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DERIVATION AND SOLUTION OF THE DISCRETE PRESSURE 
EQUATIONS 

FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS 

CHRISTOPHER R. ANDERSOW 

Abstract. In this paper we derive the equations for the pressure which must be solved in order to 
advance several commonly used finite difference approximations to the Navier-Stokes equations on rectan
gular domains. We consider the equations for both staggered and non-staggered grids. We present solution 
techniques for these equations which require on the order of O(N log N) operations where N is the number 
of points in the computational domain. 

1. Introduction. The equations describing the motion of a two dimensional incom
pressible fluid of constant density consist of the momentum equation, 

(1.1 ) ail ..".. "P A .. - + U . v U = - v + /.Iu.U at 
and the equation expressing incompressibility, 

( 1.2) 
au av 
-+-=0 az ay . 

Here il = (u, v) is the velocity field, P is the pressure and /.I is the coefficient of viscosity. 
We assume that the domain in which the equations are solved, n, is a rectangular region 
and the following initial and boundary conditions are specified, 

(1.3 ) il( z , y, 0) = ilo ( z , y) (z,y) en 

( 1.4) il( z , y, t) = ilb ( z, y) (z, y) e 00. 

One fundamental difficulty in advancing approximations to these equations in time 
IS that there is no explicit equation for the pressure. From a continuous viewpoint the 
pressure in (1.1) is determined by incompressibility constraint (1.2), but the translation 
of this fact into the discrete equations is somewhat tricky. Our goal here is to derive 
discrete equations for the pressure which will guarantee that discrete approximations to 
(1.1 )-( 1.2) are completely satisfied at every timestep in an explicit time marching scheme. 
The main idea is that if the non-linear terms are treated explicitly, then the determination 
of the pressure becomes a problem in linear algebra. In the completely discrete formulation 
there is no need to worry about the equations for the pressure on the boundary - they are 
determined by the choice of discretization of (1.1 )-( 1.2) and some basic principles of matri..'{ 
operations. The concept of obtaining equations for the pressure by focussing completely on 
the discrete equations is implicit in the work of Chorin [3] and has been advocated more 
recently by Strikwerda [10], Gresho and Sani [6] and Maday, Patera and Ronquist [8]. 

We are interested in the equations for the pressure because of a desire to construct "fast" 
methods for their solutions, i.e. methods which take on the order of O(N log N) operations 
where N is the number of unknowns in the computational domain. A fast solution procedure 
is highly desirable because the solution of the pressure equations must be carried 
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Energy Research, U.S. Dept. of Energy, under contract D E-AC03-i6SF00098 at the Lawrence Berkeley 
Laboratory, NSF Grant DMS86-03631, and A.P Sloan Foundation Grant BR-2683. 



out at each time step in the advancement of approximations to (1.1)-(1.2). The equations 
for the pressure are quite similar to those of the discrete Laplacian and it originally ap
peared that one could easily incorporate existing fast Laplace solvers to the design effective 
techniques for their solution. However, this task proved much more difficult than expected. 
It was realized that the primary difficulty comes about because the algebraic nature of the 
equations can change greatly depending on the type of grid used (staggered or unstaggered) 
and on the approximations to the divergence operator used. It became evident that in 
order to design an effective iterative or direct technique it was necessary to understand in 
detail the structure of these equations. In this paper we will derive the equations for three 
popular choices of grids and discretizations and discuss the algebraic nature of the resulting 
equations. In the first formulation the equations can be solved by an application of an 
existing fast solver. The equations in the other two cases cannot be solved by applications 
of standard Dirichlet and Neumann problem fast solvers. We therefore present an iterative 
method based on preconditioned conjugate gradients [4] and a direct method based on the 
method of matrix partitioning [7]. 

The focus of this paper is to work with the discrete approximations of (1.1)-(1.2) to 
obtain equations for the pressure, rather than finding continuous equations for the pressure 
(including boundary conditions) and then discretizing them. The key problem in working 
with the continuous pressure equations is the choice of boundary conditions. There has been 
much work on the formulation of good continuous boundary conditions, some of which leads 
to reasonable methods, but we avoid using these boundary conditions and the continuous 
approach in general for two reasons. Firstly, if one decides on the discrete equations for the 
divergence condition and the momentum equations, then the discrete pressure equations are 
determined automatically - there is no choice. The boundary equations one gets are not in
consistent with continuous boundary conditions obtained by taking the normal component 
of the momentum equation. In fact, as Gresho and Sani point out [6]. the boundary equa
tions associated with the three problems we consider here can be seen to arise from some 
approximation to Neumann derivative type boundary conditions. However, in the equations 
for the pressure on a non-staggered grid there is a decoupling of the equations onto sub
grids. While it is true that when all of the equations are taken together, the discretization 
appears to be an approximation to a Laplace operator with a Neumann boundary condi
tion, the equations on the subgrids do not necessarily have this nice resemblance. Second, 
if one does follow the continuous approach then there are typically several different discrete 
implementations which seem reasonable. If you happen to be lucky you will chose the im
plementation which guarantees the discrete divergence conditions are satisfied exactly, if 
you are not lucky, then the discrete divergence condition will not be satisfied. This problem 
is most simply illustrated by the set of equations which result from a staggered grid. As 
will be seen in section three the pressure equations are that of a discrete Laplacian with 
~eumann boundary conditions. The incorporation of Neumann boundary conditions is, 
however, done using first order approximations to the boundary normal derivative, rather 
than the customary second order approximations. 

We wish to emphasize that our goal is to focus on the discrete equations for the pressure 
in finite difference approximations to the Navier-Stokes equations and appropriate solutions 
procedures for them. There are other approaches to the problem of finding the pressure and 
advancing finite difference solutions of the Navier-Stokes equations in time. For example, if 
one is willing to relax the requirement that the divergence free condition be satisfied exactly, 
then this freedom can be used effectively to design numerical methods [10]. Alternatively 
the advancement of an approximation to the Navier-Stokes equations can proceed without 
the explicit determination (and solution) of equations for the pressure [2]. The idea is to 
project the solution at every time-step onto a divergence free basis - i.e. a set of functions 
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which all satisfy the divergence condition exactly. We are also not discussing approximations 
based on finite elements. One paper of interest is that of Maday, Patera and Ronquist [8] in 
which ideas and solution procedures similar to those given here are presented for the finite 

element formulation of the Stokes equations. (For more on the finite element approach see 
[5]). 

In the first section we show formally how to derive the equations for the pressure. In the 
second and third sections we explicitly derive the pressure equations for discretizations on 
staggered and non-staggered grids. In the fourth section we discuss fast solution procedures 
for these equations and present the results of some computational experiments. We follow 
this section with our conclusions and an appendix which gives the pressure equations and 
orthogonality conditions associated with a non-staggered grid. 

2. Construction of the Equations (I). In this section we construct the equations 
which determine the pressure when an explicit time stepping scheme is used to advance an 
approximation to the Navier-Stokes equations. The same approach can be use to construct 
equations for other time discretization methods. 

Assume the rectangular domain n is covered by a uniform grid of mesh width h and that 
a choice of th,e approximations of the individual terms in (1.1) and (1.2) has been, made. Let 
'V~ and 'V~ be the difference approximations to the derivatives used in the calculation of the 
gradient of the pressure, i.e. 'VP:::::: ('V~P, 'V~P) and let Il." be a difference approximation 
to the Laplacian. We denote by 0; and O~ the approximations to the derivatives used in 

the approximation of the divergence operator, so that :: + :: :::::: O~u + O~v. Consider the 

following explicit scheme to advance an approximation to (1.1) - (1.2) in time, 

(2.1) 

(2.2) 

Here N (tj") is an approximation to the non-linear terms in the momentum equation. 
The problem is now to solve (2.1)-(2.2) to obtain tj"+1. The method which is typically 
employed is to determine the pressure pn+1 first and then use (2.1) to find tj"+1. 

