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HAIRPIN REMOVAL IN VORTEX INTERACTIONS 

Abstract 

An algorithm is presented for removing tightly folded hairpins in an evolving collection 

of vortex filaments. According to the recently developed polymeric models of turbulence, 

such removal provides a model of the effect of the small scales of turbulence. It results 

in a dynamic smoothing of vortex interactions and in a great reduction in the amount of 

labor required to sum them. The self-consistency of the model is exhibited numerically. 



Introduction 

Recent work [16,17,18] has suggested that turbulence in an incompressible flow can 

be approximated by a "polymeric" model, which consists of an ensemble of stretched, 

folded and pinched vortex tubes. This ensemble resembles in several technical aspects an 

ensemble of polymers in a solution, at a temperature proportional to the fluid viscosity. 

This model leads to the conclusion that the effect of small scales on larger scales can be 

represented by a systematic removal of tightly folded vortex hairpins, whose appearance 

is one of the consequences of the model. The implementation of this removal leads to a 

rather difficult problem of pattern recognition. 

The purpose of this paper is to describe a plausible implementation of vortex hairpin 

removal within the context of a three dimensional vortex method. We take the validity of 

the polymeric model for granted, and the problems that are being addressed are how to 

recognize a hairpin in a flow represented by a cloud of vortex segments, and how to remove 

it without unduly perturbing the rest of the segments. The solution of these problems will 

be as simple as we can make it. The resulting algorithm will be applied to the analysis of 

the motion of a turbulent vortex ring. The numerical results support the belief that the 

underlying model and its rather crude implementation provide a useful and self-consistent 

shortcut for the numerical description of turbulence. 

It is worth noting that the vortex algorithm we shall end up with does not include a 

vortex core of fixed radius around each vortex segment. Instead, there will be a smoothing 

around vortex cores that allows for energy loss and vortex merger. The resulting "blobs" 

resemble the "blobs" of polymer theory more than the standard blobs of vortex methods. 

The random walk feature of vortex methods plays a role in the justification of the model, 

but not in its present implementation, which is entirely deterministic. 

We begin by reviewing a vortex method for three dimensional flow and summarizing· 

the polymeric models. The implementation of hairpin removal is then described, and 

numerical results for the ring problem are presented and discussed. Further work is outlined 

in the conclusion. 
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Vortex tii~thods 

Our starting point is the random vortex method, in the general form presented in 

[13,23]. More accurate methods that use higher order cores [5,6] and filaments [2,30] are 

available, but will be seen not to be appropriate for use together with the hairpin removal 

algorithm as we shall present it. 

The Navier-Stokes equations in three space dimensions can be written as 

e = curl ~' div ~ = 0, 

(la) 

(lb,lc) 

where ~ is the velocity, e is the vorticity, v is the differentiation vector' 1l = v . v' t is 

the ti~e and R is the Reynolds number. 

The support of the vorticity {is approximated by a union of N "segments" Ai, i = 
1, ... , N. Each segment is a circular cylinder, of length Si and radius Ui. It is characterized 

by seven numbers: the coordinates d of its base, the coordinates cl of its top, (si = 
lcl- dl), and Ui (figure 1). Each segment is assumed to be parallel to the vorticity {that 

it carries, and is assigned a circulation ICi equal to the flux of e acrOSS its cross-section. 

Note that the transformation d +-+ ,d, ICi -+ -ICi leaves the velocity field produced by the 

vorticity in Ai unchanged. The radius u is the "cut-off" length. It is assumed that in 

an appropriate weak sense e "' E e., e. = €(Ai)· One can imagine the vorticity to be . - _, _, -
uniformly distributed on A.i. 

The velocity field due to € is . -
N 1""" a·XS· 

~(r) = 471" !-ICi-;p(a)', 
l=l 

where _s~ = r~- r~ a· = r- r~ r~ = l(r~ + r~) = center of A· a = 1-a~l, and • _, _,, _, -. _,, _, 2-J _, " • 

t/>(a) =a~ when ai > Ui, t/>(a) = ulai when ai < Ui. The rule t/>(a) =a~ corresponds to 

the usual Biot-Savart interaction and the modification for a < u is the smoothing needed 

for convergence [2,13], see also below. 

