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Abstract 

We describe a system using the Calorimetry Data Unit (a 
32-channel multisample analog integrated circuit) to read out 
the charge ejected by secondary emission of a synchrotron beam 
from wires lying in its path. The_ wires comprise the Wire­
Imaging Synchrotron Radiation Detector (WISRD) in the SLC 
Extraction-Lipe Spectrometer. The primary module in the sys­
tem is a board containing 24 channels of charge sensitive ampli­
fication, shaping, sampling, multiplexing and digitization. This 
board also provides a fast analog measure of the charge distri­
bution across the wires. We discuss the design and performance 
of this system. 

Introduction 

The Wire-Imaging Synchrotron Radiation Detector 
(WISRD) Readout system provides a novel measurement of the 
Stanford Linear Collider (SLC) at the Stanford Linear Accel­
erator Center beam energies on a pulse-by-pulse basis by mea­
suring distributions of synchrotron radiation in the Extraction­
Line Spectrometers (ELS).1 The electron and positron beams 
leaving the Interaction Point (IP) are steered into ELS beam 
lines where each beam generates a pattern of synchrotron ra­
diation. (See Figure 1.) Each pattern includes an initial and 
a final stripe~ Each stripe falls on an array of 96 copper wires 
on 100 J.Lm centers, each 75 J.Lm diameter and 2 em long. Two 
such arrays comprise one WISRD. The nominal distance be­
tween synchrotron stripes is 27 em and is inversely proportional 
to the beam energy. The synchrotron radiation ejects charge 
from the wires. The total charge ejected from the wire array by 
each stripe is approximately 180 fC distributed over a few wires 
for 1010 electrons or positrons in an ideal primary beam of zero 
emittance, width and dispersion.2 (See Figure 2.) Measurement 
of the mass of the Z0 by the Mark II Detector3 at SLC requires 
measurement of the beam energies. Compared_ to the energy 
measurement available from the Phosphor Screen Monitors in 
the ELS, this new technique offers improved resolution, due to 
its i~proved acceptance for high energy synchrotron light with 
lower production angle. The distributions are also of interest to 
accelerator diagnostics. 
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Fig. 1. Elements of the Extraction Line Spectrom­
eter Beam Optics (electron beam into the south 
dump shown). 
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Fig. 2. Shown is a Monte Carlo histogram of the 
charge in arbitrary units as a function of wire 
number in an array. The above distribution cor­
responds to an ideal primary beam of zero emit­
tance, width and dispersion. The total charge for 
a primary beam of 1 oi0 electrons or positrons is 
predicted to be 180 JC. In op-eration the final stripe 
is expected to be four to six times wider than the 
initial stripe, due to dispersion, with the same to­
tal charge. 

Environment 

Each WISRD detector is about 600 feet downstream from 
the IP on opposite sides. They are within a few feet of their 
respective beam dumps and within inches of the beam pipes 
which deliver beams to the IP. Access is prohibited during oper­
ation and extremely limited by the accelerator schedule in any 
case. The radiation environment is harsh. Any cabling to the 
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detector must run near the beamline. Therefore, preamplifica­
tion,. shaping and digitization are performed near the detector 
by several Data Acquisition (DAQ) modules. The major design 
considerations for these modules were resolution, reliability in 
a high radiation and electronic background environment, speed 
and space constraints, and ease of repair given its remote loca­
tion. The resulting design achieves good modularity and packing 
density by putting 24 channels of readout and digitization per 
module. The digitized data are sent to CAMAC-based memory 
located near the counting house of the Mark II detec~or. 

Front End Electronics 

The WISRD readout system comprises an RF cabinet next 
to each WISRD detector connected by a 25-pair cable to a 
CAMAC-based control and readout crate in a CAMAC branch 
of the Mark II Detector readout system. Each RF cabinet is 
stainless steel with continuous Cu-Be leaf spring shielding gas­
kets in all openings (Equipto Electronics Corporation R3 type 
EMI/RFI cabinet) and contains a Eurocard crate, a power sup­
ply chassis, fans, EMI filters on the i15 VAC power, EMI fil­
ters on the DC voltages (+5V, ±15V, ±9~) and common-mode 
suppression on all signals between the'RF cabinet, the CAMAC 
crate and the detector. The Eurocard crate contains modules 
described below. Connection to the detector is made by eight 
cables 20 feet long, each comprising 25 coaxial cables (RG-174), 
in an overall shield of Zippertubing. ® 

The Eurocard crate contains eight DAQ modules, one Ana­
log module and one Calibration/Communication module. Each 
is of a 6 U double-width format, providing two backplane connec­
tors of 32 pairs each. One backplane connector receives bussed 
power, calibration and control signals. The other is used for 
routing individual interconnections. (See Figure 3.) Each wire 
array is attached to four DAQ modules. 

The DAQ module block diagram is shown in Figlire 4. It' 
contains: 

* 24 channels of charge-sensitive preamplifiers (LeCroy 
HQV-820) and shaping amplifiers. 

* summing circuitry to generate two linearly weighted sums 
using the outputs of the shaping amplifiers. 

* an Analytek AN-201 Calorimetry Data Unit3 (CDU): an 
analog memory which acts as a multi-channel sample-and­
hold and multiplexer. 

* a Burr-Brown ADC804 serial output 12-bit ADC. 

* a Signetics 82S105 FPLS sequencer which coordinates the 
CDU and ADC and encodes the serial data for transmis­
sion._ 

* attenuation and distribution for each of four bussed cali­
bration lines. 