The first step in deriving the pressure equation consists of rewriting the incompressibilty 
constraint (2.2). The boundary values of the velocity are known so in equation (2.2) we 
may put the components of the equations which involve known quantities onto the right 
hand side. We obtain a set of equations of the form 

(2.3) 

The difference operators O~ an,d O~ are the terms in the divergence approximation which 
contain only unknown values of the velocity. For example, if we have a grid and velocities as 
in Figure 1, then using centered difference approximations to the incompressiblity constraint 
at the node (i, 1) would give 

(2.4) and 

We shall refer to the operator represented by (OZ, O~) as the reduced divergence operator. 
The known values on the boundary are already incorporated into the right hand side of(2.1), 
so there is no need to consider reduced versions of the finite difference operators involved in 
the discretization of the momentum equations. (The situation would be different, however, 
if we had a different time stepping scheme.) 
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A convenient way to determine the equations for the pressure is to write the equations 
(2.1) and (2.3) in the following block matrix form, 

(

I 0 

_Oh _Ih 
Dr Oy 

(2.5) 

The equations for the pressure are constructed by finding the Schur compliment of the (3,3) 
entry of the matrix on the left hand side of (2.5). (Forming the Schur compliment is the 
same as performing block Gaussian elimination.) This results in 

-(D~'V~ + D~'V~)PR+l = 
(2.6) 

F D~(uR - Ot(Nl(U") + lJo.h uR» - D~(vR - Ot(N2(V") + 1J00hVR» 
These are the equations which determine the pressure PR+!. 

-0 

-0 

U i-I.I 
-0 

yP 
+x 

0 0 

V 
1.2 

0 0 

U 

• 0 

-
Figure 1 

0 

0 

I- I. 1 

0 

J=3 

J=2 

J=l 

J=O 

The important point to realize is that in deriving the equations for the pressure no 
assumptions about the values of the pressure or its normal derivative on the boundary have 
been made. The particular combination of the gradient and divergence approximations 
used are all that is needed. Once these approximations are specified, there is suffici~nt 
information to obtain the pressure equations. It is very tempting to conclude that the 
I:'quationwhich determines the pressure is the discrete Laplacian, since (D~'V~ + D~'V~) 
appears to approximate div(grad) = 0., but this is precisely the conclusion one should be 
very careful of making. The reason for caution is that the operators D~ and D~ are not 
complete approximations to their differential counterparts at points near the boundaries 
- they are just pieces of the approximations. So, depending on the discretization of the 
gradient and divergence operators and the grid used (either staggered or non-staggered) 
the operators in (2.6) mayor may not combine to form the standard Laplacian at interior 
points. Furthermore if they do combine to form a "nice" Laplacian in the interior, then 
because reduced stencils occur in the discrete divergence operators at the boundaries, the 
pressure equations at the boundaries may not look like the discrete version of any typical 
boundary conditions for the discrete Laplacian. For some particular discretizations (one of 
which we shall discuss later) these operators do form a discrete Laplacian with recognizable 
boundary conditions, but in other discretizations, such as that used with a non-staggered 
grid they do not. 



The scheme for advancing the solution ofthe Navier-Stokes equations in time (2.1)-(2.2) 
can be viewed as a projection method similar to the one introduced by Chorin [3]. This 
is understood by writing the scheme in a fractional step fashion. First, the momentum 
equation is advanced without regard to the pressure, 

(2.7) 

This is followed by a step where the pressure gradient is taken into account and the incom
pressiblity constraint is enforced. 

(2.8) 

This last system of equations (2.8), correspond; og to the fractional step using the 
pressure, can be viewed as projection of the velocity field u n+1 onto a divergence free 
vector field. These equations can be rewritten as 

i.e. u n+1 is expressed as a divergence tree vector field and the gradient of a scaler. The 
soluti9n of (2.8) can be obtained by finding the pressure first and then constructing un+1. 

The equations on~ uses to find the pressure are identical to (2.6) (just eliminate u n+1 in 
(2.7)-(2.8». 

The generality of the above presentation obscures some important facts about the sys
tem of equations for the pressure. The first of which is that the equations which determine 
the pressure (2.6) are usually singular. This'is a manifestation of the fact that the pressure 
in the fluid is only determined up to a constant. Secondly, if the divergence and gradient 
operators are adjoints, then one can show that the equations which determine the pressure 
are semi-definite. We have 

(U'V,P)( ~ 
OA 

z: 

o 'VA) ( u ) I V'~ . v = 
OA 0 P 

11 

(u, u) + (u, 'VZP) + (v, v) + (v, V"ZP) + (OZu, P) + (OZ, P) 

(2.9) =(u,u)+(v,v)~O 

for all (u, v, P) if (u, V"~P) = -(O~u, P) and (v, V'~ P) = -( O~v, P). (This occurs, for 
. example, when one uses a staggered grid and central differencing.) Thus, the solution of 
the pressure equations using iterative methods based on relaxation are appropriate as long 
as care is taken concerning the null spaces of the equations. Unfortunately, other than 
examining the specific equations one gets for each discretization, the author knows of no 
general procedure for determining what the null spaces are. As two of the examples in the 
third part of this paper will show, this understanding of the null spaces and the orthogonality 
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conditions which must be satisfied by the right hand side of (2.6) can become somewhat 
complicated. 

One can formally derive equations for the pressure if other time discretizations are used. 
For example, it is common to make the evaluation of the discrete Laplacian implicit (for 
stability reasons). In this instance the equations in block form would be 

(2.10) 

'Ihe general structure of the equations for the pressure becomes one of the form 

While this system of equations has its own peculiarities, if lIot is small enough then the 
equations can be seen as a perturbation of those for the pressure equations when an explicit 
scheme is used. Thus, our conc~ntration on the explicit time-stepping scheme is not without 
merit, for the inverse of the pressure equations in this case may form a good approximate 
inverse to be used in the iterative solution of the pressure equations corresponding to the 
semi-implicit time stepping scheme. 

3. Construction of the Equations (II). In the equations for the pressure (2.6) 
we find that they are composed of finite difference operators. One can form the matrices 
which correspond to these operators and multiply them all out to get the equations for the 
pressure, but this is cumbersome. An easier way to construct the equations is to go through 
the procedure of determining the Schur compliment as indicated by (2.6), but when a matrix 
multiply is called for, don't think of it as· multiplying matrices, but think of it as applying 
a particular finite difference operator. The procedure is best illustrated with. a concrete 
example, and we therefore consider an implementation of the Navier-Stokes equations using 
a staggered grid. 

-
~r- C A C A C 11 C ~r-

0 0 0 0 

1.,. [] A Cl A C A [] ~,. 

L Go 0 0 

1.,. C 11 C 11 C 11 C ~. 

~o 0 0 
( 1 , 1 ) 

~,. C 11 C 11 C 11 C ~. 

- - - -- - - -
Figure 2 

In figure 2 we present the staggered grid used. The physical boundary is denoted by the 
solid lines around the perimeter. On this grid the pressure is tabulated at the square points, 
the u velocity at the triangle points, and the v velocity at the circle points. Note that this 
grid is a replication of a triplet of points consisting of one square, one triangle, and one 
circle. We number the unknowns as triplets so that all the variables in the region labelled 
( 1, 1) have subscripts (1, 1). This is an unambiguous labelling since distinct variables are 
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labelled at distinct types of grid points. This is more convenient for our presentation than 
the usual labelling of the points which uses half-indices. Let h be the spacing between 
successive pairs of similar points, and assume there are M sets of points in the ;t direction 
and N sets of points in the y direction. 

