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Discrete Analysis of Stochastic NMR 

By 

Sam Tak-Sum Wong 

Abstract 

Stochastic NMR is an efficient technique for high field in vivo imaging and spec­

troscopic studies in cases where the peak RF power required may be prohibitively high 

for conventional pulsed NMR techniques. This dissertation presents a theoretical anal­

ysis of a stochastic NMR method of acquiring spectroscopy data. The spin system is 

excited with RF pulses where the flip angles or the phases of the pulses are samples 

of a discrete stochastic process. The method is formulated as a stochastic difference 

equation which is then converted to ordinary detenninistic difference equations describ­

ing the input-output cross-correlation, average signal power and signal power spectrum. 

The solutions of these equations are used to evaluate the stochastic technique in terms of 

peak RF power requirement, spectral distortions and signal-to-noise ratio. Experimental 

results are also presented which verify the results of the discrete analysis. 

The analysis shows that the maximum signal-to-noise ratio is achieved when the 

RMS flip angle is approximately the Ernst angle. When the RMS flip angle is below the 

Ernst angle, the input-output cross-correlation is a good estimate of the FID. Increase 

of excitation power causes line broadening. In addition, the use of random flip angle, 

fixed phase excitation causes a notch artifact and a non-uniform response across the 

spectrum both of which are not found in two new types of excitation, the random phase 

excitation and the random quadrature excitation. The signal power spectrum is also 

a good estimate of the real spectrum. The approximation of the cross-correlation by 

a time average causes systematic noise. The amount of systematic noise is found to 
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be significantly reduced when an entire maximum length sequence (MLS) is used for 

excitation. Noise-like distortion at high power MLS excitation is discovered to be related 

to the number of feedback paths in the MLS generator. 

This analysis shows that stochastic NMR with random phase excitation or random 

quadrature excitation using MLS is simple to implement and is an effective technique 

for high field in vivo NMR studies . 
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Chapter 1 

Introduction 

1.1 Motivation 

In vivo NMR is an excellent non-invasive technique to obtain infonnation about the 

chemical composition and physical environment of living tissues. NMR signals arise 

from the transitions of nuclear spins from a higher to a lower energy state. Observable. 

transitions are dependent on the population difference of the spin states, which is on the 

order of parts per million (ppm) or less. The intrinsic low sensitivity is made worse by the 

low magnetic moments and small isotopic abundance of the spin! nuclei of biological 

interest. For example, 13C has a natural abundance of only 1.1 % and a magnetic moment 

one-fourth that of 1 H. Improvement of signal-to-noise (SIN) ratio becomes a major issue 

in studies designed to evaluate 13C in vivo. 

In 1966, Ernst et al [1] introduced pulsed Fourier Transfonn NMR (FT-NMR) as 

an alternative to continuous wave NMR. FT-NMR rapidly became the more popular 

modality due to its better signal-to-noise (SIN) ratio. Nowadays, scientists are pushing 

for higher and higher magnetic field strength because the SIN ratio for a weakly conduct­

ing sample is proportional to the magnetic field strength [2]. Whole body spectrometers 

with fields up to 10 Tesla have been proposed. The availability of high current density 

superconducting materials allows such high field superconducting magnets to be con­

structed. The power needed for the NMR spectroscopy experiment is determined by 

the excitation bandwidth, which in tum is proportional to the range of chemical shift 
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in the sample, which is proportional to the magnetic field. The excitation bandwidth 

also detennines the duration of the RF pulse in pulsed Ff-NMR. For a given range of 

chemical shift of interest, an increase in field strength corresponds to a decrease in pulse 

. duration. This implies that the peak RF power has to be increased in order to deliver 

the same amount of RF energy to the sample. For example, a 20j.Lsec 900 RF pulse for 

l3e spectroscopy of the human head in a 4.7 Tesla static field requires a peak power 

of approximately 400 KW. Such high peak power imposes considerable difficulties in 

hardware design. 