The solution of the Navier-Stokes equations can be approximated by the flow described 

by the stochastic differential equations 

(2a) 
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d_{(r) = [(Y. · V)f]dt (2b) 

where the quantity in square brackets is evaluated at r and w(t) is three dimensional 

Brownian motion (see e.g. [11,18,22,34,35,36]). We solve equations (2) at the top .d and 

the bottom d of each segment. Vortex stretching is accounted for by the changes in .d - d 
and no further account has to be taken of equation (2b). When Si = ld- cll exceeds a 

predetermined maximum length h, accuracy may be lost and the segment is broken into 

two halves of equal lengths and cross-sections. The new coordinates are obtained by linear 

interpolation. The stochastic differential equation is solved by a fractional step method, 

in which the non-random part d~ = y_dt is solved by a fourth order Runge-Kutta method 

with time step control 

~t · V ::5 r, 

where ~tis thf~ time step, V = mf" U::f' IY.(r~·6)1, and r is a predetermined tolerance. One 

can readily see that in the absence of random walk and ro~nd-off error, this algorithm will 

preserve the connectivity of a closed vortex tube made up of segments attached end-to-end. 

Numerical experiment suggests the need for the inequality T ::5 h, and we found the choice 

r = h to be satisfactory. We shaH never actually apply the random part of equation (2a) 

in this paper; it is written out for reasons that will appear in the next section. 

In principle, we shall be working in a three dimensional periodic box of period 1. 

Periodicity requires that each vortex segment interact with each other segment and with 

each one of an infinite array of images of each other vortex. The program is written so that 

only the largest one of the image interactions is taken into account. In the calculations 

below all the segments are far enough from the edges of the box so that the interactions 

are identical to the interactions in a non-periodic unbounded domain. This programming 

short-cut is mentioned only becamse the program we shall use is available to any interested 

reader. 

When the method has been used so far, the smoothing parameter u has been kept 

constant in each segment, and the same for all segments, see [11,13]. A smoothing param

eter is needed for conve.rgence [2,5,11,19]. The use of a constant u produces an apparent 

paradox: it is well known ([45]; see also the analysis in [16,18]) that the stretching of a vor

tex tube requires work that is used to spin up the fluid around the reduced cross-section. 
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A· fixed o seems to deny this effect. The paradox is only apparent; one should remember 

that the segments we are using are only computational elements, not physical objects in 

their own right. A physical vortex will be made up of a cloud of segments; as the cloud 

stretches its cross-section decreases and the. spin-up appears. Clearly, a correct handling 

of this. spin-up requires a reasonable numerical resolution, and inasmuch as our goal will 

be to find a collective representation for coherent portions of a vortex cloud, we may wish 

to find a more effective, time dependent, core. The other shortcoming of the method we 

have just described is that in three-space dimensions, at high or infinite Reynolds number 

R, the Lp norms of the vorticity increase (possibly to infinity in a finite time [14]), and the 

number of segments required to represent { also increases (possibly to infinity in a finite 

time, see below). We wish to use a theoretical understanding of the stretching process to 

overcome the need for very large numbers of segments. 

One should perhaps restate here a fact that should go without saying: when one 

approximates a How by a collection of cylindrical vortex segments, one_ makes no represen

tation that physical vortices are "really" cylind~:ical. In fact, vortex .approximations have 

first been used to approximate vortex sheets [19,20,31]. 

Hairpins and their removal 

We now. propose to modify the vortex algorithm just described by (a) allowing the 

vortex cores to change as the vortex segments stretch, in such a way that volume is con

served and (b) removing vortex "hairpins" as they form. The result of these modifications 

will be to create a vortex smoothing through a dynamical core. 

Step (a) is straightforward: one can assign to each segment an initial cross-section 

oo (in all the programs below, o0 is the same for all segments). It is a matter of easy 

bookkeeping to decrease o as the vortices stretch; when a vortex segment is split into two 

halves because its length exceeds the maximum length h, each half inherits the cross-section 

of its parent. Step (a) is a useful change in.the program only when done in conjunction 

with step (b), the hairpin removal. 

Hairpin removal can be explained and justified on several ground~?, presented in the 

order of increasing complexity. 
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I. A hairpin is a tight U-shaped vortex structure (see figure 2). Such hairpins can be 

seen in numerical calculations (see below). The influence of the vorticity in that hairpin 

on velocity far away is small, but it reduces the time step needed for accuracy. One can 

then simply decide to remove it. Such a removal resembles other types of surgery done on 

vortex calc~lations, for example [21]. Vortex calculations tend to produce configurations 

with a lot of details that consume computer time and conceivably add little to the global 

picture, and one may wish to remove them. The danger, of course, is that their cumulative 

effect is not negligible. 