In the typical discretization of the equations of motion for this grid, one centers the 
approximation to the u component of the momentum equation about the triangle points, 
the v component of the momentum equation about the circle points, and the divergence 
condition at the square points. For example, an approximation to the u momentum equation 
at the point (i, j) in the interior would be, 

,,+1 " u·· - u·· 
I.) I.] + A". = 

6t I.) . 

pn++l1. - p"t
1 u~+1 . - 2u~· + u~ 1· ul~.)·+1 - 2u~· + u~· 

I.] I.) + ( I.] I.] 1- .] + I.) 1.]-1 ) 
h 1/ h2 h2 

Here we have used A~j to denote an approximation to the non-linear adveCtion term based 
on the velocities at time n. For specific examples of some choices of A~j see [9]. The 
equation for the v component of the momentum is similar. We abbreviate the description 
of the two momentum equations by 

(3.1) 
p~+1. _ p~tl 

u~+1 = u~. - 6t( 1+1.1 I.]) + 6t F~. 
1.1 1.1 h I,] 

(3.2) 
pntl _ p~+1 

v!'tl = v~. - 6t( 1.1+1 I.]) + 6t Gt:'. 
1.1 1.1 h 1.1 

The approximation to the incompressiblity condition is centered at the square points. 
[f we use second order centered approximations to the derivatives, then the equations for 
the interior square points are of the form . 

(3.3) 
U~+1 _ u~+1 . v!'tl _ v!,+1 

I.] 1-1.] + Iv 1.]-1 = 0 
h h 

For the square points nearest the boundary, the difference approximation is not the complete 
stencil as that above. For the bottom edge we would have the equation 

( 3.4) 
U"+l _ u~+1 v n+1 vb 

1.1 1-1.1 + .JL =...!:2. l'or . 23M 1 
h h h 14 '=" ... , -

and for the left and right bottom corner points, 

(3.j) 

(3.6) 

We have used uL and v~.j to denote the known boundary values of the u and v velocity. For 
the other sides and corner points the equations are similar to (3.5) - (3.6). The presence of 
boundary data has the effect of causing reduced stencils to be used near boundary points 
as well as giving rise to discrete equations which are not homogeneous - i.e. the boundary 
data enters in as a forcing function. 

The key to deriving equations for the pressure is to apply the reduced divergence op
erator (defined by the left hand sides of equations (3.3)-(3.6» to the momentum equations 
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(3.1)-(3.2). In essence, forming the Schur compliment in equation (2.5) is the same as tak
ing the discrete divergence of the momentum equation, but one does not use the complete 
discrete divergence operator - only that part defined by the reduced divergence operator. 

In deriving equations for the pressure we express (3.1)-(3.2) as 

(3.7) 
p~+1. _ p~+1 u~. u~+1 

1+1.1 1.1 = ~ _ ...!.:L _ F~. 
h 6t 6t 1.1 

(3.8) 
p~+1 _ p~+1 v!'. v!,+1 

1.1+ 1 1.1 _ -.!!L _ -.!!L- _ G~ . 
h - 6t 6t I.r 

We now apply the reduced divergence operators defined by equations similar to one of (3.3)
(3.6) at each point of the square grid. Depending on the form of the reduced divergence 
operator we get different equations. For points which are in the interior, the reduced 
divergence operator is given by (3.4) and this results in a pressure equation of the form 

p~+l. _ 2p~+1 + p~+l. p~+l _ 2p~+1 + p,:,+1 
(1+1.1 1.1· 1-1.1 + 1.1+1 1.1 1.1-1) = R;n. 

h 2 h2 .1 
(3.9) 

where R7,j is the reduced discrete divergence operator applied to the terms on the right 

hand side of (3.7) which don't involve.u~tl and v~r. For edge and corner points, we apply 
the operator defined by (3.5) and (3.6) r~pectively and we get equations of the form 

(3.10) 
pn++l1l - 2pn+1 1 + P~+lll P~+2 1 - p~+l 1 v~o 

( I. ~; 1-. + I. h
2 

•• 1 ) = R;~1 - 6t ~ 

for i = 2, 2, ... , M - 1 and 

(3.11) 
pn+l _ pn+l pn+l _ pn+l 1 u b vb 

( 2.1 1.1 + 1.2 1.1 .) = Rn . __ (~ + ~) 
h2 h2 1.1 6t h h 

for the bottom lower left corner. The equations for the other edges and corners' is similar. 
As before. the terms RiJ result from the reduced discrete divergence operator applied to 

.the right hand side of (3.7) which don't involve u~r and v~r. The boundary values have 

entered the equation because the application of the reduced divergence operator to uijl 
and v'?r does not yield zero but the values on the right hand side of (3.5)-(3.6). 

By inspection, the equations which determine the pressure are those of a discrete Lapla
cian centered at the square points with Neumann boundary conditions applied at the edges. 
[f one solves these equations for the pressure pn+l then defines u n+ 1 and vn~l using the (3.1) 
and (3.2) then it is easy to verify that un+1 and vn+1 satisfy the discrete incompressiblity 
constraint as well. 

There is a non-trivial null-space corresponding to these equations - namely the pressure 
field which is identically constant. It can be proven using the discrete maximum principle 
that this is the only null vector. Therefore, in order that there be a solution of the equa
tions determining the pressure we must have that the right hand side is orthogonal to this 
vector. The terms which are denoted by Rt.j are obtained by applying the reduced discrete 
divergence operator to a vector consisting of known terms in the momentum equation, and 
it can be verified that 
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I.e. this component of the right hand side is orthogonal to the constant vector. Thus, the 
only contribution to the inner product of the constant vector with the right hand side is 
the boundary velocity data, and we find that 

- L v?,o - L uL + L V?,N + L u~.j = 0 
i=l,M i=I,N i=l,M i=I,N 

must be satisfied. If we multiply this expression by h we see that this is a midpoint rule 
approximation to the condition that the integral of the normal velocity around the boundary 
vanishes. 

Although the equations which the pressure satisfy consist of a discrete Laplace operator 
with Neumann boundary conditions, these are not the standard second order equations one 
uses for Neumann .problems. Specifically, let us consider a point along the bottom boundary. 
The typical method for incorporating Neumann boundary conditions consists of eliminating 
the point of the difference stencil outside the domain by using a centered approximation to 
the derivative at the boundary. When this is carried out (and the equation multiplied by 
1/2 to make the system symmetric) the difference equation which results is of the form 

! p~+l _ 2P~+l +! p~+l !p~+l 
2 1+1,1 1,1 2 1-1,1 + 2 1,2 

h2 ·h2 

On the other hand, the difference equation (3.10) is of the form 

p~+l _ 3P~+l + p~+l p~+l 
1+1,1 1,1 1-1,1 + ~ 

h2 h2 • 

This would be the result if a first order one-sided difference approximation were used to . 
eliminate the point outside the domain. The fact that the boundary conditions are different 
illuminates why there is difficulty if one tries to determine the pressure from a continuous 
approach. If one started with the idea of using a Laplace operator with Neumann boundary 
conditions then one must chose between two (and possibly many more) ways of implementing 
this boun·dary condition. 1,\s can be seen in this example, there are two reasonable choices, 
one of which insures that the discrete divergence condition is satisfied, and the other which 
does not. 

L 
o )( 0 X 0 

C Il. C Il. C 

o )( 0 " 0 

cAe Il. C 

o )( 0 " 0 

Figure 3 

4. Equations For A Non-Staggered Grid. In this section we derive the equations 
for the pressure on a non-staggered grid. In Figure 3 we exhibit the non-staggered grid. We 
assume that the grid has an even number of panels in each direction (M in the z direction 
and N in the y direction). The numbering of the points is the same as that in the first 
quadrant of the Cartesian pl~ne - the (0,0) node being the lower left corner, the (1,0) node 
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being the one just to the right of it, etc .. In anticipation of the equations for the pressure, 
we have labelled the points by one of four symbols - a circle, a triangle, a square or a cross. 

