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ABSTRACT 

The galvanomagnetic properties of a magnetic-breakdown linked­

orbit network with two-dimensional topology are calculated for the case 

of a stochastic distribution of defects in the network. The results show 

excellent agreement with experiments on magnesium and· illustrate the 

transition between a smoothly varying magnetoresistivity (semiclassical 

regime) and an oscillatory magnetoresistivity (quantum regime). 
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Dephasing Effects in a Two-Dimensional Magnetic-Breakdown­
Linked Network: Magnesium 

I. Introduction 

J. K. Freericks 

and 

L. M. Falicov 

Department of Physics, 
University of California, 

Berkeley, CA 94720, 

and 

Materials and Chemical Sciences Division, 
Lawrence Berkeley Laboratory, 

Berkeley, CA 94720. 

We examine the dephasing effect of dislocations (and other defects) on electron 

transport in metals which exhibit magnetic breakdown (MB). The phenomenon of MB 

was introduced in 1961 by Cohen and Falicov1 to explain the "giant orbit" observed in 

de Haas-van Alphen experiments in magnesium. Since then, the concept of MB has 

been applied to many experimental situations involving the dynamics of electrons in 

magnetic fields (for a review see Ref. 2). The effect of MB is to alter the topology (or 

character) of electron (or hole) orbits by a tunneling mechanism that, probabilistically, 

couples orbits together. Its importance lies in the extremely sensitive dependence of 

these coupling probabilities to magnetic field strength and orientation. 

The manner in which MB manifests itself in a given sample is strongly correlated 
I . 

with the density of dislocations3. The presence of dislocations breaks the periodicity 

of the lattice and produces small changes in the areas of some Closed orbits. This 

results in a reduction of the quantum coherence of the electronic wave functions. For 

high dislocation densities the coherence is completely lost and the transverse 
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magnetoresistivity is a smoothly v3.11ing function of the magnetic field strength that, at 

high fields, either saturates or increases quadratically with the field. For low disloca­

tion densities the coherence of the electronic wave functions over small closed orbits 

modulates the coupling probabilities and lead~ to quantum oscillations in the magne­

toresistance (a giant Shubnikov-de Haas effect), with phases of the oscillations propor­

tional to the magnetic flux enclosed by the phase-coherent closed orbits of the net­

work. This transition from semiclassical to quantum behavior suggests the possibility 

of using measurements of the magnetoresistance to determine the stochastic distribu­

tion of dislocations and observe their effect on the coherence of the electronic wave 

functions. In this contribution we study the dephasing effect of dislocations in a two­

dimensional hexagonal network and compare our theory with experimental results2 for 

Mg. Similar studies h;lVe been made for the linear chain4 and applied to observations5 

in NbSe3• 

Sowa and Falicov4 solved the one-dimensional network model exactly (in the 

infinite-relaxatjon-time limit) by iterating 2 x 2 transfer matrices. Similar transfer­

matrix techniques, applied to the two-dimensional network, are cumbersome to handle 

and fail to yield closed-:form solutions. We have developed here a rapidly convergent 

approximation scheme which models the effects of dislocations and allows for numeri­

cal solutions and direct comparison with experiment. 

The semiclassical electronic orbits in a magnetic field are defined by the intersec­

tion of surfaces of constant energy (the Fermi surface) with planes of constant wave­

vector component in the direction parallel to the field. 6 At low temperatures, only 

electrons at the Fermi surface can contribute to the conductivity. Two components of 

the Fermi surface are of interest in the divalent hexagonal-close-packed metals: (1) the 

multiply connected region in the second Brillouin zone (BZ) that contains holes (usu­

ally called the monster); (2) the singly connected electron surfaces centered around the 

K point in the third BZ (usually called cigars or needles). In the absence of MB, the 

.... 
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only possible relevant orbits in the kz = 0 plane are the hole-like hexagonal orbit of 

the second BZ and the two electron-like triangular orbits of the third BZ. In the pres­

ence of MB, an electron wave packet that approaches a junction is either Bragg 

diffracted or tunnels across the gap into the next BZ. In this manner, MB links the 

hexagonal and triangular orbits into the hexagonal networkof Fig. 1. For intermediate 

fields many orbits are possible -- when MB is complete, only the free-electron-like cir­

cle is present. It is this transition from the dominating hole-like hexagonal orbit to the 

electron-like circle which destroys the electron-hole compensation of these metals and 

causes the transverse magnetoresistivity to saturate6 -- were it not for MB the 

transverse magnetoresistance would increase quadratically without any bound. 

