused by the kicker fields. The volume integral vanishes in resistive media because J = a E, 
leaving only the term in EK · Jn containing free current. The portion of the surface integral 
covering the entrance and exit beam ports may be made zero if traveling waves are attenuated or 
the beam pi'pes are small enough to prevent propagation. At the signal port entering and exiting 

. . . 
' ' ' ' ---------------------

, 

. . . , 

Fig. 6. Pickup diagram for application of reciprocity theorem. 
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TEM waves contribute to the sm:face integral two additive terms of VKVB/Zc. If in an actual 
circuit VB or VK waves have reflections, we must exclude the reflected VB signals because those 
arise outside the surfaceS. Reflections of the VK waves are allowed but do not contribute to the 
surface integral. Therefore, Eq. 4.1 becomes 

or 

2 
VKVB 

Zc 
= - J Ei< · J~ dvol 

vo/ 

Zc j.- -VB=--- EK·JBdvol. 
2VK 

vol 

(4.2) 

In this equation, note that J B is a sinusoidal wave of beam current and the integral is evaluated 
at one instant in time. It is clear that if we can calculate the s-directed fields in the pickup when 
it is excited by VK from the outside, then Eq. 4.2 will give the pickup response. 

The equation will be simplified if we assume that EK does not vary greatly over the beam 
cross section and also insert the s-dependence e-iks of JB. Integrating over x andy gives 

J EK · hJdxdy = EK · ~e-iks 
.L 

and the pickup transfer impedance becomes 

Zp = - Zc j e-iks EK · ds. 
2VK 

s 

(4.3) 

(4.4) 

This integral has a physical interpretation that we can recognize if we calculate the energy gain 
l::iU that a kicker imparts to a beam charge if the beam travels in the negative s sense. 

l::iU 
e 

l::iU 
e 

a 

= j eiwt E K · ds 

s=b 

a 

= j e-iks EK · ds = 

b 

with s = -vt (4.5) 

b 

- j e-iks EK ·is. (4.6) 

a 

But l::iU /e is just VK times K11, the kicker constant; therefore comparing the above with Eq. 4.4, 
we see that 

Zp = Zc!::iU 
2eVK 

1 
2zcK

11
• (4.7) 

If we can evaluate the electrode's effectiveness as a kicker for particles moving upstream, then its 
response as a pickup for downstream current is also known. 

(b) The voltage gain V. It will be convenient to give the voltage kick l::iU / e the symbol V and 
write the defining integral as applied to a particle moving in the positive sense of coordinate s. 

b 

V(x, y, k) = J eiks E 8 ds (4.8) 

a 

for the purpose of calculating electrode responses. The kicker constant K is then V/VK and we 
simply remember that when used as a pickup the beam moves in the opposite sense. A position 
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detector will be designed to have a strong transverse variation of V, which produces the response 

through Eq. 2.3: 

1 Zc dV 
(4.9) 

The determination of the field Es for use in calculating V is itself a boundary value problem 
but it does not involve the beam as a source. This is a considerable simplification especially if the 

beam velocity is less than c. Also, one can make use of all the techniques available for working 
with r.f. structures. It is for accelerating devices that the shunt impedance, noted in Eq. 2.2, is 
used in the equation for power dissipated: 

::!'t 

V2 wW 
P=--=-

2RuT2 Q 
( 4.10) 

where W is the stored electromagnetic energy. The exponential factor in Eq. 4.8 brings in the 
transit-time factor. 

In many cases the evaluation of V within the beam tube is made easier by knowledge of the 
field Es at the wall of the beam tube. The electrode surfaces of a pickup often form part of the 
cylindrical beam tube surface and in that case, the potentials of those electrodes when excited as 
a kicker are calculable and therefore the longitudinal integrals of the electric fields are calculable 
at that surface. We examine next how to find V(x, y, k) from its value on the cylindrical surface. 

