
, ..

. .~]"".
, .. '..-, .

Lie 0:.'(05
LBL-26417

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

To be presented at the 5th International Conference
on Statistical and Scientific Database Management,
Charlotte, NC, April 3-5, 1990, and
to be published in the Proceedings

A Framework for Query Optimization in
Temporal Databases

H. Gunadhi and A. Segev
For Reference

Not to be taken from this room

November 1989

III
I-"

0..
LC .
til
lSI

r
0"C"'l
) 0

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
!lJ"C
)"<

"<

r
III
r
I

rl)
!J"
~
-..J

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain COlTect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any walTanty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

\'.'

"

LB{.;6417 }

I

I "

A FRAMEWORK FOR QUERY OPTIMIZATION IN
TEMPORAL DATABASES

Himawan Gunadhi & Arie Segev

Computing Science Research & Development
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California 94720

and

Walter A. Haas School of Business
The University of California, Berkeley

Berkeley, California 94720

November 1989

/.
~

Proceedings in the 5th International Conference on Statistical & Scientific
Database Management, Charlotte, NC, April 3-5, 1990

This work was supported by the Director, Office of Energy Research, Applied Mathematical
Sciences Research Program, of the U.S. Department of Energy under Contract No. DE-AC03-
76SFOO098.

\.i

A FRAMEWORK FOR QUERY OPTIMIZATION IN
TEMPORAL DATABASES

Himawan Gunadhi and Arie Segev

Walter A. Haas School of Business
The University of California and

Computing Sciences Research and Development Department
Lawrence Berkeley Laboratory

Berkeley, California 94720

LBL-26417
Dec. 1988

Revised Nov. 1989

Abstract
We investigate issues pertaining to query processing of temporal databases in a relational

environment. Tuple-versioning of relations is the adopted method of temporal data representa
tion. New operators are necessary in order to exploit the richer semantics of temporal queries.
We define four types of temporal joins-- theta-join, time intersection, time union and the
event-join. Factors that affect processing strategies are discussed, especially the problem of
estimating data selectivity for various temporal operations. Strategies for implementing the
temporal equijoin operator are evaluated.

(Forthcoming in the 5th Int. Conf. on Statistical & Scientific Database Management)

This work was supported by the Applied Mathematical Sciences Research Program of the
Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SFOO098.

1. INTRODUCTION AND MOTIVATION

The importance of temporal data models lies in their ability to capture the complexities

of real world phenomena which are inherently dependent on time. Traditional approaches,

such as the relational model of data, are incapable of handling all the nuances of such

phenomena. Temporal models open up the possibility for new types of operations to enhance

the retrieval power of a database management system (DBMS). One of the potential draw-

\,... backs of such models is the lack of processing efficiency-- the size of data and the complexity

of time-oriented queries may yield unsatisfactory perfonnance.

Many papers have been published on logical models that incorporate to varying degrees

the time dimension. Most fall into the following categories: (1) Extensions to the relational

model, e.g. [Clifford & Tansel 85, Ariav 86, , Clifford & Croker 87, Snodgrass 87]; (2)

Enhancements of the Entity-Relationship model, e.g. [Klopproge & Lockemann 83, Adiba &

Quang 86], and (3) Independent modeling such as the concept of the

Time Sequence Collection (TSC) by [Shoshani & Kawagoe 86, Segev & Shoshani 87]. Many

operators have been introduced in these papers, although in the relational context, the primary

emphasis has been on their integration into the syntax of established query languages, such as

SQL and QUEL. This is motivated by the desire to implement a temporal DBMS by minimal

modification to current relational technology.

Our approach is to look into the functional requirements of queries on a temporal rela

tional database. From there we define a set of fundamental join operators and investigate

implementation and optimization strategies. We are motivated in part by the desire to study

the feasibility of implementing the TSC model in relational form, or on top of an existing

relational DBMS. In this paper, we do not attempt to define a complete set ,of temporal rela

tional algebra, instead we focus on temporal joins, classified according to the attributes and

operators specified in the join predicates. It is our belief that these joins should be capable of

capturing the semantics of most, if not all, of the temporal join operators found in the litera

ture. We outline several major issues that affect the design of query processing methods, with

special emp~asis on selectivity estimation of temporal relations for various operations.

Finally, we look at a specific temporal operator, the temporal equijoin, and evaluate alterna

tive strategies for its implementation.

The rest of the paper is organized as follows: In the next section, we discuss the rela

tional representation of temporal data, and introduce basic definitions. In section 3, we define

and discuss temporal operators and joins. In section 4, factors that impact query optimization

are discussed, elaborating on mathematical modeling of the behavior of temporal relations.

Implementation and efficiency issues penaining to the temporal equijoin operator is explored

in section 5. Finally, section 6 offers conclusions and ,an outline of future work.

I

Our contributions are:

• The classification. and definition of four classes of temporal relational joins: Theta, Time

Intersection, Time Union and Event joins. We feel that these definitions are needed for

future research in the area of temporal query optimization.

• An introduction to the problem of selectivity measurement with respect to temporal rela

tions, and how to model the dependencies that exist within such relations. As in tradi

tional query optimization, deriving good selectivity estimates is of fundamental impor-

tance. In this paper we present the first step towards that goal. v

• Evaluation of implementation strategies for the temporal equijoin, in the context of a

relational environment. To the best of our knowledge this paper is the first to address

the issue.