Our approach to modeling the influence of dislocations on the galvomagnetic ten­

sors begins with the idealized model of Pippard7, where one treats the orbits as a net­

work with MB switching junctions at points of intersection. This model is justified by 

the fact that in a metal the electronic wave functions are localized on a "racetrack" 

with a width much narrower than the radi~s of the track8. Within this model, the most 

important element is the length scale over which the electronic wave functions main­

tain their quantum-mechanical phase coherence. When coherence is important, the MB 

junctions are treated as quantum-mechanical switches, in which a wave packet of unit 

amplitude and zero phase splits according to the quantum packets of Fig. 2. There H 

is the magnetic field and H 0 is the MB field (for justification of the basic MB formulas 

see Ref. 2). We work in the infinite-relaxation-time limit, neglecting all other scatter­

ing mechanisms (phonons, impurities, etc.) besides MB itself. In this approximation, 

the probability amplitude remains .constant and the phase changes by the standard line 

integral of the vector potential7 as the electron traverses the circular arc between two 

junctions. 

Small-angle scattering effects which do not affect the probability amplitude but 

tend to randomize the phase are taken into account as follows3•9: we assume that the 
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phase is completely randomized over all orbits except for the small triangular orbits 

where phase coherence may or may not be maintained. In this limit, the hexagonal 

network of Fig. 1 reduces to a network of "touching" circles (see Fig. 3a) with three­

way nodes whose coupling probabilities -- R , S and T = 1-R -S -- determine the 

allowed exit paths for an entering wave packet of unit amplitude (see Fig. 3b). Total 

loss of coherence is assumed on this effective network, so that only the probability 

amplitude of a wave packet is important (extensions of this approximation to allow for 

coherence over larger orbits has been considered in Ref. 10). 

The coupling probabilities of Fig. 3b are evaluated in the quantum limit (total 

coherence over the triangular orbit) as follows: a wave packet of unit amplitude is 

injected into one of the three incoming channels and allowed to circulate the 

infinitesimal triangular orbit. As the packet leaks out onto the three outgoing channels, 

the contributions to the probability amplitude for each channel are summed (for a com­

plete derivation see the appendix of Ref. 3). The absolute square of the total amplitude 

yields the coupling probabilities 

' 4 
R (8) = p 

1 - 2q 3cos8 + q 6 

s (S) = q 2
(1- 2qcos8 + q 2

) 

1 - 2q 3cos8 + q 6 

p4q2 
T (8) = ---l.---!....--

1 - 2q 3cos8 + q 6 

(1) 

with 8 the phase change of the electronic wave function for one circuit of the triangu-

lar orbit. Since this phase change is simply the magnetic flux through the orbit, we 

find 

1lc 
8 = Ak - + constant 

eH 
(2) 

where Ak is the k-space area of the triangular orbit. In the semiclassical limit (no 

phase coherence over the triangular orbit) the phase is uniformly randomized over the 

.. 
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interval [0,27t], yielding the semiclassical result 

for the coupling probabilities. The low-field limit (H ~ 0, q ~ 1, S ~ 1) yields unit 

probability for the hexagonal orbit and the high-field limit (H ~ =, q ~ 0, R ~ 1) 

yields unit probability for the circular orbit, as expected. The pure lens orbit, 

corresponding to T ~ 1 (see Fig. 1), is not physically accessible with unit probability, 

but it does have a finite probability for intermediate magnetic fields. 

