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Abstract: 
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We use computer simulations to study nuclear fragmentation as ex
pected to occur in heavy ion reactions. Using integral equation tech
niques and molecular dynamics calculations we first find a potential with 
an equation of state resembling that of hot and dense nuclear matter. We 
then use this potential to study the disassembly of two dimensional clas
sical drops. Along the lines of Cahn's theory of spinodal decomposition 
we calculate the structure factor of the system and extract information 
about the development of density fluctuations during the breakup. We 
find isothermal spinodal decomposition to play the dominant role in the 
breakup. Nucleation of bubbles in the two phase region and adiabatic 
spinodal decomposition were found not to contribute to the fragment 
production. Strong density fluctuations were detected in disassemblies 
crossing the critical point. 
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1 Introdu~tion 

Heavy ion collisions, with projectile energies from the tens to the hundreds of 
MeV/ A, are expected to yield infbrmation about the thermodynamical properties 
of hot and dense nuclear matter and, in particular, about a possible liquid-gas phase 
transition. The study of such phase transformations, ordinarily difficult, is further 
complicated in the nuclear case by the finite size of the system and the short time 
scales involved in the reaction. Any realistic attempt at understanding the nuclear 
fragmentation problem must deal simultaneously with many body correlations, fi
nite size and short time effects. 

Out of the different techniques currently used to study such reactions [1-5], only 
molecular dynamics (MD) calculations, which directly solve the classical evolution 
of anN-body system, can describe a change of phase incorporating the wanted cor
relations and effects. Besides of taking into account all dissipative and relaxational 
effects, MD can also go, under the proper circumstances, into any specific limiting 
behavior such as non-equilibrium dynamics or hydrodynamical flow. 

In particular for the study of hot and dense nuclear matter, the large values of the 
momenta involved in the collisions are expected to reduce the blocking introduced 
by the Pauli principle and make the mean free path shorter than at lower excitation 
energies. Under those considerations the quantum effects become less important 
and a classical treatment is more reasonable. The numerical solution of the classical 
equations of motion is likely to yield a proper description of the reaction dynamics. 

Classical MD calculations with potentials ranging from simple hard spheres to 
more sop~isticated momentum-dependent ones have been used to study different 
aspects of heavy ion reactions [2-5]. In particular, the nuclear fragmentation pro
cess has been simulated by the dissociation of droplets of argon atoms interacting 
via a Lennard-Janes 6-12 potential by Pandharipande and coworkers [5]. Their 
findings, which show fragmentation occuring inside a region roughly bounded by 
the argon adiabatic spinodal, strongly suggest adiabatic spinodal decomposition as 
the disassembly mechanism, as predicted earlier by Bertsch and Siemens[6]. 

These results, unfortunately, cannot be directly translated into the nuclear case. 
The absence of nucleation and other isothermal critical phenomena in the argon 
case can be tied to the 6-12 potential. Due to the steep rise of the core of this 
potential, a dense argon droplet will expand very rapidly on thermal diffusion time 
scales leaving little time for thermal interactionbetween the two phases. This seems 
to be in contrast to the nuclear matter case where, according to recent studie.s of 
Pethick and Ra.venhall [7], the density fluctuations leading to fragmentation are 
expected to develop isothermally~ 

With the hope of getting an insight of the physical processes responsible for the 
nuclear fragmentation, we study in this paper the evolutipn of density fluctuations 
during the dissasembly of hot and dense classical droplets. For simplicity we use a 
two dimensional simulation with a classical potential adapted to simulate nuclear 
matter. In the next section we introduce such a potential and compare its ther-
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modynamical properties with those of nuclear matter using the hypernetted chain 
and Percus-Yevick equations and MD techniques. We then use this potential in 
section 3 to follow the expansion of classical two dimensional drops. In section 4 
we study the time evolution of the density fluctuations by means of the structure 
factor in the framework of Cahn's theory of spinodal decomposition. We close this 
letter with a discussion of our findings and conclusi<.ms. 

2 The Molecular Dynamics Potential 

Ideally, a potential to be used in a classical simulation would h~ve to reproduce all 
the k~own static characteristics or' n~clear systems as well as the th.ermodynamical 
properties of finite nuclear matter. Unfortunately, this just might be too much to 
'ask, and at present no such potential is available. Consequent~,-, one must limit the 
expectations and try to reproduce those key.features most needed for the simulation. 
'Up to now, current potentials under use have been mainly designed to reproduce 
nuclear binding energies and ~adii [2-4], with the exception of Ref. [5] where a 
potential was modeled to give an equation of state similar 'to that of cold nuclear 
matter. 

