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ABSTRACf 

Permeability and flow in many petroleum, gas, and geothermal reservoirs are dominated by 
fractures. Despite major advances in recent years, mathematical modeling of fluid and heat 
flow in fractured reservoirs remains a difficult problem. Porous medium approximations have 
been shown to be inadequate for many flow processes in fractured systems, while double- or 
multiple-porosity techniques may involve excessive amounts of numerical wqrk or large 
discretization errors. 

We have developed a new method for modeling fluid and heat flow in fractured reservoirs 
which is an extension of a technique developed by Vinsome and Westerveld (1980), for calcu
lating heat exchange between permeable layers and impermeable semi-infinite confining beds 
during thermally enhanced oil recovery. Our method combines a finite-difference description 
of global flow in the fractures with an analytical representation of interporosity flow by means 
of trial functions for fluid pressures and temperatures in the matrix blocks. The trial functions 
contain adjustable parameters which are calculated for each time step in a fully coupled way 
based on matrix block shapes and dimensions, utilizing simple mass and energy conservation 
principles. 

We have incorporated the semi-analytical technique into our general-purpose multiphase simu
lator MULKOM. The method was verified by comparison with exact analytical solutions for 
fluid and heat exchange with individual matrix blocks. Applications were made to geothermal 
well test and production-injection problems with interporosity fluid and heat flow. The calcula
tions show excellent agreement with numerical simulations using the method of "multiple 
interacting continua" (MINC), with no noticeable increase in computing work compared to 
porous medium calculations. 

INTRODUCTION 

Following pioneering work by Barenblatt et al. (1960) and Warren and Root (1963), many 
advances have been made in the mathematical modeling of flow in fractured porous media. In 
the double-porosity approach, global flow in the medium is considered to occur only through 
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the network of interconnected fractures, while rock matrix and fractures may exchange fluid 
and heat locally ("interporosity flow"). The generalization of permitting global flow through 
both fractures and matrix blocks has also been made (Miller and Allman, 1986; Dean and Lo, 
1986). This more general method has been referred to as "dual permeability;" it can deal with 
multiphase flow systems in which the global flow geometry may be rather different for 
different phases because of capillary effects (wetting phase flowing preferentially through the 
blocks, non-wetting phase preferentially through the fractures; Wang and Narasimhan, 1985). 
There is an extensive literature describing numerical and analytical approaches to flow in frac
tured reservoirs. The problems treated include well testing (see the review by Gringarten, 
1982), flow in fractured aquifers (Closmann, 1975; Duguid and Lee, 1977;), waterflooding of 
oil reservoirs (Kazemi et al., 1976; de .Swaan, 1978; Menouar and Knapp, 1980), multicom
ponent flow (Yamamoto et al., 1971; Gilman and Kazemi, 1983; Barker, 1985), non-isothermal 
flow in geothermal reservoirs (Moench, 1978; O'Sullivan and Pruess, 1980; Pruess and 
Narasimhan, 1982, 1985; Clemo, 1985; Miller and Allman, 1986; O'Sullivan, 1987), and 
steamflooding of hydrocarbon reservoirs (Geshelin et al., 1981). 

Many workers have made the approximation of treating the interftow between matrix and frac
tures as quasi-steady, with interporosity flow rate being proportional to the difference between 
average pressures in matrix and fractures. This approximation is usually satisfactory for isoth
ermal single-phase flow. However, for problems involving heat exchange between matrix and 
fractures, and for multiphase flows with strong phase mobility effects, transient flow conditions 
in the blocks can persist for very long time periods (decades). Under these conditions it is 
necessary to represent the flow inside the blocks and at the block-fracture interface in consider
able spatial detail. Closmann (1975) and Duguid and Lee (1977) used analytical techniques 
borrowed from the theory of heat conduction (Carslaw and Jaeger. 1959) to solve for flow with 
constant diffusivity in the blocks in the form of infinite series expansions. Pruess and 
Narasimhan (1982. 1985) developed a "multiple interacting continua" technique ("MINC"; see 
Fig 1). in which transient flow in the blocks and between blocks and fractures is described 
entirely by numerical methods, using appropriate subgridding of the blocks. The MINC 
approach is very flexible, and is applicable to nonisothermal multiphase flows. Because of the 
subgridding in the blocks, it increases the computational work by typically a factor of five in 
comparison to single porous medium models. 