In the next section we use R , S and T to calculate the galvanomagnetic tensors 

of the hexagonal network of Fig. 3a. We allow for dislocations (in the quantum 

regime) by assuming a stochastic distribution of the triangular-orbit area Ak and taking 

ensemble averages of the observables over the probability distribution for these areas. 

In Section III we apply our theoretical model to Mg. Conclusions are presented in the 

final section. 

II. Galvanomagnetic Tensors and the Effective-Path Model 

The effective-path model of Pippard3•9 is used to calculate the galvanomagnetic 

tensors. When an electric field E is applied to a metal, it causes a Fermi surface ele­

ment d S to be displaced, sweeping out a volume e E-d stir in k-space per unit time. 

This process is interpreted as the creation of quasiparticle packets, of average k-vector 

k, that are subsequently scattered as they move through the metal, traveling an average 

distance L(k) after creation. This distance L(k) 1s called the effective path. The 

current J set up by the electric field is then 

(4) 

with the integral extending over the· Fermi surface. The solution for L(k) is simplified 
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in the infinite-relaxation-time limit, where the only scattering process considered is 

caused by the MB itself. In this limit the effective path is completely determined as a 

function of the MB coupling probabilities R, S and T. Moreover, since we neglect 

scattering on the circular arms of the effective network in Fig. 3a, the effective path 

may be written as 

(5) 

where b refers to a specific branch of the network, Ab is the center of mass of the 

probability distribution as t---? oo of an electron packet originating on the b branch and 

Xb (k) is the initial (real-space) position of the electron packet at creation. 

Probability conservation at a node relates to each other the centers of mass of 

packets at different branches. For example, we find 

(6) 

for the node labeled a in Fig. 4. If the crystal is periodic, then R , S and T are 

independent of the node index a and the Ab are related to one another by simple rota­

tions and/or translations2•3• The algebraic equation (6) is then easily solved relative to 

the origin of Fig. 4, yielding the perfect-crystal result 

r 

3[R + S - R 2 - RS - S2]- i"3[4- 5R - 7S + 3(R 2 + RS + S2)] 

8- 12(R + S) + 6(R 2 + RS + S2) 
' (7) 

where r is the free-electron-circle radius and where we have used the complex nota­

tion A = Ax+ iAy for the two-dimensional vector A. 

The presence of dislocations in a metal introduces a small variation in the area of 

the triangular orbit from one node to another. This, in turn, generates fluctuations in 

the coupling probabilities (1), which break the periodicity and symmetry of the net-

work and destroy the simple symmetry between the various Ab . 

Our approach to solving this problem is to introduce an ensemble of networks in 

which the k-space area of a dislocated orbit obeys a stochastic distribution, and to 
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develop an approximation scheme to solve for the ensemble-averaged center of mass. 

A Markovian process is assumed so that the stochastic distribution of probabilities at 

each node is independent of all other nodes. The approximation scheme begins by 

generalizing the N = 1 probability conservation equation (6) to N > 1 and relating the 

center of mass of a packet at branch 1 in Fig. 4 to the center of mass of packets at 

every branch b linked to branch 1 by an orbit scattering through N (not necessarily 

distinct) nodes. The result is an equation of the form 

(8) 

where the branch probability pN (b) is the sum over all paths -- connecting branch 1 

to branch b that pass through N nodes -- of the product of the relevant coupling pro­

bability from each node along the path. The N-node probability conservation equation 

(8) is ensemble-averaged 

< Al> = L < pN(b)> < Ab> 
b 

(9) 

to restore periodicity, since the ensemble-averaged centers of mass, < Ab >, are related 

to each other by the symmetry operations of the network. This method reduces the 

solution for the ensemble-averaged effective path, by means of (5), to the solution of a 

simple algebraic equation. 