We wish to study the spatial variation of V within the beam tube. For this purpose and with 
greater generality let V now include the total time dependence of the field Es rather than just 
one frequency component. The definition then becomes: 

' 
b 

V(x,y,t) = I E(x,y,s,t)ds (4.11) 

II 

in which E is the s-directed field taken at the time t = s / (3c when the particle passes each value 
of s. This electric field must satisfy the wave equation 

( 4.12) 

Now we shall use this to find a two-dimensional differential equation involving the quantity 

(4.13) 

Differentiate Eq. 4.11 and insert Eq. 4.12: 

b 

v}_v = I \73._ E ds (4.14) 

II, II 

The variables s and t are related through dsjdt = {3c, which we use in integrating Eq. 4.14 to 
obtain 
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'\72 v = (- aE = 2._ aE)]b 
_l as f3c &t a 

(4.15) 

The last term may be written in terms of V to give 

2._ aE)] t+(b-a)/f3c 

f3c &t a,t 
( 4.16) 

The spatial variation of Vis determined by this Eq. 4.16. In many detectors or kickers, the limits 
a and b may be chosen to be where the fields.are zero or alike, making the right-hand side zero. 
Equation 4.16 then simplifies to the modified wave equation 

( 4.17) 

or if variation eiwt is assumed, 

(4.18) 

Note that while the velocity of the beam particles did not enter into determining the kicker fields 
in the peripheral cylinder surface, that velocity does enter into calculating V on that bound~ 
and in the intemal region through the factor 'Y in Eq. 4.18. If 'Y for the particle beam is large, 
Eq. 4.18 approaches Laplace's equation and then it is very convenient to use electrostatics to find 
the variation of V within the aperture. 

(c) Panofsky-Wenzel. The effect of a kicker that deflects the beam is to produce a transverse 
momentum kick of 6.p.L per particle from an input kicker voltage VK. Analogous to the integral 
defining V, we have for .6-p .l 

b 

6.~f3c = J (E.L + v X B)eiks ds. (4.19) 

a 

A basic relation between V and .6-p is provided by the Panofsky-Wenzel theorem6 : 

av . .6-px 
-=-)W--. ax e 

(4.20) 

This theorem for any electromagnetic device in which the particle trajectory is essentially a 
straight line points out that for an interaction with the particle beam, there must be longitudinal 
electric fields or field gradients. A consequence of this is the fact that a structure with purely 
transverse electric fields, i.e., TE modes, cannot detect or kick a beam. 

Further in analogy to the longitudinal kicker, we define R_1T2 from the kicker power through 
the equations 

( 4.21) 

Using Eqs. 4.9, 4.20, and 4.21 the real part of the pickup impedance is found in terms of the 
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transverse shunt impedance to be 

(4.22) 

5. RESONANT CAVITY 

The cavity resonator, because of its high Q-value can be a very sensitive detector within its 
narrow frequency response band. For simple shapes the shunt impedance is readily calculated and, 
using the reciprocity relation, also gives the response as a detector. For example, a moderately
sized beam tube may be attached to the rectangular cavity as in Fig. 7 and it will retain the basic 
features of a closed-box cavity. The lowest cavity mode with maximum electric field along the 
centerline is mode TM11o for which the wavelength is ../2b and the electric field is 

'TrX 'TrY 
E = E0 cosb COST (5.1) 

uniform in the s-direction. 

To calculate R 11 T
2, we can use Eq. 4.10 for power absorbed by the cavity when driven at 

resonance. The quality factor Q applies to the unloaded cavity and W is the energy stored in the 
cavity given by 

Inserting E from Eq. 5.1, we find 

W = ~ f 0 j E 2 d vol . 

vol 

· Fig. 7. Square cavity resonator. 
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For V we use Eq. 4.8 and the value of Eat x = y = 0 to get 

with(}= wlj2v = k0 1j2(3 and T = sinB/B. Insert Wand V in Eq. 4.10 to find 

2 4 1 2 2 2 
RuT = -zo,QT = --zZokolQT 

7r A 7r 

l 
= 480 ~ QT2 ohm. 