In a conventional pulsed Ff-NMR experiment, a short (10 to 100 j.Lsec) RF pulse 

is usually repeated at intervals comparable to the longitudinal relaxation time constant 

Tl (typically 10-2 to 102 seconds). This corresponds to a very small duty cycle for the 

RF amplifier. Stochastic excitation reduces the peak RF power requirement by several 

orders of magnitude by increasing the duty cycle of the RF excitation, i.e. by delivering 

the RF excitation energy more evenly in time (Figure 1.1). It is an efficient technique 

especially for high field in vivo imaging and spectroscopic studies where the peak RF 

power required may be prohibitively high for conventional pulsed NMR techniques. 

Ernst [3] and Kaiser [4] have shown that stochastic NMR not only eases the RF instru­

ment design but also provides a sensitivity and a controllable resolution similar to those 

of conventional pulsed Ff-NMR. 

1.2 Basic Principle and Historical Development 

The underlying principle of stochastic NMR comes from linear system theory. The 

impulse response of an unknown linear system is given by the cross-correlation of the 

input and output of the system when the system is excited by zero mean Gaussian white 

noise [5] (Figure 1.2a), To understand this mathematically we let h( t) be the impulse 

response of the unknown system. The input x( t) and the output y( t) is related by the 
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(a) (b) 

RF 

Signal 

Figure 1.1: (a) Conventional pulsed Ff-NMR, (b) Stochastic excitation. 

convolution operation: 

y(t) = i: h( T) x(t - T) dT. (1.1 ) 

A zero mean Gaussian white noise input satisfies the condition 

(1.2) 

where the angle brackets denote expectation, the superscript * indicates complex con­

jugate, a2 is the average noise power and 8( t) is the delta function. The input-output 

cross-correlation defined as follows gives the impulse response of the linear system: 

1 
"2 (y(t) x* (t - t')) -
o 

1 100 

02 ( -00 h(T) x(t - T) x*(t - t') dT) 

1 100 

- 02 -00 h(T) (x(t - T) x*(t - t')) dT 

- :2 i: h(T)028(T - t')dT 

h(t'). (1.3) 
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Figure 1.2: (a) Identification of the impulse response h( t) of a linear system by the cross­
correlation of the input x(t) and the output y(t) of the system. (b) The same principle 
applied to stochastic spectroscopy experiment and spectral estimation. 
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This principle was first applied to stochastic NMR by Ernst [3] and Kaiser [4] in­

dependently in 1970. The NMR spin system was excited by a stochastic RF signal. 

The first order input-output cross-correlation was used to approximate the FID obtained 

by a pulsed Ff-NMR experiment (Figure 1.2b). The Fourier transform of the cross­

correlation was an estimate of the true spectrum. Pulsed Ff-NMR has since become a 

more popular technique for most experiments because the hardware design is simpler 

and the reconstructed spectra have less nonlinear distortions and no systematic noise. 

However, stochastic NMR does have advantages over pulsedFf-NMR as discussed in 

the previous section. 

Based on Wiener's theory of nonlinear systems with Gaussian white noise excitation 

[6,7], Ernst expanded the magnetization response of the stochastic experiment into sums 

and products of orthogonal Hermite polynomials. From such expansions, he obtained 

expressions for the input-output cross-correlation, signal power spectrum and the aver­

age signal power. The Fourier transform of the input-output cross-correlation was used 

to approximate the desired spectrum (Figure 1.2b). His results showed no saturation 

effects detectable in the line shape. He demonstrated the stochastic technique exper­

imentally with binary maximum length sequence (MLS) excitation. Each random bit 

of a binary MLS is generated from the n preceeding ones, where n is arbitrary. The 

MLS has a period of 2n - 1, the maximum possible sequences of n binary bits (except 

all zeros) [8]. Kaiser restricted his analysis to small excitation power so that the signal 

response could be regarded as a linear function of the excitation and the principle be­

hind Equation 1.1-1.3 was applicable. Both his analysis and experimental results were 

based on continuous Gaussian white noise excitation. In 1974, Kaiser [9] showed that 

with binary MLS excitations, the input-output cross-correlation could be processed by 

Hadamard transforms which required no multiplication, and hence is even faster than the 

FFf. In addition, the periodicity of the binary MLS allowed coherent signal averaging 

to be used to improve the SIN ratio. 
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In 1976, Bartholdi et al [10] did a rigorous calculation of the input-output cross­

correlation, signal power spectrum and the average signal power by interpreting the 
" 
Bloch equations as a stochastic differential equation and solved the equation using Ito 

and Stratonovich calculus. They showed that the use of ordinary calculus to solve a 

stochastic differential equation, as was done in Ernst's 1970 paper, might lead to incor­

rect results. Their computer simulated results showed that the estimated spectral line 

broadened as the excitation power was increased. 