In this paper we develop a new approach for dealing with transient interporosity flow. Con
ceptually, the semi-analytical technique developed here is similar to the MINC-method, but it 
obviates the need for subgridding of matrix blocks. Thereby flow in fractured porous media 
can be simulated with no noticeable increase in computational work compared to simple porous 
medium models; furthermore. space discretization errors in the description of matrix flow are 
avoided. The method is an adaptation of a technique developed by Vinsome and W esterveld 
(1980) for describing heat exchange with impermeable confining beds in the'rmally enhanced 
oil recovery. The basic idea is to describe fluid and heat exchange between matrix blocks and 
fractures by semi-analytical means, using simple trial functions for temperature and pressure 
distributions in the matrix blocks. In a previous paper (Pruess and Wu, 1988) we presented a 
numerical simulation technique that incorporates a semi-analytical treatment of heat exchange 
with impermeable blocks; this is extended here to coupled fluid and heat exchange with matrix 
blocks of finite permeability. 

... 

.. 
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THE METHOD OF VINSOME AND WESTERVELD 

An important aspect of thermal oil recovery schemes is the transfer of heat by conduction from 
the resexvoir to adjacent strata of low permeability. In steam and hot waterfloods this represents 
a heat loss which may have significant effects on process economics. In steam soak operations 
(huff-and-puff) heat lost to cap and base rock during injection can be partially conducted back 
to the resexvoir during the production cycle, providing beneficial effects. The heat exchange 
with impermeable strata can be large and must be included in numerical simulations of thermal 
recovery. At early times the conductive temperature profile has rather steep gradients near the 
surface of the conductive zone, while at late time it extends to large distance from the boun
dary. A reasonably accurate representation of heat conduction by numerical method~ (e.g. finite 
differences) therefore requires many grid blocks and can greatly increase the computational 
work. 

A number of semi-analytical and variational approaches have been developed which permit 
modeling of conductive heat exchange with impermeable strata without requiring these strata to 
be explicitly included in the domain of a finite difference model (Weinstein, 1972, 1974; Chase 
and O'Dell, 1973; Vinsome and Westexveld, 1980). ·of these the method of Vinsome and 
Westexveld is the most attractive due to its elegance and simplicity. Obsexving that the process 
of heat conduction tends to dampen out temperature variations, Vinsome and Westexveld sug
gested that cap- and base-rock temperatures woUld vary smoothly even for strong and rapid 
temperature changes at the boundary of the conductive zone. Arguing that heat conduction per
pendicular to the conductive boundary is more important than parallel to it, they proposed to 
represent the temperature profile in a conductive layer by means of a simple trial function; as 
follows: 

(1) 

Here x is the distance from the boundary, Ti is initial temperature in cap- or base-rock 
(assumed uniform), Tr is the time-varying temperature at cap- or base-rock boundary, p and q 
are time-varying fit-parameters, and d is the penetration depth for heat conduction, defined by 

d = .JlCi 
2 

(2) 

where K = K/pc is the thermal diffusivity, K the thermal conductivity, p the density of the 
medium, and c the specific heat. In connection with a finite-difference simulation of non
isothermal flow, each grid block in the top and bottom layers of the computational grid will 
have an associated temperature profile in the adjacent impermeable rock as given by Eq. (1). 
The coefficients p and q will be different for each grid block; they are determined concurrently 
with the flow simulation from simple physical principles, namely: (1) temperature at the con
ductive boundary obeys the heat conduction equation for the impermeable stratum, and (2) the 
rate of change in total cap- or base-rock heat content is equal to the heat flux at the boundary . 
Vinsome and Westerveld presented test calculations which showed that their method was able 
to accurately represent monotonic as well as non-monotonic temperature profiles. We incor
porated their technique into our MULKOM simulator (Pruess, 1983b, 1988) and verified that it 
gave accurate results (Pruess and Bodvarsson, 1984). 



- 4-

HEAT EXCHANGE WITH BLOCKS OF IMPERMEABLE ROCK 

The method of Vinsome and Westerveld treats heat exchange between a surface with time 
varying temperature and a semi-infinite conductive half-space. It can be easily adapted to the 
problem of heat exchange between impenneable rock matrix blocks and fluids flowing in frac
tures or porous materials around these blocks. The required modifications involve the equation 
of heat conduction and the calculation of total heat content in the blocks, both of which differ 
from those for a semi-infinite medium. 

