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Abstract 

Fundamental aspects of Z physics are reviewed with an emphasis on 

e+ e- annihilation. The effects of radiative corrections, both from ordi

nary QED and from the electroweak interactions are considered from an 

elementary point of view, but in some detail. The possibility of mixing 

with an extra Zboson is discussed. The implications for experiments 

are stressed. Additional information that will be obtained from measure

ments of the ~v in collider experiments is considered. 
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1 Fundamental Properties of the Z 

These lectures are intended to show how the standard model of electroweak 

interactions can be applied to some experimental situations, primarily the pro

duction of the Z by e+ e-annihilation. The standard model makes precise pre

dictions that depend on a very few physical parameters. The basic gauge theory 

has three parameters, g, g', and v, two couplings and the vacuum expectation 

'value of the Higgs field. These three parameters may be-eliminated in favor of 

three physical quantities. Two of these.are always chosen to be 0 :::::: 1/13i and 

G F=L166 x'lO-5 Gey-2 . The third has typically been.taken to be sin Ow as 

determined by neutral current data. However, once SLC and LEP are operating, 

the mass of the Z will be determined with great precision and it will be taken as 

the third physical parameter. Two other physical parameters are of immediate 

significance: the mass of the t-quark and the mass of the Higgs boson. These 

also affect predictions for quantities that can be measured at the Z peak. 

In the first section of the lectures we present the standard model predictions 

for width of the Z, the forward-backward and left-right asymmetries, and the 

decays of the Z that yield a Higgs boson, all considered in the most orthodox 

model, which has a single Higgs doublet. Radiative corrections due to purely 

QED effects are discussed as well. In the second section we consider radiative 

corrections from the electroweak interactions. The treatment is not comprehen

sive but instead focuses on those corrections arising from vacuum polarization. 

These are the most important corrections and can be treated in a straightfor

ward manner. The presentation is rather pedestrian, but many of the details 

are displayed in the belief that this is the best way to explain how variations in 

one parameter, like the t-quark mass, affect the predictions for other quantities, 

like the left-right asymmetry. The results are not new and the intent is purely 

pedagogical. 

In the third section we consider how deviations from the standard model 

might manifest themselves in quantities that could be measured at the Z. Specif

ically we consider a class of models that contain an extra Z boson. The group 

.,., theory that determines the couplings of such Zs if they arise from the break

down of an E6 gauge symmetry is explained. A convenient means is proposed 
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for comparing the data to such alternative models. 

Data from hadron colliders will determine the I V - Z mass difference to 

rather good precision in the next few years. This will provide an important 

complement to the data from Z and is also discussed briefly in the third section. 

Altogether, the aim of the lectures is to provide a practical guide to the 

analysis of data from the Z as a test of the standard model. 

1.1 The Standard Model 

The standard model is based on a spontaneously broken 5U(2) x U( 1) Yang-~Iills 

theory coupled to chiral fermions and a single complex scalar Higgs isodoublet[l). 

The 5U(2) gauge field is W and the U(l) field is B. The gauge covariant 

derivative is 

D = a - igT . W - ig' Y B 
~ ~ ~ 2 ~ 

The field strengths are 

W~" - 8~ W" - avw~ + gW~ x W" 

The gauge sector Lagrangian is 

(1.1 ) 

( 1.2) 

( 1.3) 

C. = _!W . \V~" -!8 B~ (1.4) 
gauge 4 ~ 4 ~ 

The fermions have 5U(2) x U(l) quantum numbers satisfying the equivalent of 

the Gell-~lann Nishijima relation. 

Y 
Q=T3 +"2 ( 1.5) 

Because the left-handed but not the right-handed fermions couple to H'±, 

the left-handed fermions are put in weak-isospin doublets while the right-handed 

fermions are singlets. The results are shown in Table 1.1. 

The same quantum numbers apply analogously to j.l, V~, c, s, and r, V r , t, b. 

The three generations of quarks and leptons can be indicated 

U= (u, c, t) D = (d,s,b) 

( 1.6) 
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'<t' 

€L Cn I IJL uL UR d L dR 

Q -1 -1 0 2/3 2/3 -1/3 -1/3 

T3 -1/2 0 +1/2 1/2 0 -1(2 0 

)"/2 -1/'2 0 -1/2 1/6 2/3 I 1/6 -1/3 

Table 1.1: The weak quantum number assignments of the t:.lJ~, u. and d. 

or course we ;must. -treat -the·left-handedand-right-handcd . partssepa

rately. The familiar result is that the weak currellls can be written ill terms 

of UL , UR , Dr., and DR where 

( 1.i) 

and F is the Kobayashi-?\laska\ ... a 3 x 3 matrix. The gauge particles couple as 

[0 jj'] ( 'T . W + I Y B ) [U] 
9 2 ~ 9 2 ~ D' ( 1.8) 

The T matrix operates in the (u, d'), (c, S/), and (t, b') spaces. 

The Higgs isodoublet couples as 

( 1.9) 

where 

¢ - (::) ( 1.10) 

¢- - ~(cf>1 + i¢2) 
1 

¢+ = ./2(91 - i92) 

4P - ~(¢3 + i¢4) ¢o = ~(4)3 - i¢4) 
2 

(1.11) 

and the conjugate spinor is 

(1.12) 

and 

(1.13) 
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If ). > 0 and 1-'-'2 < 0 the potential in Eq. (1.9) has a minimum for 

and we chose 

< ¢>:, >= j :2 = v 

vVriting <1>3 = H + v we find that the constant term yields 

Thus there is a quadratic piece in the Lagrangian 

2 

~ [g:!(tV~ + IVi) + (g~V3~ - 9' B~):!] 

This gives for ~V± = (~Vl ~ iH'2)/J2 

and for 

The field 

is the massless photon. 

., ., 
2 g-v-

mw=-
4 

z = g tV3 - g'B 
v'g~ + gr2 ' 

., (g2 + gl'2) ... 
m z= 4 v-. 

It is traditional to define 

tan Ow = g' / 9 

so that 

.4 - sin () IV3 + cos () B 

z - cos () ~ V3 - sin () B 

4 

(1.14) 

(1.15) 

(1.16) 

(1.1 i) 

(1.18) 

. (1.19) 

( 1.20) 

( 1.21) 

( 1.22) 

( 1.23) 



. :-r 1 / 9 

1 19' 

Figure 1.1: lvlnemonic for the relation between g. g'. e and Bw 

In terms of the physical fields the covariant derivative becomes 
. . 

D~ = a~ - l~(T+lV: + T_l\!;) - 1~ (T3 - Q sin:? Ow)Z~ - ieQA~ (1.24) 
v2 cos U' 

where T ± = Tl ± iT2 and e is defined by 

1 1 1 
e2 = 92 + 912 

(1.25 ) 

vVe have the mnemonic shown in Fig. 1.1 

If the model is to correspond to V-A theory it must give the correct ampli

tude for J.l decay. That amplitude is determined by charged 1 V exchange. The 

effective interaction is determined by the couplings in Eq. (1.24) 

( 9)2 1 >.1 1 
.cefJ = vI2 m?v f;~r 2(1 - ~is)J.l er >'2(1 - rs)ve 

This agrees with the usual form if 

GF 92 v2 

J2 = 8miv = 2" 
Now from Eqs. (1.22) and (1.25) or Fig. 1.1 
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so 
., 'TiQ 

miv = M' ., v2sm- ()WGF 
(1.20 ) 

vVe shall see later that there are important radiative corrections to this 

relation with the consequence that Q ~ 1/137 should be replaced by ~ 1/127.5. 

This gives numerically 
2 _ (38.7 GeV)2 

mw - sin:! ()w 
( 1.30) 

From Eqs. (1.18), (1.20), and (1.22) 

(1.31 ) 

1.2 The Width of the Z. 

The partial width of the Z to decay into a fermion-antifermion pair is best con

sidered by looking at left-handed and right-handed fermions separately, eZ, eR' 
etc. or by considering just left-handed fermions but both the particle and its 

charge-conjugate. If the coupling to the Z is 

( 1.32) 

then the partial width is 

., 
- gjmz 

f(Z - fIJR) = 
24rr 

( 1.33) 

and a similar formula applies for IV decay, and for decays into right-handed 

fermions. In particular we have 

../2GFm~ _ (mz)3 
f(Z - LlLVR) = 24rr = 116 ~IeV 93 GeV (1.34 ) 

- v'2GFm~ . .,., 
f(Z - !L!R) = 6rr (T3 - Q sm- Ow)- ( 1.35) 

- v2CFm~ . ., ., 
f(Z-!R!L) = 6rr (Qsm-Ow)- ( 1.36) 

f(.tV _ eVe) = V2CF mrV = 241 ~IeV ( mw )3 
12rr 82 CeV 

( 1.37) 
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r before color xQCD r jgeneration generations r I CX. each t yrc I 
eL 54 1 I 54 3 IG2 2.0 ! 

i 

eR 35 1 35 3 105 1.3 

VL 176 1 176 I 3 528 6.G i 
UL 87 1.04 x 3 2"'') 1- 2 544 10.2 

UR 15 1.04 x 3 I 48 ') 96 l.S 

dL 128 1.04 x 3 398 I 3 119.5 I I·U') 

dR 4 1.04 x 3 12 I 3 3G I O.·j 

Table 1.2: Partial widths for the Z with mass 93 Ce\'. All widths arc givcn in ~leV. 

The total width without any t-quark contribution is 2GGG ~leV. 

Of course each partial width into a quark and an antiquark must be mul

tiplied by three for color. Furthermore, QeD corrections increase these partial 

widths by a factor 1 + Q,,(m~)/r. ~ 1.04. If we suppose that Z - tt does not 

occur and that there are just three neutrino types, we can treat the final state 

fermions as massless. For a Z with mass 93 GeV (using sin:? 0 = 0.222) we find 

the results in Table 1.2. 

The t-quark may appear in Z decays, but its phase space will be greatly 

suppressed. The UA-l limit is mt > 41 GeV. The partial width for Z - it 
including the effects of the quark mass is 

r V2/3G Fm~ [3 + ,82 + 2 (3 f32)' 40 3 - 8
2 

. 20 1 t = - - SIn w - SIn w 
~ 32 9 6 

where .8 is the t quark velocity 

,8 Km~ 
= 1--.,-

mz 

This partial width as a function of Tnt is shown in Fig. 1.2. 
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Figure 1.2: The partial width of the Z into tt as a function of the t-quark mass. 
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1.3 The Cross Section for c+ e- -+ Z 

The Z will be a truly spectacular resonance in c+ c- scattering. The Breit

\Vigner formula gives 

[
4,. (2) + 1 )B(Z - c+c-)] r:? /4 

CJ = k2 (251 + 1)(252 + 1) (1\' - AI):? + P/4 
(lAO) 

where 2) +.1 = 3 is the statistical weight for tbe [mal state. Z.25) + 1 = 

2S:? + 1 = 2 is the statistical weight for the colliding particles. and k is the 

jncident c.m. momentum. The fact.or in square bracket is jG ilL if mz = 03 Ceo\" 

and B(Z - e+e-) = 0.033. 