(5.4) 

(5.5) 

(5.6) 

As an example of another shape resonator, for a circular cavity (pillbox) with mode TMo10, 
for which the field is 

E = E0 Jo ( kr) , (5.7) 

one can find that 

(5.8) 

in which POl = 2.405 giving 

(5.9) 

This result is nearly identical with that for the square cavity. For (3 = 1, a broad maximum in 
the quantity 1QT2 /.A occurs at (} = 1.37 radians for which 1/ .A = 0.37 and T 2 = 0.51. At that 
optimum length, the simple cavity then gives 

(5.10) 

This can be increased about 25% by reducing the longitudinal gap in the region immediately 
surrounding the beam tube. . 

In these equations, the Q-factor for the unloaded cavity is used, which may be in the region 
of 30,000 at 1 GHz. For maximum efficiency, a matched coupling to an external load Ro 'typically 
50 ohm, will reduce the Q of the circuit by a factor of 2~ The peak response in terms of pickup 
impedance, using Fig. 2.2 is, still using the unloaded Q-value, 

(5.11) 

and using Ro = 50 ohm, 

Zp = 37VQohm (5.12) 

and 1::1wjw = 2/Q. 

The peak response of a cavity used as a transverse detector is found from a calculation of 
R.1..T2 • As for any resonator, the kicker power is wW/Q and from Eqs. 4.20 and 4.21 we find 

RJ..T2 = (~ av)2 _9_.· 
k ax 2wW 

12 
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The cavity of Fig. 7, if excited in the TMzto mode will have the longitudinal field 

. 27l"x 'iTY 
E = Eo sm -b- cos b (5.14) 

and .X.= 2a/../5. Use Eq. 4.8 to calculate V(x). Wand Tare the same as in Eqs. 5.3 and 5.4 and 

we find using Eq. 5.13 

(5.15) 

(5.16) 

At f3 = 1 the maximum value of lQT2 /.X. occurs at () = 1.41 and gives 

R1.T2 = 33.7 Q ohm, ( 5.17) 

and from Eq. 4.22 into a 50-ohm load 

z~ = 21 koVQ ohm/m 0 (5.18) 

In the foregoing, we assumed that the cavity fields were not altered by the beam tube apertures 
in the end walls. But there are small changes and, besides effects on the frequency and Q, the 
apertures affect the variation of sensitivity across the tube. To calculate this we can use Eq. 4.17 
to find V within the aperture from values at the edge. As a well-known example, consider the 
circular cavity with attached circular tubes of radius a. With an azimuthally symmetric mode, 
the value of V( r, 1/J) at radius a will be the same for all values of 1/J. Call this value V( a) and solve 
Eq. 4.17 with this boundary value. The result is 

(5.19) 

The modified Bessel function defines a reduced sensitivity at the tube center, unlike the function 
] 0 that applies to the closed cavity, which is strongest at the center. The reduction is usually 
small; for fully relativistic particles it is zero and the sensitivity is perfectly uniform. 

This approach can be applied to other cases if some estimate of the azimuthal variation of V 
at the tube radius is known. In that case, for each nth azimuthal Fourier harmonic in V( a, 1/J ), 
the radial dependence will be In(k0 r/f3!)· 

To determine the pickup's response more exactly, one can calculate numerically reasonably 
simple cavities having nose cones and beam tubes. But to include the effects of the coupled 
external load and details of construction, measurements are needed. To measure this using a 
current-carrying wire to simulate the beam is complicated by the strong coupling if Q, and 
therefore RT2 , is large. But for the narrow-bandwidth structure, RT2 and Zp can be determined 
using the perturbing-bead method. 