Six years later Knight and Kaiser [11,12], using a different approach, repeated the 

theoretical calculations done by Bartholdi et al. Instead of solving the stochastic dif­

ferential equation for the magnetization response using Ito and Stratonovich calculus, 

they converted the stochastic differential equation to ordinary differential equations de­

scribing the various product terms needed for the calculation of the input-output cross­

correlation, the signal power spectrum and the average signal power. They performed 

the analysis for both one spin and multi-spin systems using, respectively, the Bloch 

equations and the equation of motion of the spin density matrix. For the one spin anal­

ysis, their results differed from those obtained by Bartholdi et al slightly regarding line 

broadening and spectral shift. The reason for the discrepancy is that the two groups ob­

tained two different halves of the actual solution. Bartholdi et al obtained the solution 

for spins at resonance, while Knight and Kaiser obtained the solution for spins off reso­

nance. It will be shown in Chapter 2 that the responses to spins on resonance and spins 

off resonance are indeed different. 

Knight and Kaiser's analysis also showed that the higher order input-output cross-

correlations are related to multi-dimensional spectroscopic data obtained by conven­

tional pulsed Fr-NMR. These correlations are the expectation of the product of the out­

put and multiple versions of the input with different time lags. The same set of data 

that is used to estimate the one dimensional spectrum can also be used to study the 

correlations between different resonances and multiple-quantum coherence effects in 
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complex spin systems. This was demonstrated experimentally by Bliimich and Zies­

sow [13,14,15,16,17,18,19,20]. 

The use of time varying gradients in stochastic experiments to encode spatial in­

fonnation was first proposed by Bliimich in 1984 [21]. He worked out the principle for 

spatial encoding with stochastic gradients and demonstrated the idea with computer sim­

ulations. However, the idea is impractical due to tremendous difficulties in implement­

ing stochastic gradients in hardware .. The stochastic NMR spectroscopy experiment can 

easily be converted to an imaging experiment by applying constant gradients throughout 

the experiment as demonstrated by Chaudhuri in 1986 [22]. The reconstructed spectrum 

will be a projection of the sample along a direction orthogonal to the direction of the re­

sultant gradient vector. A set of projects can be obtained by changing the direction of 

the gradient vector. A three dimensional image can be reconstructed from the set of 

projections by back-projection reconstruction techniques. Chaudhuri used binary MLS 

excitations and he reported artifacts in the middle of the reconstructed image as the ex­

citation is increased. The reason for such distortion will be addressed in Chapter 2. 

In 1986, Bliimich proposed an alternative to stochastic gradients, the use of sinu­

soidal gradients with incommensurate frequencies that are also incommensurate to the 

data sampling frequency. His idea was pursued further in 1988 by Roos et al [23]. They 

obtained theoretical expressions describing the spatial localization function achieved 

with sinusoidal gradients. The idea was further extended to chemical shift imaging and 

localized spectroscopy with stochastic excitation and was verified experimentally. 

1.3 Aims and Contributions 

So far, all the analyses of the stochastic experiment for a one spin system have assumed 

continuous random excitation. Continuous random excitation is undesirable from a prac­

tical experimental point of view since the RF transmitter of a NMR system that is set up 
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for Ff-NMR is usually gated off during data sampling in order to avoid saturation of the 

receiver. The theoretical analysis based on continuous excitation is at best an approxi­

mate description of the experiment performed on such NMR systems. It is more appro­

priate to perform the discrete stochastic experiment shown in Figure 1.3: A stochastic 

sequence of RF excitations, a(n), is applied at intervals of TR seconds and one data 

point is sampled after every RF pulse. It is the aim of this dissertation to characterize 

the discrete stochastic spectroscopy experiment, obtaining analytic results that corre­

spond exactly to practical experiments. The results will also be applicable to stochastic 

NMR imaging experiments with constant gradients. 