II. Simplified models [15,16] and a theory of the inertial range [17 ,18] show that 

hairpins must form in a collection of vortices of circular cross-section as they are stretched. 

The reason is that the energy associated with a straight piece of vortex increases as its 

radius is decreased, and thus if vortices are st~etched while energy is conserved, vortex 

, lines must fold to allow for cancellations between the velocity folds associated with them. 

The Lamb energy integral [32], 

T = ! I lul 2dx = _.!.._I dx I dx' e(~) . e(~') 
2 - - 81r - - 1~ - ~,I 

shows that such cancellation can indeed occur, since when.{(~)·.{(~') < 0 the interaction 

detracts from the total energy. Hairpins thus form, and they form more rapidly if u 

is allowed to decrease (for then the energy associated with the vortices increases faster 

and has to be compensated by folding earlier). The theory and the numerical results 

in [14,15,18] show that the hairpins concentrate on an ever smaller set (in the limit of 

vanishing viscosity, a set of measure zero), and thus it is most likely that the cumulative 

effect of their removal is not large if this removal occurs when they are tight enough. 

Furthermore, one cannot rely on the numerical schemes to fold the segment accurately, 

since accuracy is lost on small enough scales for any finite T (the parameter that determines 

the time step). Since one knows that the folding must occur, one can compel neighboring 

segments to fold tightly as soon as they begin to fold. As is well known from numerical 

experiment (see e.g. [9,14]), if such folding is not enforced, one soon produces spurious 

chaotic motion on small scales and an unphysical energy increase. The removal of hairpins 

thus resembles dealiasing in spectral methods [26]. 
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' Note that since hairpins must form as a consequence of energy conservation, their 

removal corresponds t~ the imposition of energy conservation on small scales by smoothing. 

This construction is analogous to the way "blobs" impose self-avoidance at small distances 

in polymer theory [24,~5]. 

Up to this point, the analysis is made for the segments as computational elements, 

and no claim is made about the effect of hairpin removal on the physical flow. Presumably 

this effect must be discovered in each case by actual computation. 

III. Abandon now the disclaimer of the preceding paragraph and consider whether 

hairpin removal cannot be considered as a subgrid model of turbulence. (The possibility 

that a smoothing of vortex lines could provide such a model was considered earlier in 

[4,14].) On moderate scales, not so large that outside stirring interferes, not so small 

that the core distortion that results from .the close proximity of counterrotating vortices 

can interfere, one can view a turbulent flow as an ensemble of vortex tubes, in thermal 

equilibrium with a potential background, at a temperature proportional to the viscosity 

[9,10,17,18]. The random walk term was left in equations (2) to display the analogy with 

the equations of motion of a polymer in a solvent at a temperature T ,_ R- 1• It is 

conjectured [17,18] that such an ensemble has a Kolmogorov-like spectrum, that the tubes 

behave on moderate scales like self-avoiding walks, and have hairpins on smaller scales that 

act as energy sinks. Hairpin cancellation is aided by a complex hydrodynamical process 

that involves a departure from the tube-like structure [3,29]. Hairpin removal thus models 

the effect of the small scales on the large scales. 

This rationale for the removal should be viewed with some caution. The turbulence 

model it is based on is not at present well analyzed .. Furthermore, it is not obvious that 

a turbulence model necessarily leads to a good numerical procedure. For example, in two 

space dimensions, one can see that isolated vortex patches tend to become circular [10,12], 

and if one. picks their cores so that the spectrum is O(k-3 ), as in [11], one obtains a vortex 

method that contains a turbulence model. However, other, physically less well motivated, 

cores [2,6] may well provide a better numerical approximation. Nevertheless, this link with 

turbulence theory will lead to interesting speculations. 

Vortex tub¥ models of the dissipation range of turbulence had been proposed in 
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[40,44]. A tube model related to ours can be found in [8]. 

Implementation of hairpin removal 

Suppose we have a collection of N vortex segments A;,, i = 1, ... , N as in figure 1. The 

length of A;, iss;,, its radius is Cl;, (Cl;, is varying in time), and its cross-section is c;, = s;. 

We wish to identify and remove hairpins on vortex lines as well as incipient hairpins, i.e., 

structures that would have been hairpins if numerical error were absent. This is a difficult 

problem in pattern recognition, to which the construction below is a plausible but ad-hoc 

solution. Its possible failings are not necessarily a reflection of the incorrectness of. the 

underlying theory. 

