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Abstract 

It is shown that the experimentally observed dependence of mo
ments of multiplicity distributions on the width of the rapidity win
dow can be interpreted by simple quantum statistical properties of 
the emitting system(s) and does not necessarily imply evidence for 
intermittency . 
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Recently, a great deal of attention has focused on the possibility that 
the distribution in rapidity of particles produced in high-energy hadronic 
collisions may show signals for "intermittency" [1,2,3]. It is essential to ask, 
whether these interesting signals can be understood within the framework of 
our present understanding, or whether new physics is needed. In this paper, 
we shall present results based on quantum statistical considerations. It is 
shown that a hadronic analogue of intensity correlations similar to those 
encountered in the Hanbury Brown-Twiss effects[4] is sufficient to interpret 
the behavior of data which appear to provide evidence of "intermittency". 
Such data are derived from high-energy nuclear collisions, specifically from 
the factorial moments of order q : 

Fq =< n(n- 1) ... (n- q + 1) > (1) 

of the distribution of multiplicities n of particles observed in rapidity win
dows of finite width by (for details see below). Currently, the evidence for 
intermittency has been inferred from a power law dependence of the </>q on 
by, where </>q are suitably defined normalized factorial moments 

(2) 

The study of such "local" distributions of n has been suggested and 
used for the first time in ref.[5], and has since been widely applied (see e.g. 
[6, 7]). In the context discussed here, the dependence of the </>q on the scale 
of resolution may be a power law, as suggested, e.g., in the theory of turbu
lence with fractal dimension (with or without intermittency) [8]. Various 
parton branching-type models for multiparticle production leading to such 
a behavior have also been discussed at recent conferences [1,9,10,11,12]. A 
series of experiments [9,13,14] looked for and have observed initial linear 
increases of In </>q with -ln by , followed by a saturation (at very narrow 
window width by ). Different definitions for the </>q, however, have been 
applied for investigating this behavior. 

To be precise with the formulation, we start from the number nb,e of 
charged particles observed in rapidity bin number b ( b ~ bm ) of event 
number e ( e ~ em)· Having available for analysis a single cosmic ray 
event, (em= 1,) Bialas and Peschanski[1], then introduced the normalized 
moments </>q, in terms of what could be called a "horizontal average" (over 
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bins) : 
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_ p[hlj(F[h])q e = 1. 
q 1e 1 1e ' (4) 

For experiments in which many (em > > 1) events are available, , the average 
over bins can be followed, [12] by an average over many events, so that 

(5) 

This is to be compared with the alternative "vertical average" also sug
gested [1] , 

p[v] 
1 em 

;-L nb
1
e(nb

1
e- 1) ... (nb

1
e- q + 1) (6) qlb 
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Another variation of the "vertical average" is also used [9]. There, F}v~ in 

Eq. 7, is replaced by Flv], the average of Flvt over all the bins: 
1 

I 

(9) 

where< n > is the average total number of particles (in all the bins), so 
that 

1 em bm < > 
</>~v'] = -b- L L nb

1
e(nb

1
e- 1) ... (nb

1
e- q + 1)/( bn F 

em m e=l b=l m 
(10) 

Notice that by changing the order of averaging between bins and events 
Eq. 5, Eq. 8 and Eq. 10 are in general not equivalent, both because the 
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fluctuations of ne,b come in with different weights and because the shape 
of the rapidity distribution influences the different ¢>9 in different ways. 
In either formulation, the behavior of ¢> 9 has been considered as strong 
evidence of intermittency[9]. 

In what follows, we shall assume that physics is stationary throughout 
the interval of rapidity where intermittency is considered. That is to say, 
the inclusive multiplicity distribution is independent of the location of the 
bin. This enables us to use the single interval inclusive distribution Eq. 7 
without considering the joint distribution of the individual bins. Within the 
approximation of stationarity, the single bin approximation is equivalent to 
both vertical averages Eq. 8 and Eq. 10 ( but not to the horizontal average 
Eq. 5 ). The assumption of stationarity also allows us to use existing 
expressions to demonstrate essential features of the quantum statistical 
formulation [15]. General non-stationarity effects will be considered with 
other corrections in a different paper[16]. 

We shall now present[17] an alternative explanation of the ( ¢>9 , 8y) de
pendence, namely that it follows in a natural way from the quantum statis
tical correlation properties of partially coherent emitting systems [4,15,19]. 
To visualize this we shall consider the rapidity y as time, and the multiplic
ity fluctuations as intensity fluctuations similar to those appearing in the 
Hanbury, Brown-Twiss effect [15]. Any finite rapidity window 8y leads,in 
the presence of a finite coherence length ~ to an "effective" number 8y I~ 
"cells" of y-space [18], and the multiplicity distribution should approximate 
negative binomials or equivalent partial coherent distributions [19]. An ef
fective power law dependence of ( ¢> 9 , 8y) may therefore be only a reflection 
of the changing number of "cells" 8y I~. 