The driven NMR spin system is intrinsically nonlinear. The magnetization response 

is a nonlinear function of the RF excitation. A single one pulse excitation will give a 

FlO, which is proportional to the linear component of the nonlinear spin system. When 

a sequence of pulses are applied, the response after the second pulse will no longer be 

a pure FlO. This is the reason why pulsed Ff-NMR requires a considerable time delay 

after data sampling before the next RF pulse is applied. In stochastic NMR, RF pulses 

with low power are applied in rapid succession. The spin system can easily be pushed 

towards the nonlinear regime. The first order input-output cross-correlation shown in 

Figure 1.2b will not always give the FlO. The first objective of this dissertation is to 

understand the performance of the discrete stochastic NMR experiment by analyzing 

the follow aspects of the experiment: 

• The conditions for the first order input-output cross-correlation to be a faithful 

estimate of the FlO obtained by a pulsed Ff-NMR experiment, 

• the saturation behavior when the excitation power is high, 

• the experimental parameters that give maximum SIN ratio, and 

• evaluation of the signal power spectrum as an alternative estimate of the true spec­

trum. 



Stochastic RF 
excitation 

sequence a(n) 

Signal 

--. ~ TR 

I~ t 

~ t 

Figure 1.3: NMR experiment with discrete stochastic RF excitation. 
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In all past analyses, the RF vector was assumed to lie along one axis in the rotating 

frame with the flip angle being random. This type of excitation will be denoted as ran­

dom flip angle excitation (Figure l.4a). The analysis in the next chapter will show that 

this type of excitation causes undesirable spectral distortions as the RF excitation power 

is increased. This result will be used to explain discrepancies and artifacts in earlier 

results [10,12,22]. Chapter 2 will analyze two new types of random RF excitations that 

do not exhibit such artifacts. One type will be denoted as random phase excitation. The 

RF pulses of this type of excitation have the same flip angles. However, the phase of 

the RF vector is random (Figure l.4b). The other type is denoted as random quadrature 

excitation: The RF vector consists of two orthogonal components that are statistically 

uncorrelated but identically distributed in probability (Figure 1.4c). 

Due to the stochastic nature of the experiment, all quantities estimated from the 

stochastic input and output of the system should be regarded as random variables, i.e. 

they are intrinsically stochastic in nature. The input-output cross-correlation, being an 

estimator of the spectrum, is one such quantity. The variance of the estimator, denoted 

as systematic noise, is usually non-white and may show up as structural artifacts. The 
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Figure 1.4: Different types of stochastic RF excitation. (a) Random flip angle excitation, 
(b) Random phase excitation, and (c) Random quadrature excitation. Hl(n) is the RF 
vector with components Hlx(n) and H1y(n), M(n) is the magnetization vector. 

overall noise level is determined by the sum of systematic noise and measurement noise. 

It is important to keep the systematic noise level below measurement noise level so that 

no structural artifact is observable. Chapter 3 is devoted to the analysis of systematic 

noise. It also includes a detailed account of the nonlinear systematic noise associated 

with binary MLS excitations reported by Bllimich and Ziessow [14]. 

So far, binary random sequences and discrete Gaussian white noise are the two most 

popular stochastic sequences to be employed in stochastic NMR experiments. Binary 

random excitations are popular because they can be approximated by pseudo random 

binary MLS. Binary MLS has the advantage that it is easy to implement in hardware [8] 

and it allows the Hadamard transform to be used to speed up the calculation of cross­

correlations. Gaussian white noise has good statistical properties that simplify theoret­

ical analysis tremendously. This dissertation will compare the two types of stochastic 
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sequences in tenns of their perfonnance in spectral estimation and systematic noise gen­

eration. 