The values of all the variables u, v, and P are associated with the same grid points. 
The discretization of both components of the momentum equation is centered about each 
point, so for example, at the point (i,i) the equations for the u component would have the 
form, 

u~H - u~ . P~+11 . - P~+11 . u~· - 2u~ . + u~ l' u~· I - 2u~ . + u~ . '.J '.J + A~. = _ .+ ,J 1- ,J + (,+l.J I,J .- ,) + I.J+ I,} .,}-1) 
6t I,} 2h 1/ h2 h2 

As in the last section 'we lump the discretization of the Laplacian and the non-linear terms 
into one forcing function and write the momentum equations as 

( 4.1) 
p"H . _ p~H . 

u~tl = u~. _ 6t( IH.} I-I.} + F~.) 
I,) I.} 2h I,} 

(4.2) 
p~tl _ p~tl 

v!"tl=v!'.-6t( I.J+l 1,}-l+G~.). 
I,J I.} 2h I,} 

These approximations are made for i = 1 to i = M - 1 and j = 1 to j = N - 1 - all points 
in the interior. 

At the boundary points the velocity is specified but the pressure is not. In order to 
find an equation for the pressure at boundary points it is necessary to approximate the 
divergence condition at the boundary as well. For the interior points, the incompressibility 
constraint is approximated using centered differences . 

( 4.3) = O. 

On the boundary one sided derivatives are used, and we shall discuss the equations for the 
pressure which result from two different choices. One choice is to use first order accurate 
approximations and the other to use second order accurate approximations. 

Consider now the first order accurate approximation. At the point (i,O) along the 
bottom, we use a discretization of the form 

( 4.4) 
" " v"+l v" ui+l.O - ui-l.0 + i.1 - i,O 0 

2h h =. 

Here we have denoted the known boundary velocity values by a super-script b. Similar 
approximations hold for the other edges and corners. To define the reduced divergence 
operator defined by this approximation, we write the incompressibilty equation with the 
unknown values of u"+l and v"+1 on the left hand side and the boundary data terms on 
the right hand side. For (4.4) the equation becomes 

( 4.5) 
V!,,+1 U" - u~ v~ 

•. 1 .+ 1.0 .-1.0 + ..!.:2. 
-h- = - 2h h . 

Just as in the previous section, the procedure to determine the pressure equations 
consists of applying the reduced divergence operator to (4.1)- (4.2) and rearranging terms. 
The result of this procedure is a set of four uncoupled systems of equations. Each set of 
equations corresponds to a subgrid which consists of points labelled with one of the symbols 
in Figure 3. To describe the equations for each of these subgrids we distinguish qetween 
boundary points and interior points. By boundary points we shall mean the points of the 
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subgrid which are on the physical boundary, or, in the case that the subgrid does not extend 
to the physical boundary, then those points which are closest to the boundary. 

The equation for the pressure at the interior points of each of the four subgrids is the 
same, namely 

( 4.6) 
Pn+l 2pn+l + pn+l pn+l 2pn+l pn+l '+2 . - .. . 2 . . '+2 - ., + .. 2 

( 
I.J I.J 1- .J + I.J I.J I,)- ) = D~. 

4~ 4~ ~~J 

The right hand side of this equation R~j is given by 

(4.7) 
Fn+l Fn+l g'+l G'+ 1 

a;n. = i+l,j - i-l,j + . i,j+l - i,j-l 
.} 2h 2h 

The equation (4.6) is just the standard five point Laplacian, but with a mesh spacing of 2h 
and not h. 

The equations for the boundary points differ depending on the particular grid. On the 
grid denoted by circles, the application of the reduced divergence operator along the bottom 
boundary points yields 

p,:,+l _ 2P,:,+l + p,:,+1 p,:,+1 _ pn+l v~ 
. (1+2.1 1.1 1-2.1 + 1,3 1.1) = D~ _ ~ 

4h2 4h2 ~~.1 2h ( 4.8) 

Similar equations hold for the other three edges. At the lower left corner the equation 
becomes' 

( 4.9) 
pn+l _ pn+l pn+l _ pn+l uiJ vb 

(3.1 1.1 + 1,3 1.1) = 'Rn _ . ...2:!., ~ ....!e 
4h2 4h2 . 1,1 2h 2h 

The other corners are analogous. 
For the square points, along the left and right edges i = 2 and i = M - 1, the equations 

are of the form (4.8). For the top and bottom edges, there is only coupling between the 
boundary point and one interior point. Along the bottom, for example, the equations are 

pn+l _ p,:,+1 u~ _ u~ v~ 
1.2 1,0 = D~ + (1+1,0 1-1.0) _ ~ 

2h2 ~~,O 2h h ( 4.10) 

In order to make the complete system of equations symmetric, this last equation should 
be multiplied by t. When we refer to (4.10) later on, we will assume that we are working 
with the equation after this scaling. For the cross points, the boundary equations are a 
rotated version of the square points. On the top and bottom, we have equations of the form 
(4.8) (with the i and j indices suitably interchanged) while on the left and right we have 
equations of the form (4.10). Finally, for the boundary triangle points, all of the boundary 
equations are of the form (4.10). We note that for the corner points of the triangle subgrid 
we do not get an equation for the pressure. This does not cause any problems because in 
our formation of the pressure gradients in the momentum equations, these corner points 
are not needed. 

When the equations associated with each subgrid are lumped together and the complete 
s.ystem is expressed in block matrix form, then the structure of the equations is given by 

(4.11) (T 
o 
o 

A3,3 

o 

o 
o 
o 

A .. ,4 

For future reference we shall assume that the equations associated with Au, A2,2, A3•3 

and A ... 4 are the triangle, box, cross, and circle points respectively. Each set of diagonal 
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blocks Ai.i is a discretization of the Laplacian (with mesh width 2h) in the interior, but 
only the boundary equations for the circle subgrid (A4.4) resemble an approximation to the 
Laplacian with Neumann boundary conditions. For each of the four sets of equations there 
is a non-trivial null space consisting of the constant vector. It can be shown (using the 
discrete maximum principle) that this null vector is unique. The null space for the whole 
system is therefore four dimensional. Associated with the existence of this null space are four 
orthogonality conditions which must be satisfied by the right hand side of these equations. 
As in the staggered grid case the terms on the right hand side of the equations corresponding 
to ~j are orthogonal to each of these null vectors. The orthogonality condition therefore 
involves only the boundary data and we get the following separate conditions. 

For the circle points we have the condition 

M-l N-l 

L (-vt.o + Vt.N) + L (-uL + u~J) = 0, 
i=I.3 •... j=1.3 ••.. 

for the square points, 

M-l "N-2 u" u" N-2 u" L (-vto + vtN) - u~.o - . E ug.j - ~N.+ ~.o + . L u~.j + ~.N = 0, 
i=I.3.... J=2.4.... J=2.4, .•. 

for the cross points, 

" M-2 v" v" M-2 " N-l 
- v~o _ . L: vto - ~.o + °2N + . L vtN + V~.N + L (-ug.j + u~.j) = O. 

1=2.4,... 1=0,2,... j=I,3 •... 

and for the triangle points 

M-2 N-2 

L: (-vto + Vt.N) + L: (-ug,j + u~.j)-
i=2.4 •... j=2.4, .•• 

l( "" "" "" " " ) 0 2' UI.O - uM-I.O + uI.N - uM-I.N + vO.l - vO.N-I + vM.l - v,~.N-l = 

If the boundary velocities satisfy a discrete divergence condition in the corners, i.e. if 
in the lower left corner 

" II " " vO.l - vO.O + u1.0 - uo.O 
h h = 0 

and related approximations hold for the other corners, then the 'extra' terms in this last 
condition can be incorporated into the ~um. The result is the following condition, 

" N-2 u" u" N-2 U" 
uo.o ""''' O.N + .\1.0 + "'" II + M.N --2- - . L...- uO,j - -2- 2 . L...- uM.j -2-

J=2....... J=2.4 •... 

" M-2 v" v" M-2 " 
vo.o ""''' .\1.0 + O.N + "'" " + vM.N 0 --2- - . L...- vi.O - -2- T . L...- vi.N -2- = 

1=2.4.... 1=0.2 •... 

(The requirement that the divergence in the corners vanish is actually too stringent - it can 
be ·replaced by the requirement that the sum of the discrete divergence in the four corners 
be zero.) As is the case with the staggered grid, when these conditions are multiplied 
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by 2h, the terms in the conditions can be see to be either a midpoint or trapezoidal rule 
approximation to the integral of the normal velocity around the boundary. 