To be more specific, we shall consider one of the simplest models of 
quantum statistical ensembles of this kind, where the correlation in y is 
emphasized. Many detailed features of a more realistic model should even
tually be built in as correlations [4]. Consider multiparticle production 
arising from a mixture of chaotic fields 7r chao and coherent fields 7r coh, such 
that the fraction of the number n of secondaries originating from the chaotic 
component of the field is p. With a finite coherence length~ of the chaotic 
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field 'lrchao introduced through 

( )+ ( ') _ ( I Y - y' I) < 'lrchao y 'lrchao y >- exp - ~ (11) 

the normalized factorial cumulants of a multiplicity distribution due to k 
emitting sources are given by: [15,20] 

where only the ratio 
8y 

f3= T' 

(12) 

(13) 

depends on 8y. This leads to a behavior called "(3 - scaling" of multiplicity 
distributions for finite 8y [4]. 

The normalized factorial moments <Pq are then related in a simple way 
to the corresponding J.Lq [4]. These cumulants J.Lq are really more sensitive 
diagnostic tools for the dynamics of the interaction than the Fq, as we shall 
elaborate elsewhere. However, so far, all experimental results claiming 
intermittency have been expressed in terms of the <Pq· We shall therefore 
also use the <Pq for the sake of comparison with existing experiments. 

The functions Bq{(J) and Bq((J) have been defined in refs. [15,20] and 
analytical expressions for them up to q = 8 have been given in [4,21]. 

To illustrate the simplest case of q = 2 we reproduce here for the reader's 
convemence: 

<P2 = 1 + J.l2, 

B2((3) = (e-2/J + 2(3- 1)/2(32
, 

and 

(14) 

(15) 

(16) 

For very small rapidity windows (3 < < 1 ; then the distribution law P( n) 
of n tends towards the Glauber-Lachs distribution [22] and the <Pq are given 
by ( see e.g. [24]) 

<Pq = q!(~)qL;-1 (-x) 

where L;-l are generalized Laguerre polynomials and 

x-k(1 -p). 
p 

5 

(17) 

(18) 



For p - 0 the field becomes totally coherent, P( n) becomes Poissonian and 
allln </Jq - 0. Conversely if p - 1 i.e the field is totally chaotic, P( n) turns 
into the negative binomial distribution and 

(q+k-1)! 
</Jq- kq(k- 1)! . (19) 

Since no squeezed states are allowed in this formulation[23], the widest 
fluctuations correspond to the negative binomial distribution with k = 1 
(one-cell Bose-Einstein distribution). This yields an upper bound for the 
ln </Jq which can be observed at very small 8y: 

ln </Jq ~ ln( q!). (20) 

Thus, ln </J 2 ~ 0.693 , ln <jJ3 ~ 1. 782 , etc. ! 

It is interesting to note that, thus far, no experimental data violating 
these bounds have been presented. 

In the above formulations of Eq. 12, stationarity of the quantum sta
tistical expression is assumed throughout a wide interval of rapidity. It 
is a reasonable· assumption for the central region. (e.g. IYI < 1.5 for the 
NA22 energy). The assumption of stationarity is crucial for the simplicity 
of side-stepping the additional "horizontal" average. It enables us to use 
the single interval average of Eq. 12 for the more complicated vertical av
erages Eq. 8 and Eq. 10 without considering the joint distribution of the 
individual bins. Use of the single interval inclusive Eq. 12 for "horizontal" 
averages ( averaging over bins within one event), is more approximate in 
nature. We notice first that for each event with large n, the finite < n > 
effect may not be serious. Furthermore, if the statistical average of Eq. 5 
is not performed between events with dramatically different n, Eq. 12 may 
provide a reasonable approximation[19]. The same procedure has been ap
plied to e+e- data [9]. A discussion of these data and details of the more 
complicated QS formalism implied will be published elsewhere [16]. 

As will be shown below, we do not find that the assumption of intermit
tency is necessary to interpret the y dependence of multiplicity distribu
tions in hadronic reactions, since the quantum correlation model, as defined 
above, can explain this dependence 1

. 

1 It should be noted that the good description of the bulk of the events by the quantum 
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We now proceed to analyze a few of the available experimental data in 
the light of the model described above. 

In Fig.1a and 1 b we show (ln </>q, -ln oy) plots for symmetrical pseu
dorapidity windows recorded in the UA5 streamer chamber [6] for pp at 
~ = 540GeV and in the NA22 bubble chamber [7] for pp at~= 22GeV, 
respectively, for q=2, 3, and 4. The "chaoticity" p was fitted to the 
"plateau" of </>q at small oy for q=2; then e was adjusted to mimic the 
slope at large oy at the same q. The value of k is taken to be 1, since data 
at the smallest rapidity window are not compatible with k > 1. 2 At this 
stage, a more rigorous fitting procedure was not deemed useful, especially 
in view of the high degree of correlation between adjoining points on the 
graphs. It is remarkable how the curves, (computed with the numerical 
values of the parameters mentioned in the figure captions) fit not only ¢>2 

but the curves for the higher q- values, as well. 
In Fig.2 a, and b we analyze in the same way the curves for ln < </>q > 