2. RELATIONAL REPRESENTATION AND DEFINITIONS

A convenient way to look at temporal data is through the concepts of Time Sequence

(TS) and Time Sequence Collection (TSC) [Segev & Shoshani 87]. A TS represents a his

tory of a temporal attribute(s) associated with a particular instance of an entity or a relation

ship. The entity or relationship is identified by a surrogate (or equivalently, the

time -invariant key). For example, the salary history of an employee is a TS. A TS is

characterized by several properties, such as the time granularity, lifespan, type, and interpola

tion rule to derive data values for non-stored time points. In this paper, for the sake of expo

sitional convenience, we concentrate on one common type of data - stepwise constant

(SWC). SWC data represents a state variable whose values are determined by events and

remains the same between events; the salary attribute represents SWC data. Time sequences

of the same surrogate and attribute types can be grouped into a time sequence collection

(TSC), e.g. the salary history of all employees forms a TSC. There are various ways to

represent temporal data in the relational model; detailed discussion can be found in [Segev &

Shoshani 88a]. We assume a time-interval representation, as shown in the examples of Table

1: The relations EMP_SAL, EMP_COM, EMP_MGR, EMP_DEP, DEP and DEP_TRAVEL

represent employee salaries, commission rates of employees, employees' managers, employ

ees' departments, department locations and departmental travel budgets respectively.

We use the terms surrogate (S), temporal attribute, and time attribute (Ts or T E)

when referring to attributes of a relation. For example, in Table 1, the surrogate of the

EMP _SAL relation is E#, SAL is the temporal attribute, and Ts and TEare time attributes.

We assume that all relations are in first temporal normal form (lTNF) [Segev & Shoshani

88a]. ITNF does not allow a surrogate instance to have more than one value of a temporal

2

I",

EMP SAL E# SAL Ts Te EMP COM E#C RATE Ts Te
El 20 1 8 El 10% 1 7
El 22 9 20 El 12% 8 20
E2 30 1 16 E2 8% 2 7
E2 35 17 20 E2 10% 8 20
E3 25 1 20

EMP MGR E# MGR Ts Te EMP OEP E# 0# Ts Te
El TOM 1 5 El 03 1 12
El MARK 9 12 El 02 13 20
E1 JAY 13 20 E2 01 1 17
E2 RON 1 18 E2 02 18 20

. E3 RON 1 20 E3 03 1 20

OEP 0# FLOOR Ts Te OEP TRAVEL 0# BOGT Ts Te
01 4 1 20 01 30 1 4
02 1 1 7 01 40 5 20
02 2 8 20 02 35 1 20
03 2 1 7 03 20 1 8
03 5 8 20 03 15 9 20

Table 1. Examples of Temporal Relations

attribute at a given time poinL The implication for a temporal relation is that there are no two

intersecting time intervals for a given surrogate instance. Whenever it is clear from the con

text, we will use the term "surrogate" instead of "surrogate instance". For the same reason, we

often refer to the "temporal relation" as "relation".

2.1. Basic Notations

Let 'i(Ri) be a relation on scheme Ri = lSi' Ail, ... , Aim, Ts , Te}, where Si is the surro

gate of the relation with domain dam (Si)' Ts and TEare the time-start and time-end attributes

respectively, with dam (Ts) = dam (T E)' Aij denotes the attribute with a corresponding

domain dam (A ij). We distinguish between the surrogate and other non-time attributes for

expositional convenience. It is not necessary to distinguish between temporal and non-

'.' temporal Aij's, although one or more should be time -varying in order for temporal joins to

produce non-trivial results. The characteristics and measures of the time attribute are

described in [Segev & Shoshani 87]. It is assumed throughout that we are dealing with a time

domain which can be represented as a finite or countably infinite set of integers.

Define Ti = {Ts , Te} as the time-subscheme and R/ = Ri - Ti as the

non -time subscheme of 'i' Let Xi represent a tuple in 'i, and Xi (.) the projection of Xi on

3

some relational attribute(s). For a given tuple, [xj(Ts), xj(TE)] define a bounded interval, and

the time-values immediately preceding and succeeding any of these boundaries are indicated

by a decrement or increment of 1 respectively. Define r 1 and r 2 to be T -compatible if T 1

and T 2 are defined over compatible domains. Compatibility does not always mean identical

domains, but we will assume so in this paper. The time intersection operator

xl (T 1) (1 x 2(T V (or equivalently, x 1 intersects x V returns true if

xl (Ts) S. x 2(T E) !\ Xl (T E) ~ x 2(Ts), and null otherwise. where r 1 and r 2 are T -compatible.

We shall always assume that any joins on time are always made on T-compatihle domains.

Any join between r 1 and r 2 will produce r 3 with scheme R 3 = R l' U R 2' U T 3, where the

derivation of r3.TS and r3.TE which make up r3.T 3 is dependent on the type of temporal join.

Where null values are involved, we use 0 to indicate the value for a single null attribute, and

{!2!, ... , !2!} for a set of such attributes.

3. TEMPORAL RELATIONAL OPERATORS

In this section we provide a description of temporal comparison operators and definition

of temporal joins.