The approximation scheme outlined above is exact in two limits: (1) when there 

are no dislocations (the stochastic distribution is a single delta function), then periodi­

city is never lost, the ensemble-averaging is trivial< R 1smrn> = R 1smyn and the 

center of mass reduces to the perfect crystal result (7) for all N; (2) as N ~ = all pos-

sible paths which link a branch b to branch 1 are taken into account, thus yielding 

also an exact result. We have found, however, that the approximation converges 

rapidly in N for any reasonable distribution, and have used the N = 8 approximation in 

the work that follows. The results for< A 11r> in theN = 1 and N = 2 approximations 
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are the perfect-crystal result (7), with the replacement Rm~ < R>m and sm~ < S>m 

for any m . The calculations for higher N are straightforward but tedious, since the 

number of paths considered at each level of the approximation increases exponentially 

with N. 

In actual experimental samples the small triangular orbits of Fig. 1 lose phase-

coherence in low magnetic fields. This loss of coherence requires an interpolation 

between the semiclassical regime [where the center of mass Af is expressed by (7) 

with R ~ Rc and S ~ Sc of Eq. (3)] and the quantum regime (where the center of 

mass Af is determined by the ensemble-averaging described above) in our effective-

network model. Following Ref. 10 a coherence field Hcoh is introduced; it depends on 

the density of dislocations. The coherence field is treated as an experimental fit 

parameter that increases with increasing dislocation density. It determines the weight-

ing factor for the quantum regime by 

(10) 

The weighting factor for the semiclassical regime is w c (H) = 1 - w q (H). The result 

is an effective center of mass 

(11) 

which, when replaced in (5), yields the desired effective path. 

The conductivity tensor cri) is determined from (4) by an integration over the 

Fermi surface. However, the final result is modified to incorporate electron-hole com-

pensation at H = 0, which is characteristic of the divalent hexagonal-close-packed 

metals. The magnetoconductivity is then3 

3nec ff cr = cr = -- Re(A1e ) 
XX yy 7tH (12a) 

3nec ff cr = -(J = -- lm(A1e ) 
xy yx rtH (12b) 

e.· 
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where n is the density of electrons in the metal. The magnetoresistivity tensor is 

found by inversion. 

III. Dephasing Effects in Magnesium 

In this section, the theory developed above is applied to electron transport in 

magnesium by comparing model calculations for the transverse magnetoresistivity with 

the experimental results2. The MB field and the k-space area of the triangular orbit, 

H 0 = 5.85 kG, Ak = 6.49x1o-3 a.u. , (13) 

have been determined9 for Mg, while the number density, 

n = 6.9x1021 cm-3 , (14) 

is determined from the scale of the experimental data. 

The presence of dislocations introduces a stochastic distribution for the k-space 

area of the triangular orbit. Since a dislocated orbit has an area smaller than the true 

triangular orbit, we expect the distribution to be asymmetric with a peak about Ak and 

a tail extending toward smaller values A < Ak. This distribution is approximated by a 

delta function of weight ~ at A = Ak and a rectangular distribution of weight (1-~) 

extending from AAk to Ak (A < 1) so that the average value of any quantity 0 

O(A) dA (15) 

is a function of the two parameters ~ and 'A. 

The approximation scheme of the previous section converges rapidly with N. To 

illustrate this, we have plotted in Fig. 5 the N=1 and N=8 approximations for a pure 

rectangular distribution (~ = 0) between 0.95Ak and Ak (the dashed line is an interpo­

lation between the high-field region, where MB is the only important scattering 

mechanism, and the low-field region, where large-angle scattering effects 
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corresponding to a finite relaxation time are important). Comparison of these two 

graphs shows that the convergence is indeed very rapid. The N =8 approximation is 

used exclusively in the rest of this contribution. 

The high dislocation density limit ().! = 0, A < 0.5) completely randomizes the 

quantum-mechanical phase (2), reproducing the semiclassical result (see Fig. 6) with 

no quantum oscillations. The magnetoresistivity depends only weakly on the parame­

ter A in this case. 