The Breit- \Vigner shape will be modified only slightly by the energy sprc<ld 

of the incident beams since that spread will be small compared to the width 

of the Z. On the other hand, corrections from initial state electromagnetic 

radiative corrections will be large[2]. 

These corrections are large because of the presence of a large logarithm, 

In(m~/m;). The strength of the corrections is determined by 

20 [IV2 1 t=- In2"-l 
r. n1e 

(1.41 ) 

which is 0.108 for H!2 = m~. 

A convenient formalism is obtained from the work of Kuracv and Fadin[3]. 

The radiatively corrected cross section CJ, is obtained from the uncorrected cross 

section CJo through 

( 
3t) (E dk (k) t CJ(ll')= 1+"4 t

lo 
T E CJo(IV-k) ( 1.42) 

Here E = IV /2 is the beam energy. 

From Eq. (1.40) the peak cross section in the absence of radiative correc

tions would be 
12r. + _) ~ 

CJmax = -., B(Z - e e :::::::.::>6 nb mz 
Setting k = fx/2, IV - AI = )..f /2 we have 

:::) ~ (1 + ~t) t (~ Y fo2E
/
r 

dxxt
-

1 [1 + (x _ )..)2]-1 
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Since E » r, the upper limit may be set to 00. The integral can be done by 

contour integration. Consider 

( 1.45) 

cut along the positive real axis from 0 to 00. Take a contour beginning at infinity 

below the cut, encircling the branch point, and continuing to positive infinity 

above the branch cut. 

(1.46) 

)n the other hand, wrapping the contour around the poles at x = +A ± i gives 

i ') 1-\ • [ 1 -A ] !(=)d==27r(1+A-)""Tsm (l-t)cos- J ' 
c 1 + ).2 

(1.47) 

so 

7rt ')!=.l [ 1 ( -). )] = -.-(1 + ).-) :l sin (1 - t) cos- J (l.48) 
sm rrt 1 + ).2 

In particular 

4>(0) -
7rt /2 

sin( r.t/2) 

and thus at the old peak (). = 0) 

O"(mz) _ (1 + 3l) (..!:.)t 7rt/2 
4 tV sin 7rl/2 

- 1.081 x 0.682 x 1.005 

- 0.741 

that is. a 26% reduction. If in the final result 

O"(tV) = (1 + 3t) (i.)t 4>(A) 
O"max 4 W' 

(1.49) 

( 1.50) 

(1.51) 

we expand in powers of t (that is, in powers of Q) and keep only the first 

order corrections we get an inadequate approximation. A comparison of the full 

formula and the first order formula alone is shown in Fig. 1.3. 

10 



.. 

X 
CO 

E 
b 

"-.,. 

b 

1.0 

t 
~ 
r 

O.B 

[ 
0.6 

0.4 

0.2 

0.0 
90 

I 

I 

, "/ 
;.-

:>' 

f V ( f 

I 
! i 

i .., 
-
~ 

"1 - ~ .. 
I 
l 

J 
J 
! 

"- j 
" i 

/ J I 
\ 

/ \ , I 

/ 
"/ 

- -
92 94 96 98 100 

C. M. Energy (GeV) 

Figure 1.3: Comparison of the shape of the Z using just the first order QED corrections 

(dashed) and the full corrections (solid). The dotdash curve shows the shape without 

any Q ED correction. 

Using Eq. (1.51) we can simulate the results that will be obtained at SLC 

and LEP. In Figure 1.4 we show a simulation wit.h 10 nb- 1 accumulated at each 

of the center of mass energies 91, 92, 93, 94, and 95 CeV. Statistical errors 

only have been included. A fit to the experimental points using the radiatively 

corrected line shape inferred a Z mass of 91.65 GeV while the actual mass for 

the simu: .. jon was 91.73 GeV. The inferred width was 2.954 GeV compared to 

an actual width of 2.694 GeV. This shows that 50 nb- 1 will be enough to find 

the mass to considerable accuracy, but not enough to determine the width to 

less than the contribution ofa single neutrino. In Figure 1.4 results are also 

shown for a simulation with 500 nb-1 • Here the error in the width was about 

70 MeV, just less than half the contribution of a neutrino. About 500 nb-1 will 

thus be required to determine the number of neutrinos. 
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Figure 1.4: Results of a simulation of total cross section measurements near the Z, 

with the cross section given in nanobarns. Data were generated corresponding to 10 

nb- 1 at each of five energies. A. fit (dashed) was made to the simulated data using 

the known radiatively corrected lineshape, but allowing the overall normalization to 

float. The second figure shows an analogous simulation with 100 nb-1 at each point. 

The solid curves show the true line shapes for the simulated masses and widths. 
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1.4 Asymmetrie~ 

Because the Z couples differently to left-handed and right-handed fermions. 

the angular distributions of the outgoing leptons and hadron jets are especially 

interesting. Here we consider effects in the absence of radiative corrections. \\'e 

shall include, however, the important influence of T - Z interference. 

Consider first eLe~ -+ fLJR. The spinor structure of the amplitude is 

the same for T and Z exchanges (in the s-channcl). In addition to the spinor 

structure there is a factor 

Q..,eQ-rf QZeQZf 
L L + L L ( -')) ., 1.\J_ 

s S - m:z + irmz 

Here Qr is the photon coupling to eLe~ and Qff is the Z coupling to fLJR 

and so on. Of course Qr = Q-;r The angular distribution for eLe~ -+ fLJR is 

(1+cosO)2, while for eLe~ -+ fRJL we have (I-cosO):!. This can be understood 

in terms of angular momentum conservation. If the left-handed electron enters 

moving in the negative z-axis it has Jz = +1/2 while the right-handed positron 

also has Jz = +1/2. The initial state thus has Jz = +1. If the final state 

is fLJR it has 1 as its component of angular momentum along the direction of 

motion of JR. If the outgoing fermion (fL) is moving in the same direction as 

the incoming fermion (the negative Z-direction) Jz matches perfectly. However, 

if the outgoing fermion is going in the direction opposite the incoming fermion 

Jz is not conserved. This is reflected in the vanishing of (1 + cos 0)'2 in the 

backward direction. For a similar reason eLe~ -+ fRJL vanishes in the forward 

direction. 

If we define 

{ = (1 _ "'.,'z _ ;r:z) -. ( 1.53) 

the amplitudes for the various helicit.y amplitudes are 

IM(eLe~ -+ fLJR)I'2 ex: IQ2eQt + ~QfeQrfl:!(1 + cos 0)'2 

+ -., 
IM(eLeR -+ fRfL)I- ex: IQ2eQ1! + ~QleQ~fl'2(1 - cos 0)'2 

IM(eRet -+ fLJR)I'2 ex: IQ1:Q2' + ~Q~eQf'I'2(1- cos 0)'2 

+ - '2 IM(eReL -+ fRfL)1 ex: IQ1eQ1! + ~Q~eQ~'12(1 + cos 0)'2 (1.54) 
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Here () is the angle between the incident and final fermion directions (or 

equivalently, incident and final antifermion directions). At center of mass ener

gies well below the Z, the energies of PEP, PETRA, and TRISTAN, I~I is not 

~arge and it is the interference between the photon and the Z that is responsible 

for the deviations from the 1 + cos2 
() distribution. Very near the Z, I~I > > 1 

and only the Z pole is important. There dCT / dn, which is proportional to the 

sum of the four amplitudes squared in Eq. (1.54), has the form 

so 

~~ ex: (Qfe2 + Q~e2) (Qff:! + Q~f:!) (1 + cos:! 0) 

The axial and vector couplings are 

Qv =Q~+Qf 

QA = Q~-Qf 

(1.55 ) 

( 1.56) 

:~ ex: (Qe + Q~) (Qt:! + Q~:!) (1 + cos:! ()) + 4Q~Q~ QtQ~ . ~ cos () (1.5i) 

The forward-backward asymmetry is defined by taking the cross section for 

o < () < ~ and subtracting the cross section for ~ < () < 7r, and dividing by the 

sum. Thus 

( 1.58) 

Of course AFB can be measured only if the fermion (as opposed to antifermion) 

direction can be identified in the final state. This is possible for final states e, p., 

and r, though for the e+ e- final state' this analysis is incomplete because the 

non-resonant (Bhabha) scattering contributes. For the e+e- - p+ p- events the 

uncertainty in AFB will be largely limited by statistics so 
1 1 

OAFB = F. = JB(Z - p.-p+)N 

5.5 
~../N 
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where N is the total numl,er of Z's produced and Xl' is the number of J.1+ J.1-

pairs produced. For N = 106
, bApB = 5.5 X 10-3

. 

Let us assume that the Z couples to the e and the J.1 in the same way: 

Then 

an" 

QZe _ QZ" - f. 
L - L -

QZe _ QZ" _ r 
R - R-

4 _ ~ [1 - (r/C)'2] '2 

• FE - 4 1 ~ (r/Cf2 

- 2·1_~r/f)4(-b(r/C)2) 

:::::: -6.90b(r/C)2 

( 1.60) 

(l.Gl) 

( 1.G2) 

where we have used our earlier estimate r2 If? = r((Z - e'Rc!)/r(Z - eLe~) = 
35/54. 

Thus 

( l.G3) 

and for 106 Z s, 

b(r/C)2 :::::: 0.023 (1.64 ) 

Near the Z the asymmetry is energy dependent as a result of the interference 

between the Z and the photon. This is shown in Fig. 1.5. 

An alternative way to measure (r/C)2 is to use longitudinally polarized 

electron beams. If UL is the cross section with left-handed electrons incident we 

define 

A 
UL - UR 

LR = 
UL + UR 

(1.65 ) 

From the helicity amplitudes squared, evaluated for I~I » 1, 

1 - (r/C)2 
ALR = 1 + (rll)2 (1.66) 

At SLC it is planned to measure ALR using a polarized beam generated 

by directing circularly polarized laser light on the surface of a GaAs crystal[4]. 
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Figure 1.5: The forward-backward asymmetry for e+ e- - p.+ J,C as a function of the 

center of mass energy for mz = 93 GeV. The dashed curve shows the result without 
radiative corrections. The full curve is an approximation to the result with electro

magnetic radiative corrections. A complete treatment of the radiative corrections for 
this quantity must include the non-collinearity of the outgoing muons when a photon 

is emitted. 

This technique was used in the classic experiment of C.Y. Prescott et al. that 

measured the left-right asymmetry in e - d scattering[.5]. The degree of polar

ization that can be achieved is 30-40%. The precision of the forward-backward 

measurement will be limited by statistics and by uncertainties in measuring the 

degree of polarization of the beam. Early running might achieve 8ALR :::::: 0.025 

while ultimately 8ALR :::::: 0.01 might be attained, I estimate[4]. 