As pointed out by Heiselberg, Pethick and Ravenhall[8], the high dens.ity stage 
of the reaction determines the velocity with which matter expands. This velocity, 
which is dictated by the nuclear compressibility, sets the time scales that will allow 
thermal interactions to occur and density fluctuations to grow. To have an adequate 
simulation of the breakup of nuclear droplets we need a potential that reproduces 
the equation of state of hot and dense nuclear matter correctly.' 

In this work we choose to use an interparticle potential of the form 

with the coefficients gr, mr, 9a, and ma, adju~ted to yield aT= 20 MeV pressure
density isotherm resembling the one coming from a. Skyrme-type interaction as 
determined by Friedman and Pandharipan~e[9]. The equation of state of a potential 
can be determined with the repeated use of MD simulations. This, however, is very 
demanding computationally and the use of more economical techniques, such as 
integral equation techniques, is more appropriate. 

After making an initial guess for the four parameters, we solve both the hyper
netted chain and Percus-Yevick equations1 to obtain a.quick estimate of the critical 
temperature Tc and density Pc corresponding to the selected set ofparameters. ·We 
then use these values to adjust the energy and length scales to have Tc and Pc cor
respond to the nuclear values. The two remaining dimensionless parameters, say 
gr/ga and mr-/ma, are then determined by fitting the want~d isotherm with a simple 

1 Integral equations are a useful technique to obtain the pair correlation function of classical fluids 
g(r). From this function one -can then obtain thermodynamical· variables such as the pressure or 
internal energy. For details see e.g. Ref. [10]. 
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Newton algorithm. Final verification of the shape of the isotherm is then obtained 
by performing a series of MD simulations with the selected potential. 

Fig. 1 shows a comparison of the T = 20 MeV P - p isotherm of Friedman and 
Pandharipande with our calculations using the set of values gr = 10726 MeV- fm, 
mr = 0.3955 Jm-1

, ga = 10215 MeV- fm, and ma = 0.3582 fm-1
. To obtain 

this fit, the range of the potential was limited to a cut-off radius of rc = 4.17 fm 
~nd the poten.tial was shifted by a constant c = -55.6 MeV for continuity. The 
saturation density for close packing corresponding to this potential is p0 = 0.166 
fm- 2 and at the critical point Pc = 0.065 fm- 2 and Tc = 17.5 MeV. 

To establish the phase diagram corresponding to this potential we have to resort 
to quenched MD simulations since the integral equations cannot be used in the 
mixed phase regions. As explained in detail by Abraham[ll], one can artificially 
cool a previously equilibrated droplet of matter to determine the thermodynamical 
variables of the system at a given temperature and density. After obtaining enough 
points to draw P- p isotherms at T = 5, 10 and 15 MeV, we obtain the isothermal 
phase boundaries by a Maxwell construction. This phase diagram ( cf. Fig. 2) will 
be useful in tracking the expansion trajectories in the T - p plane in the following 
1;iection. 

3 Simulations 

Our main interest is to study the expansion of a drop of liquid and follow the 
developments of instabilities during the fragmentation of the system. We employ 
the MD method in two dimensions in much the same way as Pandharipande and 
coworke;rs[5] did i1,1 three dimensions. After equilibrating an initial area containing 
400 particles under periodic boundary conditions at a desired temperature and 
density, we cut a disk out of it and let the approximately 270 particles inside expand 
into free space. 