Consider two segments Ai,Aj, with bases centered at d,r.}, tops centered at d,r.}, 
lengths Si, Sf, cross-section c;, = Cl[, Cj = qj, and centers !~j = l (d,j + d,j) (figure 3). 

The distance between the centers is rii = lr.i- r.jl. We define dij, the distance between 

the two segments, to be dij = rii sin fJ, where the angle is measured from the segment 

with the larger cross-section, say A, (this choice is dictated by what follows). We pick 

a maximum distance p and consider two segments. as being possibly on the same hairpin 

only if dii ~ p. Furthermore, they can be on a hairpin only if a folding has started, which 

will be assumed to have occurred if the inner product of the vorticity in the two segments 

is negative, ltiltj!!i · !!j < 0, where !!i = d- d, etc. The "circulations" Ki, ""i must appear 

in this inner product because of the ambiguity in the representation of the vorticity noted 

above. 

Let qii be the distance between the centers of the segments projected on the direction 

of the "fatter" segment A,, qii = dij cos fJ. If l(si + Sj) ~ qii the removal algorithm 

below will have no consequences, and if l(si+si),..., qii the removal algorithm will produce 

" very small segments. We require that possible elements of the same hairpin satisfy the 

condition qii < f3(s;, + Sj), where the parameter f3 satisfies f3 < 0.5. The calculation is 

not sensitive to the value of {3, and we generally picked f3 = 0.4. This constraint says that 

A;,, Aj are not far from each other when their distance is measured in their own direction. 

Assume that all segments that have undergone little stretching have a location and 

length that are well approximated by the vortex method; stretching is of course equivalent 
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to decr~ase in cross-section. H little stretching has occurred there is presumably little 

folding. Assume that initially all the cross-sections are equal, and their common value is 

c0 • Candidates for hairpins to be removed are only those segments for which clco ~ o:, 

i.e., thoses~gments that have been stretched at least by a factor 11o:. Given a segment 

A; with c; I c0 < o:, we consider those of its neighbors A;, whose distance d;,; is less than 

p, which satisfy the conditions {J(s;, + s;) > q;,; and K;,~t;§..;, • §..; < 0. We then consider 

only the segments that are "fatter" than A;, and find among the segments that satisfy all 

these conditions the on A;, that is closest to A; in the sense that d;,; is smallest. Of course 

there may be no segment that satisfies all these conditions and then no removal involving 

A;. A;, and A; are now assumed to be on the same hairpin and be candidates for pa~tial 

cancellation when the hairpin is removed. We assume further that the location of the 

thinner, more stretched segment is less accurately known than that of the fatter segment, 

and thus one is freer to rotate the thinner segment to achieve cancellation. We thus rotate 

A; (by construction the thinner of A;, and A;) through its center until it is parallel to A;, 

(figure 3), with the new direction of A;, preserving the negative sign of the inner product 

of A;, and A;. We then bring A;, <and A; close to each by moving each towards the other 

along their common normal, each segment moving a distance inversely proportional to its 

"weight" s!~tl, i.e., A;, moves a distance d;,;s;l~e;l/(s;,l~t;,l + s;!~t;l) and A; moves a distance 

d;,;s;,l~t;,lf(s;,l~t;,l + s;l~t;l). The result is two segments that partially overlap. The non

overlapping pieces are made into new segments, and the oveilapping pieces are made into 

one new segment, with cross section equal to the sum of the overlapping cross-sections, 

and circulation equal to the sum of the circulations of the overlappings pieces. If the j~e;,j, 

i = 1, ... , N, N = number of segments, are all equal, the segment that results from the 

overlap will have zero circulation and is thus removable. In general, two segments will give 

birth to two segments through this process; some of the new segments may be very short. 

For the possible configurations of the cancelling segments, see figure 4. 

The over-all process runs as follows: one starts with the segment A; that has the 

smallest c; I co. One looks for a neighbor to pair it with; if there is one, the pairing and 

removal are done. H there is no suitable neighbor, one goes on to the next segment with 

a larger or equal c; I co. A piece of a segment may be paired more than once, i.e., it is 
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possible for a segment to be paired to another one, and then for one of the surviving pieces 

to be paired once again. The process stops when one reaches a segment A; with c; /co > a. 

