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ABSTRACT 

Classical or mean-field models for equilibrium properties of 

fluids and fl.uid mixtures fail near a critical point. To improve the per­

formance of such models near the critical point of a pure fluid, Fox 

[1] proposed a me~od of transforming the coordinates of a classical 

equation of state to non-classical coordina~s. Recently, we have 

extended the method of Fox to binary liquid mixtures at -·constant 

pressure and to ternary liquid mixtures at constant pressure and tem­

perature [2]. However, our previous extension has used simple scaling 

where transformation to non-classical coordinates is symmetric with 

respect to the critical point. In this work, our extension is applied to 

binary and ternary liquid mixtures in a revised-scaling context that 

allows for the asymmetry found in real systems. Results are shown for 

binary and ternary liquid mixtures. For a few illustrative examples, 

good agreement is obtained between experimental and calculated 

coexistence curves. 

This work was suppotted by the director, Office of Energy Research, Office 
of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department 
of Energy under contract No. DE-AC03-76SF00098. 
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I Introduction 

It is well known that mean-field -models cannot describe the behavior of pure 

fluids or fluid mixtures near a critical point. At a critical point, the correlation 

length diverges and mean-field approximations .break down. 

Over the last few decades, considerable effort has been directed towards a 

correct description of equilibrium thermodynamic properties near a critical ·point. 

These efforts, however, have been conducted mainly for pure fluids and, while 

significant progress has been made, the sophistication reached in the description of 

pure fluids is far ahead of that reached for fluid mixtures [3,10]. 

Thermodynamic properties near a critical point .in. pure fluids or in fluid mix­

tures can be calculated accurately using a scaled equation of state. Unfortunately, 

scaled formulations suffer from narrow ranges of applicability. These ranges. how-. 

ever, can be increased substantially using revised-scaling or extended-scaling. formu:.. 

lations [3]. 

It is desirable to have a single model capable of representing thermodynamic 

properties near and remote from critical conditions. Albright et al. [ 4] and Chen 

and Sengers [5] have developed a formal theory for the .cross-over behavior of pure 

fluids and fluid mix~so That work, however, is not as yet suitable for practical 

applications. For the global representation of pure-ftuid or fluid-mixture properties, 

we need to devise methods for bringing together mean-field formulations, accurate 

everywhere but the critical region, with scaled formulations, useful only in the criti­

cal region. 

To describe the non-classical behavior of a pure fluid near its critical point, 

Fox [1,6] has proposed a mathematical method for transforming a classical equation 

of state (EOS). Recently, we have extended the method of Fox to binary liquid 

mixtures at constant pressure and to ternary liquid mixtures at constant pressure and 

temperature [2]. Until now, however, Fox's ideas have only been used in conjunc­

tion with a simple-scaling formulation reminiscent of perfectly-symmetric lattice gas 

models. 
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In this work, we extend the method of Fox to the calculation of thermodynamic 

properties of asymmetric liquid mixtures. In conttast to our earlier work, we use a 

revised-scaling formulation which allows for the asymmetry found in real systems. 

We begin by recalling briefly some concepts of simple and revised scaling. We then 

extend our previous work to liq~id mixtures in conjunction with revised scaling. In 

the last section, we compare calculated and experimental results for a few illustra­

tive binary and ternary liquid-liquid equilibria (LLE). 

ll Brief Overview of Simple and Revised Scaling 

The modem theory of critical phenomena is based on the assumption of gen­

ei"a:llzed homogeneity of the Helmholtz energy [7]. If ~ denotes the ·Helmholtz 

energy density (AJV), this assumption implies that 

(1) 

for all values of k, where l; and.,., are two ind_ependent (but fixed) exponentS, and 

where a 1 and a2 are two independent thermodynamic variables [8] (or some as yet 

unspecified combination of them). 

If a function is homogeneous, it is always possible to derive a scaling law [3], 

i.e. the dependence of~ on the two variables a 1 and a2 can be reduced to a depen­

dence on only one new· variable by a change of scale. If, for example, we take 

k = a 1- 11~, Equation (1) becomes 

(2) 

Equation (2) says that, after scaling with the factor a 1 1'~, function ~ depends only on 

the ratio a2/a1"'~. FUrther, along a path of constant C = a2/a 1 Tf'~ , function <1> obeys a 

simple power law: 

.1.,\'·' 
:~. ''"" 
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The postulate of generalized homogeneity of the Helmholtz energy was origi­

nally supponed by studies of lattice gas models. The panicle-hole symmetry of 

these models leads to the choice of temperature T and chemical potential p. for the 

. independent field variables a1 and a2 [9]. 

Real fluids, however, don't have the symmetry inherent to lattice gas models. 