In the perturbation method, the cavity is excited at its resonant frequency w. Then a small 
object of volume !:l.r is introduced at a point on the beam trajectory and the change in resonant 
frequency !:l.w is measured. If the scalar amplitudes of the field at the point where the object was 
placed were originally E and H, the perturbation is given by Slater7•8 as 
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(5.20) 

The coefficients ah and ae are determined by the shape of the perturbing object. For small 

spheres (beads) of metal or of dielectric with € = €r€0 , these are: 

{ 
Oh 

metallic 
Oem 

= 3/2 

=3 
(5.21) 

d. 1 . 3 €r- 1 1e ectnc Oed = --
2 

. 
€r + 

In a longitudinal pickup with only s-directed field E( s) on the beam trajectory, one can 
measure as a function of s the b.w/w caused by a metallic bead and find from Eq. 5.20 for 
insertion in Eq. 4.8 

= 

Equation 4.10 then gives 

(5.22) 

which is numerically evaluated from measured data. The equation shows the unloaded Q factor, 
but the bandwidth when used would correspond to the loaded Q. 

A transverse pickup cavity will not generally have a purely TM field; some transverse E 

appears in the neighborhood of the beam tube apertures. Then it is convenient if we can measure 
both E1.. and H1.. along a line where En is zero and evaluate the integral in Eq. 4.19. If we use a 
metal sphere and a dielectric sphere of the same size, we measure with the metal sphere t:.w I w m 
as in Eq. 5.20 using aem and with the dielectric we measure 

6.wl -6.T 2 
--::; d = 4W €oll!ed E . (5.23) 

Solve these response equations forE and Hand use Eqs. 4.19, 4.20, and 5.13 to calculate R1..T2: 

R1..T2= 2ZoQ {/[ _.!!.!!.._6.wl +/3 6.w,_aem6.wl]ejksds}
2 

(5.24) 
koahb.T ll!ed W d W m O!ed W d 

A very sensitive detector for transverse motions or Schottky signals in the Tevatron has been 
made using a rectangular cavity,9 15 em on each side machined from aluminum. Its characteristics 
as a Schottky detector are 

f = 2.045 GHz 

Q = 9500 

Rl..T2 = 29 n 
Q 

Zp = 81 x 103 ohm/m 

Noise limit = 4.2 X w-13 ampere meter 

14 
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6. CAPACITIVE PICKUPS 

The various configurations of the capacitive electrode can be analyzed using reciprocity and 
the function V. An example is the long plate connected at its center to a resonant circuit as 
sketched in Fig. 8. Regard the plate as a center-driven open transmission line with characteristic 
impedance Z£. The open line presents at its center the impedance -1/2jZL cot(kol/2) plus 
losses. Resonate this capacitive reactance with the external inductor and let R represent the 
total circuit losses without the matched output load resistor. In terms of the unloaded Q-value, 

then 

(6.1) 

Let the excited circuit have voltage V0 at the center-tap. This will produce at the ends of the 
line V0 sec(k0 l/2) and the associated fields Es(s) at the beam will be concentrated at the ends 
of the TEM line at points separated by an effective length l. At each end the integral of Es ds 
is ±g 'V;,sec(k0 l/2) in which g is a geometric factor determined by the transverse placements of 
beam and electrode. If the extent in the s-direction of each of these end fields is small relative to 
(3>. = 1/k, then, the value of V calculated from Eq. 4.8 is approximately 

V = J eiks E 8 ds 

V = gVo [-e-ikl/2 + eikl/2] 
cos(kol/2) 

V 
·v; sin(kl/2) 

=) o2g---,:.,.__:,...~ 
cos(kol/2) 

We firid R 11 T
2 from the power dissipated 

giving 

V:2 
p = 0 

2R 

As a pickup the available coupling impedance at resonance into Ro will be, using Eq. 5.11, 

IZPI = g sin(kl/2) 

~·J ' :.,v.., 
Zt_ 

.. 
I a 

Fig. 8. Resonated capacitive plate. 
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(6.3) 
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(6.5) 



For the short plate, it is sensible to write this in terms of the total capacitance C. Therefore 

insert Z L = l / cC to obtain 

Zp = ~ JwR0 Q. 
2(3c C 

(6.6) 

Comparing this resonated detector with the resistively-loaded and broader-bandwidth case given 

in Eq. 3.4 shows the reasonable result that the detector output power density has increased by 
at least a factor Q /2. . 