In view of the structure of these equations and the existence of four separate orthogo
nality conditions, it is clear why there has been difficulty in solving these equations. Firstly, 
if one attempts to find the pressure by solving a five point Laplacian with h spacing instead 
of 2h spacing then it unlikely this will work. The reason is that the h spaced Laplacian is 
coupling unknowns which are not coupled in the algebraic system which defines the pressure. 
If the procedure works at all, it is because the solution of the equations on the hand 2h 
grids are presumably close to some continuous solution, and hence are close to each other. 
Another difficulty which arises is the fact that there is a distinct null space associated with 
each grid. On each of these grids. the pressure is defined up to a constant. If one selects 
different constants for the different grids, then the complete pressure field will appear to 
have oscillations on the order of the mesh spacing. Although this appears to be a disaster, 
this may not have an adverse effect on the evolution in the momentum equation. Here the 
difficulty does not appear because the gradients in the momentum equation are formed with 
pressure values which share the same constant. If one uses the pressure from different grids 
to calculate some other quantity, then the differing constants will certainly have an adverse 
effect. 

We now turn to the equations which result from the use of a second order approximation 
to the divergence condition at the boundary. This approximation is one suggested by Chorin 
in [3]. Along the lower boundary the divergence condition is approximated by an equation 
of the form 

(4.12) 
U~+l 0 - U~ 10 -!V!'2+

1 + 2V!'+1 1 - ~V~O 
I. 1-. + 2 I. . I. . 2 I. = O. 

2h h 

instead of (4.4). Using the centered difference approximation for interior points and (4.12) 
for the points on the physical boundary allows us to define a reduced divergence operator. 
Applying this operator to the momentum equation and rearranging terms allows us to 
construct the equations. As above, in the equations arising from the use of first order 
approximations, this procedure gives rise to four sets of equations, each set corresponding 
to one of the subgrids labelled by the symbols in Figure 3. We now briefly describe the 
equations and their structure, and leave the detailed specification to the appendix. 

The only difference in the pressure equations associated with the first and second order 
approximation to the divergence operator is at grid points on the physical boundary. For the 
interior points the equations are the same as those for the first order approximation (4.6). 
Similarly, at edge points of the individual grids which are not on the physical boundary, 
such as circle edge points or the top and bottom cross edge points, the equations are of the 
type given by (4.8)-(4.9). However, for the square points on the bottom edge, the equations 
obtained by applying the discrete diyergence operator to the momentum equation are of 
the form 

(4.13) 
pn+l _ pn+l 

1.2 1.0 

h2 

p~+l _ p~+l b b 3 b 
1.3 1.1 _ ui+l.O - ui_l.O __ vi.O + Rn 

4h2 - 2h 2 h 1.0 

This form of equation holds for the top and bottom edge square points, the left and right 
edge cross points, and all the edge triangle points. What can be seen from this equation is 
that there is coupling of the values of the pressure on the boundary to the three pressure 
values perpendicular to the boundary. This coupling implies that the equations associated 
with the separate component grids (circles, square, cross, and triangle) are not distinct as in 
th,e first order case. T.he precise structure is more easily seen when the equations are written 
in block matrix fashion. If PI, P2, P3 and P 4 represent the unknowns on the triangle, cross, 
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square and circle subgrids respectively then the equations have the form, 

(T 8 1,2 8 1 ,3 0 

) O~) on (4.14) A2,2 0 82,4 
0 A3,3 83,4 = 
0 0 A4,4 

If the boundary equations of the form (.4.13) are multiplied by i then the diagonal 
blocks in (4.14) are the same as those for the first order approximation. As is readily 
apparent from the matrix form, the equations considered as a whole are not symmetric. 
However, the fact that the system of equations is upper block diagonal suggests that they 
should be solved iil the following ~uccession. 

( 4.15) A4,4 P4 = F4 

( 4.16) A3,3 P3 = F3 - 83,4 P4 
( 4.17) A2,2 P2 = F2 - 82,4 P4 
( 4.18) Al,l PI = Fl - 8 1,2 P2 - 8 1,3 P3 

In each of these subsystems the matrices A.,. are all symmetric and semi-definite. It 
can be verified that associated with each A.,. a one dimensional null space. Hence, the null 
space is four dimensional and the problems arising from this are the same as that for the 
non.;.staggered grid. with a first order approximation to the divergence at the boundary. The 
n~ll space for each A.,. is spanned by the vector consisting of all ones. The existence of this 
null vector leads to orthogonality conditions on the right hand sides of (4.15)-(4.18). These 
conditions are also given in the appendix. What is interesting about the orthogonality 
conditions is the fact that although the right hand sides of equations (4.16)-(4.18) contain 
values of the pressure, the conditions do not involve the pressure at all, they only involve 
the values of the velocity on the boundary. 

5. Solution Of The Pressure Equations. In this section we describe numerical 
techniques which can be applied to solve the systems of equations which were described 
in the last two sections. Firstly, if one uses a staggered grid then the set of equations 
can be solved by a. direct application of an existing fast solver. We used the subroutine 
BLKTRI from the NCAR set of routines FISHPACK. This routine was used rather than the 
customary 5-point Laplace solver in the package because the Neumann boundary conditions 
associated with the standard solver were implemented with a second order, rather than first 
order, approximation to normal derivatives at the boundary. If one does not have access 
to a fast solver which can implement the correct boundary conditions, then the techniques 
which we will now describe for the other sets of equations can be employed. 

The solution for either of the the non-staggered grid equations (4.11) and (4.14) requires 
the solution of four different sub-systems of equations - one associated with each of the 
diagonal blocks A',i. Each set of equations consists of a discrete 5-point laplacian at interior 
points and different types of equations at the boundary points. For three of the four systems 
it is not apparent that their boundary equations can be cast as implementations of any 
standard boundary condition, so it is unlikely that an existing fast solver is available for 
their solution. In order to construct a fast method out of existing routines, it is natural 
to consider iterative methods. We chose to use the method of pre-conditioned conjugate 
gradients [4]. This iterative scheme is easy to implement and, as will be discussed below, is 
efficient computationally. After a discussion of the iterative approach we outline a procedure 
for constructing a direct fast solver. The construction of this fast solver requires an initial 
work effort of O(N3/2) (where N is the number of points in the whole domain). After the 
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initial construction, the application of the direct method is on the order of a fast solver for a 
Dirichlet problem in the domain - typically O(N log N). Since the equations for the pressure 
are solved at every timestep it may be worth the extra initial effort to construct the direct 
method. In three dimensions, there are analogous direct procedures for the equations which 
arise, but the work (after initialization) is on the order of N4/ 3 which may be unsatisfactory. 
Iterative methods might therefore be the optimal choice for three dimensional calculations. 

We begin by reviewing the technique of pre-conditioned conjugate gradients. If a real 
symmetric definite system to be solved is of the form 

Az = b 

and M is a symmetric definite approximation to A whose inverse is readily computed, then 
preconditioned conjugate gradients is derived by applying the standard conjugate gradient 
method to the prepared system 

M-1Az = M- 1b 

while using the inner product defined by < ',' >= ( " M.). Here (-,.) is the standard 
inner product. The systems we are solving are real symmetric but only semi-definite, so 
some care must be taken in the implementation of the iteration. If one is using a definite 
preconditioner then no problems arise as long as the initial iterate is orthogonal to the null 
space of the equations. However, in our procedure we are using a preconditioner which is 
indefinite (one corresponding to a discrete Neumann problem) and so we must add an extra 
step. Let c denote the null vector for the system and our preconditioner. (In the systems 
of interest here as well as for the preconditioner, the null space is one dimensional with the 
null vector consisting of the constant vector.) The steps of the iteration, written using the 
standard inner product ( " . ) are then as follows -

rO = b-Azo zO initial guess 

For k = 1,2,3,,, . 

zlc = M-1rlc 

zlc 
Ic (zlc, C) 

= z ---(c, C) 

pic = 
(zle, ,.k) 

(zle-l, ,-k-l) k ~ 1 {fl = 0 

pic = zle + pie ple-l 

alc 
(zle,zle) 

= (pic, Api') 
zlc+l = zlc +alcplc 

rlc+l = ric _ ale Aplc. 