Now 
8ALR 2 ., 
-A-LR- = -1 _ (rjf.)4 8(r j C)-

8ALR 
0.21 

16 
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( 1.GS) 

Even for the conservative «5A L R = 0.025 estimate. which is for 1\' = 1O~ 

and a fractional uncertainty in the polarization OP j P = 5%. 6( r j ()'2 = 0.033. 

which is comparable to the precision obtained from forward-backward symmetry 

with 106 Z5. For the more optimistic 6ALR = 0.01 based on 105 Z.s and foPj? = 
3%, the left-right asymmetry is a better probe than lOG Zs using the forward

backward asymmetry. 

The quality of the tests furnished by the forward-backward and left-right 

asymmetries can be judged by interpreting the measurement of (rjCf as a pre

diction of mz. Since 
., const mz= . ., 

cos2 Ow Sln- Ow 
( 1.G9) 

we find that 

2c . 20 :2 0 umz Sin W - cos w!:' '20 32!: . :2 0 
-- - .., ., 0 sin w::::::: - • 0 Sln w 

mz Sln- OW COS- Ow 
( 1.70) 

On the other hand, 

(r)2 (Sin:! Ow )2 
C = ! - sin 2 Ow 

(1.;1) 

and 

(r)2 sin2 Ow . 2 . ., 
0"i = - (! _ sin2 OW)30sm Ow::::::: -10.36 sm- Ow ( 1.72) 

so that the uncertainty in the predicted Z mass is 

6mz = 0.16mz b (~)2 = 14GeV 6 (~)2 ( 1.73) 

The estimated uncertainty of bALR = 0.025 thus gives an prediction for the 

Z mass with an uncertainty of about 450 MeV, which can be compared with the 

uncertainty of perhaps 40 MeV that will come from the direct measurement. 

Because of interference between the Z and the photon the left-right asym

metry will also show an energy dependence. Moreover, because the various final 

states couple differently to the photon, the energy dependence varies with the 

final state. AT the Z peak, the interference is unimportant and the left-right 

asymmetry is independent of the final fermion type. This is displayed in Fig

ure 1.6. 
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Figure 1.6: The left-right asymmetry as a. function of the center of mass energy for 

mz = 93 GeV and r = 2.8 GeV. The solid curve corresponds to e+e- - Jj+Jj-, the 

dashed to e+e- - uu, and the dotted to e+e- - dd. QED radia.tive corrections have 

been included by applying Eq. (1.51) to each helicity amplitude. 

1.5 Z Decays to the Higgs Boson 

In addition to the standard Z decays, there may be decays to other particles. 

Among the most interesting possibilities are those involving the Higgs boson. 

As pointed out by Ioffe and Khoze(6] , the most important is Z - He+e- or 

Z - H Jj+ Jj-. The charged lepton pair comes from the decay of a virtual Z, 

as shown in Fig. 1.7. Defining x = 2EH/mz with EH the energy of the Higgs 

boson in the Z rest frame, the differential decay rate is [7] 

(1.74) 
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Z , , , 
, H 

Figure 1.7: The decay Z -lIe+e- or Z -IlJj+Jj-. 

The ratio r(Z - HJ.l+J.l-)/r(Z - J.l+J.l-) is shown in Fig. 1.8. Also shown 

is the relative rate for Z - H" a process that proceeds through IV-loops and 

fermion loops 1.7. The rate formula is [8] 

(1. (5) 

where 

[ 
"I 1 mil 

A~- 4.9+0.3~ 
mw 

( 1.(6) 

and E-y is the photon energy in the Z rest frame, E-y = m~ - m'j-r/(2mz). As 

can be seen the Z - HJ.l+J.l- mode is more attractive for mH < 55 GeV. \Vith 

107 Zs a good possibility at LEP, a Higgs boson with mass up to about 40 GeV 

ought to be discovered [9]. 

2 Introd llction to Renormalization Effects in the 

Standard Model 

The triumph of the Standard :Model is two-fold. First, through the work of 

G.'t Hooft and others, spontaneously broken gauge theories were shown to be 
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Figure 1.8: The rates for Z - H J..l+ J..l- and Z - H.., relative to Z - J..l+ J..l-. [8] 

renormalizable and thus the model of Glashow, \Veinberg, and Salam became a 

real candidate for the theory of electroweak interactions. Second, the cliscovery 

and measurement of the neutral weak current and later the discovery of the IV 

and Z verified the model. Detailed testing of the model is essential to confirm 

the prediction of the radiative corrections to the model or, even better, to find 

discrepancies between the theory and experiment. 

The radiative corrections that occur are of several types. In the measure

ment of e+e-- Z the largest corrections are purely due to QED. These have 

been discussed above. The technically difficult part of the corrections involve 

the electroweak gauge sector of the model. An outstanding guide to such calcu

latio~s is the classic paper of Fujikawa, Lee and Sanda [10]. 

It turns out that the most important racliative corrections, aside from the 

initial-state radiation, are a relatively simple class of vacuum polarization dia

grams. It is these that we treat here. Our approach is that of Sirlin [ll] which 
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we follow slavishly, dropping his discussion of the gauge sect.or. but providing 

explicit calculations of the various contributions. For a thorough treatment. see, 

for example. the work of Lynn, Peskin, and Stuart [12]. 

2.1 Physical Quantities 

The Lagrangian of the gauge theory has three fundamental parameters, 9 (the 

5U(2) coupling constant), g' (the U(l) coupling constant), and v (the vacuum 

expectation value that breaks the symmetry). \Ve know that in lowest oruer 

., 
mz - 1 2 f'1" -(g + 9 -)v-

4 
., 

miv -
1 -lv2 

4 

1 1 1 - -=-+-
47rQ g2 gl2 

(2.1 ) 

:Kow we cannot require all four of these relations to remain true after radiative 

corrections since we have only three parameters. In the actual world Q and G F 

are very well known and mz soon will be. These can be taken to define the 

theory. Then mrv and all other physical quantities can be predicted in terms 

of Q, GF and mz. At present mz is not known with good precision. Data on 

neutral current neutrino scattering are better and can be used instead of mz. 

It is often useful, especially in dealing with the neutrino data to introduce 

tan Ow = g'/g (2.2) 

If we wish to consider radiative corrections it is necessary to be more precise. 

One alternative is to define ., 
2 m,v 

cos Ow = --::;-mz (2.3) 

but there are alternatives that differ by terms of order Q. 

Regardless of which physical parameters we use to define the theory, we can 

proceed by deriving the physical observables in terms of g, g', and v. Then three 
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of the relations fix these three parameters and the remaining relations become 

predictions. 

2.2 Lagrangian and CounterterlTIS 

After spontaneous symmetry breaking the gauge bosons of the electroweak the

ory have a mass matrix Lagrangian 

V5 [96 + 1, ,,] .c = - -IV lV-~ + - (g B -gol-V)· 2 2 ~ 4 o~ ~ 
(2.4) 

Following Sirlin we ignore wave function renormalization and generate coun

terterms by writing 

go - g-og 

, , 
-og 

, 
go - 9 

., v2 _ ov2 v· -0 

\Vorking to first order in Os we have 

with 

om~ - ~o (g2u 2
) = ~ (u20g2 + g20u2) 

om~ - ~o [(g2 + gl2) u2] 

" " mz (£' £ v- I I J" ) cog - sog) = -( -g of] + gog) 
g- + g'- 4 

where we have defined 

tanOw - g'/g 

c - cos Ow, s = sin Ow 
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The counterterms bmrl" bm~, 8m~A will be used to offset one-loop effects at 

specified points. 

Consider the mass of the Z, as described by 

\Ve shall avoid considerations of gauges insofar a,c; possiLle. Here let us 

imagine that the first diagram is given by _ig~,,/(q"2 - m~) and the second by 

-ig~A [+. AC7A (2)] -igC7 " _ -igjJ" . Azz( q"2) 
2 " 19 zz q 2 ,,- 2 " 2 " q - mz q - mz q - mz q - Tnz (2.9) 

In general the vacuum polarization bubble is 

(2.10) 

but we shall not be concerned with B since we shall always couple somewhere to 

an electron line, for which not just the vector current, but also the axial current 

is conserved (in the me = 0 limit). The sum of all the diagrams with repetitions 

of the bubble is a geometric series with the sum 

(2.11) 

There is also the diagram generated by the counterterm 

This gives . . 
-2gj,l1/ ( . c 2) -1 
" ,,-:1.0mz 2 " q- - mz q - mz (2.12) 

and for the full propagator 

(2.13) 

23 



Now we fix m~ to be the energy squared where the real part of the propa

gator vanisnes by requiring 

(2.14) 

Similarly 
'2 V., ., [2] 6mw = 6 4"g- = ReAww(mw) (2.15) 

In all such expressions 6 acts in the natural way, viz. 6(g'2v 2 ) = v28g2 + g'28v'2 = 
2gv'26g + g'28v'2. \Ve shall make this all explicit below by calculating A for the 

most important class of diagrams. 

Next consider the electric charge. The interactions of the gauge bosons with 

the fermions are governed by 

-( .,. ,Y ) 
C, = IjJ go '" . "2 + go 2 J3 IjJ 

which we again express in terms of g,g', and counterterms using 

The result is 

-g'B + g~V3 
Z - = -sB+dV3 y'g2 + gr). 

gB + g'~V3 
- y'g2 + grJ. 

. c - ,p [ h (T+ ,w+ + L ,w-) + ~ (T3L - Qs') ,Z' + eQ A] tP 

(2.16) 

(2.1 i) 

-,p [~ (T+ ,w+ + L ,w-) + (6}g2 + g") (T3L - Qs') ,Z' 

+6eQ ;1 + gs'2c (69 _ 89') Q l 
9 g' 

gs (": - 6;') (T3L - Qs') A] tP (2.18) 

Here T3L = ~r3~(1 - ls)and Q = T3L - Y/2. The electric charge has been 

identified e = (1/ g2 + 1/ gr2)-1/2 and 6e = 6( 1/ g2 + 1/ gr2)-l/'2. \Ve recognize the 
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electromagnetic and weak neutral currents: 

(2.19) 

In terms of these the Lagrangian is 

L = 

The counterterms from ov2 , og, and 09' are determined by three conditions. 

two of which have already been obtained by defining m~ and m?v. The third 

condition is obtained from the definition of the charge e by considering the 

coupling of a soft photon to a charged particle. 

The six contributions are shown in Fig.2.1. 