The factor g can be evaluated by solving, perhaps numerically, Eq. 4.18 for the distribution 
of V within the aperture cross section bounded by the beam tube and the electrode plate as in 
the axial view in Fig. 8. At the electrode plate, the value of V is Eq. 6.2 with g = 1. The solution 
for V depends upon the particle velocity f3c. We see that strictly only if 1 = 1 is that solution 
given by an electrostatic calculation. 

The response of the detector to transverse beam position is found from V7 .l V. A position 
detector will often have two or more plates. In this case, the interelectrode coupling (capacitances) 
must be included in calculating RT2 and in the design of external circuits that select the difference 
signal. 

A recent application of tuned-plate detectors for measuring the position of small extracted 
beam currents at Fermilab10 has been able to resolve 0.1 mm with a beam current of 1.7 x 10-8 

ampere with plates one meter long. The circuits operate at 53.1 MHz and have an unloaded Q 
of about 380. 

A detector geometry used to obtain a linear response to transverse position, usually at low 
frequency, is that shown in Fig. 9. Two capacitive electrodes are formed by a diagonal cut through 
a section of beam tube. The arbitrary cross section sketched is intended to convey that the linear 
response is obtained with any shape cylindrical cross section. For electrodes small compared to 

f3! >.. this is true. 

A proof of this may be demonstrated by applying Eq. 4.18 with the boundary values defined 
by the diagonal cut. For near linearity we must have k0 l/f3 << 1 and the excursion x << f3!/k0 • 

The compact arrangement shown in Fig. 10 is used in the CERN PS to monitor horizontal 
and vertical positions and the total current.11 The frequency range is 0.1 to > 200 MHz. The 
noise limit is ±2 mm with 5 x 109 particles per bunch; at higher currents, the resolution limit is 
0.1 mm. 

·~L-

Fig. 9. Diagonally-cut cylinder pickup. 
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Fig. 10. Combined H and V electrodes . 

7. THE STRIPLINE FAMILY 

As we have seen, image-current concepts can give a good physical picture of the function 
of stripline detectors. But the stripline is so widely used as a broad-band detector that some 
supplementary analysis by the alternative method is worthwhile. Therefore, let us examine the 
pair of striplines sketched in Fig. 11 to be used as a sum current detector. Imagine the two lines, 
each of impedance ZL and wave number kL = w/vL driven in parallel from an Ro = 50 ohm 
source with voltage VK. To provide the stripline voltages of VL, a transformer is needed and the 

value of VK required is VK = VL-vhRo/ZL. For evaluating the function V, the voltage waves 
· must travel in the negative s sense as noted in Section 4; thus the voltage at s = -l is VL e-ik£1 

when it is VL at s = 0. As with the capacitive plate, we visualize the Es fields to be concentratc,1 
near s = 0 and s = -l so that the integral for V is given approximately by 

V =gil [V(o)e0 
- V(-s)e-jkl] 

V =gil (1 - e-j(k+h)l) 

V = 2gll VLej('lf'/2-0) sinO 

in which B = (k + kL)l/2. The pickup impedance is now found using Eq. 4.7 to be 

~--.R,--~ 

Fig. 11. Stripline pair. 
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This response is shown in Fig. 12. There are some differences between this result and Eq. 3.6 
because here we have two lines driven from impedance Ro and the g-factor represents the coverage 
of the perimeter by the two lines combined; we also have separate values of k and kL to allow for 
different velocities in the beam and the lines. The transformation to Ro does not appear in the 

response if it is given in terms of shunt impedance: 

(7.3) 

The response of the pair of lines excited with opposite polarities when used as a position 
detector, obtained by differentiating Eq. 7.2, would contain dgu/dx, which we express as gl..2/h; 

this is writ ten 

and 

Z' p 
. 2 j(tr/2-8) . (} g1..- e sm 

h 

2 gl.. . . (2 )2 
R1..T = 2 ZL kh smB 

(7.4) 

(7.5) 

But we must note that when used with a difference signal, the coupling between lines is smaller 

and the impedance Z L must be reduced accordingly. 