Following concepts developed in the method of "multiple interacting continua" or "MINC" 
(see Fig. 1) we approximate heat flow in impenneable blocks of rock as being one
dimensional, with temperatures in the blocks depending only on the distance x from the nearest 
block surface (i.e. from the nearest fracture; Pruess and Narasimhan, 1982, 1985). We use the 
concept of "proximity function" (Pruess and Karasaki, 1982) to describe one-dimensional flow 
in blocks of arbitrary shape, as well as flow in stochastic assemblages of matrix blocks which 
are encountered in fractured reservoirs. For matrix blocks of volume V m having a volume V(x) 
within a distance x from the fractures (i.e., from the block surfaces), the proximity function is 
defined as: 

PROX(x) = V(x) 
Ym 

The interface area for flow in the matrix blocks at distance x from the surface is 

A(x) ~ dV = Vm d PROX 
dx dx 

(3) 

(4) 

Considering a heat balance for a volume element dV = A(x) dx, we obtain the following equa
tion for one-dimensional heat conduction in the blocks: 

(5) 

Choosing the same form Eq. (1) for·the temperature profile in the blocks as was used by Yin
some and Westerveld for the semi-infinite solid, the condition that Eq. (5) must be satisfied at 
the surface of the blocks gives 

Tr - Tf a 2n dinA a 
---=--.::.r::..+2q+ -- (p--) 
~t d2 d dx 0 d 

(6) 

Here we have replaced the time derivative by a first-order forward finite difference, as required 
for incorporating the method into our numerical simulator MULKOM. Tf and Tr are tempera
tures in the fracture at the beginning and end of the time step Llt, respectively. a is an abbrevi
ation for Tr - Ti. For a semi-infinite solid the derivative tenn involving A(x) vanishes, so that 
Eq. (6) then reduces to the fonn given by Vinsome and Westerveld. Energy conservation in the 
blocks is expressed as follows. 

d f aT - pcTdV = -K - A(x=O) 
dt v... ax 0 

(7) 

.. 

• 
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With a slight rearrangement of terms the integral on the left hand side becomes 

L/2 

I(t) = J [T(x,t) - Ti] A(x) dx 
A(O) 

(8a) 

The integration extends to L/2, which for fracture spacing L is the largest distance from the 
block surfaces. Inserting Eq. (1), this integral can be written as 

I(t) = ~q + YP + oa (8b) 

The coefficients ~. y and o represent a weighting of the x-dependent terms xn exp( -x/d) (n = 0, 
l, 2) with the function A(x)/A(O) characterizing the matrix block shapes. Even for irregular 
blocks and stochastic assemblages, the proximity function and its derivative A(x) can be writ
ten as polynomials in x (Pruess and Karasaki, 1982), so that the integral in Eq. (8) can be 
evaluated by elementary means. Evaluating the spatial derivative from Eq. (1) the finite 
difference version of Eq. (7) becomes 

mt ( ~ - p) = I(t+dt) - I(t) 
d 

(9) 

Eqs. (6) and (9) (with the definition Eq. 8) represent two linear equations for the two unknown 
time-dependent parameters p and q. Solution of these is trivial once the coefficients ~. y, and 
o in Eq. (8b) have been obtained. The heat flux from the blocks to the fractures is calculated as 
in Vinsome/Westerveld by 

a-r a Q= K- =-K(--p) 
dX O d 

(10) 

Calculation of the time-dependent coefficients p and q from Eqs. (6) and (9), and of heat 
exchange between the permeable and the conductive domains from Eq. (10), has to be done at 
each time step separately for all grid blocks which contain purely conductive material. It is 
possible to apply the conductive exchange calculation only for certain grid blocks, while others 
may be treated as homogeneous porous media, or as fractured media with permeable matrix 
using the MINC method. The temperature T (x = 0, t) at the surface of the conductive domain 
is identified with the temperature in the permeable portion (fractures) of the grid block. In a 
fully implicit scheme this temperature is evaluated at the new time level t + dt. and the heat 
exchange calculation is done in a fully coupled manner as part of the iterative process to solve 
the fluid and heat flow equations in the permeable domain. 

To incorporate the above scheme into a numerical simulator we partition grid block volumes 
into a permeable and a purely conductive part: 

V n = V n,per + V n,cond (11) 

Fluid and heat flow in the permeable portions V n.per of the grid blocks is handled by numerical 
simulation. Heat transferred by conduction from the impermeable portion V n,cond is represented 
by including Eq. (10), properly scaled for the total block surface area in V n• as a source term 
into the heat balance equation for v n,per 
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EVALUATION 

We have implemented the method described in the foregoing section into our general purpose 
simulator MULKOM, and have perfonned several tests and comparisons. For simplicity this 
was done for matrix blocks of cubic shape. For cubes the proximity function can be directly 
obtained from the definition Eq. (3); it is given by 

PROX(x) = 6x - 12x2 + 8x3 
L L2 L3 

(12) 

This leads to a particularly simple form for the expression A(x)/A(O) appearing in the integral 
Eq. (8), namely, 

A(x) = [1 _ 2x]
2 

A(O) L 
(13) 

In order to evaluate the accuracy of the semi-analytical approximation we have studied a prob
lem for which exact analytical solutions are available, namely, heat exchange with a cube of 
initially uniform temperature, which at time t = 0 is subjected to a step change in temperature 
at the surface. The parameters of the problem are given in Table 1. · 