The system of equations corresponding to the circle points ( A4,4 ) can be solved directly 
using the subroutine BLKTRI mentioned above. For the remaining sets of equations we 
used the pre-conditioned conjugate gradient method with the inverse of A4 •4 as the precon
ditioner. This choice of preconditioner corresponds to using a discrete Neumann problem 
with a 2h stencil as the approximate operator M. 

For a test problem we chose the domain n to be the unit square. The basic step in the 
advancement of the Navier-Stokes equations can be written as 

-,,+1 
(5.1) T = F(u") - (V'~, V'~)pn+l 
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(5.2) 

We therefore set 6t = 1, un+l = 0 on an and 

The specification of these quantities allows us to construct the right hand sides of (4.11) 
and (4.14) and hence determines a test problem. The ultimate goal in the determination of 
the pressure is to u~ it iri equation (5.1) so that the vector field u n+l can be determined 
which is divergence free. We therefore monitored the divergence of the velocity field which 
was obtained from the current pressure iterate and equation (5.1) and used this to judge 
the quality of the computed solution. 

In our first set of experiments we solved the system (4.11) corresponding to the non
staggered grid with first order approximations to the divergence condition at the boundaries. 
Since the equations are uncoupled there is no need to solve them in any particular order, but 
we chose to solve for the circle points first (which can be done without iteration) and then 
used interpolations of the pressure values on this grid to construct initial guesses for the 
iterative solution of system of equations associated with the other grids. We used several 
different sized grids and found that the discrete L2 norm the divergence of the velocity 
field corresponding to the circle points was always less than 1 x 10-8 . This value gives the 
approximate order of the accuracy on our machine of the fast solver BLKTRI which we 
used. 

10' ,.....,-________ --_--.., 

1(18 , 

'" 10-' __ ~'"'~ -........ , .... " 
-' .. ' ,,,--,,,, .......... \ 

··.~_--e . ... '. , ". 
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\ 
\. 
\ 
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Figure 4 

CG Iterations vs. L2 Norm of Discrete Divergence 

-----: Neumann Preconditioner (2h) for Al,l. 

- - -: Neumann Preconditioner (h) for complete system . 

. . . . ... . . ... : No Preconditioner for complete system. 

As we carried out the iterative solution of the other. three systems of equations we were 
interested in two aspects of the computation. The first was the decay of the divergence 
with each iteration, and the second the effect of the mesh size on the rate of decay of 
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the divergence. In our problem, the iteration process associated with the triangle points 
AI,I had the slowest rate of decay. This is expe~ted since it is for this problem that our 
preconditioner deviates most from the actual operator. We therefore report on the results 
for this grid only - the values for the other grids are more favorable. In Figure 4, the solid 
line shows the L2 norm of the divergence of the velocity field as a function of the number of 
iterations for a problem which had 33 grid points in each direction. It took twelve iterations 
to achieve a level of accuracy comparable to that which was obtained on the circle points 
using the fast direct solver. In Table 1 we present the number of iterations needed to obtain 
a divergence of less than 1 x 10-8 as the size of the grid was changed. As we can see, 
there is a slight growth in the number of iterations as the mesh size is increased but nothing 
substantial. We were pleased with these results for we expected a much more rapid decrease 
in efficiency. 

In next set of experiments we solved the system (4.14) corresponding to the non
staggered grid with a second order approximations to the divergence condition at the bound
aries. [n the solution of these equations it is necessary to solve them in the order given 
by (4.15)-(4.18). As we solved each of the systems we used interpolates of the previously 
determined values of the pressure to obtain the starting vector. There is not much to report 
except that the behavior of the iterative process was essentially identical to that of the case 
described just above and indicated by the solid line in Figure 4 and the results in Table 1. 
Since the equations we are solving are identical except for a change in the right hand sides, 
this is expected. 

In the third set of experiments we solved the equations (4.11) as a whole without regard 
to the fact that they are really four decoupled systems of equations. Our goal here was to 

. duplicate some early attempts we made at the iterative solution of the pressure equations. 
We chose preconditioned conjugate gradients and used a discrete Neumann problem with 
mesh width h as the preconditioner. In order to get the iterative method to converge at 
all we needed to orthogonalize the iterates with respect to the four dimensional null space 
associated with the problem. This aspect of the equations could not be ignored. The dotted 
lines in Figure 4 shows the L2 norm of the divergence of the velocity field as a function of 
the number of iterates obtained using this preconditioner. The dashed line indicates the 
results which ate obtained when the whole system is solved using conjugate gradients with 

. no preconditioning. As can be seen from the figure, the iterative method based on a global 
Neumann preconditioner was actually worse than a method with no preconditioning at all! 
This might be expected since the Neumann preconditioner is coupling unknowns together 
which are completely decoupled in the system which is being solved. We did not even 
attempt an iterative solution of the equations (4.14) as a whole because the system is not 
symmetric and the method of conjugate gradients is not applicable. 

Grid Size Iterations L': Norm of Divergence 
11 x 17 1 6.71 x 10- 16 

33 x 33 11 8.91 x 10-)1 
41 x 41 14 2.12 x lO- ll 

65 x 65 16 4.51 x 10-)1 

Table 1 

The iteration method for the three sets of equations associated with AI,I, A2,2 and A3,3 
we have described is easy to implement and the extensions to three dimensional calculations 
should not be difficult. We choose for our experiments a preconditioner which happened to 
be handy, and it is certainly not the best. For another preconditioner which works better 
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see [1]. We now discuss a direct method for solving the equations. 
In each of the different systems we must solve, the equations correspond to a standard 

five-point Laplace equation in the interior but with varied equations at the boundaries. The 
procedure we suggest is an implementation of the method of matrix partitioning [7]. We 
construct the solution by combining a solution of the interior equations - a solution which 
is obtained by solving a standard Dirichlet problem - and the solution of a dense system of 
equat~ons for the boundary values. The derivation of the equations one must solve to carry 
out this procedure can be accomplished using matrix calculus, but we derive the equations 
in a different fashion, one which is perhaps easier to understand and which facilitates the 
implementation. For more 'concise details on this type of procedure, see [1]. 

To be specific we shall concentrate on the solving a set of equations which are described 
by 

(5.3) Pi+1.i - 2Pi,i + Pi-l,i + Pi,i+} - 2Pi,i + Pi,i-l _ ~ .. 
h2 h2 - JI,) 

at interior points - i.e. for i = 1, ... , nand j = 1, ... ,n. For the top and bottom points the 
equations are determined by a three point stencil and have the form, . 

Pi+},n - 2Pi,n + Pi-l,n + -Pi,n + Pi,n-l ~ = Ji,n h2 h2 

(5.4) 

for i = 1,.:., n. At the left and right edges as well as the corners, the equations are 
determined by a two point stencil and have the form 

-Po,i + Pl,i - f . 
h2 - I,) 

(5.5) -,Pn,i + Pn-l,i 
h2 = In,j 

for j = 0, ... ,n. These equations are those associated with the cross points. We assume 
that the right hand side of these equations is orthogonal to the constant vector - this ensures 
that the system posesses a solution. 

For simplicity we take the number of panels to be the same in each direction and the 
domain to be square with sides of length a. We set h = a/no The method we describe can 
easily be modified to accommodate different numbers of points as well as different mesh 
sizes in each direction. 