Their sum is 

. J~ .( c c ')J~ + .gJ~ om~A +' J~.4.n(q2) + .gJ~ AZ-y(q2) 'J~c le-y-lsog-cog Z z-z.., .., ze...., 22 l-Z., .,-z-yoe 
c q- - m z q c q- - m Z 

(2.21 ) 

The ~ appears because half of the diagram is absorbed in wave function renor

malization. For this to make sense, the result must be proportional to J!;; all 

the Jz pieces must cancel as q2 - O. Now in fact from Eq. (2.7) 

gom1A (_C' C) ---.,- = UJg - sog 
c mz (2.22) 

so the second and third pieces cancel. \Ve shall show below that Az..,.(O) = o. 
Thus we need as well 

(2.23) 

\Ve shall see below that An(q2) ex: q2 as q2 _ O. Following Sirlin's notation we 

define 
IT (2) _ An(q2) (2.24) 

-y-y q - - q2 
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a. 

c. 

e. 

ieJ~ ..., 

. J~ -z·A (2) ze ..., 2" z ...,.., q 
q 

.gJ~ ( -i ). '" z- Z :2 :2 z5mZA c q -mZ 

b. 

- iJz(s5g - c5g') 

d. 

9 ,.. ( -z ) . .d ( "') i-Jz '" :l l,.,.,Z q~ 
C q~ - mZ 

f. 

- i5eJ~ 

Figure 2.1: Diagrams contributing to the coupling of a. soft photon to an electron. All 

the wiggly lines are photons excepted as noted. Dia.grams b. and e. ha.ve vertices 

genera.ted by the counterterms. Altogether these diagrams must give a. contribution 

of ieJ~ to (-i) times the Feynma.n amplitude in the limit q2 - O. 
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so the requirement is 

be = 
eil.,..,(O) 

2 
In summary, 6g, 6g', and 6v2 are determined by 

[1 ~ ~ n] 6 4"v·(g· + g.) - ReAzz(m~) 

(, [~v'2g2] - Re .4.ww(m~\.) 

2 
-(,( - -D-ry(O) 
e 

2.3 Vacuulll Polarization 

(') ').) ...... J 

(') ')G' -.- ,) 

To clarify and make explicit the preceding we shall adopt a model in which 

the vacuum polarization is given simply by fermion loops with just leptons and 

quarks circulating. This is certainly a crude approximation for the hadronic 

contributions. Indeed a large uncertainty is introduced into the calculation 

through the choice of quark masses, especially for the light quarks. However, 

, this model does allow us to see concretely what is really happening. Moreover, 

for the heavy quarks it is probably a reliable calculation. 

\Ve compute the diagram in Fig. 2.2 allowing the currents at the couplings 

to be different (e.g., J~ and J~) and allowing different masses for the two portions 

of the fermion loop (if the current is charged). 

\Ve proceed by dimensional regularization with 

J crk i1rn / 2 (-l)Of(o - n/2) 
(k2 _ m2)o - (m2)o-n/2 f(o) 

J crkk
2 i.,.n/2 (-l)o-lf(o - 1 - n/2) n 

(k2 - m2)o - ( m2)O-1-n/2 r(n) 2 

J crkk~k" i1rn / 2 (-l)O-lf(o - 1 - n/2) gloW 
(2.27) (k2 - m2)o - (m2)o-1-n/2 reo:) 2 
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k, m 

q 

q - k, m' 

Figure 2.2: The vacuum polarization diagram for a fermion loop in a vector propaga
tor. 

Now we have 

iI1~v(q2) = - J (~~fl Tr ~ ~ m (-ih~(gV+gAi'5) -(i- ~) _ m,(-ihv(g~+g~i'5) 
(2.28) 

This is handled 10 the usual way by introducing a Feynman parameter and 
setting 

p.2 = xmf'2 + (1- x)m2 + (.z;2 _ X)q2 (2.29) 

In this way we find 

+(g\'g~ - gAg~)mm'} 

The currents for Z and i' are diagonal so m = m', gv = g\-",!)A = gA' and 

d " n r1 " A la
g (q2) = -rrfl/2(2rr)-flnr(2 - 2") Jo dx(p.2)~-2 

x {(9~ + g~)[_m2 + 2x{1 - X)q2] + (9~ - 9~)m2} 

28 
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_ _"n/2(2;;:)-n 71 r(2 _ ~) r1 d.r(Jl2)~-2 
2 Jo 

x {(g~ + g? )[+2x(1 - x)q2] - 2g~m2} 

For the charged weak current ~\' = g~. = -gA = -g~ = g/2J2 

n g211 AwW(q2) = _r.n/2(2r. )-nnr(2 _ -)- dX(J.l2) ~-2 
2 4 0 

(2.31 ) 

[
12 f'2 1 2 f'2 .,] x -2(m + m -) - (2 - x)(m - m *) + 2x(1 - x)q-

In dimensional regularization we expand 

(J.l)~-2 - exp[(~ -2)lnJ.l2
] 

- 1 + (~ - 2) In J.l2 + ... 

Thus we write 

2101 
[ 1 ') _ 9 ') ') f'2 

+4r.*(2r.) 4 - dx In J.l* --(m* + m-) 
4 0 2 

1 (') f'2 ).,] -('2 - x) m* - m -) + 2x(1 - x q-

Here we have used 

n n n 
(- - 2)r(2 - -) = -r(3 - -) - -1 
2 2 2 

vVe define three functions 

f(m 2, ml'2, q2) _ 11 dx In J.l2 

g(m2,ml'2,q2) _ 11dxX(I-x)lnJ.l2 

h(m'l,ml'2,q'l) _ 101 
dx(~ -x)lnJ.l2 

The last of these vanishes if m2 = ml2. 
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(2.33) 

(2.34 ) 

(2.35) 

(2.36) 



In terms of these Eq. (2.34) gives 

" n/" -n n g2 [1 '2 f2) 1 '2] Aww(q·) = -7r -(27r) nf(2 - 2")4" -2(m + m + 3q 

+ 1~:2 [+2q2g(m2, mf2, q2) _ ~(m'2 + m f2
)J(m'2, ml'2, q2) 

_(m2 _ ml'2)h(m2,ml'2,q2)] (2.3i) 

The function An is similarly computed from Eq. (2.31) in terms of the fermion's 

charge, Q: 

" /" n 1 ... " 2 Ay..,(q-) = - 7r" -(21i)-nnr(2 - - )-q"c·Q 
2 3 

"Q" 2 e-· " " ") +2q -4 "g(m·,m·,q· 
1i-

For the Z 

gv -

gA -

and from Eq. (2.31) 

" 
I
ZZ

(q2) - _ .... n/2(2 ... , )-nnf(2 _ !::)g-
."1. -"" 2 c2 

1 ... "( " " ")] --r" m·J m· m· q-2 3L " 

(2.38) 

(2.39) 

(2.40) 

);ote that for A..,z only the 9"'9,>,' term contributes and .--\"'z ·x q2 so A..,z(O) = 0 

as mentioned before. 

The functions Azz, Aww, and .-Lr-, occur in the counterterms. If we cal

culate some physical amplitudes with our one-loop corrections we will need to 

include the effects of the counterterms. They should just cancel the divergences 

of the one-loop corrections and leave us with a finite answer. 
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The counterterm coefficients 6g, 6g', and bv'2 are determined by Eq. (2.26) 

[1 " "] Re Aw\\'( m?\.) 
bin -t'-g- - 2 4 171l\' 

1 "" 12 ReAzz(m~) 
6 In[-v-(g- + 9 -)] - " 4 m-z 

1 1 
n"r"\'(O) b In (-::; + -) - (2...1 1 ) 

g_ gf2 

which are linear in 6g,8g', and bv2 . \Ve find 

6g _ --=-n"r"\'(O) _ e2 [Re Az~(m~) _ Re A\\'~.(m?\. )] 
2s 2s3 m:z mk 

6g' = _":"'I1"r"\'(O) +..:... [ReAz~(m~) _ ReAWl~.(m?\.)] 
2c 2c m:z mw 

(2.42) 

\Ve can evaluate these explicitly. Using Eqs. (2.38) and (2.40), from each fermion 

there is a contribution 

(2.43) 

For a doublet, which could be leptons or quarks 

Aww(m~ .. ) 
" mw 

g- '2 t2 '2 1 m - + m '2 t2 '2 " [ " t2 
+161'1"2 2g(m ,m ,mw) - 2' mw f(m ,m ,mw) 

2 t2 1 m -m 2 t2 '2 
- " h(m ,m ,mw). mw (2.44) 
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From these we compute, with Q' the charge of the T3 = 1/2 member of the 

doublet and Q = Q' - 1 the charge of the T3 = -1/2 element, 

Azz(m~) Aww(mrv) 
" " m-Z mw 

1 m1'2 f2 '" ., 1 m'2 .,.,., 1 m 2 + mf'2 ., ," " 
---., J(m -,m -, m:z) - --" J(m-,m-, m:z) + - " J(m-,m -, mi,,·) 

8mz 8mz 8 mz 

'2 1'2 1 m -m ., n ., + ., h(m-,m-,miv) 
4mz 

+ g2 2 [Q ( 1'2 f2 2 ) Q' ( 2 2 2 ) + 1 ( 2 12 2)] ~S 9 m ,m ,mz - 9 m ,m ,mz -2g m ,m ,mw 
4" c-

., 
g- 4 [ f2 n f2" " ( ., ., ., )] +-4 'l'ls +2Q-g(m-,m-,m:z)+2Q-g m-,m-,m:Z 
r.-c-

2.4 The Fermi Constant 

\'v'e have not finished the renormalization program. Because 0 ::: 1/137.06, GF = 

1.166 X 10-5 Gey-2, and mz will be the best known electroweak physical con

stants, we want to use them to fix g,g', and t,2. Now we have already dealt with 

og, 8g', and 8v2 impli.citly by defining them in terms of quantities that involve 

mz and mw. In our scheme mz will be taken as fundamental and mw will be 

predicted as a function of 0, GF, and mz. 

Now we have the exact relations 

1 1 1 

e2 - -;; +-, g_ gr_ 

'l 1 'l n" 
m:z - 4(g- + 9 -)u- (2.46) 

\Ve need one more relation and that comes from relating G F to the Jl. decay rate. 

In lowest order, the rate for Jl. - ellii is 

r = G}m~ 
192rr3 

32 

(2,47) 

(2.-15 ) 



ignoring me/mI'. The purely electromagnetic corrections give 

r<2 5 [ (2· ) ] upm,. 0';) :! r = ')_3 1 + 0: - - To" + ... 
19 ... " _" 4 

(2.·18) 

Now the electroweak theory gives the decay amplitude in lowest order 
:2 

.""1 = ~e'IJ( 1 -,s)ve vIJ,IJ(1 - ,s)JJ (2.49) 
tsmi"~l 

and comparing with the usual V-A theory we find 

l GF 
-.., = In 
8m i,· v2 

The diagrams for the electroweak corrections generated by the vacuum polariza-

tion we consider in this section are shown in Fig. 2.3. These arc distinct from 

the electromagnetic corrections that appear in Eq. (2.48). 