Table 1. Parameters for test problem (heat 
exchange with unit cube). 

side length of cube 
rock density 
specific heat 
heat conductivity 
initial temperature 
surface temperature 
fort> 0 

1m 
2650 kg/m3 

1000 J/kg°C 
2.1 W/m°C 
300°C 

The heat flow rate at the surface of the cube was computed as function of time using the fol
lowing four approaches: (1) numerical evaluation of the exact three-dimensional Fourier series 
solution (Carslaw and Jaeger, 1959); (2) a one-dimensional approximation to heat .flow in a 
cube. for which the exact solution is identical to heat flow in a sphere (Carslaw and Jaeger. 
1959); (3) the semi-analytical solution as developed above. incorporated into the MULKOM 
simulator; and (4) method of multiple interacting continua ("MINC"; Pruess and Narasimhan, 
1985). Results from the different approaches are given in tabular fonn (Tables 2 and 3), 
because they agree so closely as to be almost indistinguishable when plotted as rate versus 
time on log-log paper. 

.. 
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Table 2. Heat flow rates from unit cube. 

Heat Flow Rate (W) 
Time 

semi-
(s) exact 3-D exact 1-D analytical MINC 

1 1.410E6 1.592E6 1.821E6 1.315E6 
10 4.987E5 5.000E5 5.038E5 6.122E5 
t& 1.534E5 1.547E5 1.546E5 1.683E5 
leY 4.429E4 4.547E4 4.514E4 4.913E4 
104 1.020E4 1.093E4 1.063E4 1.207E4 
tOS 6.354E2 4.414E2 9.478E2 8.372E2 
106 4.275E-7 2.610E-10 1.021El 5.676E-2 

Table 3. Cumulative heat flows from unit cube. 

Cumulative Conductive Heat Transfer (MJ) 
Time 

semi-
(s) exact 3-D exact 1-D analytical MINC 

1 3.285 3286 2.645 1.22 
10 10.04 10.05 9.079 8.52 
t& 31.31 31.44 28.40 30.28 
tal 94.73 95.97 86.09 93.52 
104 259.6 269.0 235.7 261.8 
tOS 503.0 515.9 453.9 503.3 
106 530.0 530.0 524.9 529.9 

The "exact 3-D" and the "exact 1-D'' results are virtually identical, with the exception of 
very early and very late times. which have little significance for overall heat transfer. Heat flow 
rates calculated in the semi-analytical approximation agree very well with the exact results. 
being typically 1-2 % larger. Cumulative heat transfer in the semi-analytical approximation is 
underpredicted by typically 10% at most times. but it approaches the correct asymptotic value 
of 5.3 x 108 1 at late times. It may appear inconsistent that heat flow rates in the semi
analytical approximation are slightly on the high side at all times while cumulative heat transfer 
is somewhat low. This effect is caused by the relatively coarse time stepping in the numerical 
simulations. In the semi-analytical approach the heat flow rate is constant during each time 
step; moreover. in our fully implicit scheme it is equal to the heat flow rate at the end of the 
time step. Because heat flow rates are monotonically declining this leads to some underpredic
tion of cumulative heat transfer. The accuracy of the semi-analytical calculation could be 
improved by taking smaller time steps (we used 4 time steps per log-cycle). or by using a 
mid-point weighting in time (Crank-Nicolson equation; Peaceman. 1977) rather than a fully 
implicit treatment. However, in practical problems one is seldom interested in accurate answers 
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over many orders of magnitude in time, so that time steps do not need to grow as fast as in 
our test case, and better time truncation accuracy will be attainable. 

Heat flow rates calculated in the MINC approach, using 50 subcontinua of equal volume, differ 
by as much as 10 - 20% from the exact values. For rates that change with time by many orders 
of magnitude this is not at all a bad approximation. In terms of cumulative heat transfer the 
MINC approximation does extremely well (Table 3). After a brief period with significant space 
discretization effects at very early times, the MINC results agree with the exact solution to 
better than 1%. 

FIVE-SPOT 

We have applied the semi-analytical heat exchange approach to a two-dimensional five-spot 
production/injection problem similar to that previously studied by Pruess (1983a). Problem 
parameters are given in Table 4. 

Table 4. Specifications of five-spot problem. 