[n the first step of the procedure we compute a solution p by solving (5.3) for the interior 
points and setting p = 0 at the boundary points. This problem is just a standard Dirichlet 
problem in the domain with homogeneous boundary conditions. The next step is to add to 
this solution a correction of the form 

(5.6) 

"-1 k7rih "-1 J.:7rih 
1i,j = L akZk(n - j) sin(--) + L bkZk(i) sin(--) + 

k=l a k=l . a 

n-l J.:·h "-1 k 'h L CkZk( n - i) sin( .2L) + L dkZk( i) sin( ..:!L) + 
~l a ~1 a 

60,0 el + 60:n e2 + 6",0 e3 + 6n ,n e4 
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Here oi,i is the Kronicker 0 function. The function Zk( i) is given by 

(5.7) 

with 

(5.8) 
..\k = 2 + 4sin(~)2 - V(2 + 4sin(~)2)2 - 4) 

2 

Now each ofthe functions appearing in the sums is a function which is discrete harmonic 
at all interior points - it satisfies (5.3) with a zero right hand side. On boundary points 
it is zero except on one side where it takes on the values sine k:ih) or sine k:ih). We need 
four sets of such functions, one set for each side. In the representation (5.6) the coefficients 
ak, bk , Ck and dk correspond to correction functions associated with the top, bottom, right, 
and left edges respectively. The functions with coefficients ei are used to correct the corner 
values. 

The reason for chasing this particular form for the correction is that at interior points, 
the equations for the correction 

(5.9) Af=f-Ap=r 

where ris the residual, are ,automatically satis~ed for any choice of the undetermined coeffi
cients in (5.6). Thus, we need only concern ourselves with the equations at the boundari~s. 
We obtain the equations which determine the coefficients ak, ble, CIe, die and ele by requiring 
that (5.4) and (5.5) acting on the sum u + 1 hold at each of the boundary points. These 
equations form the 5 by 5 block system 

0 1,1 E 1,2 E 1,3 E 1,4 0 1,5 ale 

E2,l 02,2 E 2,3 E2,4 02,5 ble 
(5.10) E3,l E 3,2 .03,3 E 3,4 03,5 air = r 

E4,l E4,2 E4,3 0 4,4 0 4,5 d: 
05,1 05,2 05,3 Os,4 Os,s eic 

Here we have grouped together the equations corresponding to the top, bottom, right, 
left and corner points. The size of each diagonal block Di,i is (n - 1) x (n - 1) where 
n is the number of panels on a side. The block Os,s is of size 4 x 4. There are several 
options for solving (5.10). The simplest one is to construct this system and then, using an 
LU decomposition solve it. The initial cost of settin~ up the equations and forming the LU 
decomposition is O( nJ ), which implies a cost of O( N r) if N is the total number of unknowns 
in the domain. Once the L U decomposition is constructed, the order of operations necessary 
to solve the system becomes O(N) and so subsequent solutions of (5.10) can be determined 
efficiently. 

When the equations (5.10) are solved, the coefficients of the correction are determined, 
and the complete solution of the pressure equations is given by the sum 

P = 1 +p. 

However, instead of using (5.6) to evaluate 1 in the interior and then adding it to p, it is 
computationally more efficient to solve (5.3) once again but with boundary values given by 
p = 1 + P = 1· The cost of this latter procedure is O(N) plus the cost of a fast Dirichlet 

3 
solve in the interior, while that of using (5.6) to obtain all the interior values is O(Nr). 
If the more efficient scheme is followed to compose p from 1 and p, then the net result 
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is a method which decomposes the problem of solving (5.3)-(5.5) into a direct procedure 
consisting of solving a dense system of equations on the 'order of the number of boundary 
points and solving two Dirichlet problem in the interior. 

There are some details concerning the formation of the LU decompostion of (5.10) which 
are important. To facilitate the construction of the LU decomposition we note that each of 
the blocks Di,i as well as Et ,2, E2,t. E3,4, E4,3 become diagonal when (5.10) is multiplied by 
the matrix Tr of the form 

T1,l 

(5.11) Tr= T3,3 

I 

where each of the diagonal blocks n,; is the matrix representing the discrete sin transform 
of n - 1 points, i.e. Ti,i = sin(i"'jI'). This transformation also renders the matrix (5.10) 
symmetric. Let H be the system of equations in (5.10) which results after the multiplication 
by Tr. The LU decomposition of the matrix system H must be done carefully because the 
matrix is singular. The singularity comes about because the complete problem we are 
attempting to solve is singular (the constant vector is a null vector for (5.3) -(5.5» and the 
matrix system H inherits this singularity. However, with matrix analysis [1] it can be shown 
that the dimension·of the null space for H is no larger than that of the original system, and 
hence the dimension of the null space is one. Furthermore, the null vector for H is given by 

~_ '( Tr(tfi) ) s - _ 
q2 

where tfi is a constant vector of size 4n - 4 and q;. is the constant vector of size 4. Since 
the null vector is known we can circumvent the difficulty which it imposes by solving' 

instead of solving Hz = b. This modified set of equations is strictly negative definite and 
its solution satisfies the equations 

zt s= a 

Thus, before computing the LU decomposition we merely add to H the term -sst. This 
allows us to avoid the difficulties which arise because of the singularity of the system. 

There are other ways to solve equations (5.10). One technique is to use the precondi
tioned conjugate gradient method with the inverse of the diagonal of H as the preconditioner. 
[n the application of such an iterative scheme it appears that it would take O( n3 ) operations 
to carry out each iteration (the cost of a matrix vector multiply for H), but in reality the 
iteration can be carried out with the cost of a fast solve on the entire domain. The details 
of this are given in [1]. 

The direct method we have outlined can be used to solve aU of the four systems associ
ated with the determination of the pressure on a non-staggered mesh. The method can also 
be used to solve the pressure equations for the staggered mesh. If we ignore the start up 
costs, then in two dimensions, the direct scheme given here has an operation count which 
is on the order of the implementation of a fast solver for the domain. In three dimensions 
the operation count is not so favorable, and iterative methods may be more efficient. 
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6. Conclusions. We have presented the discrete equations for the pressure which must 
be solved in order to advance several commonly used finite difference approximations to the 
Navier-Stokes equations. The equations can be derived from a linear algebra viewpoint by 
writing the momentum and incompressibility conditions in block matrix form and then de
termining the pressure equations by constructing a Schur compliment. The derivation gives 
the equation for the pressure as combination of discrete divergence and gradient operators. 
There is no need to specify any sort of pressure boundary conditions. 

The solution of the resulting pressure equations presents some challenges. Problems 
arise because the structure of the pressure equations can change dramatically depending 
on choice of the discretization or the type of grid used. We have gone through three pop
ular choices of discretizations to illustrate this. For a staggered grid we have rederived 
the fact that the equations which determine the pressure correspond to a Laplace operator 
with Neumann boundary conditions. Associated with this system is a one-dimensional null 
space corresponding to the constant solution. For the non-staggered grid with a first order 
approximation to the divergence condition at the boundary the equations become four un

coupled Laplace operators with boundary conditions which, depending on the system, do 
and do not look like Neumann boundary conditions. Associated with each of the. subsys
tems is a separate null space, and so there are four undetermined constants in the pressure 
solution. If one uses a non-staggered grid with second order approximations to the diver
gence conditions, then the resulting system is non-symmetric. However, it can be solved as 
a sequence of four subproblems each involving symmetric operators. Associated with each 
subsystem is a one dimensional null space, and so there are tour undetermined constants in 
the pressure solution as well. In the case of the staggered grid, the equations can be solved 
by a direct application of a fast Laplace solver. For the equations on a n'on-staggered grid 
we showed that the technique of preconditioned conjugate gradients can be employed to 
construct fast methods for their solution. We have also outlined a direct method for the 
solution of these systems. The direct method combines a solution of a dense linear system 
(of size the number of boundary points) and two solutions of a Dirichlet problem in the inte
rior of the domain. As our experiments indicated, the success in constructing fast iterative 
methods depended crucially on understanding the s~ructure of the pressure equations. The 
construction of the direct method would also not have been possible without the detailed 
knowledge these systems. Listings of the programs used in this paper are available from the 
author. 
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Appendix 

Pressure Equations and Orthogonality Conditions For A Non-Staggered Grid 

In this appendix we present the equations for the pressure associated with a non
staggered grid when a second order approximation to the divergence operator at the bound
aries is used. We describe the equations with reference to the grid in Figure 3. This grid 
has M panels in the z direction and N panels in the y direction. The number of panels 
must be even in each direction. We also assume that the mesh width h in each direction is 
the same. The grid points are numbered in each direction from i = 0 to i = N, and j = 0 to 
j = N. We shall present the equations by giving them for each of the sets of points denoted 
by circles, squares, triangles, and crosses. This is a natural grouping which leads to the 
block system of equations (4.14). In writing these equations we are assuming that one is 
solving them in the sequence given by (4.15)-(4.18) and so some values of the pressure occur 
on the right hand side of the equality. When written in this way, the equations defining the 
operators Ai,i for both (4.11) and (4.14) are expressed by the left hand side of the equations. 
We are therefore also exhibiting the equations for the non-staggered grid which occur when 
one uses a first order approximation to the divergence operator at the boundary. The right 
hand sides must still be changed for (4.11), but this is relatively straight forward. After we 
present the equations we shall give the orthogonality conditions which must be satisfied by 
the velocity boundary data in order that the equations (4.15)-(4.18) possess solutions. 