for oy intervals sweeping a wide range of y in the N A22 experiment on pp 
collisions ( [7]) and for "central" 32 S +Au collisions at 200 A Ge V in nuclear 
emulsion chambers from the data of the EMU01 Collaboration [14]. The 
latter experiment, in spite of its (as yet preliminary) low statistics, enjoys 
(because of the particular geometry of the emulsion chambers) a very high 
spatial resolution, with measuring errors on oy of the order of 0.01. This 
ensures the reality of the saturation observed at large -ln oy, contrary to 
the conjecture [12] that it might be due to lack of spatial resolution (as 
is the case in streamer chambers and, especially in electronic detectors). 
Once more the agreement of the moments of higher order q with fits made 
on q = 2, only, is remarkable, given the approximations underlying both 
the experimental analysis [25] and finer details of the theory (see [4] for a 
discussion). 

A few comments are in order, regarding these results and their inter-

statistical properties of the emitting system(s) does not exclude contributions to the 1/Jq 
from rare events with very large local multiplicity fluctuations ("spikes" [9,27]) which could 
signal intermittency and/or approach to phase transitions. 

2There is, however, an inherent ambiguity of parametrization between k and p, for all 
the larger rapidity windows [28]. The decrease of the 1/Jq as a function of increasing 8y can 
be partially due to an increase of the cell number k [28]. The value of p determined by 
the small 8y behavior may therefore be slightly overestimated[4]. 
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pretation: 

1. Comparing the values of the parameters p and ~ needed to fit the data 
of Fig.1a and 1b we notice that both the chaoticity and the coherence 
length increase with yls, in agreement with an earlier analysis [4] 
where the forward-backward correlations were used to pinpoint~. 

2. In pp reactions at .Js=22GeV points close to the kinematic limit on 
8y tend to deviate from the fitted curve. This can be due partly 
because of the phase space constraints (which tend to narrow P( n) 
and hence lower the </>q, and partly to the fact that the condition of 
stationarity in rapidity (required by for the validity of the expressions 
given above for the factorial cumulants) is violated when one goes too 
far away from the central (ems) rapidity region (e.g. ~~ =/= 0). It can 

be shown [16] that, for reasonable assumptions about ~~ (e.g., guided 
by the results of ref.[26]), the only change occurs in the expressions 
for the Bq(/3) and Bq(/3) and implies a small correction in the right 
direction. 

3. The same effect of non-stationarity in y must manifest itself in the 
different values of p and~ fitting the data shown in Fig.1b and Fig.2a 
which, after all, come from the same data set. The difference lies 
in the fact that for Fig.1a the center of the rapidity window was 
kept fixed ( at Ycms = 0) whereas the data presented in Fig.2a are 
averaged over the whole rapidity interval and variations of p with y 

influence the </>q with different weights. This effect should be taken 
into account every time comparisons are drawn between what could 
be termed as "horizontal" analysis ( </>q measured first for each event 
and then averaged over all available events) and "vertical" analysis 
( when the </>q are deduced from a given window in rapidity from all 
events). 

4. It is noteworthy that nucleus-nucleus collisions ([14], Fig.2b) show 
much lower values of p, corresponding to very narrow P( n ). This 
may be a reflection of the need for a very large k. It may also be 
expected if the special sample analyzed in re£.[14] mainly involves 
an independent superposition of nucleon-nucleus collisions. Indeed, 
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taking into account the ratio of mean multiplicities observed in the 
data of Figs.2a and 2b (at practically the same energy per nucleon) 
the drop of the "effective" p-value can be easily understood. Different 
methods of averaging are particularly sensitive to the stationarity of 
the rapidity plateau (or the lack thereof) in nucleus-nucleus collisions. 
A simple fluctuation in rapidity plateau width from event to event 
can contribute to the variation of the observed moments with 8y. A 
comparison with nucleus-nucleus events of lower multiplicity and/or 
centrality appears thus highly desirable. 

To summarize, we have provided a alternative description of the vari
ation of multiplicity moments not requiring intermittency or fractal prop
erties of the rapidity distribution. More detailed studies of correlations 
among rapidity bins are being conducted to further test the various models 
currently under consideration. 
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Figure Captions 

Fig.1 Normalized factorial moments </Jq of order q in finite (pseudo) 
rapidity windows of width by centered around Ycms = 0, plotted against by 
or bTJ for: 

a) pp collisions at -.jS = 540GeV,(1J) and 
b) pp collisions at ..jS = 22Ge V (y ). 
The order q is indicated next to the curves. These have been computed 

using Eq.(12) with : a) p = 0.44 and e = 4.0 and b) p = 0.32 and e = 1.0 

Fig.2 Averages of normalized factorial moments </Jq of order q in finite 
rapidity windows of width by shifted across a wide rapidity range in each 
event, plotted against by or bTJ for: 

a) pp collisions at -.jS = 22GeV. (y),and 
b) 32S +Au collisions at 200 AGeV (TJ). 
The order q is indicated next to the curves. These have been computed 

using Eq.(12) with: a) p = 0.20 and e = 0.9 and b) p = 0.015 and e = 0.2 
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