Formation 

rock grain density 2650 kg/m3 

specific heat 1000 J/kg°C 
heat conductivity 2.1 W/m°C 
permeable volume fraction 2% 
porosity in permeable domain 50% 
impermeable blocks: cubes 

with side length 50 m, 250m 
effective permeability 6.0 X lO-lSm2 

thickness 305m 
relative permeability: 
Corey curves with 
s~r = o.3o, 5vr = o.o5 
initial temperature 300°C 
initial liquid saturation 0.99 
initial pressure 85.93 bar 

production/injection 

pattern area 1 km2 

distance between producers 
and injectors 707.1 m 
production rate (*) 30 kg/s 
injection rate (*) 30 kg/s 
injection enthalpy 500 kJ/kg 

(*) full-well basis 

The grid used in the numerical simulations represents 1/8 of a five-spot; it has six rows and 

.. 

,. 
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eleven columns for a total of thirty-six volume elements (see Fig. 2). We assume three sets of 
equidistant, plane, parallel fractures at right angles, so that the impenneable matrix blocks are 
cubes. Calculations were done for two different fracture spacings. In addition to using the 
semi-analytical approach we also perfonned simulations with the MINC method, and with a 
unifonn porous medium model (with same total void space, i.e., porosity of 1 %). The MINC 
approach uses five subcontinua, with volume fractions of .02, .08, .20, .35, and .35. Results are 
given in Figure 3 and in Table 5 . 

Fig. 3 shows temperature profiles along the line connecting a producer and an injector after 
36.5 years, corresponding to injection of approximately 12.2 pore volumes. For both fracture 
spacings the agreement between the semi-analytical and the MINC simulations is excellent 
The D = 50 m results are indistinguishable from the porous medium calculation, while at the 
larger fracture spacing of D = 250 m the thennal sweep is less complete and lower tempera
tures are obtained. Predicted total heat transfer from the impenneable rocks to the fluids agrees 
to better than 1% between the semi-analytical and MINC approaches at most times (see Table 
5). The semi-analytical approach required the same amount of computing time as the porous 
medium case, while the MINC calculation was approximately five times slower. 

Tune 
(years) 

1 
2 
5 

10 
15 
20 
25 
30 
35 

Table 5. Cumulative heat transfer from rocks to 
fluids in 1/8 of five-spot 

Cumulative Conductive Heat Transfer (1014 J) 

Fracture Spacing 50 m Fracture Spacing 250 m 

MINC Semi-analytical MINC Semi-analytical 

1.07 1.07 .83 .85 
2.11 2.10 1.77 1.79 
5.22 5.18 4.64 4.67 

10.33 10.29 9.40 9.46 
15.48 15.44 14.10 14.16 
20.43 20.38 18.70 18.79 
25.24 25.19 23.21 23.33 
30.14 30.10 27.60 27.75 
35.05 35.00 31.91 32.07 

PERJ.\IfEABLE MATRIX BLOCKS 

The isothennal flow of single-phase fluid with small and constant compressibility is governed 
by the same diffusion equation as is heat conduction, so the treatment developed above is 
immediately applicable for this case. New issues arise in non-isothennal flow, because pres-

sure diffusivity A. = + and fluid density p depend strongly and in non-linear fashion on 
$-,J,L 

temperature. In complete analogy to Eq. (1), we write the fluid pressure in the matrix blocks 
as 

(14) 
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where D = ~ is the penetration depth for a pressure disturbance at the block surface. This 

will be evaluated at original block temperature, because pressure penetration tends to run ahead 
of temperature penetration in most cases of practical interest. Indeed, even for very tight 
matrix blocks with k = w-ts m2 and a large compressibility of 10-9 Pa-1, with a porosity of 
10% and a viscosity of water at ambient temperature of w-3 Pa.s, pressure diffusivity 

2 
A.= w-s 1!L is an order of magnitude larger than typical thermal diffusivities of rocks. At 

s 
late time fracture temperatures will of course penetrate all the way into the blocks. However, 
at that time D >> L, so that the precise temperature choice for evaluating D becomes imma
terial. From the requirement that the fluid flow analog of Eq. (5) be satisfied at the block sur
face, we obtain the counterpart of Eq. (6) 

Pr - Pc0 ~ 2r ...,InA ~ 
--:--- = -"- - - + 2s + -0 - (r- _v ) 

"-t-ilt n2 D ax 0 D 
(15) 

Here we have abbreviated a= Pr- Pi. The index f on the pressure diffusivity "-!indicates that 
this quantity is to be evaluated at block surface conditions (Tr.Pr). In analogy to Eq. (7), mass 
conservation in the blocks is written as 

J!.j cppdV = - k( ..e.. )r ap A(x = 0) 
dt ID J.l. ax 0 

(16) 

where fluid mobility k(p/J.L)r is also evaluated at the block surface. When pressure and tem
perature changes are large, p in the integral in Eq. (16) could vary in highly non-linear fashion. 
In order to obtain a calculationally efficient method we insist on evaluating the integral analyti
cally, and we therefore restrict p and <1> to a linear dependence, as follows: 

p(T,p) =Pi[ I- eifr- T0 + ~~(P- P0] (17a) 

cp(T,p) = <l>i[l - ER(T- T0 + ~R(P- P0] (17b) 