Subsequent studies of decorated lattice models (which lack this symmetry) have 

suggested that a1 be a function of both temperature and chemical potential. This 

sugestion has been further substantiated by results of the renormalization group 

theory [3,10]. In the revised scaling of decorated lattice models, a 1 is a linear com­

b~ation of temperature and chemical potential, while a2 is only a function of chemi­

cal potential. 

ill Method of Transformation to Non-Classical Coordinates 

Cassical scaling can be expressed by 

(4) 

The essence of Fox's method is to construct a new Helmholtz energy density cz,', 

with a new scaling form that differs from the classical by the small exponents 9 and 

1/1: 

The desired scaling is obtained [6] when 

1-q, 
fJ = 2+9 

1-a = 2-9 
2+9 

(5) 

(6a) 

(6b) 

.-; 

J 
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where a and f3 are experimental critical exponents. In Fox's original work, a1 and 

a2 are given by 

(7a) 

(7b) 

The scaling fields are chosen to be chemical potential and temperature (rather than 

pressure and temperature), because on a diagram of AJ.L vs. density p, isotherms are 

remarkably antisymmettic with respect to the critical isochore [9]. As in simple 

scaling, in Equations (7) a 1 is only a function of chemical potential and a2 is only a 

function of temperature. 

To allow for asymmetry, using the principle of revised scaling discussed above, 

a2 becomes a function of both temperature and chemical potential. Instead of Equa­

tions (7), we use 

(8a) 

(8b) 

where AT = ATITc and Ail= AJ.LIJ.Lc. Constant c is a system-dependent parameter that 
' 

allows for the combination of the "physical" fields AT and All into the scaling field 

To obtain the rescaled Helmholtz energy density of Equation (5), the scaling 

fields are multiplied by a suitable homogeneous scaling function raised to the tP and 

9 powers, respectively: 

(9a) 

(9b) 

Equations (9) provide the transformation of classical coordinates to non-classical 

coordinates (denoted here with a prime). In Equations (9), g is a damping function 

defined by 
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- [ vt'" ·]1~ 
g( VI) - - W + lf'" • (10) 

where VI is some measure of distance to the critical point, and where A. and· w are 

two system-dependent parameters. This definition, however, is somewhat arbitrary 

and other forms of g can also be used [11]. 

For pure fluids, a suitable measure of distance to the critical point is 

Vlp = 
P - Pc - Pc(J.L - JJ.e) - Sc(T - T J 

Pc 
(11) 

Here J.Lc and sc are, respectively, the entropy and the chemical potential at the critical 

point, relative to the ideal gas at the same temperature and pressure. Geometrically, 
•· 

Vlp represents the normalized distance from the P(J.L.T) surface to the plane tangent to 

this surface at the critical point. Thermodynamic stability requires that this. surface 

be everywhere convex and therefore, VI, is always positive. 

The method of Fox for pure fluids reduces to the following expressions: 

[41TJ' = [41TJ [g(VI,)l9 (12a) 

(12b) 

P' = P + Pc(J.L'- J.L) +. Sc(T'- T) . (12c) 

Recently [2], this method has been applied to isobaric binary mixtures, and to 

isobaric-isothermal ternary mixtures. For the binary case, the constitutive equations 

become 

(13a) 

(13b) 

(13c) 

where subscript me denotes a propeny of mixing evaluated at the (known) critical 

coordinates (consolute point, .x1c and Tc), and where VI• is a normalized binary dis­

tance function given by 

J 
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Vlb = -1.12 + J.12c - .X1c{612 - 61:W - Smc(T - T J 
-JJ2c 

(14) 

In Equation (13b), 6(61v = 612 - 61z<.x1coT) , and 612 is given by 1.11 - 1.12 • For the ter­

nary case, the constitutive equations are 

(15a) 

(15b) 

(15c) 

with 

(16a) 

(16b) 

and where normalized distance "''is given by 

VIr = -JJz + .X1c(612 - 612c) + .X3c{632 - 63Zc) 

-JJlc 
(17) 

Equations (13) and (15) coiTespon~ to simple-scaling. In accordance with the 

principle of revised scaling discussed above, we now propose for binary systems 

(18a) 

(18b) 

(18c) 

Similarly, for ternary systems, we propose · 

(19a) 

(19b) 

(19c) 
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IV Calculation of Thermodynamic Properties of Liquid Mixtures 

Thermodynamic propenies of liquid mixtures can be calculated from an equa­

tion of state or from an excess-Gibbs-energy model; the latter is more useful when 

all components in the ~xture are subcritical. Consistent with our earlier work, we 

use an excess Gibbs energy model. .1 

To represent the molar excess Gibbs energy of mixing, we arbitrarily use the 

NRTL Equation [12]. Expressions for the NRTL model are given in the Appendix. 