Long arrays of many stripline pickups have been used in beam cooling rings at CERN and at 
Fermilab. In this case it was necessary to design the gain-vs.-position to fit a particular function, 
using the spatial variation of g for the recessed plates shown in Fig. 10. In this case V(x, y) is 
an electrostatics problem with a rather simple analytic solution. At the center point x = y = 0 
between plates the g-factors are: 

2 1( 'TrW) gil = ; tan- sinh 2h 
'TrW 

g1.. = tanh v;· 

(7.6) 

(7.7) 

The electrodes used in the Fermilab antiproton accumulator12 are in arrays of 128 loop pairs 
with signals. delayed and combined in phase. The striplines have ZL ~ 100 ohm, Zp = 40 ohm 
per pair, and are used in the band 1-to-2 GHz. For most applications, it is convenient to use 

Fig. 12. Response of stripline pickup. 
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lower line impedance. Typical stripline electrode pairs have 

ZL ;:::j 25 -1oo n 

> 
1 

g 
2 

Zp ;:::j 18-35 n 

RuTz ;:::j 25 -1oo n. 

Because stripline electrodes are directional couplers and have terminals at both ends, their 

signals may be added by simple series connection. Such an array is shown in Fig. 13. The 
sinusoidal signals, progressing upstream add in phase if the closely-spaced loops are A/4 long 
at mid-band and the connecting transmission lines, all of impedance ZL, are A./2 long. Assume 
VB = VL = c, then the spouse of two strings each with n loops is just n times Eq. 7.2 but with 
a transit-time factor that defines a more narrow bandwidth: 

in which 

T = sin 2n¢> ej(,"/2-(2n-1)4>) 
2n cos¢> 

(7.8) 

(7.9) 

with ¢> = k0 l0 = k0 ljn. The bandwidth 6.w within half-power frequencies is, for n 2: 2 approxi
mately 0.9 wjn. 

This series array provides flexibility to exchange bandwidth for gain, much as we have by 
resonating the capacitive pickup. This has been applied in the CERN antiproton accumulator13 

where the reduced bandwidth arrays were desired to match power' amplifier bandwidths. The 

electrode unit consists of two loops in series. 

We can examine the series-connected loops here to illustrate the general rule that the product 
of peak power gain and bandwidth is proportional to the pickup length. For series loops of total 
length l, one can show that, with T = 1, 

{7.10) 

Some other examples of this product are: 

==============================~>Is ,... ______ 1 ______ ., 

-'I u-u t: 
Fig. 13. Series loops. 
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Resonated capacitive strip pair (for {3 = 1): 

(7.11) 

Square cavity:. 

~Z ((3sin(kl/2a))
2
z 

7r2 oC l/2 . (7.12) 

8. TRAVELING-WAVE DEVICES 

A linear array of pickups with signals properly phased and combined creates a traveling wave 
of impedance to extract energy from the moving particle. But in this case, the signals are added 
in external combiners that add powers, not voltages. In a true traveling-wave structure such as 
a waveguide or a helical line there is the possibility of building up signal voltage proportional 
to length and hence power proportional to the square of length. This can be realized but with 
some loss in bandwidth caused by dispersion in the phase velocity. An additional attraction of 
traveling-wave structures is their lesser complexity as rf structures, particularly at frequencies in 

the multi-gigahertz range. 

On the axis of a helical line Fig. 14, there is a longitudinal electric field with reduced velocity 
f3£c. 14•15 The shunt impedance of this electrode treated as a sheath helix is given by 

R T2 = ~ (}2_) 2 [Ko(ha) _ Ko(hb)] (sin0)2 
II 27r/3L 'YL Ia(ha) Jo(hb) 0 

(8.1). 

in which 'YL = 1_!.81, h = ~ = ;a;~L, and 0 = (k- kL) !· The modified Bessel functions [0 and 

Ko for small arguments, that is, for f3L'YL>.. > b reduce to the form 

(8.2) 

In this we recognize (Z0 /27r) In(b/a) as the impedance of a coaxial line of radii a and b. Also, 
we see sin() /0 as the transit-time factor in which t is a measure of the phase slip between beam 
and traveling wave. To avoid large dispersion in the wave velocity in this periodic structure, f3L>.. 
must be greater than twice the pitch of the helix. In an example use,16 the helix was effective 
at f = 200 MHz and (3 = 0.5. However, the factor 1[4 makes the device ineffective for very 
relativistic particles. 