3.1. Temporal Comparison Operators

Comparisons over time attributes can be made at the explicit constraint level using stan

dard arithmetic operators, i.e. "=", ":#", ">" and "~", or at a higher level of semantics, for

example "intersects" as defined previously. Many such operators have been defined in the

literature [Allen 83, Navathe & Ahmed 86, Adib~ & Quang 86, Segev & Shoshani 87]. The

following is a list of the relevant ones:

Xl before x 2 iff Xl (T E) < x 2(Ts)

x 1 overlaps x 2 iff x 1 (Ts) < x 2(Ts) !\ x 1 (T E) > x 2(Ts) !\ x 1 (T E) < x 2(T E)

Xl starts x2 iff xI(Ts) =x2(Ts) !\xl(TE) <x2(Ts)

Xl equal x2 iff xI(Ts) =x2(Ts) !\xl(TE) =x2(TE)

X 1 during X 2 iff x I (T s) > x 2(T s) !\ x 1 (T E) < x 2(T E)

x 1 finishes x2 iff x l(TE) = x2(TE) "x l(Ts) > x2(Ts)

"Overlaps", "starts", "equal", "during" and "finishes" are subsets of "intersects"; they are

defined in order to enhance the expressiveness of the query language. The predicate "before"

can be more broadly defined as t-before, where t ~ 0, and measures units of time. This

allows the predicate to be used to specify the meet (t = 0) and precede (t = 1) predicates, as

well as represent arbitrary ordering relations, such as "x 1 2 units of time before x 2". Other

temporal predicates not defined can be expressed in terms of conjunctions or disjunctions of

the above set; e. g., the dis joint predicate can be expressed as "x 1 before x 2 or x 2 before

4

•

v

X " I .

3.2. Temporal Joins

A temporal theta-join, T e-join, is made up of the conjunction of two sets of predicates,

Pr and PR ,. Pr represents the set of time join predicates, i.e. those defined over time attri

butes, while PR, represents the set of non-time join predicates. There are three subclasses of

temporal joins that are of special interest, based on the specification of join predicates:

Time intersection class, time union join and event -join. Time intersection type of joins have

a time predicate of rI.T I (i r2.T 2' Where the non-time predicate has an equality operator, the

join is called temporal equijoin, or TE -join, while if it is null, the join is a time join or

T -join. In the event that the predicate is a non-equality type, we group it for processing pur

poses with the rest of the theta-join class. The semantics of a TE -join in the context of

-lNF relations is given in [Oifford & Croker 87].

3.3. Temporal Equijoin

In the TE-join, two tuples XI E r 1 and x 2 E r 2 qualify for concatenation if the non-time

join attributes have the same values and their time intervals intersect. Each concatenated

tuple will have time attribute values that define the non-empty intersection of the two joining

tuples. Note that the concatenation of tuples is non-standard, since only one pair of Ts and

T E attributes is pan of the result tuples. If Yij are the non-time join attributes, where the sub

scripts i and j denote the relation number and attribute number respectively, then

riTE-JOIN r 2 on Y 11 = Y 21" . .. "Y 1m = Y 2m

= {X3 Ix3(R{) = xl(RI') "

x3(R 2') = x2(R 2') "

x I (T I) (i X 2 (T z) :1: 0 "

x3(TS) = max(xl(TS)' x2(TS» "

x3(TE) = min (xl(TE), x2(TE»

Given the query "Find the departments and their locations for all employees" on Table 1, we

formulate the following join: EMP DEP TE-JOIN DEP on EMP _ DEP.D# = DEP.D#. The

result is shown in Table 2.

5

Result E# 0# FLOOR Ts TE
El 03 2 1 7
El 03 5 8 12
El 02 2 13 20
E2 01 4 1 17
E2 02 2 18 20
E3 03 2 1 7
E3 D3 5 8 20

Table 2. Result of TE-join between EMP _DEP and DEP relations

3.4. Time-Join

AT-join causes the concatenation of tuples from the operand relations only if their time

intervals intersect. No predicate on non-time attributes is specified.

rl T-JOIN 72

= (X31x3(R1') = Xt(R 1') 1\

x3(R 2') = x2(R 2') 1\

xl(T 1) ("'\ x2(T 7J '# 0 1\

x3(Ts) = max(xl(Ts), x2(Ts» 1\

x3(TE) = min (xl(TE), x2(TE»
}

Although semantically a T-join is just a TE-join with a null predicate on the non-time attri

butes, it is a useful operator and is distinct from an optimization perspective. It is needed to

answer the following query on the relations of Table 1: "Find employees who worked when at

least one department had a travel budget greater than 38." The join is fonnulated as

EMP _OEP T-JOIN OEP _TRAVEL, and the result shown in Table 3.

3.S. Time Union Join

The A TU-join is characterized by a union operation on the time intervals. There may

be other time predicates specified, and we denote the set of such operators as PT' PR, can

also be made of any arbitrary predicate. For every pair of tuples x 1 and x 2 that qualify on the

other joining predicates, between one and three tuples can be produced, depending on the rela

tionship between the time intervals of the operands. A TU -join is needed if a pair of tuples is

considered to satisfy PR, even for cases where xl(T t) f'""\x2(T2) = 0. For example, the

6

•

•

Result E# 0# 0# BOaT Ts TE
El 03 01 40 5 12
El 02 01 40 13 20
E2 01 01 40 5 17
E2 02 01 40 18 20
E3 03 01 40 5 20

Table 3. Result of T-join between EMP _DEP and DEP _TRAVEL relations

following query requires a TU-join on the relations of Table 1: "Within the time interval

[6,10], was any department's travel budget less than any employee's salary ?" (Note that the

particular budget can be at a different time than the employee's salary.) We formulate the

query as. follows: OEP _TRAVEL TU-JOIN EMP _SAL on OEP _ TRA VEL.BOaT <

EMP _ SAL.SAL, and the resulting relation is shown in Table 4. The union join operation is

somewhat analogous to a cartesian product operator in the conventional database context.