1.4 Approaches 

The approach taken is shown as a block diagram in Figure 1.5. In the block diagram 

M(n) = [Mx(n) , My(n), Mz(n)]T is the magnetization vector immediately after the 

nth RF pulse, where the superscript T is the matrix transpose operator. The complex 

quantity Mxy(n) = Mx(n) + i My(n) is the transverse magnetization. Quadrature de­

tection gives a signal proportional to Mxy(n). From the Bloch equation, a stochastic 

difference equation describing the pulse-to-pulse behavior of M (n) is derived. Instead 

of solving this stochastic difference equation, it is combined with the excitation se­

quence 0'( n) to give a deterministic difference equation describing the cross-correlation 

of M (n) and 0'( n), which can then be solved to obtain the input-output cross-correlation. 

The Fourier transfonn of the cross-correlation gives an estimate of the spectrum. The 

estimate can be used to study the saturation effects as the excitation power is increased. 

From the stochastic difference equation an equation of the covariance matrix of 

M (n) can be obtained. This equation is a set of six simultaneous equations with six 

unknowns which are the variances and covariances of Mx(n), My(n) and Mz(n). The 

average signal power is the sum of the variances of Mx(n) and My(n). A plot of the av­

erage signal power will show the excitation power level that will give the maximum SIN 

ratio. The stochastic difference equation can also be turned into a difference equation for 

the auto-correlation matrix of the magnetization vector M (n ). The sum of the first two 

diagonal elements of the auto-correlation matrix is the auto-correlation of the transverse 

magnetization. The Fourier transfonn of this sum gives the signal power spectrum. The 

first section of the next chapter will be an analysis for a generalized stochastic RF excita­

tion. The results of the generalized analysis will be made specific in the subsequent three 
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Figure 1.5: Approach taken for the theoretical analysis. 

sections each of which will be devoted to one of the three types of stochastic excitations 

shown in Figure 1.4. 

Theoretical prediction of the systematic noise is a formidable task. Analytical re­

sults for only the cases of random flip angle excitation with Gaussian white noise and 

random quadrature excitation with random binary sequences are presented here. Most 

of the results for systematic noise analysis will be obtained by Monte Carlo simulations. 

Pseudo-random number generators for MLS and Gaussian white noise described in [8] 

will be used to simulate the random RF excitation. The transverse magnetization after 

each pseudo-random RF pulse is calculated from the stochastic difference equation. This 
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pseudo-random output signal together with the theoretical results obtained in Chapter 2 

is used to calculate the systematic noise. All the Monte Carlo simulations are performed 

on a Cray-XMP in the Lawrence Livermore Laboratory. 

1.5 Assumptions 

The major assumption made in this analysis is that spins are isolated so that the Bloch 

equations are applicable, thus the results are valid only for one spin systems. Derivation 

of explicit expressions describing the stochastic responses and reconstructed spectra is 

made possible by the assumption of wide-sense stationary excitation sequences on a sta­

tionary NMR spin system. A stationary spin system here means that the spins do not 

experience a change in spin characteristics, e.g. 71, Tz and resonance offset, during the 

experiment. Such a change of characteristics may be caused by motions of the sam­

ple in the presence of a magnetic field gradient, application of a time varying gradient 

or a fluctuation in the static magnetic field, etc.. A stochastic sequence x( n) is said to 

be wide-sense stationary if it possesses finite second moments and its auto-correlation 

(x(n)x*(m)) is a function only of the absolute difference In - mi. A variety of algo­

rithms are available to generate pseudo-random sequences that are wide-sense stationary 

[24]. 

Another major assumption regarding data reconstruction is the assumption of er­

godicity. The calculations of input-output cross-correlation, average signal power and 

signal power spectrum all involve taking the expectation of stochastic sequences. The 

expectation can be obtained by ensemble averaging. In terms of the stochastic NMR 

experiment, this means repeating the experiment many times and taking the average of 

the results from each run. However, there is a waiting period at the beginning of the 

experiment for the average magnetization to acquire a steady state. The data collected 

in this period cannot be used in the reconstruction. This loss of experiment time can 
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be avoided by replacing the ensemble averaging by time averaging. For example, the 

auto-correlation of the stochastic process x( n) is approximated by a finite sum over the 

time index n: 
1 N-l 

(x(n)x*(n - m)) ~ N 2: x(n)x*(n - m). 
n=O 

(1.4) 

The process x( n) is said to be ergodic if the approximation becomes an equality when 

N approaches infinity. Unfortunately, it is very difficult to show that a process is er­

godic. However, computer simulated and experimental results for the stochastic NMR 

experiments with wide-sense stationary excitations using time averaging show excellent 

agreement with theory obtained by expectation. This means that the ergodic assumption 

is not totally unjustified. The choice of N will determine the systematic noise level and 

it is discussed in chapter 3. 