Inserting this in Eq. (16) and retaining only first-order terms. we obtain the counterpart of Eq. 
(9) for nonisothennal fluid flow as 

_L(...e_)rilt(-2.- r) = ~[J(t + Llt)- J(t)] -E [l(t + Llt)- l(t)] (18) 
<l>i.Pi J.1. D 

Here we have introduced the finite-difference version of the pressure derivative term in Eq. 
(16). I denotes an integral of the form Eq. (8a), with temperature replaced by pressure. 
~ = ~1 + ~Rand e = e1 + ER are total compressibility and expansivity, respectively. 

Equations (15) and (18) are two coupled equations for the parameters r and s of the pressure 
expansion function Eq. (14) in the blocks. Through the integrals I these are coupled to the 
temperature distributions, with coupling strength proportional to expansivity e. In our imple
mentation in the MULKOM simulator we first calculate, at each step of the Newton-Raphson 
iteration process, the temperature parameters p and q from Eqs. (6) and (9). These are then 
used to evaluate the integral I from Eq. (8a), which is substituted into Eq. (18), and subse
quently the pressure parameters rand s are calculated from Eqs. (15) and (18). The fluid flux 
from the blocks to the fractures is obtained by differentiating Eq. (14), as follows: 

F = k(..e..)r ~ = -k(...e..)r(-2.- r) 
ll ax 0 J.l. D 

(19) 

.. 
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The fluid exchange will also give rise to a sensible-heat term in the heat balance equation 
This term was found to be negligibly small for single-phase water. All interporosity flow 
terms are calculated in MULKOM in a fully coupled and implicit manner during the simula
tion. 

TEST CALCULATIONS 

We have evaluated the accuracy of the coupled fluid and heat exchange scheme by considering 
an idealized problem involving a single matrix block surrounded by a finite-volume fracture 
(see Fig. 4). Initially, both domains contain single-phase water at greatly different tempera
tures and pressures. The parameters for this problem as given in Table 6 can be considered 
representative of conditions that may typically be encountered in geothermal injection opera
tions. The process of pressure and temperature equilibration was simulated using the semi
analytical approximation, and results were compared with MINC-calculations employing very 
fine subgridding of the matrix block. 

Table 6. Specifications for single-block fluid and heat exchange. 

MATRIX DATA 

cube size 10 X 10 X 10m3 

permeability w-17 m2 (10 J.Ld) 

porosity S% 

compressibility Io-9Pa-1 

rock grain density 26SOkg/m3 

specific heat 1000 J/kg oc 
heat conductivity 2.1 W/m °C 

FRACTURE DATA 

Case 1 Case2 

volume fraction o.s 0.1 

porosity in fracture domain S% 5% 
I 

INITIAL CONDmONS 

easel Case2 

iL!2 iL!2 
fractures (100 °C, 100 bar) (100 °C, 150 bar) 

matrix (240 °C, 50 bar) (240 °C, 100 bar) 



- 12-

During initial test calculations it became apparent that thermal expansion effects on water den
sity are so large and temperature dependent that a substantial improvement over the relation
ship Eq. (17a) with constant expansivity and compressibility was needed. The thermal expan
sion coefficient of water is large, in the sense that modest temperature changes in a system 
held at constant total fluid density will produce very large pressure effects. Indeed, in a closed 
system the relationship between pressure and temperature changes during equilibration is deter
mined by 

so that 

dP e1 
dT =~ 

(20) 

(21) 

with typical values of 5.0 bar,PC at (T, P) = (100 °C, 100 bar), and increasing with tempera

ture to 7.8 bar,PC at (T,P) = (240 °C, 50 bar). The substantial increase of the ratio ~: with 

temperature produces interesting effects during thennal equilibration of waters of different tem
perature. The pressure drop experienced by the hotter water in the matrix from thennal con
traction outweighs the pressure increase of the colder water in the fractures from thennal 
expansion. As a consequence, mixture pressures tend to equilibrate at rather low values. 
Because of the pronounced temperature dependence of both expansivity and compressibility 
Eq. (17a) is a poor approximation. Initial calculations with the semi-analytical method gave 
rather inaccurate pressure predictions, that were tens of bars too high. This could be remedied 
by using time-dependent expansivity and compressibility in Eq. (17a), evaluated at average 
block temperature, which can be obtained during a simulation from known parameters as fol
lows: 

(22) 

Results for the two single-block problems are shown in Figures 5 and 6. In Case 1 there is 
excellent agreement between semi-analytical and MlNC approximations for both pressures and 
temperatures over many log-cycles in time. Fort> lOSs the pressure drop calculated from the 
MINC method flattens out; associated with this is a faster temperature rise in the MINC calcu
lation. Oeser inspection indicated that these phenomena were caused by the emergence of 
two-phase (steam-water) conditions deep in the matrix block, where temperatures were still 
high (approximately 240 °C), while pressures had declined down to the saturated vapor pres
sure. These phase change and two-phase flow effects are not represented in the semi-analytical 
approach. It should be pointed out that these effects are unlikely to occur in practical cir
cumstances. where the fracture domain would be connected to a larger rese.ryoir volume and 
would in fact be pressurized from injection operations. 