A running record of the last value of c;Jc0 reduces the amount of searching needed. Any 

segment for which si~el < Smin is removed (so that in particular segments with 1e = 0 are 

removed). We picked Smin = 0.001; this value is so conservative that it has no impact on 

the outcome of the calculation, and could safely be raised. 

The remaining numerical parameters are: (3, a, p. (3 will be left at the fixed value 

(3 = 0.4. Clearly, the larger p or a the more cancellation will occur, and when we shall 

be testing the effect of the removal we shall be able to vary either. We conjecture that 

the important parameter is a product of the form pg a, where g > 0 depends on the 

vorticity dimension D [14,15], but we shall fix pat the plausible value p = h (the maximum 

segment length) and present numerical results obtained with different values of a; a thus 

determines the onset of hairpin removal. 

The motion of vortex rings 

We shall apply the algorithm just described (a vortex method with hairpin removal) 

to the motion of a circular vortex ring with unit circulation. The ring is characterized 

by the radius A of its axis and the radius q of its cross-section (figure 5). There are no 

solid boundaries in this problem, and thus the random walk part of equations (2) can be 

omitted. The physical vortex ring is approximated initially by N filaments made up of 

segments attached end-to-end; the circulation is divided evenly among them. One of these 

filaments coincides with the axis of the cylinder, and (N- 1) are distributed around it on 

a circle of radius q. A detailed application of a vortex method to this problem, together 

with stability results and a parameter study, can be found in [30]; related problems have 

been considered in [4,14]. 

The velocity of the ring is given by [32] 

U = (log(BAjq)- C)/41rA, 

where the constant C depends on the distribution of the vorticity in the ring, and is thus 

dependent on the number of filaments. Furthermore, the radius q is poorly defined in the 
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numerical approximation. For a constant distribution of vorticity in the ring C = 0.25; 

we shall be presenting calculations for which A = .18 and q = .05. The value. of U that 

corresponds to these parameter values in the formula above is U = 1.375, but an error 

of about 10% can be expected as a result of the uncertainty in the way the radius q is 

imposed and of the non-constancy of the vorticity distribution in the numerical model. 

The stability of this type of vortex ring has been analyzed exhaustively [39,46]. In 

figure 6 we present a calculation in which the ring is represented by 3 filaments, with 

a fixed segment radius u = 0.1, r, the parameter that determines the time step in the 

Runge-Kutta integration, equal to 0.05, and h = maximum segment length = r. More 

extensive calculations along these lines can be found in [30]. The only perturbations 

that exist in the flow are due to round-off errors; a relatively large value of u has been 

picked to delay the onset of instability. The calculation starts with N = 72 segments and 

proceeds until N = 600. The most unstable mode has 12 nodes, corresponding faithfully 

to the most unstable wave number. A careful comparison between numerical results and 

stability theory is also available in [30]. Note that hairpins form but there is little folding 

in the direction of the axis; the perturbation due to round-off is not sufficient to break the 

radial symmetry of the problem before N becomes relatively large. The introduction of a 

variable u and the removal of the hairpins have a minimal effect on this calculation. The 

conclusion is that a vortex method is able to display the initial instability but becomes 

expensive rapidly; hairpin removal does not affect this conclusion to a significant extent; 

some form of turbulence is necessary to exhibit its power. 

There is a substantial experimental literature on turbulent vortex rings [37,38]. The 

statistically steady vortex rings that have been observed consist of a rapidly rotating 

coherent narrow core that exchanges vorticity with a wider region with weak vorticity, 

into which outside fluid is entrained and is then expelled downstream. Such rings are 

created by expelling a fluid slug from an orifice, and their modelling is beyond the scope 

of the present paper. The dynamics of a ring depend on the initial conditions, and we 

know of no experiment that corresponds to initial conditions that consist of a coherent 

ring surrounded by potential flow. The following experimental observations will be useful 

to the interpretation of the results below: (a) vortex rings slow down, (b) as mentioned 
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above, stable vortex rings consist of a coherent core surrounded by a vortical cloud, (c) 

the quantity dA/ dx is of order 10-2 , where A is the radius of the axis of the ring and x is 

the distance travelled by the ring, (d) solitary waves stabilize the ring, (e) the behavior of 

the ring is a sensitive function of initial conditions, of the ambient flow, and of a hard to 

quantify degree of organization of the ring. 