The intermediate regime ().! :::::: 0.1, A ::: 0.9) is strongly-dependent on the parame­

ters of the distribution. This case is illustrated in Fig. 7 and is in excellent agreement 

with the experimental results.2 

The low dislocation density limit ().! ::: 0.9, A::: 0.9) is the extreme quantum 

regime and once again it depends weakly on the distribution parameters. A typical 

case is shown in Fig. 8. This regime does not agree as well with experi111ent because 

the samples are so pure that phase-coherence over orbits larger than the triangle are 

important. 10 

There are several important features apparent in Figs. 5-8. The presence of dislo­

cations reduces the amplitude of the magnetoresistance oscillations because of a partial 

randomization of the quantum coupling probabilities. As the density of dislocations 

increases, the randomization becomes complete; the semiclassical curve results. The 

envelope of the oscillations is modulated by a small amplitude oscillatory function at 

low dislocation density which resembles a beat structure. Beats do develop as the den­

sity of dislocations is increased due to the interference of oscillations at nearly equal 

frequencies. Both the oscillatory envelope and beat structure tend to be washed out in 

the experimental data. This is probably due to the fact that the real stochastic distribu­

tion is smoother than the rectangular one assumed here. 

"' 
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IV. Conclusion 

The problem of modeling the effect of dislocations (and other defects) on the 

transport properties of metals that exhihit MB has been an open problem for over a 

quarter of a century. We have presented a model calculation of the dephasing effect 

of dislocations on electron transport in a two-dimensional hexagonal network. An 

ensemble of equivalent networks is introduced and stochastic averages of observables 

over this ensemble are taken to restore periodicity to the system and allow for an accu­

rate, but approximate, calculation of the galvanomagnetic tensors by the effective-path 

approach. In this way, we are able to show the transition from the semiclassical to the 

extreme quantum regimes as a function of the stochastic distribution of the triangular­

orbit area which is a function of the density· of dislocations. 

The important result to emphasize is that the loss of oscillatory behavior of the 

galvanomagnetic properties is lost not by the quantum-to-semiclassical transition of 

each individual (triangular) orbit, but by destructive interference between various junc­

tions caused by the random distribution of dislocations. 

Our theoretical model has been compared with the experimental results for Mg 

and shows excellent agreement. In particular, the transverse magnetoresistivity is 

found to be very sensitive to the distribution of dislocations in the region intermediate 

between the semiclassical and extreme quantum regimes. The results can be used to 

determine accurately the dislocation distribution of given samples. 
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Figure Captions 

FIG. 1. Two-dimensional MB-linked hexagonal network in real space. The tri­

angular, lens, hexagonal and circular orbits are highlighted. 

FIG. 2. A magnetic-breakdown junction: probability amplitudes and phases. 

FIG. 3. Effective MB-linked network with triangle-orbit area shrunk to zero. (a) 

Network with three-way switching nodes. (b) Coupling probabilities for a node. 

FIG. 4. Detail of the effective hexagonal network. The origin is the center of one 

particular free-electron circle. A particular node is labeled by a and the adjacent 

branches are labeled by integers; b denotes an arbitrary branch in the network. 

FIG. 5. Calculated transverse magnetoresistivity for Mg. The distribution of 

triangle-orbit areas is a rectangular distribution stretching from 0.95Ak to Ak 

(!l = 0.0, A= 0.95, Hcoh = 10 kG). (a) The N=1 approximation. (b) The N=8 approxi­

mation. 

FIG. 6. Calculated transverse magnetoresistivity for Mg in the semiclassical 

regime, with parameters !l = 0.0, A = 0.25, Hcoh = 15 kG. 

FIG. 7. Calculated transverse magnetoresistivity for Mg m the intermediate 

regime, with parameters !l = 0.15, A= 0.85, Hcoh = 12 kG. 

FIG. 8. Calculated transverse magnetoresistivity for Mg in the extreme quantum 

regime, with parameters !l = 0.95, A = 0.95, Hcoh = 10 kG . 
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