Their sum is 

(2.51) 

Now since 

(2.52) 

and 

(2.53) 

we find 

(2.54) 

Now of course this better turn out to be finite. The terms that diverge as n - 4 

are 

nr -n n g'2 [1 " t2 1,,] - -rr -(2rr) nr(2 - 2")7 -2(m- + m -) + '3 Q-

_ _rrn / 2 (2,,) -nnr(2 _ ~ )e'2Q'2 ~q'2 
2 3 

_ -rrn/2(2rr)-nnr(2 _ ~) 
2 

g2 [1 " 1 " 2" 4 1" ,,] 
X c2 '3Q-(2TiL - T3LQS + Q-s ) - 2T3"Lm- (2.55) 
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-Sg 
M

g 

M -+ (-i6m~) 
mw 

-Sg 
M

g 

M~iAww(O) mw 

Figure 2.3: The diagrams contributing to muon decay. There are vertices generated 

by countertenns in the second and third diagrams. 
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From these we determine 

Re .4ww(mr\·) - .4ww(0) 

.., 
mZ 

2 
mH' 

fi-n(O) 

__ n/2(,>_)-nnr('> _ ~)g2 . ~ 
- ".... ... 2 4 3 

X __ 52 + - + - 54 [ 1 (1 Y2) 1 
12 6 6 

(2.56) 

where for the II and ZZ channels we summed over the two members of an 

SU(2) doublet. The total contribution of these terms to D.M is 

D..I0i = /\,1 [_7rn/2(2r. )-nnr(2 - n/2)g2] 

For the finite pieces that remain we find 

ReAww(m~,) Aww(O) 

mw mw 
9 "2 t2"2 m m[ 2122 212] 2 { 2+ t2 

= -6 2 2g(m,m ,mw) - 2:2 J(m ,m ,mw) - J(m ,m ,0) 
1 1i mw 

2 t2 

_ m :;2 m [h(m"2,mt2,m~v) _ h(m2,m12 ,0)]} 
w 
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g'2 [ 1 f'2 f'2 '2 1 '2 '2 '2 ) 1 '2 f'2 '2) = 4rr2c2 4'g(m , m , mz) + 4'g(m , m , mz - 2g(m , m , m lV 

1 f'2 1 '2 1 m'2 + mf'2 m f'2'"'' m .,.,., J( ., t'1 ...) --S-.,J(m-,m-,mZ)--S-.,J(m-,m-,mZ)+-S ., 7n-,m-,mi\, 
mz mz mz 

m
2 

- mf'2 2 t2 .,)] + ., h(m ,m ,mW 
4mZ 

+ g2 '2 [Q ( 1'2 f'2 '2 ) Q' ( '2 '2 '2 ) + 1 ( 2 mf'2 '2)] 4rr'2c2S 9 m ,m ,mZ - 9 m ,m ,mZ 2g m, ,mW 

., 
+4~: 2S4 [+2Qf'2g(mf'2,mf'2,m~) + 2Q'2g(m2,m'2,m~)] 

/I C 
(2.58) 

Altogether the change in the decay amplitude is .6.01\-1 = .I\-1.6.r with 

.6.r g2 {I [ 2 2 '2 (t2 1'2 2 ) (2 t2 '2)] - -2 2 - g(m ,m ,mz) +9 m ,m ,mz -2g m ,m ,mlV 
41. S 4 

1[ ., t2 2 t2 ] m- 2 22 m t2 t2 2 m + m '2 f'2 '2 -- -::;f(m ,m ,mz) + -::;f(m ,m ,mz) - ., J(m,m ,mw) 
8 m- m- m-z Z Z 

., f'2 } m--m ., 1'1. ., + ., h(m-,m-,miv) 
4mz 

., 

+ g- {Q ( '2 2 '2 ) Q' ( t2 f'2 '2 ) + ( 2 t2 '2) -29m ,m ,mz - 9 m ,m ,mz 9 m ,m ,mw 
41. 

1 m 2 + mf'2 [ ., 1'1." ., 1'1. ] - -8 '2 J (m - , m - , m ~v) - J (m - , m -, 0) 
mw 

- 2 f'2 '2 '2 f'2 1 m 2 mf'2 } -4' m?v [h(m ,m ,mw)-h(m ,m ,0)] 

., 
+ 4:

2 
{2Q'2 [g(m2,m'2,m~) _g(m2,m2,0)] 

+2Qf'2 [g(mf'2, mf'2, m~) - g(mf'2, mf'2, 0) n (2.59 ) 

This is a formidable expression but we can make some sense out of it. First 

suppose that we regard mw and mz as not too different and also suppose that 

m and m', the masses of the T3 = -1/2 and T3 = +1/2 elements of the fermion 

isodoublet are similar and m, m' « mw, mz. In this limit 

e
2 

{ [ ., .,., .,.,]., 
~r~ 4rr2·2 g(m-,m-,mz) -g(m-,m-,O) Q-
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(2.GO) 

\\"e recall that 

rl 
" - J

o 
dx x{ 1 - x) In Ii-

li2 _ {1 - x)m2 + xmf'2 + {x2 _ X)q2 (2.61 ) 

In fact, we really want only the real part of ca.ch function beca.use only rcal 

functions appear in .6r 

For m~/m2 < 4 the integral is real. For m~/m2 > 4 the integral becomes 

complex. For a < 4 

11 dx x (1 - x) In [1 - ax (1 - x)] 

1 { 5 4 (4 )!4--:. -1 ra} = 6 - 3 - ;; + ;; + 2 V;; - 1 sm V 4 (2.63) 

while for a > 4 

10
1 

dx x(l - x) In [1 - ax{l - x)] 

= H -~ -~ + (~+ 2) VI ~ lIn (f4 + J~ I) ± ;;l} 
(2.64) 

where the sign of ir. /2 depends on whether a is above or below the cut. For 

m~/m2» 1 

(2.65) 

Altogether 

20 ~ 2 (5 1 m~) .6r ~ -L-,Q, -- + -In-., 
7r , 18 6 mj 

(2.66) 
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e /-l r u d s c b t 

mass (GeV) .0005 .106 1.8 0.15 0.15 0.35 1.5 5.0 50 

~r x 102 1.7 0.9 0.5 1.2 0.3 0.2 0.7 0.1 0.0 

Table 2.1: Table 2.1. Contributions to ~r from the simple formula using the fermion 

masses. The total here is about 0.055. 

where the summation extends over all fermions, e, /-l, r, u, d, s, c, b, t and of course 

a factor three must be supplied for the quarks since there are three colors. 

vVhat values should be used for the quark masses? There is no precise answer. 

The vacuum polarization .4..yy, Aww, depends on real physical states and our 

quark model is only a crude approximation. A careful treatment uses dispersion 

relations and data from e+e- - hadrons, which are connected through 

(2.67) 

and 

(2.68) 

Here R(qt2) is the ratio of the e+e- annihilation cross section into hadrons 

divided by that into J,l+/-l-: 

(2.60) 

It is convenient to use 

(2.70) 

and take q2 spacelike. 

Since our interest is pedagogical, we ignore these niceties and instead use a 

simple model with mu = md = 150 MeV, m" = 350 ~IeV, me = 1.5 GeV, mb = 
.j GeV, mt = 50 GeV. For the ·known quarks this gives thresholds at about the 

right place. The contributions we find this way are given in Table 2.1. 

Because of the correction ~r, which we have only approximated (the more 

careful calculation gives about .lr = 0.070) we see that the nom level result 

GF g2 1 
J2 = 8mrv = 2v2 (2.71) 
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should be replaced by 
GF 1 
~ = ,... ,,( 1 + .ur) 

v2 ;'!l'-
(0 -0) _., -

This may be added to the relations 

., 1., f'2" nlz - -(g- + 9 )t·-
4 

1 1 1 

e2 - -+-g2 gl'2 
(2.73) 

These then det.ermine g, g', anu v2 . In particular \Ve find 

:2 1 ( mw = 2 1 + 4r.o(1 + .ur) ) :2 
1- mz 

J2m~GF 
(2.;·1) 

\Vith mz = 93.0 GeV,.6.r = O.OiO we find mw = 82.1 GeV. The sensitivity to 

.6.r is given 

8mw sin:220w mz ==:::-16.4GeV 
86.r = - 8 cos 20w cos Ow 

(2.i5) 

A shift in .6.r could come from heavy quarks or leptons as explored in the 

next section. 

2.5 Heavy t-quark 

Let us suppose the t-quark is very heavy, so heavy that we can ignore mw or 

mz by comparison. Then in the expression for .6.r it is the terms accompanied 

by ml'2/m?v or mf'2/m1 that dominate. 'We approximate 

f(m;,m;,m1) ==::: f(m;,m;,O) 

f(m~,m~,m~.) ==::: f(m~,m;,O) 

h(m~,m;,m~ .. ) - h(m~,m;,O) 

The contribution to .6.r is 
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From the definition of f and h 

f(m 2 ,m2 ,0) _ Inm2 

f(m\ml'2, 0) - 101 
dxln[xmf2 + (1- x)m2

] 

m2 mf2 mf'2 1 m 2 + mf'2 

(
.... ., ., In -., - - f2 ., 

2 m''; - m*)* m* 4 m * - m* 
(2.78) 

Substituting these values we find for the contribution of a heavy t-quark, 

A 3GF 2 {2 2 2m~m~ I m~} 
~r= - m +m - n-

8 2M2'" t b m2 m2 m 2 rr V ~s* t - b b 

(2.79) 

Using Eq. (2.75) we find [12] 

3 ..,cos::! Ow ( mt )2 
umw = ...j2GF m; 20 ~ 180 MeV 100 G V 16rr2 2 cos w e 

(2.80) 

where of course this is really only reliable for mt large compared to mw. 

The left-right asymmetry, which can be measured with longitudinally polarized 

Zs, is also affected by radiative corrections: the presence of heavy quarks or 

new particles in the vacuum polarization loops might be detected if very high 

precision measurements are made. To derive relations for the change in the 

left-right asymmetry due to radiative corrections we consider explicitly e+e- -

J.1.+ J.1.-, though the observable ALR does not depend on the choice of the final state 

fermion. Indeed, because all the final states have the same left-right asymmetry 

on the Z peak this measurement is especially attractive. 

The Feynman diagrams required are shown in Fig.2.4. In the figure all the 

wiggly lines are Zs except where "y is indicated. Only diagrams with at least 

one resonant (Z) propagator need be considered. 
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e 
a. b. c. d. e. 

f. g. h. 