An attempt was made to generate other cases in which no phase transitions would occur. In 
order to diminish the strong pressure decline resulting from thermal equilibration of waters of 
240 °C and 120 °C, respectively, we reduced the relative volume of the fracture domain to 10 
% (Case 2, Table 6). (Note that in realistic cases fractures will typically represent at most a 
few percent of reservoir volume.) This results in an equilibration temperature of 226 °C, much 
closer to the original matrix temperature than in Case 1. Results for this case are shown in 
Figure 6. Semi-analytical and MINC temperatures now agree very well over the entire equili
bration process, while pressure agreement is less close at early times. This is caused by the 
reduction in fracture volume which amplifies the pressure effects from temperature changes in 

.. 
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the blocks. It is significant that there is never any pressure excursion. In both cases equili
brium temperatures and pressures show excellent agreement between semi-analytical and 
MIN"C-results. 

When comparing results from the semi-analytical and MINC calculations, one must keep in 
mind the extreme sensitivity of water pressures to small density changes. From the level of 
pressure agreement shown in Figures 5 and 6 it can be concluded that the interporosity fluid 
and heat flow rates calculated from the semi-analytical approximation agree very closely with 
those predicted from the MINC method. Note also that in actual resexvoir problems the sensi
tivity to small inaccuracies in individual block response will be.much reduced from global flow 
effects. 

ONE-DIMENSIONAL RADIAL FLOW 

The semi-analytical fluid and heat exchange technique was applied to model cold water injec
tion into a fractured-porous formation in one-dimensional radial flow geometry. The problem 
parameters as given in Table 7 are representative of typical geothermal injection problems in 
single-phase liquid reservoirs. Matrix blocks were assumed to be cubes, and a wide range of 
block sizes was studied. Figure 7 shows that pressure buildups calculated with the semi
analytical representation of interporosity flow agree very well with results obtained from the 
MINC method. The buildup for permeable blocks displays varying curvature with no straight
line segments. It had been observed previously that nonisothermal injection into fractured 
media shows very complex behavior that appears to defy simple analysis methods (0 'Sullivan, 
1987, and references therein). 

Temperature profiles after 49.3 days of injection are plotted in Figure 8. It is observed that for 
small matrix block sizes reservoir response approaches the uniform porous medium limit, as 
expected. For very large block sizes the surface-to-volume ratio asymptotes to zero, so that 
reservoir behavior should agrun approach a porous medium limit, but corresponding to only the 
fracture domain being presenL This is confirmed by the results plotted in Figures 8 and 9. 
Note that most of the width of the temperature fronts for the porous medium limits is due to 
numerical dispersion; thermal fronts in a uniform porous medium are known to be sharp, 
except for rather small heat conduction effects (Bodvarsson, 1972). The broad thermal fronts 
observed for injection into fractured media are "real", being caused by the delayed heat transfer 
from the blocks to the fractures. 

Figure 10 shows simulated pressure falloff and temperature buildup in response to shutting in 
the injection well after 11.6 days. Notice that pressure response is insensitive to matrix block 
size while temperature transients depend strongly on block size. This suggests that useful 
information on fracture spacings may be obtainable from temperature monftoring following 
non-isothermal injection . 
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Table 7. Specifications of one-dimensional radial injection problem 

FORMATION DATA 

thickness 100m 

permeability so . w-IS m2 (50 md) 

average fracture porosity 1% 

matrix blocks: cubes 

block volumes (range) 1- 1012 m3 

matrix permeability w-17 m2 (10 J.ld) 