The duration of each RF pulse is assumed to be short compared to the relaxation 

time constants, Tl and T2• This assumption allows the effects of each RF pulse to be 

represented by a simple multiplication of the magnetization vector with a rotation matrix. 

This condition is usually satisfied for the obsetvable spins in in vivo NMR studies. Also, 

the RF pulses are assumed to be sufficiently short that off resonance dephase of the 

magnetization is insignificant during the RF pulses. 



Chapter 2 

Theoretical Analysis 

2.1 Discrete Formulation for Generalized Excitation 

15 

Consider the stochastic experiment in Figure 1.3. The sample is excited by an RF pulse 

every TR seconds. One signal data point is sampled right after the pulse. With the as­

sumption of isolated spins the analysis need concentrate on only one spin species with 

relaxation parameters Tl and T2 and equilibrium magnetization Me. Assume that the RF 

vector lies only in the transverse plane and it is proportional to the excitation sequence 

a(n) = [ax(n), ay(n), O]T. Without loss of generality, a(n) will be regarded as the 

RF vector. The average power of a(n) will be treated as the average RF power. Fur­

thennore, it is assumed to be an ergodic and wide-sense stationary stochastic sequence 

with mean JLo = [J.lx, J.ly, of and auto-covariance 

(2.1) 

where Co is the covariance matrix of a( n) and onm is the Kronecker delta function. 

The sum of the diagonal elements of Co is the average random excitation power and is 

denoted as 

(2.2) 

With the right choice of constant of proportionality a can be regarded as the root mean 

square (RMS) flip angle. The unit of a is radians in all the calculations. However, it is 

usually referred to in the text in degrees. 
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Assume that the RF pulse duration is short compared with the relaxation time con­

stants Tl and Tz. The Bloch equations can now be solved for the magnetization vector 

as it varies from one RF pulse to the next. The effects of the nth RF pulse can be sum­

marized by a rotation matrix Ra( n) which is a function of a( n). Denote the amount of 

interpulse dephase of the transverse magnetization as f). It is determined by resonance 

offset, chemical shift, field inhomogeneities, applied magnetic field gradient, etc.. For 

the rest of this analysis we assume that resonance offset is the only source of interpulse 

. dephase. For a spin v Hz above resonance, f) is then given by 

and the effect of the interpulse dephase is summarized by the matrix 

~cosf) ~sinf) 0 

I4 = -~sinf) ~cosf) 0 

o o 

(2.3) 

where El = e-TR/ T1 and Ez = e-TR / T1• The pulse-to-pulse trajectory of the magnetiza­

tion vector is described by the following stochastic vector difference equation 

M(n) = Ra(n) [I4 M(n - 1) + C], (2.4) 

where C is a constant vector given by 

(2.5) 

and Me is the equilibrium magnetization of the sample in the static main field. 

The matrix Re has eigenValues with magnitudes smaller than one. This fact together 

with Equation 2.1 imply that the mean (M(n)) and the covariance (M(n) MT(n)) 

will approach steady state values for large enough n. The magnetization vector M(n) 
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becomes a wide-sense stationary stochastic sequence. In addition, Equations 2.1 and 2.4 

imply that Ra (n) and M (m) are uncorrelated for all m less than n. Taking expectation 

on both sides of Equation 2.4 and rearranging terms gives 

(2.6) 

where J1.M = (M(n)), J1.R = (Ra(n)) and I is the 3x3 identity matrix. 