The shaping amplifier output peaks at 5 ps in response to 
a step-function input. The equivalent noise charge evaluated at 
the output of the shaping amplifiers is about 1 fC. These outputs 
couple to the CDU and the weighted sums. 

On each beam pulse, the CDU takes two ~u~mtial samples 
per channel. Samples stored in the CDU are read out serially. 
The output of the CDU is a differential current which is coupled 
through a differential-current to voltage converter to the ADC. 
The nonlinearity of the CDU is five percent; as referenced to a 
line through endpoints of the transfer function over a dynamic 
range of 300 fC. 
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Fig. 3. The Front End Electronics is located iu an 
RF enclosure near each of two detectors, and com­
municates with electronics in a single CAMAC 
crate located near the Mark II Detector, 600 feet 
away. 

The serial data stream from the ADC is processed by the se­
quencer which forms a message consisting of a leading one bit, 12 
data bits, and a trailing parity bit. These bits are then Manch­
ester encoded for transmission. This sequencer also generates 
the control timing for the CDU readout and ADC conversion. 

The summing circuitry generates its two weighted sums, a 
a.pd b, as follows: Given a charge distribution across the sub­
array of wires associated with a DAQ module, q1,q2, ... q24: 

24 

b ex L)25 - k) · q~.; 
1.:=1 

The sums from individual DAQ boards are combined by the 
Analog module to form composite weighted sums, Am and Bm 
(middle) over the central48 wires, and A1 and B1 (total) over the 
entire 96 wires in an array. The ratio A-B /A+ B, either over the 
middle or the entire array, provides a measure of the deviation 
from the nominal stripe position in each array. The composite 
sum waveforms are transmitted back to the control room for 
viewing on an oscilloscope for diagnostic purposes. These signals 
provide an estimate of the charge yield of the wires and can be 
used to make a relative measure of the beam energies in real 
time. 
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Fig. 4. The Data Acquisition Module receives signals from !M wires in the WISRD array, amplifies 
and shapes the signals, and stores two samples of each shaped output in a parallel-in, serial-out 
analog memory (CDU) on every beam crossing. After data acquisition, the analog samples are 
digitized and Manchester-encoded for transmission. The Data Acquisition Module also forms two 
weighted sums of the charge distribution on its wires. 

The Eurocard crate is connected to the CAMAC-based con­
trol and readout using the Calibration/Communication module 
(in the Eurocard crate). The Cai/Comm module receives cali­
bration and control signals and buffers them onto the backplane 
of the Eurocard crate. It converts the TTL-level messages from 
the DAQs into low-impedance differential signals for transmis­
sion back to the CAMAC readout electronics and provides a 
local clock for the DAQ module sequencers. 

CAMAC Readout Electronics 

The CAMAC crate contains one Timing Generator module, 
two Cable I/0 modules and eight Two-Channel FIFO mod­
ules. Each WISRD requires a Cable 1/0 module and four Two­
Channel FIFOs. The Timing generator is common to both 
WISRDs. The Cable 1/0 modules are connected to their re­
spective cables via a formatting chassis which provides common­
mode suppression of all analog and digital signals. (See Fig­
ure 5.) 

Each Cable I/0 module interfaces its long cable to associ­
ated FIFO modules via front panel LEMO connections and to 
the Timing Generator via an Auxiliary Timing Bus (ATB) on 
the CAMAC P2 connector. In response to timing signals, the 
Cable 1/0 module sends command and control signals to its 
Cal/Comm module. It also provides a calibration voltage. In 
addition, it can substitute test data blocks loaded from CAMAC 
for the data from the DAQ modules for diagnostic purposes. 

The Two-Channel FIFO module decodes incoming messages 
and detects errors. In response to control signals on the ATB, 
the data of each decoded message are written into a FIFO mem­
ory 16 bits wide by 64 words deep. The data is stored in the 
lower 12 bits with any errors identified in the most significant 
four bits. 

The Timing Generator module accepts a data record writ­
ten from CAMAC describing a pulse train 16 bits wide and, in 
response to a beam-crossing signal, asserts the pulse train on 
the ATB. The data record consists of up to 1024 pairs of 16-bit 
words. Of the pair, one word contains the data to be asserted 
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Fig. 5. A single crate of CAMAC modules se111ices 
both WISRD detectors. The Timing Generator receives 
through CAMAC a list de~cribing its output sequence. On 
every beam crossing, it asserts its output sequence on the 
Auxiliary Timing Bus. These signals comprise timing 
and control for the other CAMAC modules and, through 
the Cable 1/0 modules, to the Front End Electronics. En­
coded data from the two detectors are decoded and stored 
for readout in the.'two-channel FIFO modules. 



and the other word contains a counter value which triggers the 
output of the next pair. A localS MHz clock drives the counter. 

Results 

The time between the beam crossing and completion of data 
acquisition into CAMAC is 1.1 ms providing beam pulse energy 
measurements at the maximum accelerator repetition rate of 
180Hz for every event logged by the Mark II Detector. Digital 
message transmission has been exercised, with no message errors 
in' more than 5 x 106 messages. We have used the composite 
sum signals to verify a Monte Carlo model of charge yield of 
one WISRD detector in the beamline. Beam pick-up and other 
external electronic backgrounds were undetectable. 

Conclusion 

The Wire-Imaging Synchrotron Radiation Detector Read­
out system provides a novel high-resolution, pulse-by-pulse mea­
surement of the Stanford Linear Collider (SLC) beam ener­
gies by measuring distributions of synchrotron radiation in the 
Extraction-Line Spectrometers. Full digital implementation of 
the system is in progress and is expected for the resumption of 
SLC operation in February 1989. 
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