Result 0# BDaT E# SAL Ts TE
03 20 0 0 6 8
0 0 El 22 9 10
03 20 E2 30 6 8
0 0 E2 30 9 10
03 20 E2 35 6 8
0 0 E2 35 9 10
03 20 E3 25 6 8
0 0 E3 25 9 10
0 0 El 20 6 8
03 15 0 0 9 10
03 15 El 22 9 10
0 0 E2 30 6 8
03 15 E2 30 9 10
0 0 E2 35 6 8
03 15 E2 35 9 10
0 0 E3 25 6 8
D3 15 E3 25 9 10

Table 4. Result of TV-join between DEP _ TRA VEL and EMP _SAL

Formally,

rl TU-JOIN r2 on PR," Pr = r31 U r32 U r33

where

7

r31 = (X31 Ix31(R 1') =xl(Rl') "

x 31 (R 2') = x 2(R 2') "

PR , & PT "

XI (T 1) n X 2(T ~ * 0 "

X31(TS) = max (X I(TS), x2(TS », & X31(TE) = min (xl(TE), x2(TE»
}

r32 = (X32 Ix32(Ri ') = Xi (Ri ') "

}

X32(Rj ') = {0, ___ , 0} "

PR , & PT "

Xi (Ts) < Xj(Ts) "

X32(Ts) = Xi (Ts) &X32(TE) = min (Xi (TE),Xj(Ts) -1)

i =1 or 2; j = 2 if i = 1 and j = 1 if i = 2

r33 = (X33 Ix 33(Ri ') = xi (Ri ') "

}

3.6. Event-Join

X33(Rj ') = {0, ___ , 0} l\

PR , & PT "

Xi (T E) > X j (T E) "

X 33(Ts) = max (Xi (Ts), Xj(TE) + 1) & X 33(TE) = Xi (TE)

i = 1 or 2; j = 2 if i = 1 and j = 1 if i = 2

An event-join groups several temporal attributes of an entity into a single relation. This

operation is extremely important because due to nonnalization, temporal attributes are likely

to reside in separate relations. To illustrate this point, consider an employee relation in a non

temporal database. If the database is nonnalized we are likely to find all the attributes of the"

employee entity in a single relation. If we now define a subset of the attributes to be tem

poral (e.g., salary, department, manager, commission-rate, etc.) and they are stored in a single

relation, a tuple will be created whenever an event affects at least one of those attributes.

8

•

•

Consequently, grouping temporal attributes into a single relation should be done if their event

points are synchronized. Regardless of the nature of temporal attributes, however, a physical

database design may lead to storing the temporal attributes of a given entity in several

relations-- this is the case for the employee relations in Table 1. The analogy in a conven

tional database is that the database designer may create 3NF relations, but obviously, the user

is allowed to join them and create an unnormalized result.

The event-join operation combines elements of the temporal equijoin and and time union

\.1 join. In order to describe an event-join between , 1 and , 2, we first present the operator

TE -oUTERJOIN. A TE-outerjoin is a directional operation from, 1 to '2 (or vice versa). For

a given tuple Xl E '1' outerjoin tuples are generated for all points I E [x1(Ts), xl(TE)] such

that there does not exist X 2 E '2 with X 2(S) = Xl (S) and t E [x 2(Ts), x 2(T E)]' Note that all

consecutive points I that satisfy the above condition generate a single outerjoin tuple. Using

those operations the event-join, '1 EVENT-JOIN '2' is done as: (1) tempI ~ '1 TE-JOIN '2

on S; (2) temp2 ~ '1 TE-OUTERJOIN '2 on S; (3) temp3 ~ '2 TE-OUTERJOIN 'Ion S;

(4) result ~ tempI u temp2 u temp3. Given the query "Find the managers and commission

rates received by employees", we formulate the following event-join query: EMP _MGR

EVENT-JOIN EMP _COM. The result of this join is shown in Table 5.

Result E# MGR CRATE Ts TE
EI TOM 0 1 1
El TOM 10% 2 5
El 0 10% 6 7
El 0 12% 8 8
El MARK 12% 9 12
El JAY 12% 13 20
E2 RON 0 1 1
E2 RON 8% 2 7
E2 RON 10% 8 18
E2 0 10% 19 20
E3 RON 0 1 20

Table 5: Result of Event-Join between EMP MGR and EMP COM

We can now provide a formal definition of an event-join. Let I denote an arbitrary

interval [Ts , T E] over time; for two intervals II and 12• 11 ~ 12 if I I.TS ~ 12.Ts and

11.T E ~ 12·T E; the cardinality of an interval, III, is measured as IT E - Ts + 11.

'1 EVENT-JOIN '2

= (x3 Ix3(R 1') = Xl (R 1') 1\

9

}

X 3 (R 2') = x 2(R 2') /\

x3(T 3) = xl(T 1) n x2(T ~

y x3(Ri ') = Xi (Ri ') /\

x3(Rj ') = {0, ... , 0}/\

X 3 (T 3) = max {Ill I I ~ xi (Ti)} /\

there does not existxj such thatxj(Sj) =x3(SI) &xj(Tj) nX3(T3)

for i = 1, j = 2 or i = 2, j = 1

4. FACTORS AFFECTING QUERY OPTIMIZATION

There are several important factors that distinguish the processing environment of tem

poral databases from conventional ones. We provide a brief introduction into several of the~

and go into more detail over the selectivity estimation problem.

4.1. Data Organization

Temporal data may be organized in several ways. The first is a static organization, which

is relevant for many scientific and statistical analysis. A second organization is to have data

sorted according to a specified key order, reflecting the most common queries on the database.