1. J. 

Figure 2.4: Diagrams contributing to e+e- - J..l+ J..l-. All wiggly lines are Z except 

where noted. In diagrams b. and c. the Z couples at one end or the other through a 

counterterm induced coupling. 
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Consider first diagrams a-e in which the couplings are all through Jz. Each 

diagram contains a factor JzJ'Z. If we indicate the cm energy squared by q'2 and 

use 

c = cos Ow 

s = sin Ow (2.81 ) 

then for the Born term we have 

(2.82) 

Diagrams b-e give 

"" ig'2 JzJ'Z [ 2c( C ") 8m~ Azz(q'2)] 
- 1", V( = - .., - - cog + So 9 -.., .., +.., .., 

c2 q1. - m Z 9 q- - m Z q- - m Z 
(2.83) 

Now 

(2.84) 

so we write 

(2.85) 

Thus the first five diagrams give 

_'u_ ig2 JzJ'Z [1_2C(c C) ilmAzz(m~) .t' (2)] 
l.v( - _2"'''' cog + sogl + 2 .., + '''zz mz 

c..- q- - mz 9 q - m Z 
(2.86) 

plus nonresonant terms. The 1m Azz(m~) is reabsorbed by writing 

1 (1 ilmAzz(m~)) .., .., + 2'" q- - mz q mz 

1 
-+ ----------

q2 - m~ + i 1m Azz(m~) 
(2.87) 

From the relations for 8g and 8g' 

8g = -eIT"V'/(O) _ ec- [ReAzz(m~) _ Re.-hvw(mrv)] 
28 2S 3 m 2 m 2 z lV 

8 ' _ -eIT..,...,(O) e [ReAzz(m~) ReAww(mrv)] 
g- 2 +-2 .., ----..,-:.........:.:....:. 

C c mz mrv 
(2.88) 
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it follows that 

r c' -en-n(O) e (s2 - c2) [RC'-\ZZ(nl}) IleAlI'w(mr\.)] 
cug + sug = 2 + -2 3 ., - ... (2.80) 

sc c.s tnz mit· 

Altogether for diagrams a through e 

\Ve need this to be finite. The divergent pieces are (summed O\'cr the two 

elements of a doublet) 

., 
mZ 

Aww(mri') 
mw 

Indeed it follows that the sum of diagrams a-e is finite. 

(2.91) 

Diagrams f, g, and h give contributions proportional to J'fJi;. Diagrams i, 

j, and k give analogous contributions proportional to J~Jz. The former are 

-1. -1.g 
-iM, = JzJ~isc(s8g - cog').., .., 

q- - mz c 

-iMg J e J~( .) -1 ( . c 2) -1 -1.g 
- Z -r -1.e 2 lum ZA 2 .., 

q q - mZ c 

. " 

-';Mh Je J~( .) -1. [. 4 (2)] -1. -1.g 
~ - Z -r -1.e -;;- L ZA q .., ., 

q- q- - mZ c 
(2.92) 
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Since we are retaining only the resonant pieces, it is good enough to replace q'2 

by m~ except in the expression q'2 - m~. Using 
., 

mz , v' 2 2 (c8g - s8g) 
9 +gr 

JeJ~ -I -ig. {2 (~ _ ~ ') _ eAZA(m~)} 
- Z..., 2 ., l SC sog cog .., 

q - mz c mz 

(2.93) 

Summed over the two elements of a doublet, 

_ e: [~ _ s'2(Q2 + QI'l)] [_~11"n/2(2r.)-"nf(2 _ ;)] 

+2e~ Q'(-4
1

_ Q's'2)g(ml'l,ml'l,q2) 
11"-C . 

eg 1 2 .,.,., 
+27r2cQ(-4 -Qs )g(m-,m-,q-) (2.9-1) 

vVhile 

2 ( ~ ~ ') ec (ReAzz(m~) ReAww(mrv)) sc sog - cog = -- .., - .., 
s mz miv 

(2.95) 

whose divergent part is 

_ eg'2s 7r"/'2(211")-"nf(2 _!:) [2. _ ~S2(Q'2 + QI'l)] 
C 2 12 3 

(2.96) 

Thus the term proportional to JfJ; is finite. 

Let us isolate the leading contribution for mt > > mw. These come entirely 

from 

(2.97) .., ., 
mz miv 

and in fact solely from the f(m 2, ml'l, q2) and h(m'2, ml'l, q'2) pieces in Eq. (2.58) . 

.., 
m-Z 

.., 
miv 

., 
g- [ 1 '2f( '2 '2 '2 ) 1 I'l ( I'l I'l '2 ) 

167r'2mrv - 2m m ,m ,mz - 2m f m ,m ,mz 
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Thus the t-quark contribution is, including a factor of three for the color sum, 

o 0 2 ( 3 ") G o e 0 -1 -tg - ~ F" 
- l.I\I1 '+u+h ::::= JZ)~" '1 (-) -8 '1 ;::;m~ 

o q- _ m Z cr.· V ~ 
(2.99) 

with an analogous contribution for J~Jzo The full ampliluJe then is proportional 

to 

JeJ~ [1 _ 0(0)] + (Je J~ + JI! J~) (-32 GFm;) 
Z Z z.., .., Z Sr.:! v'2 

so the effect is to replace 

Now initially 

where X is just the usual 

g12 
Xw = 52 _ ---=~

g2 + g12 

(2.100) 

(2.101) 

(2.102) 

(2.103) 

The left-right asymmetry is determined by the relative strengths of the T3L and 

Q pieces in the current. Thus the t-quark contribution induces a change in X 

(2.104) 

There is, however, an additional contribution that comes from the shift in mr,,·, 

Eqo (2.75). Since the t-quark produces a shift 

bmrv 3G Fm; cos4 Ow 
m~ = 8r.2v'2 cos 20w 

(2.105) 

This, itself gives a shift in Xw = 1 - m~/m~ 

b 3G Fmr cos4 Ow 
Xw = - 8r.2 .j2 cos 20w 

(2.106) 
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Together they yield 

oX = _ 3GFm; 8
22 = -3GFm; xw(1- xw) 

. 8r.2 .J2 c2 - 8 2 8r.2 .J2 1 - 2xw 

Now 

So we find [12] 

I_X 
ALR - ......-....;4~ __ -:-

- 1 - X +2X2 
4 

2.\"2 -X .,oX 
[2X2 - X + ~]-

3GFm~ X2(1- X) 

8r.2 J2 [2X2 _ X + ~]2 

4082 m 2 

- 3 2 ~ 
7r [1 + 16(82 - ~r~] mz 

For example, with 8
2 = 0.222, mz = 93 GeV 

OALR = 0.028(mt/200 GeV)2 

Such effects might actually be observed. 

3 Extra Zs 

(2.107) 

(2.108) 

(2.109) 

(2.110) 

In the previous sections we have detailed the predictions of the standard model 

for the Z, regarding as part of the standard model the yet-to-be-found t-quark 

and the Higgs boson. If deviations from the standard model of electroweak 

interactions are to be found in e+e- annihilation at the Z, they are likely to 

arise from mixing of the standard Z with an additional neutral gauge boson. 

Such mixing would shift the mass of the lighter Z downward and would modify 

its couplings to the fermions. These changes would produce deviations from the 

predictions of the standard motlel, predictions based on the measured mass of 

the Z. In practice, the measured Z mass would be used to infer the value of the 

weak mixing angle, or equivalently Xw = sin2 Ow. Because of the mass shift, 

the inferred value of Xw would be greater than the true value, which could be 
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determined if a very precise measurement of the l t' mass ,vere available. The 

deviations between the values of the observables at the Z and the standard 

model predictions depend then on the mixing between the Zs, characterized by 

an angle >., and the difference 6xw between the true value of Xl\' and the value 

xw inferred from the measured mass of the Z. 

At the Z several quantities will be measured with precision. These include 

the total width, the forward-backward asymmetry for the ~+ ~- final state, the 

left-right asymmetry for incident polarized electrons and the ratio of charged 

leptonic to hadronic final final states. The deviations caused in these quant ities 

by the existence of an additional Z depend on the couplings of that Z'. The class 

of possible Zs is too large to be studied in general, but it is possible to study 

three particular choices motivated by E6 , superstring-inspired models. To test 

the standard model requires comparison with an alternative and these models 

provide convenient examples. 

3.1 EG generated Zs 

The electroweak symmetry SU(2) x U(l) may well be part of a much larger 

symmetry encompassing SU(3)color as well. The most economical possibility 

is the SU(5) of Georgi and Glashow. A more recent approach derives from 

superstrings. There a gauge group E6 breaks down ultimately to SU(3) x 

SU(2) x U(l). One way this may occur is through the chain Es - SO(lO) x 

U(l), SO(10) - SU(5) x U(l). Each U(1) has a corresponding neutral gauge 

boson, a Z. 

How can we determine the couplings of these extra Zs? This is just an ex

ercise in group theory. We sketch here the techniques based on Dynkin diagrams 

that provide a simple and powerful means for analyzing such problems[13]. 

\Ve shall proceed by referring to the well-known group SU(3). The eight 

standard generators of SU(3) are T3 , Y, T±, U±, V±. The first two have the special 

property that the other six are eigenvectors of the action of commutation with 

the first two: 
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(3.1) 

while T3 and Y commute with each other. The space spanned by linear combi

nations of T3 and Y is called the Carlan subaIgebra. The raising and lowering 

operators are eigenvectors of the operation of commutation with an element 

of the Cartan subalgebra. The eigenvalue depends linearly on the element of 

the Cartan subalgebra chosen. Put more abstractly, each raising or lowering 

operator has associated with it a linear function, a, that acts on elements 

H of the Cartan subalgebra to give a real number a(H) (namely, the eigen

value: [H, Ea] = a(I1)Ea). Thus the a associated with T+ has the properties 

aT. (T3) = 1 and aT. (Y) = o. 
The as are really vectors (in the dual space of the Cartan subalgebra) and 

it is possible to define a scalar product on the space they span. The vectors a 

are called roots. It is possible to select a particular basis {Ha} for the Cart an 

subalgebra labeled by the roots a. In this basis 

(3.2) 

I t is easy to see that 

(3.3) 

sInce 

[H"[Ea, Et3]] - - [Ea, [Et3, H,]] - [Et3,[H"Ea ]] 

- t3., [Ea, Et3] + 0:', [Ea, Et3] (3.4) 

which follows from the Jacobi identity, [a, [b, c] + [b, [c, a]] + [c, [a, b]] = O. The 

vectors 0: are independent of the normalization chosen for the Eo:. 

The dimension of the Cartan subalgebra is called the rank of the group. 

The roots are vectors with this same dimension. For SU(3) the rank is two so 

we can conveniently represent these vectors. The roots form a familiar hexagon 

as shown in Fig. 3.1. 
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Figure 3.1: The root diagram for 5U(3). 

Since the root space for SU(3) is two dimensional we can choose two in

dependent roots as a basis. Suppose we define an ordering of vectors in this 

space as follows. Let oland 02 be the distinguished basis and let any vector 

be expressed as 

(3.5) 

Now if 

(3.6) 

we say -y' > -y if C~ > C1 • If C~ = C1 and C~ > C2 we say l' > -y. This defines 

an ordering of all the vectors in this space. In particular 01 and 02 are positive: 

01 > 0,02 > 0 Now the simple roots are those that are positive and that cannot 

be written as the sum of two positive roots. It is always possible to take a basis 

of simple roots. For SU(3) this means taking 01 and 02 1200 apart. Note that 

the basis of simple roots is generally not an orthogonal basis. 