The basic step in the solution of the Navier-Stokes equations takes the form 

-n+l . 
_u_ = F(ir) _ ('\lit. '\llt.)pn+l at Z' II 

(6.1 ) 

It is components of these equations which combine to form the equations for the pressure 
alone. In order to avoid too many superscripts and subscripts, we abbreviate the problem 
(6.1) by 

(6.2) 

with w = (w, z) and u = (u, u). On the boundary we take (w, =) = (wb, zb). With this 
notation the equations take the following form; 
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Equations for Circle Points 

Interior, i = 3,5, ... , M - 3 j = 3,5, ... , N - 3 

, 

r 

Top, i = 3,5, ... , M - 3 

= 

Bottom, i = 3,5, ... , M - 3 

= Ui±l,l-Ui-l,l 

2h 

Left, j = 3,5, ... , N - 3, 

= 
Right, j = 3, 5, ... , N - ,3, 

-PM-t,l+PM-J.l + PM-I.ltZ-2PM;"I,l+PM-I.1-1 
4h2 . 4h2 = 

Corners, 

-PM-I,N-I +PM-J.N-I + -PM-I,N-I+PM-I,N-J 
4h2 4h2 = 

-PM-I,l+P M-J.l + P.\(-I,J-P.\I-t.l 
4hl 4h2 = 

" 
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Equations for Cross Points 

Interior, i = 2,4, ... , M - 2 j = 3,5, ... , N - 3 

Top, i = 2,4, ... , M - 2 

= 
Bottom,i = 2,4, ... ,M - 2 

Left,j = 1,3, ... , N - 1, 

+ 

Right, j= 1,3, ... , N - 1, 

-P !II_I.,+P !11-3.1 
= 161&.2 

25 

b 
Uitl,N-I-Ui-I,N-l _ Vi,N-2 + Zi,N 

2h 2h 2h 

3" z" -z" ~ ~ _ ~ + O"tl 0';-1 
2h - 8h 8h 8h 

3 " z" Z" U~t'l + U~i',i + ~J:"i + !II,'tl~ !II.i- 1 



Equations for Box Points 

Interior, i = 3,5, ... , M - 3 i = 2,4, ... , N - 2 

Top,i= 1,3, ... ,M-l 

-Pi,N+Pi,N-l 
4h2 

Bottom,i= 1,3, ... ,M-l 

Left,i = 2,4, ... , N - 2, 

Right, i = 2,4, ... , N - 2, 

-Pi,N-l+Pi,N-J 
16h2 
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Equations for Triangle Points 

Interior, i = 2,4, ... , M - 2 j = 2,4, ... , N - 2 

Top, i = 2,4, ... , M - 2 

Bottom, i = 2,4, ... , M - 2 

Left,j = 2,4, ... , N - 2, 

Right,j = 2,4, ... , N - 2, 

-Pi,N-I+Pi,N-3 
16h2 

Pi,,-Pi,O 
4h2 = Pi,3- P i,1 

16h2 

P',l-PO,l 
4h2 = P3,Z-PI,Z 

16h2 
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N-wb N 3z
b

N ~+~+ ,tl, ,-I, +~ 
2" 8" Sh S/l 

' b -U/~ _ 3~itO + tli 1 Vi l + W .... : .0 .-1,0 it:"-'tt" Sh 
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Orthogonality Conditions 

For each of the above systems, the operator represented by the left hand side is singular. 
In each case it can be shown that the null space is one dimensional and consists of the span 
of the vector of all ones. In order that these systems have solutions, it is therefore necessary 
that the right hand sides of the equations be orthogonal to this null vector. We now write 
down for each system the requirements on the data which will ensure that this orthogonality 
condition is satisfied. The derivation of these conditions consists of just summing the right 
hand sides of the particular equations. There is some subtlety in evaluating the summation 
because in the equations associated with the cross, box, and triangle points, the right hand 
sides involve pressure differences. One eliminates these pressure differences by utilizing the 
equations which they satisfy to express these differences in terms of the velocities. In writing 
down these orthogonality conditions we are therefore assuming that the equation.s for the 
pressure at a previous steps in the solution of (4.15) - (4.18) are satisfied exactly. As an 
example of this procedure, in the determination of the orthogonality condition for the cross 
points, one has the sum 

N-l P P 
~ 3.i - l.i 

. ~ 16hl 
'=3.5 .... 

to contend with. This sum is eliminated by using the ~quations that are satisfied at the 
circle points, namely, 

N-l P P 
'"' 3.i - l.i 

. ~ 16hl 
J= 1.3 .... 

= 

+ Vl.N-2 

2h 

II zll 
WO.N-l + I.N 

2h 2h 
N-3 . II 

+ L Ul.i + VI.i+! - Vl.j-l _ WO.j 

i=3.5.... 2h 2h 2h 

+ ~+~_ wg.l _ zto) 
2h 2h 2h 2h 

In this expression all of the P terms on the right hand side drop out, and one is left with 
a sum of velocities. These remaining terms combine with the other terms in the condition 
and the result is an expression which only involves velocity boundary data. 

The orthogonality condition for the circle points is given by 

(6.3) 
M-l wo". M-l wL. N-l zll N-l.,.11 L --:L+ L _'''_'.J_ L ~+ L ~=O 

i=3.5 •..• 2h i=3.5.... 2h i=3.5 .... 2h i=3.5 •... 2h 

When multiplied by 4h2 this can be seen as a midpoint rule approximation to the integral 
of the normal velocity around the boundary. 

For the cross points, assuming the equations on the circle points have been satisfied, 
the orthogonality condition is 
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N-l II L WO.j + 
j=3.5 •.•• 2h 

similarly the orthogonality condition for the box points is given by 

M-l II - L Zi.O + 
1=1.3 •.... 2h 

M-l II 1 N-2 II 1 
~ zioN b b "WO j (b b 

. ~ 2h - Sh (Wo.a + Wo.d - . £.." 2h - 8h WO.N-l + WO.N) 
'=1.3.... 1=2.4 •... 

When each of these expressions is multiplied by 4h2 then the sums can be seen either as 
a midpoint rule or combined midpoint and trapezoidal rule approximation to the integral 
of the normal velocity on an edge. In the combined approximation, the midpoint rule is 
used to approximate the integral over the interior of the edge and the trapezoidal rule used 
to approximate the integral at the ends of the edge. 

Lastly we give the orthogonality conditions for the triangle points. These conditions 
assume that the equations associated with the circle, box and triangle points are satisfied. 
Furthermore, in order to get nice formulas, we assume that at the corners the velocity data· 
is specified in such a way that if the divergence at the corners is computed using a one-sided 
approximation in each direction, then the sum of these four quantities is zero. With these 
assumptions, the condition becomes 

When each of these equations is multiplied by 4h2 the sums are a combined midp~int and 
trapezoidal rule approximation to the integral of the normal derivative around the boundary. 
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