We then follow the evolution of the macroscopic properties as in Ref. [5]. The 
density of the central particles is spatially averaged over the 50% most central 
particles. In two dimensions we determine the density by 

where Nc stands for the number of central particles and ri is the distance of the ith 

particle to the cente~ of mass. The temperature and pressure are determined by 
the time averages 

T = ~ < Ekin > 
3 N 

and 
1 

P = p T - - < "r··(dV:·/dr··) > 6V ~ IJ IJ IJ ' 
t-::f:.J . 

where again, the factors of 2/3 and 1/6 in these expressions are replaced by unity 
and 1/4, respectively, in two dimensions. 
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Fig. 2 shows the phase diagram obtained as explained in the previous section. 
Also displayed are the trajectories followed by expansion runs starting from var
ious initial densities and temperatures. Each run represents an -average over 20 
events all starting from different microscopic configurations but with equal macro
scopic thermodynamical variables. The trajectories in the T - p plane belong to 
one vaporization (I) and three fragmentation proc<'sses (II, Ill and Iy). They follow 
adiabats to a good approximation until the droplet fragments in the region of me
chanical inst"abilities. The production of fragments is accompanied by a gene~ation 
of surfaces which slows down the rate of expansion of the drop. 

4 Spinodal Decomposition 

In addition to following T, P and p of the central particles, we ;;tlso studied the den
sity fluctuatiqns arising during the expansion of the drop to understand the mecha
nism responsible for the disassembly. The advantage of this analysis is that it makes 
a natural connection with the theory. of spinodal decomposition of Cahn[12],[11]. 

The first step in the study of the kinetics of spinodal decomposition is to consider 
the behaviour of small density fluctuations via the diffusion equation as first done 
by· Hillert [13], 

8pf8t = "V·(M"Vp,), 

whe~e M and p are the mobility ~nd chemical potential ~f the medium. In this case 
the force driving the diffusion comes from a ,difference between the chemical poten
tial of the disturbance and that of the surrounding medium. The particularization 
of this equation to the case of small density fluctuations comes through the relation 
betwee~ p, and the Helmholtz free energy. . . . . . 

The free energy density of an inhomogeneous medium: can be expressed as a sum 
of the free energy of a uniform system and the one associated ~ith the generation 
of incipient surfaces by the inhomogeneities, i.e. 

where B is the van der Waals constant.2 Writing p, in terms of the free energy, the 
diffusion equation can be generalized (after linearizing in p) to 

If we now describe an arbitrary fluctuation in terms. of its Fourier .components, 
the general solution of this equation for each of these components is an oscillatory 

2 B can be obtained from Ii = - Hl + pofop] f d3~ r 2V(r) g(r; p), where in two dimepsions 
the factor of~ is replaced by ~· For symmetric nuclear matter near saturation density B...., 80 MeV 
fm5 [14], while for·o11r pot~ntial B...., 1100 MeV fm5 at p =Po and T = 20 MeV. 
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function of the form 

bp A(q, t)cos(q· r}, 

with the amplitude given by 

A(q,t) = A(i,O)exp{-Mq2(~~ + Bq2 )t}. 

Two kinematical regions are readily seen. If 82 f j8p2 + Bq2 > 0, the fluctu
ations are damped away as normally expected, but if 82 f / 8p2 + Bq2 < 0, the 
inhomogeneities will be amplified and the medium will be unstable with respect to 
·these o~cillations. This instability is termed spinodal decomposition. This change 
of behaviour of the amJ?litude can be used to indicate the onset of fragmentation. 

We follow the amplitude of the fluctuations by means of the structure factor 
S( k) which is related to the Fourier spectrum of the density fluctuations: 

v 
S(k) = - < PkP-k >, 

Po 

where p~ denotes the Fourier transform of bp(r). From the pair correlation function 
g( r) this factor can be obtained by 

S(k) = 1 + p j d3r eik·r[g(r) -1]. 

In order to evaluate this function, we sampled the pair distribution function over the 
central region of the expanding drop and subtract from it the correlation function 
of a homogenous distribution. 

Landau and Lifshitz [15] derive an expression for the mean square fluctuation 
in thermal equilibrium based on the fact that the probability for a fluctuation, 
which causes a change of 6.F in free energy, is proportional to e-t:.F/T. In the long 
wavelength limit the thermal fluctuations in a stable system are given by 

where the frequency of the oscillations is related to the plasma frequency Wp and 
speed of sound c8 of the medium via the dispersion relation w(k)2 = w; + c~k2 [7]. 
To set a scale for comparison, we use this prediction for infinite systems evaluated 
at the initial T and p of each run using k1 = 8.65 and the sound speed of a Fermi 
gas under those conditions. 