One possibility is to have data sorted by the key combination of surrogate and time start

(S, Ts). A third organization is to take advantage of the clustering on Ts that results from

append-only databases. Lastly, in a dynamic database, data may be left unsorted-- a query

optimizer has to determine if it is worthwhile to specifically sort the data before processing a

given query, or if it is better to use an unordered strategy. It is also possible that data is

organized by a combination of the above methods, in the event that the database is partitioned

into several segments, e.g., into an append-only historical store and a dynamic current time

window store.

4.2. Specialized Indexing Methods

Conventional indexing techniques may not be satisfactory performance-wise for temporal

data retrieval. Several papers have been published in this field, e.g., [Lum et al 84, Rotem &

Segev 87, Gunadhi & Segev 88, Kolovson & Stonebraker 89]. If appropriate indexing struc

tures are developed, query response times may improve substantially. Research in this area

10

v

,,-

has focused on single relation operations, but there is the potential for perfonnance gains if

multirelational indexing is pursued.

4.3. Metadata

The maintenance and availability of statistical infonnation about the temporal relation is

a critical aspect of query processing. One important metadata is the lifespan of the relation,

i.e. the time of the first event, and the current time or end of the last event Where the data

base is segmented into more than one tier, there must be additional infonnation on the current

time-window. Moreover, statistical metadata may be required for such infonnation as the the

rate of arrival of new surrogate instances, departure of current instances and probability den

sity functions for temporal attributes. Statistical data may be updated by random sampling for

very large databases, or by a compile time scan.

4.4. Architecture of Query Processor

The final issue is the use, if any, of a conventional query processor for the processing of

temporal queries. An implementation such as that of [Snodgrass & Ahn 87] is based on the

construction of a temporal database on top of a conventional one. Minimal modification of the

underlying processor is likely to cause inefficiencies in the processing of many temporal

operators.

4.5. Estimation of Selectivities

Accurate cost estimation of relational operations is a crucial component of query optimi

zation. A substantial amount of literature exists on selectivity estimation, among- them by

[Yao 77, Selinger et al 79, Christodoulakis 83, Piatetsky-Shapiro & Connell 84, Lynch 88,

Mularikrishna & Dewitt 88, Ahad et al 89]. However, estimation techniques for snapshot

relations cannot be readily applied to temporal relations. First of all, each relation consists of

time-ordered histories of the modeled surrogates instances. Secondly, histories of surrogate

instances may begin and end at different points in time. Third, some histories may be disjoint,

i.e. there are intervals within it for which no data exists. Fourth, the temporal attributes them

selves may also be time-dependent in behavior. Clearly, without modeling some or all of

these properties explicitly, simple extension of existing methods will yield inaccurate results.

Further, there are many operations, mainly joins, that cannot be estimated without explicit

modeling, e.g. event-join and intersection join results. We will discuss the basic characteris

tics, desired measures and modeling approaches that can be taken.

11

4.6. Basic Characteristics of Temporal Relations

The following are the basic characteristics that have to be considered in modeling a rela

tion with one temporal attribute.

Arrival of surrogate instances. Arrival of a new surrogate instance adds a new Time

Sequence (TS) to the relation. Surrogates instances arrive according to some probability distri

bution; for example, a company may hire 120 new employees a year, at a uniform rate of 10

a month.

Departure and re-entry of surrogate instances. After arriving, a surrogate may remain for

the duration of the relation's lifespan, leave permanently at some point, or leave and re-enter

later. All these may be modeled by a single stochastic process, or perhaps by separate

processes.· If the surrogate instance is allowed to return, we assume that no new TS will be

generated, instead the old TS of the surrogate instance is extended, but with a resulting

discontinuity in its lifespan. As an example, from the EMP MGR relation of Table 1, we can

infer that employee El "arrives" at time 1, "leaves" at time 6, then "re-joins" at time 9; subse

quently, a discontinuity is created in the lifespan of its TS, between tuples 1 and 2.

Arrival of tuples for a TS. The arrival process of tuples for a given TS follows some proba

bility distribution representing the behavior of that surrogate. Funher, each surrogate instance

may have its own tuple arrival process, or may share an identical distribution with the other

instances.

Distribution of temporal attribute values. We assume that each new tuple marks a change

in the value of the temporal attribute of a panicular sUITOgate; thus two consecutive tuples of

a given TS must have different temporal attribute values, except when a discontinuity exists

between two consecutive tuples. Attribute values may be time-dependent, in which case they

can either be dependent on the event time itself, e.g. salaries paid based on seniority, or

dependent on the value in one or more prior period(s), e.g. the value of a fixed deposit.

4.7. Multi-Attribute Temporal Modeling

A more complex scheme for a temporal relation is one involving multiple temporal ami

butes. We have to consider the interdependence amongst attributes in terms of both the timing

of events and value changes in temporal attributes. In general, it would not be desirable to

maintain relations where the temporal attributes are not synchronous [Navathe & Ahmed 86]. .'

If such relations are maintained, then each new tuple indicates that one or more attributes

have changed values. On the other hand, If the attributes are synchronous, we can model

them as if they form a single attribute temporal attribute. In this case, the preceding discus-

sions on modeling and measurement parameters directly apply.

12

4.8. Examples of Unary and Binary Estimates Needed

We will outline the main types of estimates needed for query processing purposes by

using examples. For unary operations: (1) "How many employees were in the company

between time 1 and 12?" (2) "Get all the manager records for E#1 between time 2 and 10."