In order to obtain a ring that can be viewed as "turbulent" we perturb the initial 

data by giving one point on the center filament a perturbation of amplitude 10-2 • This 

results in solitary waves moving on the ring ([14,33]) and leads to a break in the symmetry 

of the ring that allows axial folding to occur. Presumably, this folding and the resulting 

formation of removable hairpins is a form of stabilization. The ring thickens, and this 

thickening may be viewed as a stage in the formation of a surrounding vortical cloud. The 

ring eventually collapses; this collapse follows an apparent singularity formation (see the 

next section for details). Such collapse is not seen in the experimental data quoted, which 

of course relate to different initial and boundary conditions, but it does appear in casual 

observations of smoke rings subject to disturbances from the ambient fluid. The numerical 

observations are described in detail in the next section. Note that structures that persist 

yet entrain and expel fluid have been observed in other vortex calculations [41]. 

Numerical results 

Our major numerical results are summarized in figures 7 and 9, which show that 

with vortex hairpin removal one obtains a self-consistent approximation that keeps the 

computational effort within acceptable bounds. 

The calculations are started with three vortex filaments, one of which is perturbed. 

q = 0.05 initially for all segments, N = number of segments = 72. The other numerical 

parameters are h = r = p = 0.05; we have carefully checked that these choices provide 

an adequate resolution and that further refinement does not change the conclusions. The 

remaining parameter is a; 1/ a is the amount of stretching a segment has to undergo 

before it becomes a candidate for inclusion in a removable piece of hairpin. The calculation 

was stopped whenever the number of segments exceeded 800; if a ~ 0.025, this limit 

was exceeded before any hairpin removal had occurred; thus a = 0.025 and a = 0 are 
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indistinguishable. 

In figure 7 we plot the number N of vortex segments a.S a function of time for ~ = 0.15, 

a = 0.05, and a $ 0.025. Clearly the number of segments increases as a decreases. For 

a $ 0.025 it quickly becomes intolerable. Since N is roughly proportional to the L1 

norm of the vorticity, this graph suggests that the solution of Euler's equation for this 

ring problem blows up around t = .18 - .19. Clearly, vortex hairpin removal reduces the 

amount of labor in the calculation. In figure 8 we plot the time step ilt as a function of 

t (as restricted by ilt · U $ r) for a = 0.05 and a $ 0.025. Clearly, ilt decreases as a 

decreases, thus further increasing the amount of labor required to find the evolution of the 

ring as a function of t. With a $ 0.025 the calculation cannot be continued with N $ 800 

for t > 0.155. The removal of hairpins thus accelerates the calculation by a huge factor. 

The remaining question is whether the numerical results are trustworthy. At present the 

answer to this question cannot be absolute. Some indications can be found from the study 

of the ring. 

In figure 9 we plot the velocity of the ring U as a function oft. U is calculated as 

follows: the axis of the ring is set initially in a plane parallel to the (y, z) plane, and the 

x coordinate x~ of the center of the ring after n steps is calculated by the formula 

where xr is the x-coordinate of the center of the i-th segment after n steps and the weight 

Wi is Wi = IKilsi. At the time t that corresponds to n steps, the velocity is calculated as 

U(t) = (x~- x~-l )/ ilt. 

After the first few steps the velocity U is highly oscillatory, and oscillates more for 

smaller values of a. We ascribe this oscillation to the effect of the hairpins, which give 

large local curvatures and thus rotate rapidly. To obtain a readily intelligible graph, after 

the first five steps we replace the local U(t) by. the average of the last five values of U. 

Since il.t is not fixed and not independent of a, this averaging has a slight distorting effect 

on the comparisons below. 

In figure 9 we plot the functions U(t) so obtained for several values of a. For a> 0.15 

the graph begins to flatten substantially, and thus values with a > 0.15 are too large. 
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For a < 0.05 the graphs coincide to the extent that they can be traced with N ~ 800. 

The slight discrepancy between a= 0.05 and a~ 0.025 during the short time where the 

latter is both computable and different from the former can be ascribed to the effect of the 

time averaging. The difference between a = 0.15 and a = 0.05 is instructive: there is a 

non-negligible added oscillation when a = 0.05 between t = 0.1 and t = 0.2. It is tempting 

to ascribe this difference to the presence of a large hairpin that is removed in one case and 

not the other. Already in [14] we saw a large fluctuation in various averaged quantities 

that coincided with the appearance of a large hairpin (but a cause to effect relationship 

has not been established). 