Fig. 3 shows the structure factor obtain~d for the expansion runs II and IV of 
Fig. 2. These two different initial conditions were chosen with the hope of finding 
significant effects associated with the critical point. In calculating S( k) we have 
taken into aq:ount only thecentral region of the expanding drop at intervals of 10 
fm/c (100 time steps) apart. Like in the case of the T- p trajectories, we have 
averaged the structure factor m~er 20 independent configurations for each run. 
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To illustrate the behaviour of S( k) we followed wavenumbers k equal to the 
zeroes of the Bessel function J0 as they set the time and length scales for waves 
resonating in a spherical drop. Fig. 3 also indicates the times when the temperature 
inside the expanding drop equals the critical temperature Tc, :when the system 
crosses the coexistence curve (CE) and, somewhat later, the isothermal spinodal 
line (IS). 

Finally, to have an hlternative piCture of the break-up we study the evolution of 
the t<;>tal multiplicity of heavy (A > 10) fragments for each of,these runs .. D~fining 
a cluster as a collection of particles "connected" . by a chain of steps. smaller than 
rc, the cut-off radius of the pot~ntial, one can uniquely part'ition the t~tal system 
int~ noninteracting clusters. Fig. 4 shows how this multiplicity ~aries during the 
expam;i~~ for runs II and IV. Th~ restriction to A > 1.0 helps toign~rethe u:nwanted 

. surface evaporation or' light clusters. . . ' . 

5 Discussion 

A clear picture of the breakup emerges from the study of the evolution ofthe d~nsity 
fluctuations. Contrary to the argon simulations of Ref. [5], ·here the isothermal 
spinodal plays ,a major role in the fragmentation. As seen in Fig. 2 · the onset 
of fragment formation can be easily identified with an early. stage of isothermal 
spinodal decomposition. 

The role of the adiabatic spinodal cannot be determined from this study as 
we have not calculated this line for our potential. Nevertheless, we checked the 
adiabatic sound velocity on selected points around the critical dens'ity at different 
temperatures, and the results place the adiabatic spinodal line at p _..,;Q.1 Jm-2 for 
T ..v 10 ~ 12 MeV. Our simulations clearly show the fluctuations .beginning to grow 
significantly long before matter crosses this point. , 

· Oth_er interesting observations come afloat. The expansion velocity, a~ dictated 
by the initial conditions, appears to be too fast to allow the nucleation of bubbles to 
occur in the two-phase region before the mechanical instabilities set in. Similarly, 
the system seems to be able to stay in the unstable region long enough for all of 
the examined modes to grow, as Fig. 3 demonstrates. No "violent evaporation" 
or recondensation as seen in the .argon simulations of Ref. [;:)]was observed: The 
growth rates of the modes under study give the impression to be exponential to a 
good degree. Different "growth rates are observed for different wavenumbers. No 
apparent connection between pre- and post-fragmentation density fluctuations was 
observed. The initial inhomogeneities had amplitudes of the ot:der of magnitude 
expected for thermal fluctuations in an infinite medium as estimated from SLtk) for 
the· lowest wavenumber shown at the initial conditions of each run. No significant 
departure from the. infinite medium properties was observed. 

• For run II we fin,d strong effects asociated with the critical point. A significant 
amplification of the fl~H~tuations was observed everi before the system entered the 
coexistence region. Strong density fluctuations w~re observed and all modes seem 
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to grow equally. The precritical growth of the fluctuations and the presence of a 
number of noninteracting clusters at early stages of this run (see Fig. 4) indicate 
the strong "delocalization" of the critical point as discussed by Fisher[16] for the 
droplet model. 

6 Conclusion 

Although these results are encouraging, we are far from being able to uniquely 
connect experimental results with thermodynamical properties of nuclear matter. 
The fine interplay between the initial conditions of the reaction and the transport 
properties of the medium make the breakup mechanism especially difficult to track 
down. In addition to this, actual nuclear reactions are expected to have a spectrum 
of fluctuations induced by the collision and much different than the one studied 
here. The collision most lik,y will select specific modes of breakup. 

Our findings strongly underline the need for an accurate description of the c:r;iti
cal phenomena, this at present is only possible with MD simulations. More realistic 
computations Iieed to be performed in three dimensions with potentials yielding 
more appropriate transport properties (e.g. better surface tension parameter B, 
etc.). Only then it will possible to simulate collisions and identify the spatial ex
tent of the dominant fluctuations realistically. This will enable us to go from a 
qualitative understanding of the problem to a quantitative one. 
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