(3) ''Find all commission records between time 4 and 10." and (4) "How many tuples in

MANAGER have MGR = TOM between time 1 and 12?" For the case of binary estimates,

- they pertain to join sizes, i.e. the number of intersecting tuples for intersection type joins, the

number of outerjoin tuples for an event-join, and the result of a time union join.

4.9. One-Attribute Model and Assumptions

We now introduce a model for the case of a single temporal attribute. The basic model

consists of three independent probability distributions to describe the surrogate arrival process,

tuple arrival process, and distribution of temporal attribute values. Several other parameters

are added in order to increase the estimation power of the model.

Surrogate arrivals. Let {N:' (t)} , t = 0, 1, 2, '" define the number of surrogate instance ,
that arrive in period (0, t] for relation rio We model {N:' (t)} as a Poisson process with

I

arrival rate At
Tuple arrivals. Let {N; (t)} , t = 0, 1, 2, ... be the number of tuple arrivals in period ,

(0, t] for an arbitrary surrogate instance in relation ri' We model this c~unting process as a

Poisson process with rate A{. The tuple arrival process for each surrogate instance is indepen

dent and identically distributed (Li.d.).

Distribution of temporal attribute values. We model the temporal attribute values at

different change time points during the surrogate instance's lifespan by an i.i.d. sequence of

uniform random variables over the temporal attribute domain. Although it is incorrect to

assume that for a given surrogate instance, two successive changes can yield the same tem

poral attribute value, the impact on estimation should not be significant if the relations and

domain sizes are large. This approach is taken to simplify estimation, since time-dependent

characterization requires knowledge of the actual behavior of the temporal attribute, which

varies widely in reality.

Life-span of each TS. There are two ways in which to model the length of a surrogate

instance's lifespan, which we denote as LS:'. The first method is to assume that it is as long
I

as the lifespan of the relation itself, LSr.• The second way is to assume that it follows some
I

probability distribution with mean LS: , and that the distribution for each instance in the sur-
I

rogate domain is an i.i.d. random variable.

13

Treatment of Null Values. The null values in this model will be handled by using a param-
. . E number of data points E .

eter, called the eXIstence densIty: 0i = .. . Therefore 1 - 0i gIves us
number of tzme pomts

the proportion of changes within a time sequence or relation that will generate nulls. Implicit

is the assumption of unifonnity in the distribution of nulls along surrogates' lifespans.

s. IMPLEMENTATION AND OPTIMIZATION OF TE-JOIN

We evaluate strategies for implementing the temporal equijoin and their associated costs.

As an example, we will use the TE-join previously described in section 3 between the

EMP DEP and DEP relations on D#. Table 6 shows some statistics about the two relations.

We make the following assumptions: (1) The values of D# is uniformly distributed throughout

both relations; (2) Neither relation is sorted or clustered, and join processing is carried out by

the nested-loop algorithm with DEP as the outer relation; (3) Each disk block holds 50 tuples

of either relation; (4) The result relation, RESULT has 120,000 tuples or 2,400 pages; (5) The

buffer size in main memory is BUF = 20 pages; and (6) No pipelining is used, which means

that the temporary results (TEMPi) are written to disk. The cost Cj of step j is measured in

the number of disk I/O's.

Statistic EMP DEP DEP
Relation Size (tuples), Irj I 100,000 2000
Relation Size (pages), B'I 2,000 40
Number of Unique D#, Irj (D#) I 40 40
Number of Unique E#, Irj(E#)1 5,000 n.a.

Table 6. Statistics for Two Relations

We consider three approaches to the problem. The first illustrates a naive strategy, which

would be the case if a temporal interface were to be built on top of a conventional system.

The second strategy employs a standard theta-join operator where the time stamps are treated

as ordinary attributes. In this case, a change is needed in the query processor to replace stan

dard concatenation of tuples by its temporal equivalent. The third is an approach specifically

designed for the TE-join, and requires a major change to the optimizer.

5.1. Naive Approach

In this strategy, the handling of the time attributes is ignored at the level of the conven

tional DBMS. Thus a simple equijoin on the non-time joining domains is executed, and the

result is retrieved by a special temporal processor which carries out the restrictions over time

14

.,.'

attributes, creates the new time stamps for qualifying tuples, and projects the final result. In

other words. the logical steps carried out are as follows:

Step 1. TEMP 1 ~ EMP _DEP [D# = D#]DEP

Step 2. TEMP 2 ~ a«EMP _DEPoTs So DEPoTs) 1\ (EMP _DEPoTs ~ DEPoTs »(TEMP 1)

Step 3. TEMP 3 ~ IT(TEMP1-TEMP_OEP -TOEP)(TEMPV CONCATENATE

{TEMP3.Ts = max (EMP _DEP.Ts , DEP.Ts),

TEMP 3.TE = min (EMP _DEP.TE, DEP.TE))

Step 4. RESULT ~ IT(NAME. D#. Ts. TE)(TEMP3)

We divide the operation into four steps for clarity of exposition. The CONCATENATE

operator in Step 3 is introduced to allow the appending of attributes not directly created by a

join or cross product. Note also that in Step 3 we distinguish between the similarly named

time-stamps in the temporary relation by qualifying them on their original relations .. The I/O

cost is computed in the following manner. For step 1,

e 1 = BDEP + [~; x BEMP_DEP) + BrEMP,.

which represents the cost of nested-loop execution plus the cost of writing the temporary

result to disk. TEMP 1 is the result of a conventional equijoin, which means that a cross pro

duct on the time domains is carried out for qualifying tuples. Given our uniformity assump

tion,

C 1 = 20 + (2 x 2,000) + IEMP DEP I x 50 = 104,020.
50

We assume that steps 2 to 4 are executed in a single scan, i.e. C 2-4 = PTEMPI + PRESULT