The Cartan matrix is given by 

(3.7) 
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where ai, aj are simple roots. 

For the groups we consider all the roots have the same magnitude so Aij 

is symmetric. This is not true in general. It is easy to see that for SU(3) the 

Cartan matrix is 

(3.8) 

because cos 1200 = -1/2. 

In addition to the group itself we must consider representations of the group. 

A representation is a set of matrices corresponding to the generators of the group 

such that the commutation relations of the matrices are the same as those of the 

corresponding generators. The matrices act on a vector space whose elements 

we indicate by ¢. It is possible to diagonalize the matrices corresponding to the 

Cartan subalgebra (because all its elements commute) and we write 

(3.9) 

The weight M is a vector in the space spanned by the roots. It is easy to show 

that 

(3.10) 

unless it is zero. Actually for a fixed weight M there may be more than one inde

pendent weight. This cannot happen for a root. There is only one independent 

generator Ea such that [H.B' Ea] =.B' aEQ . 

For a given irreducible representation there is a highest weight A, that is 

A > l'vl for every other weight M. Every weight can be indicated by a set of 

numbers 
Ali = 2M· Qj 

aj' Qi 
(3.11) 

that turn out always to be integers. For the highest weight, the Ai are always 

non-negative. All the weights less than A are obtained by subtracting roots 

successively. An algorithm enables us to do such calculations efficiently. 

Consider for example the 8-dimensional representation of SU(3). The high

est weight is A = Q1 + Q2 and A1 = 2A· at/Q 1 . a1 = 2(1 - 1/2)/1 = 1\2 = 1. 

\ Ve wri te the vector (1,1) beneath the Cart an matrix as shown in Figure 3.2. 
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1-1 21 2 - 11 

o 0 I 

1-2 11 1 - 21 

[-1 -11 

Figure 3.2: The algorithm for finding the weights of a representation from the com
ponents of the highest weight. Each box corresponds to a weight M and the elements 
are the values of Ali = 2M· 0:';0:, . 0:,. 

Now the rule is if there is a positive element in the first component subtract 

the first row of the Cartan matrix, i.e., (1,1) - (2, -1) = (-1,2). This gives 

us the components of the weight A - a}. Similarly for the second component. 

Now in the next row we find for the first weight a component +2 in the second 

place so we subtract the second row twice, giving (0,0) and (1, -2). The process 

terminates at (-1, -1). All representations can be constructed in this fashion. 

Now we know SU(3) can break to the subgroup SU(2) x U(I). The hy

percharge that generates the U(1) points perpendicular to the SU(2) direction. 

(Generally, if we have a product G} x G2 with a} a root for G} and a2 a root 

for G2 then a} . a2 = O. This is so because if Hal is an element of the Car

tan subalgebra of G} and Ea';l is a generator of G2 they must commute, but 

[Hal' E a2J = a} . a2Ea';l = 0.) If al is associated with the SU(2) direction 

and f3 with the Y direction, f3 . 0'1 = O. Thus from the Cartan matrix we see 
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( -~ -~ ) 
1 1 I (3) 

1-1 21 (3) 2 - 11 (0) 

0 o 1 (0) 

1-2 1 I (0) 1 - 21 (-3) 

1-1 - 11 (-3) 

Figure 3.3: The weights for the octet representation of SU(3) together with their 
hypercharge quantum numbers. The hypercharge (with some normalization) 15 

J11 + 2J12 , i.e. the sum of the first element in the box and twice the ~ond. 

that {3 <X 01 + 202. To calculate the values of Y for the weights of the octet 

representation we calculate {3 . 1\-1 for each weight M. Now 

(3.12) 

if 01 . 01 = 02 . 02 = 1. In this way we find for 2{3 . M the array shown in 

Figure 3.3. 

There are actually two states at the center (like iTO and 1]). Thus we find 

an isodoublet with 2{3· M = 3, another with 2{3· M = -3 and an isotriplet plus 

an isosinglet with 2{3 . M = O. 

These same techniques can be used with larger Lie algebras, including the 

exceptional algebras. Each Lie algebra has a Cartan matrix. The Cartan matrix 

can be represented by a Dynkin diagram. If the rank of the algebra is n, there 
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0--0 5U(3) 

0----<0..-----(o......--o 5U(5) 

50(10) 

0---(0)----(~1o-o40 ...... -0 E6 

Figure 3.4: Dynkin diagrams for SU(3), SU(5), 50(10), and £6. 

are n dots. The ith and jth dots are joined by AijAji lines. Thus for 5U(3) we 

have Figure 3.4. 

Now we can see that SO(lO) can be obtained from E6 simply by dropping a 

circle from either end of the long chain and SU(5) can be obtained from SO(lO) 

by dropping either of the circles just after the branch. 

Now we confront the question of interest. \Yhen E6 -+ 50(10) x U(l)tJ.o 

and SO(10) -+ 5U(5) x U(l)x what are the couplings of the ZtjJ and Zx to the 

fundamental fermions? This question is easy to answer for the breakdown of E6 

because all the standard fermions belong to the same irreducible representation 

of SO(lO): ZtjJ couples with equal strength to e'L,et,'UL,uL'" For 50(10) -+ 

SU(5) x U(l)x the calculation is more difficult. 

We need to find a f3 for 50(10) that is perpendicular to all the Qi'S in 

SU(5). this is just like the SU(3) -+ 5U(2) x U(l) case. Now examining the 
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Cartan matrix for 50(10) 

2 -1 0 0 0 

-1 2 -1 0 0 

0 -1 2 -1 -1 (3.13) 

0 0 -1 2 0 

0 0 -1 0 2 

we see that the combination 201 + 4Q2 + 603 + 304 + 505 ex: (0,0,0, 0.1). This 

means that if 

(3.14) 

then 

(3. 0i = 0 (3.15) 

for i = 1, ... 4. Now the 0i, i = 1, ... 4 generate SU(5) so this is just what we 

need. Now to determine the couplings of the Z" we must evalua.te the X charge 

for each fermion in the 16 dimensional representation of SO(lO). This charge is 

proportional to 2{3 ·IVI = 2IVI . (201 + 402 + 603 + 304 + 505)' 

The representation is indicated in Figure 3.5. 

\Ve find 10 states with a. value + 1, five with the value -3 and one with 

the value +5. This corresponds to the decomposition of the 16 of SO( 10) into 

a 10. a 5, and a 1 of SU(5). Now the generator T3 is normalized so that Tr 

Ti = ~(1 + 1 + 3 + 3) = 2 where the eL and vi contribute 1/4 each and UL 

and dL contribute 3/4 each. 'vVe want to normalize /3 similarly. As it stands, 

Tr /32 = 25 + 10 . 1 + 5 ·9 = 80 so we need to take Qx = /3/ J45. Thus the 

fermions in the 10 of SU(5) have a X charge of 1/(2v'W), while those in the 5 
have a charge -3/(2v'W). Of course these results are correct at the scale at 

which SU(5) is the correct symmetry. They will be modified by renormalization 

group evolution to the low energy scale[14]. 

This brief sketch indicates how the charges of and extra Z might be related 

to an underlying theory[15]. In addition to Z.;, and Zx, we shall also consider 

a particular combination of interest to string-based £6 theories, Zr'J' whose cou

plings are related to the other two by 

(3.16) 
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o 0 0 0 1 1 (5) 

0010-11(1) 

01-1101(1) 

1 - 1 0 1 o 1 (1) 0 1 o - 1 o 1 (1) 

1-1 0 0 1 o 1 (1) 1 - 1 1 - 1 01 (1) 

1-1 0 1 -1 o I (1) 1 o -1 0 1 I (1) 

1-1 1 - 1 0 11 (1) 1 0 0 0 - 1 I (-3) 

o - 1 0 0 1 I (1) 1-1 1 0 0 -11(-3) 

o -1 1 0 -11(-3) 

o 0 - 1 1 0 1 (-3) 

o 0 0 - 1 01 (-3) 

Figure 3.5: The 16 dimensional representation of 50(10) and the quantum number 

associated with (3. Each box represents a weight. The U(l) quantum number in 

parentheses is obtained by multiplying the five elements inside a box by 2, 4, 6, 3, and 

5 respectively, and taking the sum. 
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3.2 Z Mixing and the Mass Shift 

Let us suppose that at low energies the electroweak interactions come not from a 

gauge theory based on SU(2) x U(l) but from one based on SU(2) x U{l) x U(1) 

so there is an extra Z of the sort just discussed. Let the two Zs prior to mixing 

. be denoted Z10 and Z20 and let their masses be J.-I10 and /.\120. The couplings to 

the left-handed fermion f are denoted by Q{o and Q~o. The convention for the 

mixing angle .A and the physical states Zl and Z2 are defined by 

Zl = COS.A ZIO + sin.A Z20 

The charges these states couple to are 

Q{ = COS.A Q{o - sin.A Q~ 

Q~ = sin.A Q{o + COS.A Q~ 

Here Q{o is the usual electroweak neutral current coupling: 

Q! e (!." Q ) 10 = . 0 () T3L - sm - (}w em 
sm wcos w 

(3.17) 

(3.18) 

(3.19) 

As a result of the mixing, the mass of the lower Z is decreased to its physical 

value, All 

I " " A i - J\Jio 

The standard model relations for the masses of the ~v and Z are 

" ! (1 + 1 4 .. ",(1 + ~r)) , 
miv - - " mz 2 V2mZGF 

cos2 Ow - "/ " miv 111Z 
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where .6r· is the radiative correction discussed in Sectio~ 2 with the value 

0.Oi13 ± 0.0013 if the t-quark mass is 45 GeV and the Higgs mass is 100 GeV 

[16]. Once the Z mass is determined to high precision, it will be used to infer 

the weak mixing angle, or equivalently, XU'. A precise measurement of the 1 V 

would indeed lead to the correct value of Xn-, but in the presence of Z mixing, 

the value inferred from the Z mass will be 

_ 1 ( 
XU' = 2 \: + 

1 __ 4,_, 0-=(_1 _+_.6_r...;..) ) 
V2AffGF 

while the correct value is obtained from 

_ 1 ( 
Xw = 2 1 + 1 _ 41io(1 ~ .6r) ) 

../2.UioGF 
(3.23) 

though of course 1\/10 is cannot be directly measured. The mistake in the inferred 

value of X", is thus 

6x", - XlV - Xw 

~ _>..2. xw(l- Xw) . Ali - AI? 
1 - 2xw AI? 

(3.24 ) 

which is always negative. 