Liquid-liquid equilibria (LLE) are calculated from the iso-activity condi~on of 

coexisting phases I and // : 

i = l, ... .N , (20) 

where 'Yi is the . activity coefficient ·of component i and N is the number of com­

ponents in the system. 

A) Binary liquid mixtures at constant pressure 

Equations ( 18) are used to transfomi · classical coordinates to non-classical 

coordinates. Classical chemical potentials are calculated using the ·NRn. model. 

Equations (18) provide a self-consistent set of equations from which non-classical 

coordinates are calculated. This set of equations can either be solved with a direct 

substitution method or with a Newton-Raphson method; however, in view of the 

numerical difficulties that are generally encountered in calculations near a critical 

point, the latter technique is preferred. 

To calculate derivative properties, we use the Gibbs-Duhem equation. For a 

binary mixture at constant pressure, the Gibbs-Duhem equation can be written as 

stll' + diJ.2 + .XtdAtl = 0 . (21) 

Non-classical composition .x1'. for example, can be obtained by numerical 

differentiation: 
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(22) 

Details concerning the numerical algorithms for these calculations are given else­

where [1,2,11]. 

In Fox's method, the critical point remains. invariant upon transformation of 

coordinates. Two classical-model parameters (NRTI.. parameters, in this case) are 

therefore calculated from the conditions of incipient immiscibility at the known (or 

estmated) critical point [2,13]. Three adjustable parameters, w, A. and c, are 

obtained by regression of experimental data. To calculate coexistence curves (i.e. 

coexisting compositions), all available LLE data are used to determine these param-

eters. 

For symmetric systems, c = 0, and the simple-scaling· method of Equations (13) 

is recovered. A$ the magnitude of c increases, so does the asymmetry in the calcu­

lated properties. Figure ( 1) illustrates the effect of parameter c on the shape of the 

calculated coexistence curve of a representative binary system. 

B) Ternary liquid mixtures at constant pressure and temperature 

Equilibrium-propeny calculations for isobaric binary systems, [using Equations 

(18)] and equilibrium-propeny calculations for isothermal-isobaric ternary systems 

[using Equations (19)] are entirely analogous. For ternary systems, the number of 

"' equations that have to be solved is larger. but the procedure to solve them is the 

same as that for binary systems. 
'_, 

Derivative properties are calculated from the Gibbs-Duhem equation which, for 

an isothermal-isobaric ternary system, can be written 

(23) 

As for binary systems, equilibrium compositions · are obtained by numerical 

differentiation: 



- 10-

(24) 

Reference [2] gives examples of coexistence curves calculated using the 

simple-scaling method [Equations (15)]. Figure (2) shows representative results 

using the revised-scaling method [Equations (19)]; depending on its sign, parameter 

c "shifts" the coexistence curve to the left or to the right, allowing good correlation 

of highly asymmetric systems. 

V Results and Discussion 

Figure (3) shows the calculated coexistence curve [Equations (18)] for the sys­

tem nitromethaile/1-nonanol. This system is asymmetric because nonanol molecules 

are about twice as large as nitromethane molecules. Figure (4) shows the calculated 

ternary diagram . [Equations (19)] for the system heptane/tri(9,12-

octadienoate)glycerol/furfural at 70.0 C. For both examples, we have selected mix­

tures that exhibit a high degree of asymmetry; these systems cannot be correlated 

using the simple-scaling method described previously [2]. Parameters for these 

examples are given in the Appendix. 

The results of the revised-scaling method presented. here are in good agreement 

with experiment, and are significantly better than those obtained using the simple­

scaling method. Three parameters (W, il and c) are necessary, in addition to the 

experimental (or estimated) critical coordinates. It is important to point out, how­

ever, that in principle these three parameters should allow simultaneous correlation 

of different thermodynamic properties: provided that we use a classical model capa­

ble of doing so. 

In Figure (3), the dotted curve represents the results of the NRTL model with 

classical coordinates. Two NRTL parameters are obtained from the coordinates of 

the (known) consolute point and from stability criteria. Parameters w and c (il is 

·-' 
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fixed at i.. = 1; see below) are obtained from solubility data. The corresponding 

coexistence curve, in nonclassical coordinates, is given by the solid line. 

To illustrate the improvement of the method proposed here over conventional 

methods for LLE calculation, Figure ( 4) shows (dotted curve) the results of the 

NRTL model, with classical coordinates, and with parameters reponed in the litera­

ture [14]. After recalculating NRTL parameters from the coordinates of the plait 

point, and applying the transformation of coordinates proposed here, the solid curve 

is obtained. 