The most interesting feature of figure 9 is the "crisis" around t = .2, during which 

the velocity drops nearly to zero. The timing of this "crisis" depends on the initial per

turbation. A qualitatively similar crisis appears in the graph of the kinetic energy as a 

function of time; this graph is not reproduced because its accuracy is very suspect: as 

already discussed in [14], it is very difficult to evaluate the kinetic energy accurately for 

a highly non-uniform vortical flow. The onset of this "crisis" follows the estimated time 

of singularity formation, and it is tempting to believe that the two are related. A similar 

observation has been made recently in a difference calculation [7], and qualitatively similar 

observations have been made in the problem of sheet motion in the plane [31], where a 

singularity also appears. 

The radius A of the vortex ring changes in time; a numerical approximation to it is 

with ~i = (xf\ yf\ zi) and Wi = l~~:ilsi as before. A increases in time, with computed 

value of dA/ dx, x = distance travelled, of order """ 0.01-0.02, comparable to the experimen

tal values in the nearly steady vortex experiments. The experimental and the numerical 

conditions are quite dissimilar, so it is unclear what significance should be attached to this 

observation. 

In figure 10 we display a visualization of the flow at various times. Hairpins appear, 

the flow eventually becomes disorganized. The only surprise in these pictures is that 

casual observation leads to misleading conclusions about the flow. At time t = 0.16 the 
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flow appears quite disorganized, yet U, the velocity of the ring, is still at its "organized" 

value before the crisis. Better visualization techniques remain to be discovered (see the 

discussion in [42]). 

The program as we have written it is logic-intensive, since the search for possible hair

pins has not been optimized. Bin-partition schemes, such as the ones used in conjunction 

with fast vortex summations [1,27], would improve the program's efficiency. A typical run 

with a= 0.1 takes about 3 hours on a Sun 2 work station or 40 minutes on a Cray 1; most 

of the time is spent in locating hairpins. 

Conclusions and _speculations 

The main conclusion from the calculation is that vortex hairpin removal is a reasonable 

way of simplifying vortex calculations. The next steps should be to apply it to more 

complicated problems and to marry it with fast summation algorithms, both in order to 

speed the vortex summation part and to simplify the search for hairpins. 

There is no reason why vortex hairpins cannot be recognized and detected in a calcula

tion based on finite differences or on a spectral representation. The problem of identifying 

hairpins is probably harder in these other contexts but not necessarily insurmountable. 

If one interprets the removal of hairpins as the mechanism of energy loss in a turbulent 

medium, then the calculations above lead to interesting speculations. Hairpin removal cre

ates regions of high vorticity that are not connected (i.e., vortex tubes that are alternately 

very thin and quite fat), as can be seen in figure 9. The pictures obtained by spectral 

methods (see e.g. [43,47]) are quite similar, and suggest that an unrecognized process of 

hairpin cancellation occurs there too. 

In the spectral calculation in [47] it was observed that much of the energy dissipation 

occurs elsewhere than where the absolute value of the vorticity is large. Assuming that 

this observation is not due to numerical dissipation, one can conjecture that hairpin can

cellations are still going on in regions where the vorticity amplitude has already decayed, 

and in fact that this is how the disconnected high 1£.1 regions are formed. (The surprising 

conclusions of [47].were pointed out to me by R. Kraichnan.) 

More generally, the calculations above provide supporting evidence for the belief that 
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hairpins play a major role in the mechanics of turbulence (as was suggested in [15,16,30], 

and as is already quite firmly known to be the case near walls [28]), and also provide 

supporting evidence for the usefulness of polymeric models. 

Note: the program used above is available from the author. 
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List of Figure Captions 

Figure 1: A vortex segment. 

Figure 2: Hairpins. 

Figure 3: Relative position of two segments that may be on 
the same hairpin. 

Figure 4: Cancelling vorticity in hairpins. 

Figure 5: A vortex ring. 

Figure 6: Instability of a vortex ring: 

6a: initial conditions, 

6b: t .15 

6c: t • 30 

6d: t . 40 

Figure 7: Number of segments N as a function of t. 

Figure 8: Time step !J.t as a function of t. 

Figure 9: Ring velocity U as a func t·ion of t for the perturbed ring. 

Figure 10: Vortex configuration for the perturbed ring (a= 0.075): 

lOa: t'= 0.11 

lOb: t 0.16 

lOc: t 0.21 

lOd: t 0.40 
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