Taking 6xw and >.. as the two parameters for the mixing has some advan

tages over the standard choice of AI? and >... The deviations in the observable 

quantities in e+ e- annihilation at the Z are linear in 6xw and >.., so each mea

surement yields a linear band as an allowed region in the 6xw - >.. plane. In 

addition, the ailowed range will turn out to be a finite portion of the plane. The 

curves of fixed Ali are parabolas and it is not hard to read the value of J\12 from 

the plot. 

3.3 Partial Widths 

All of the predictions of the standard model at the Z can be expressed in terms 

of the partial widths for Z - fLY R, where fL = e'L, et, UL, ih etc. \Ve assume 

universality among the three generations. The partial widths are simply 
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(3.25 ) 

assuming there is no phase space suppression. We shall assume that Z - tI 
is kinematically forbidden. In contradistinction to Eq. 3.25, ·the partial width 

predicted from the measured Z mass would be 

t _ mZQf2 
, - 24iT 10 

(3.26) 

with Q{o evaluated using iw in place of Xw. To first ortier in bxw and A, 

v.·here 

A 8 In Q{2 b 8 In Q{~ 
- 8A + Xw 8xw 

_ -2Aq' + bxwr' 

, Q~o 
q =-, 

QlO 

(3.2i) 

(3.28) 

is the ratio of the "new" Z charge of the fermion to the "old" Z charge, and 

, -1 + 2x w 2Q!m 
r = - --,,...-....;..;....:..:.:...--:--

xw{l - xw) TIL - xwQtm 
(3.2!) ) 

Unlike q', r' is independent of the couplings of the heavier Z. Values for r' for 

the various fundamental fermions are given in Table 3.1. Values for i/ are given 

in Table 3.2 for three frequently considered models of the heavy Z: Zx, Zt>, and 

Z'1' 

From Eq. 3.2i it is clear that for each decay mode of the Z there is some 

straight line in the bXw-A plane along which the deviation. 8r, vanishes. The 

same is true of the various observables like the total \ ... itith and the asymmetries, 

which can be expressed in terms of the partial widths. 
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Table 3.1: Values of the neutral weak charge Q{o. the branching ratio &' for the Z 

into If, the coefficient rf. and its product with the branching ratio for the various 

fundamental fermions, f. 

Q{o B' rl rl BI 

e - -0.210 0.021 -10.413 -0.218 

e+ -0.IG8 0.013 5.i90 O.OiT 

v 0.3i8 0.068 -3.219 -0.218 

u 0.266 0.101 -i.OOi -0.i06 

17 0.112 0.018 5.790 0.103 

d -0.322 0.148 -4.784 -0.706 

d -0.056 0.005 5.790 0.026 

Table 3.2: Values of the ratio ql = Q~/Q{o of the neutral weak charges for Zx' Ztb, 
and Z'rJ' and the product of qf with the branching ratio, Bf of the Z into If. 

I q~ q~ qlBI q~Bf q~BI qx IX 

e - -1.038 -0.447 -0.283 -0.022 -0.009 -0.006 

e+ 0.433 -0.559 0.707 0.006 -0.008 0.010 

v 0.577 0.248 0.157 0.039 0.017 0.011 

u -0.2i3 0.353 -0.446 -0.028 0.036 -0.045 

17 -0.650 0.839 -1.061 -0.012 0.016 -0.019 

d 0.226 -0.291 0.369 0.033 -0.043 0.054 

d -3.900 -1.678 -1.061 -0.017 -0.008 -0.005 
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3.4 Total Width 

The total width is given by 

(3.30) 

It is simple to see that the deviation in the total width, that is, the difference 

between the standard model expectation based on the measured value of the Z 

mass, and the correct value is given by 

0; _ r ~ r = -2,\ [:3(qe- Be- + qe+ Be+ + qV BV + qd Bd + l B d) 

+2( qU BU + qli BIi)] 

+oxw [3(re - Be- + re+ B~+ + rV B V + rd Bd + rd Bd) 

+2( r U B U + rli BIi)] 

(3.31) 

From Tables 3.1 and 3.2 we find for the three cases of Z-x, Z,p, and Zy/ respec

tively, 

o {0.039 } 
; = -2,\ -0.051 + 8xw( -4.11) 

0.064 

(3.32) 

the total width of the Z will be measured at SLC and LEP to a precision of 

about ±40 ~reV, or ±1.4%. Thus a measurement in perfect accord with the 

prediction of the standard model would provide a limit 

{ 

0.039} 
-2,\ -0.051 - 4.11oxw < 0.014 

0.064 

(3.33) 

This region is indicated on Figures 3.6, 3.7, and 3.8 for the cases of Zx., Z.;,-, and 

Zy/. 
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500 
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J 
~ 
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0.003 

Figure 3.6: The oxw - ~ plane showing the region that would be allowed by a mea

surement of R~ to 1.7% (below the dotted line) and by a measurement of ALR to 

±O.025 (between the dashed lines) for the Z". The measurement of the total width 

provides no effective constraint, just cutting off the lower right corner. From outside 

to inside, the parabolas indicate 1112= 150 GeV, 250 GeV, and 500 GeV. 

3.5 Left-Right Asymmetry 

A longitudinally polarized electron beam will make it possible to measure the 

left-right asymmetry in the production of the Z by e+e- annihilation. The asym

metry is defined in terms of the cross section to produce a Z with a completely 

polarized beam: 

A 
CfL - CfR 

LR = 
CfL + CfR 

(3.3-1) 

This asymmetry depends only on the couplings of the Z to the electron and 

clearly is given by 
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0.02 

0.01 

0.00 

500 

-0.01 

-0.02 
a 0.0005 0.001 0.0015 0.002 0.0025 0.003 

Figure 3. i: The 6xw - A plane showing the region that would be allowed by a mea

surement of RI-' to l.i% (below the dotted line) and by a measurement of the total 

width to 40 MeV (all but the corner cut off by the dotdash line) for the ZtjJ. The 

measurement of ALR provides no effective constraint. From outside to inside, the 

parabolas indicate '\['2= 150 GeV, 250 GeV, and 500 GeV. 

A 
re- - re+ 

LR = re- + re+ 
It fo11o\\'5 that the deviation of the asymmetry is given by 

ALR - ALR 

ALR 

_ -2 re-re+ 
r ry r') ;- - ;+ 

62 

(3.35) 

(3.36) 



-0.02 ~~~~~~~~~~~~~~~~~~~~~~~ 
o 0.0005 0.001 0.0015 0.002 0.0025 0.003" 

-ox., 

Figure 3.8: The 6xw - >. plane showing the region that would be allowed by a mea

surement of R~ to 1.7% (left of the dotted line), by a measurement of ALR to ±0.025 

(below the dashed line), and the total width to 40 MeV (above the dotdash line) for 

the Z.,..,. From outside to inside, the parabolas indicate M2= 150 GeV, 250 GeV, and 

500 GeV. 

Using Tables 3.1 and 3.2 for Zx, Z,p, and Z.,.." 

(3.3i) 

The anticipated value of ALR is about 0.21. The proposal to measure the 

left-right asymmetry at the SLC cites as an attainable uncertainty, ~.4LR = 

0.025 with 104 Zs and a measurement of the polarization of the beam to ~p / p = 
5%. With 105 Zs and l:l.P/ P = 3%, the corresponding uncertainty is 0.009. The 

former would lead to a bound 
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{ 
lAi} 

-2,\ -0.11 + 16.28xw < 0.053 

0.99 

(3.38) 

These regions are shown in Figures 3.6, 3.7, and 3.8. 

3.6 Ratio of Leptonic to Hadronic Final States 

The measurement of R~ = r ~/r had = B~/ Bhad provides an independent test of 

the standard model. The deviation in R~ is 

8R~ 

R~ 

(3.39) 

Here r u represents the partial width for Z - ULU,., The coefficients 2 and 3 

arise from the number of generations that contribute. Using the values in Tables 

3.1 and 3.2, 

{ 

-0.42 } 8R~ R = -2,\ -0.42 8x w( -5.64} 
~ 0.07 

(3.40) 

The uncertainty in R~ will be determined primarily by statistics. For B~ = 3.3%, 

with 10\ 105
, and106 Zs, the fractional uncertainty in R~ \vill be 6%, 1.7%, and 

0.5%, respectively. The limits corresponding to 1. i% are shown in Figures 3.6, 

3.7, and 3.8. Our ability to predict this ratio is of course limited by uncertainties 

in the QeD correction to the hadronic width. If Q,,(m~) is uncertain by 0.03, 

the correction Q,,(m~ )/r. introduces an uncertainty of about 1%. 
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3.7 W Mass 

In Section 2.4 the ll' mass was determined as a function of a, GF, mi, and ~r. 

The mass of the H' has been determined at the CERr\ SppS Collidcr and at the 

Tevatron Collider, but only to about ±2 CeV. The mass differcncc! mz - mH' 

can be determined more precisely because some of the systemic uncertainties 

cancel. It seems likely that the difference will be measured soon to about ±400 

MeV. Together with a high precision measurement of mz, this will give the II' 

mass to ±400 !\1eV. 

The measurement of the 1 \ mass from the observed spectrum of lepton 

transverse momenta involves the transverse momentum distribution of the pro

duced It's. This is a subject that can be analyzed theoretically using QeD 
perturbation theory. Ultimately, however, the most reliable approach is to use 

the transverse momentum distribution measured in Z production as a guide to 

the distribution of the l1's. 

How good a test of the standard model will the mass of the IV be? First 

let us interpret the IV mass as a predictor of the Z mass. From the formula 

') 1 ( mit' =:2 1 + (3,41) 

we find that an uncertainty omw produces an uncertainty in the predicted Z 

mass of 

omz = 0.81omw (3.42) 

so that if omw. 400 MeV, omz = 324 MeV. This compares favorably with the 

limits that could be set by asymmetry measurements. 

A more complete analysis can be done in the context of the models with 

an extra Z. The measurement of the lV mass constrains only bxl\' since it does 

not involve the nC'.ltral weak current, which is influence by).. Since m~, varies 

inversely with Xw, 
oxw 20mw 

(3.43) --=-
Xw mw 

An uncertainty of 400 MeV in the 11' mass thus constrains bxw to a region of 

width 0.00215. As seen in Figures 3.6,3.7, and 3.8, this nicely complements the 

limits that can be obtained from measurements of the Z. 
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4 Summary 

The standard model of electroweak interactions will soon be subjected to careful 

experimental scrutiny with the production and analysis of millions of Zs. These 

measurements will be sufficiently precise to require careful calculation of the 

radiative corrections, both those due to QED and those arising from the full 

electroweak model. It will be possible to set limits on possible extensions of the 

electroweak model, for example models with extra neutral gauge bosons. Indeed. 

only by proposing alternative modc~s can we quantify the degree to which the 

standard model has been verified. In the instanc~ of mixing with an extra Z 

it is essential to take into account the shift in the Z mass, which will cause an 

incorrect value of the weak mixing angle to be inferred. 
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