If the method proposed here is only used to correlate coexistence curves, then 

one of the two parameters in Equation (10) is superfiuous, i.e. paramete~ i.. can be 

kept constant and only w and ~ are adjusted. The examples shown in Figures (3) 

and (4) were calculated with i.. = 1. 

VI Conclusions 

Recently, we extended and applied to liquid mixtures [2] ·a method of transfor-
. . 

mation to nonclassical coordinates originally presented by Fox [1]. Fox's method 

and our previous extension, however, were developed in the context of simple scal­

ing, and therefore their use was limited to relatively symmetric systems. 

In this work we have applied the method of transformation to nonclassical 

coordinat~s in the context of revised scaling. The introduction of an asymmetry 

parameter allows correlation of asymmetriC" as well as symmetric systems. We have 

used the method to calculate coexistence curves for highly asymmetric systems . 

Agreement between experimental and calculated coexistence curves is very good. 

The method presented here requires calculations that are longer and more com­

plicated than those required when using conventional, classical-coordinate methods . 
. 

With readily available computers, this disadvantage is not imponant when compared 

to the improved results obtained through transformation of coordinates as proposed 

l' .•• I. 
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in this work. 
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Appendix: Excess Gibbs Energy Model for a Liquid Mixture 

Several.excess-Gibbs-energy models are available for the calculation of phase 

equilibria for liquid mixtures. The so-called "local-composition" models are widely 

used in practice. In this work, we use the NRTL model [12] because it usually 



- 14-

provides a reasonable representation of liquid-liquid equilibria for nonelectrolytes 

[14]. 

The NRTI.. model for gE, the molar excess Gibbs energy of a liquid mixture 

with N components, is given by 

L 
RT 

(AI) 

where G;i = exp(~a;i-r;i)· In the NRTI.. equation, -r;i and -rii are two binary interaction 

parameters for the ij pair. In our work, a;i = aii = 0.2. 

Activity coefficients rare obtained from the thermodynamic relation 

(A2) 

where nT is the total number of moles and where n; is the number of moles of com-

ponent i .. 

Table 1 gives parameters for the examples shown in Figures (3) and (4). 
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Table 1 - NRTL and other required parameters for fitting 

binary and ternary LLE for some asymmetric systems. 

Components i j 'C;j 'Cjj Tc .Xlc %24: %3c A. w c 

(1) Nitromethane 1 2 1002.3 -150.0 327.92 0.736 0.264 - 1 4.20 -0.155 

[M.W. = 61.0] 

(2) 1-Nonanol 

[M.W. = 144.3] 

(1) Heptane 1 2 -962.5 -720.9 

[M.W. = 100.2] 

(2) Glycerol 

tri(9, 12-octadienoate) 1 3 279.0 694.8 343.15 0.245 0.025 0.730 1 0.04 4.00 

[M.W. = 878.0] 

(3) Furfural 2 3 -1227.1 1474.0 

[M.W. ·= 96.1] 

where M. W. = molecular weight. 

'•../ 
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FIGURE CAPTIONS 

FIGtJBE 1 

Effect of asymmetry parameter c on the shape of the calculated coexistence curve for 
a representative isobaric binary system. When c=O, the simple-scaling (symmetric) . 
method is recovered. 

FIGJJRE 2 

Effect of asymmetry parameter c on the shape of the calculated coexistence curve of 
a representative ternary system at constant temperature and pressure. When c=O, 

. the simple-scaling version of the method is recovered. 

FIGURE 3 

Calculated coexisteJ1Ce curve for the system nitromethane/1-nonanol. The dotted 
curve shows calculations using the NRTL model with two NRTL parameters c~lculated 
from the (known) coordinates of the consolute point. The solid curve represents 
calculations with the same NRTL model but using the transformation of coordinates 
proposed in this work with c = -0.155. 

FIGURE 4 

Calculated ternary diagram for the system heptane/glycerol tri(9, 12-
octadienoate)/furfural at 70 C. The dotted curve shows calculations using the NRTL 
equation with parameters reponed in the literature. The solid line shows calculations 
with the NRTL equation, but with NRTL parameters determined from the known plait­
point coordinates and one tie line, and with transformation of coordinates as 
proposed in this work. · 
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Cl Data of Sazonov and Chemysheva (1976) 
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Cl Data of Chueh and Briggs (1964) 

I 

I 

NRTL with classical coordinates (Ref.15) 
NRTL with non-cfassical coordinates 

....... 
/ ' / " 

I 

0.2 0.4 0.6 0.8 

Mole Fraction Furfural 

FIGURE 4. 

\ 

1.0 



>~· - ... ;._ 

LAWRENCE BERKELEY LABORATORY 
TECHNICAL INFORMATION DEPARTMENT 

1 CYCLOTRON ROAD 
BERKELEY, CALIFORNIA 94720 

;1'· A ,,....._., 