= 102,400. The total cost of this approach is therefore 206,420 disk I/O's:

5.2. Theta-Join Strategy

In this strategy, we convert the intersection predicate on time into a conjunction of ine

quality predicates on the time attributes, and treat them as "ordinary" predicates. The query is

then processed as a conventional theta-join. Since the creation and concatenation of the new

time attributes is unique to temporal data, these operations will still be carried out separately

by a temporal processor. The strategy is made up of the following steps:

Step 1. TEMP 1 ~ EMP _DEP [D# = D#]DEP WHERE

15

EMP _DEP.Ts S. DEP.TE 1\

EMP _DEP.TE ~ DEP.Ts

Step 2. TEMP 2 +- I1(1'EMP
1

- TEMP_DEI' _ TDIIP)(TEMP 1) CONCATENATE

{TEMP 2.Ts = max (EMP _DEP.Ts , DEP.Ts),

TEMP 2.TE = min (EMP _DEP.TE, DEP]E)}

Step 3. RESULT +- I1(NAME. D#. Ts. Ts)(TEMPV

Steps 2 and 3 are identical to steps 3 and 4 of the previous strategy. The total cost is the sum

of the cost of reading in the two. relations by the nested-loop method, the cost of writing

TEMP 1 and the cost of reading in TEMP 1 and writing RESULT. Since TEMP 1 and RESULT

are of the same size, the total cost comes to 4,020 + 3 x 2,400 = 11,220. This is considerably

lower than the previous method. In this case we were able to transform a temporal operation

to an equivalent conventional one (from the point of view of optimization); we are con

strained, however, in this approach to the non-temporal nature of a traditional optimizer. Also,

some temporal operators cannot be translated into equivalent relational operators, e.g. the

event-join operator.

5.3. Directly Implementing TE·JOIN

The TE-join operator can be implemented independently. There are two primary issues:

(1) The manner in which comparison between the tuples is carried out and (2) How concate

nation of the new time attributes is achieved. The previous approaches required time-stamp

comparisons to be evaluated twice, but we can create the new time stamps for the result tuple,

i.e .. find T; = max (EMP _DEP.Ts • DEP.Ts) and T; = min (EMP _DEP.TE• DEP.TE), then

concatenate them iff they are satisfied by the predicate T; S. T;. This test substitutes for the

intersection predicate on the two relations' time subschemes.

In algebraic terms, we execute the query as follows:

I1(R 1' u Rz' u (1';. T;»[cr~'IAlj = ,zAzj " T; S T;J «rl x r2) CONCATENATE (T;, r;»

The following procedure executes it.

16

v

,

.. '

for each x 1 E r 1 {

for each x2 E r2 {

find r; and r;
for PEP R' " P T

if not p, do the next x2

else output tuple on scheme (R 1' u R2 u (r;, r;))

}

The total cost is merely the cost of reading in the relations for the nested-loop method

and the cost of writing the output. This comes to 6,420 pages, which is cheaper than the cost

of the second strategy. Bear in mind that the sizes of the example relations are relatively

small, and the savings would be even more significant for joins involving very large relations.

6. SUMMARY AND FUTURE RESEARCH

We have introduced and defined four classes of temporal joins: Theta, intersection, union

and event joins. We believe that these joins can be used for a large number of join-type

queries which have been introduced but not formally defined or identified by others. More

over, we have developed a framework within which we can evaluate techniques that can

optimize the execution of queries involving such joins. We show by example that there are

inherent differences between using conventional query processors and developing specialized

procedures and algebra to solve these queries. We must remember that the time attributes in a

tuple-versioning model must always be treated differently than other attributes, although in

many algebraic operations, they may be qualified with the same type of predicates as non-time

attributes. Further, we showed that the selectivity estimation problem is of even greater

importance for temporal relations, and that it cannot be modeled in the same way as conven

tional relations.

Current and future research address the following issues:

• ,Developing selectivity estimates based on the model presented, and to expand the scope

and sophistication of the model itself. There is also a tradeoff between accuracy of esti

mates, and the expense of maintaining the necessary statistics and deriving the estimates.

• Investigating the optimization of each class of join. For the temporal equijoin, we are

looking at algorithms that exploit data ordering and specialized indexing. Further, the

event-join operator is likely to be a commonly used operator, and yet it has no

equivalence in the "snapshot" database context. Comprehensive tests of the efficiency of

alternatives algorithms are necessary.

17

• Extending the investigation of temporal operators to those involving temporal ordering

and aggregation.

• Continuing our study into the design of efficient data structures, in order to improve the

data retrieval capability of a temporal DBMS.

REFERENCES

[Adiba & Quang 86] Adiba, M, Quang, N.B., Historical Multi-Media Databases, Proceedings

of the International Conference on Very Large Databases, Aug. 1986, pp. 63-70.

[Ahad et al 89] Ahad, R., Rao, K.V.B., McLeod, D., On Estimating the Cardinality of the

Projection of a Database Relation, ACM Transactions on Database Systems, 14, 1, Mar.

1989, pp. 28-40.

[Ariav 86] Ariav, G., A Temporally Oriented Data Model, ACM Transactions on Database

Systems, 11, 4, Dec. 1986, pp. 499-527.

[Christodoulakis 83] Christodoulakis, S., Estimating Record Selectivities, Information Systems,

8, 2, 1983, pp. 105-115.