matrix porosity 8% 

pore compressibility Hr9 Pa-1 

rock grain density 2600 kg/m3 

rock specific heat 920 J/kg °C 

formation heat conductivity 2.51 W/m °C 

INITIAL CONDmONS 

temperature 240 oc 
pressure 100 bar 

WELL CONDITIONS 

fully penetrating 

wellbore radius 0.1 m 

injection rate 37.5 kg/s 

injection enthalpy 500 kJ/kg 

DISCUSSION Al'ID CONCLUSIONS 

We have incorporated an analytical interporosity flow model into a numerical simulator to cal
culate fluid and heat exchange between matrix blocks of low permeability and fluids migrating 
past these blocks in fractures. Our method uses simple trial functions to represent flow inside 
the matrix blocks and across matrix block surfaces. This offers a means of simulating fluid 
and heat flow in fractured media with no noticeable increase in computing work as compared 
to porous medium simulations. Detailed analysis of heat flow from a cube suggested that the 
semi-analytical approximation should provide good accuracy. Simulations for a two-phase 
production/injection problem with phase change and for radial flow in nonisothermal injection 
gave almost perfect agreement with the MINC method. 
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The reason why the semi-analytical method performs even better on reservoir problems than 
might have been expected from the test results for an individual matrix block is in the nature 
of the interplay between global and interporosity flow. Namely, the aggregate response of 
many rock blocks in a reservoir flow problem tends to compensate for inaccuracies that may be 
present in the modeling of individual block response. To see how this comes about, suppose 
that because of discretization effects the blocks near the injection well do not deliver heat to 
the fluids as rapidly as they should. (This is what actually happens in the heat exchange prob
lem tabulated in Table 3.) As a consequence fluids will have somewhat lower temperatures 
when at later time they sweep past downstream blocks, and hence they will pick up more heat 

" from those blocks. This compensation of inaccuracies in individual block response from global 
reservoir mechanisms is completely analogous to what was observed in analysis of waterfioods 
in fractured hydrocarbon reservoirs (Wu and Pruess, 1988). It indicates that satisfactory accu
racy in reservoir flow problems should be attainable with rather modest accuracy requirements 
for individual blocks. 

A somewhat different approach for approximating the response of matrix blocks to changing 
boundary conditions at the block surfaces was recently developed by Zimmerman and Bodvars
son (1988). These authors constructed trial functions based on early and late time block 
response, and showed that such functions can provide good engineering accuracy for represent
ing flow rates at matrix block surfaces. The Zimmerman and Bodvarsson trial functions should 
be capable of producing good accuracy for reservoir-type simulation problems with global frac
ture flow, but no such implementation has been reported yet. 

The semi-analytical treaanent of interporosity flow as presented in this paper is applicable to 
multiphase fluid and heat flow problems with impermeable matrix blocks (heat exchange only), 
and for single phase fluid and heat flow problems with permeable matrix blocks (coupled fluid 
and heat exchange). For single phase flow problems involving gas instead of liquid the trial 
function for fluid pressure, Eq. (14), would be written in terms of p2 instead of P. The method 
can also be applied to problems of chemical transport in fractured media, because chemical 
transport in low-permeability blocks of rock can be described in analogy to heat conduction. 
The problem of multiphase fluid and heat exchange with permeable blocks is considerably 
more difficult In addition to trial functions for temperature and pressure this will require an 
approximate representation of saturation distributions in the blocks. Work along these lines is 
in progress. 
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NOl'AENCLATURE 

c heat capacity, J/kg oc 
d penetration depth for heat conduction, m 

D penetration depth for fluid flow, m 

F fluid flux, kg/m2 • s 

I temperature integral, defined in Eq. (8a), °C · m 

J pressure integral, Pa · m 

k penneability, m2 

K heat conductivity, W/m · °C 

L side length of cube, m 

p parameter in temperature expansion, Eq. (1) 

P pressure, Pa or bar (= 105 Pa) 

PROX proximity function, dimensionless 

q parameter in temperature expansion, Eq. (1) 

Q heat flux, W/m2 

r parameter in pressure expansion, Eq. (14) 

s parameter in pressure expansion, Eq. (14) 

t time. s 

T temperature, °C 

V volume, m3 

x distance from block surface, m 

GREEK 

~ 
y geometric coefficients in temperature integral, Eq. (8b) 
0 

a temperature change in fractures, oc 
JC thennal diffusivity, m2/s 

A. pressure diffusivity, m2/s 

p density, kgtm3 

e expansivity, oc-t 
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~ compressibility, Pa-1 

).L viscosity, Pa · s 

a pressure change in fractures, Pa 

" SUBSCRIPTS 

cond conductive ... 
f fracture 

initial 

1 liquid 

m matrix 

n grid block index 

per permeable 

R rock 

·" 
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Figure 1. The concept of multiple interacting continua (MINC) for an idealized fracture sys
tem. 
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Figure 2: Computational grid five-spot production injection problem (I - injector, P - pro
ducer). 
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Figure 3. Temperature profiles in the fractures of a five-spot along a line connecting produc
tion and injection wells after 36.5 years of production and injection. 
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Figure 4. Schematic of single-block problem for evaluating accuracy of semi-analytical fluid 
and heat exchange. 
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