The slotted-coax coupler shown in Fig. 15 communicates with the beam tube through a row of 
holes or slots in the outer wall of a coaxial line parallel to the beam. There is a net energy transfer 
from a beam particle to the coaxial line until either an equilibrium is reached or a sufficient phase 

Fig. 14. Beam on axis of helical line. 
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Fig. 15. Slotted coax on beam tube. 

difference develops between beam and coax signal. The slots that provide the coupling also reduce 
the phase velocity in the coax and cause dispersion in that v~locity. Perturbation calculations17 

for the geometry of Fig. 15 show that the coupling and the velocity are so related that the pickup 
impedance becomes simply 

(8.3) 

where ZL is the impedance of the coax and IL and() are as in Eq. 8.1. The shunt impedance is 
then 

R T 2 Z (k0 lr sin 0) 2 

II = L !'ib -()- (8.4) 

This is very similar to the result for the helix, but here a very small velocity reduction introduces 
dispersion that limits the use of the slotted coupler as a broad-band device to f3L >....., 0.95. 

Although it is a weak coupler, it is a good high-frequency structure and is useful wh,ere strong 
coupling is not demanded. In this role it has been used in cooling the antiproton stack in the 
CERN AA ring. 18 . 

The phase velo.city of a TM waveguide may be reduced to correspond to beam velocity by 
loading its walls with dielectric or corrugations. Linacs employ such structures. A corrugated 
guide has been developed19 for experiments on stochastic cooling in the CERN SPS. This differ
ence pickup is sketched in Fig. 16. It has a bandwidth of about 1 GHz at an operating frequency 

. . 

of 11 GHz. It has transverse shunt impedance of 

R.1.T2 = 1.76 x 104 ohm 

and 

Zp = 108 ohm/mm. 

This performance is exceptionally strong compared with the other types of pickup. The aperture 
is 16 X 22.9 mm and the length of the guide is 0.3 meter. The loaded guide is rather straightforward 
but the transition from guide to coax has required some development. 
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Fig. 16. Downstream end of corrugated-guide pickup. 

We can inquire if the TW structure also has a gain-bandwidth product proportional to length. 
But for reference, first consider the standing-wave device with bandwidth 6.w = 2w/Q in terms 
of the unloaded quality factor. Its kicker power is given by Eq. 4.10 

From these relations, we find 

(8.6) 

which is proportional to length as we have seen for some particular cases. The equivalent starting 
point for the TW structure is 

p = Wv9 

l 

where vg is the group velocity in the structure. The shunt impedance is then 

(8.7) 

(8.8) 

To find the band width, we ~hall equate the transit time fa~tor to 1/ J2 at ±6.w /2. Tis given by 

T 

1/2 

~ J eiks e-ihs ds = 

-1/2 

sinO 

B 
(8.9) 

where B = (kL- k)l/2. At ±6.wj2, B has the value B = B1 = ±1.39 radian. To first order we have 

(8.10) 

Using k = wfvB and dkL/dw = 1jv9 , we find 

(8.11) 
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Combining this with Eq. 8.8 and the value of fh, we get 

. 112 2.8 
RT2 t:J..w ~- --. w 1-~ 

VB 

(8.12) 

Here we see again a factor proportional to length; furthermore comparison with Eq. 8.6 also shows 
that indeed the TW structure could reasonably be a much stronger pickup than the standing-wave 
types. This last relation stands as a guide for the further development of TW devices as beam 

detectors. 
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