[Qifford & Croker 87] Clifford, 1., Croker, A., The Historical Relational Data Model

(HRDM) and Algebra Based on Lifespans, Proceedings of the International Conference

on Data Engineering, Feb. 1987, pp. 528-537.

[Clifford & Tansel 85] Clifford, J., Tansel, A., On an Algebra for Historical Relational Data

bases: Two Views, Proceedings of ACM SIGMOD International Conference on Manage

ment of Data, May 1985, pp. 247-265.

[Kolovson & Stonebraker 89] Kolovson, C., Stonebraker, M., Indexing Techniques for Histor

ical Databases, Proceedings of the International Conference on Data Engineering, Feb.

1989, pp. 127-139,

[Gunadhi & Segev 88] Gunadhi, H., Segev, A., Physical Design of Temporal Databases,

Lawrence Berkeley Lab Technical Repon LBL-24578, January 1988.

[Lynch 88] Lynch, C.A., Selectivity Estimation and Query Optimization in Large Databases

with Highly Skewed Distribution of Column Values, Proceedings of the International

Conference on Very Large Databases, Aug. 1988, pp. 240-251.

[Lum et al 84] Lum, V., Dadam, P., Erbe, R., Guenauer, 1., Pistor, P., Walch, G., Werner, H.,

Woodfill, J., Designing DBMS Suppon for the Temporal Dimension. Proceedings of

ACM SIGMOD International Conference on Management of Data. Jun.1984, pp. 115-

130.

18

v .

if'

'U

[Mulakrishna & DeWitt 88] Mulakrishna, M., DeWitt, D.l., Equi-Depth Histograms for

Estimating Selectivity Factors for Multi-Dimensional Queries, Proceedings of ACM SIG

MOD International Conference on Management of Data, May 1988, pp. 28-36.

[Klopproge & Lockemann 83] Klopproge, M.R., Lockemann, P.C., Modeling Information

Preserving Databases: Consequences of the Concepts of Time, Proceedings of the Inter

national Conference on Very Large Databases, Aug. 1983, pp. 399-416.

[Navathe & Ahmed 86] Navathe, S., Ahmed, R., A Temporal Relational Model and a Query

Language, UF-CIS Technical Report TR-85-16, Univ of Rorida, April 1986.

[Piatetsky-Shapiro & Connell 84] Piatetsky-Shapiro, G., Connell, C., Accurate Estimation of

the Number of Tuples Satisfying a Condition, Proceedings of ACM SIGMOD Interna

tional Conference on Management of Data, May 1984, pp. 256-276.

[Rosenthal & Remer 84] Rosenthal, A.,' Reiner, D., Extending the Algebraic Framework of

Query Processing to Handle Outerjoins Proceedings of the International Conference on

Very Large Databases, Aug. 1984, pp. 334-343.

[Rotem & Segev 87] Rotem, D., Segev, A., Physical Organization of Temporal Data,

. Proceedings of the International Conference on Data Engineering, Feb. 1987, pp. 547-

553.

[Segev & Gunadhi 89] Segev, A., Gunadhi, H., Event-loin Optimization in Temporal Rela

tional Databases, Proceedings of the International Conference on Very Large Databases,

Aug. 1989. pp. 205-215.

[Segev & Shoshani 87] Segev, A., Shoshani, A., Logical Modeling of Temporal Databases,

Proceedings of ACM SIGMOD International Conference on Management of Data, May

1987, pp. '454-466.

[Segev & Shoshani 88a] Segev, A., and Shoshani, A., The Representation of a Temporal Data

Model in the Relational Environment, Lecture Notes in Computer Science, Vol 339, M.

Rafanelli, lC. Klensin, and P. Svensson (eds.), Springer-Verlag, 1988, pp 39-61.

[Segev & Shoshani 88b] Segev, A., Shoshani, A., Functionality of Temporal Data Models and

Physical Design Implementations, IEEE Data Engineering, 11,4, Dec. 1988, pp. 38-45.

[Selinger et al 79] Selinger,' P.G., A strah an, M.M., Chamberlain, D.D., Lorie, R.A., Price,

T.G., Access Path Selection in a Relational Database System, Proceedings of ACM SIG

MOD International Conference on Management of Data, May 1979, pp.23-34.

[Shoshani & Kawagoe 86] Shoshani, A., Kawagoe, K., Temporal Data Management, Proceed

ings of the International Conference on Very Large Databases, Aug. 1986, pp. 79-88.

19

[Snodgrass 87] Snodgrass. R.. The Temporal Query Language TQuel. ACM Transactions on

Database Systems. Jun. 1987. pp. 247-298.

[Snodgrass & Ahn 85] Snodgrass. R., Ahn, I.. A Taxonomy of Time in Databases. Proceed

ings of ACM SIGMOD International Conference on Management of Data. May 1985, pp.

236-246.

[Snodgrass & Ahn 87] Snodgrass. R.. Ahn. 1.. Performance Analysis of Temporal Queries,

TempIS Document No. 17, Department of Computer Science, University of North Car0-

lina, August 1987.

[Yao 77] S.B. Yao. Approximating Block Accesses in Database Organizations. Communica

tions of the ACM. 20. 4. Apr. 1977. pp. 260-261.

20

..

,~ ----.. ."'P'~

LA~NCEBERKELEYLABORATORY

UNIVERSITY OF CALIFORNIA
INFORMATION RESOURCES DEPARTMENT

1 CYCLOTRON ROAD
BERKELEY, CALIFORNIA 94720

,-- ~