The first order input-output cross-covariance k t (m) is an estimate of the free induc­

tion decay (FID). It is defined as the cross-covariance of the complex input axy(n) = 

[ax(n) + i ay(n)] with the complex transverse magnetization Mxy(n) 

1 . ) - "2 ((Mxy(n) - (Mxy(n))) (axy(n - m) - (axy(n - m)))* 
a 

- ~Bt [(M(n) aT(n - m)) - I-'M I-'~] B, 
a 

(2.7) 

where B = [1, -i, Of and the superscript t is the complex conjugate transpose 

operator. k t (m) is independent of n because both the input and the output sequences are 

wide-sense stationary. When m is less than zero, a( n - m) and M( n) are uncorrelated 

and so (M(n) aT(n - m)) = (M(n))(a(n - m))T, i.e., kt(m) = O. This is expected 

since the spin system is a causal system. For m bigger than zero, Equation 2.4 gives 

(M(n) aT(n - m)) - I-'M I-'~ 

- I-'R Ro [(M(n - 1) aT(n - m)) - I-'M I-'~] 

- I-'RRo [(M(n - 1) aT((n - 1) - (m - 1))) - I-'M J1.~] 

- I-'RRo [(M(n) aT(n - (m - 1))) - I-'M I-'~], (2.8) 

where we have used the fact that (M(n) aT(n - m)) is wide-sense stationary. This is 

now an ordinary deterministic difference equation for (M(n) aT(n - m)) - I-'M J1.~ 

with index m. The solution is 
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Necessarily, Equation 2.9 reduces to an identity when m = O. Combining Equations 2.7 

and 2.9 gives 

(2.10) 

where 

(2.11) 

The Z-transform of kt (m) is defined as 

00 

Z{kt}(z) = L kt(m)z-m. (2.12) 
m=O 

The summation is not performed over negative m since kt (m) is zero for negative m. 

The product Ra ( n) Re represents rotations and relaxation of the magnetization vector 

so its eigenvalues are less than one and (J.tR ~)m approaches zero as m approaches 

infinity. Substituting k t (m) from Equation 2.10 into Equation 2.12, the Z-transform of 

kt(m) is given by 

Z{kt}(z) _ ~Bt f(pR~)mz-mAB 
a m=O 

_ ~Bt (1 - PR~z-t)-t AB. 
a 

(2.13) 

An estimate of the spectrum is given by the inverse Fourier transform of kt (m), 

which can be obtained by evaluating the Z-transform of k t (m) on the unit circle of the 

complex Z-plane: 

(2.14) 

where L is the total number of data points in the spectrum. L = 27r / .6.w. One complex 

data point is sampled every TR seconds, therefore, the maximum bandwidth that can be 

resolved is 27r /TR Hz and so the spectral resolution is 

27r 
.6.w = TRL. (2.15) 
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This implies that if SIN ratio is allowable, we can obtain arbitrarily fine resolution by 

picking arbitrarily large L. The L points of the reconstructed spectrum will cover the 

frequency domain from -1/2TR Hz to 1/2TR Hz. In order to make the analysis inde­

pendent of L, define a continuous frequency variable w = nD..w so that Equation 2.14 

can be rewritten as 

(2.16) 

This is the description of the reconstructed spectrum for a general excitation sequence 

a(n). 

The average signal power is defined as 

P - (M;(n) + M;(n)) 

_ Bt (M(n) MT(n)) B 

_ Bt (M MT)B. (2.17) 

The signal correlation matrix, (M M T), is independent of n because M(n) is wide­

sense stationary. From Equation 2.4 (M MT) is given by the solution of the matrix 

equation 

(M MT) - (Ra(n) Ro (M MT) RrR~(n)) + (Ra(n) Ro J.tM C T R~(n)) 

+(Ra(n) C J.tL ~ R~(n)) + (Ra(n) C C T R~(n)), (2.18) 

which is a set of six simultaneous equations with six unknowns. 

The covariance of the complex signal Mxy is defined as 

r(m) - ([Mxy(n) - (Mxy(n))] [Mxy(n - m) - (Mxy(n - m))]*) 

- Bt [(M(n) MT(n - m)) - J.tM J.tL] B. (2.19) 

For m > 0, multiplying both sides of equation Equation 2.4 with MT (n - m), taking 

expectation and then subtracting away JLM J.t'ft gives 
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- JLRRe [(M(n - 1) MT(n - m)) - JLM JL;] 

- JLRRe [(M(n - 1) MT«n -1) - (m - 1))) - JLM JL;] 

- JLRRe [(M(n) MT(n - (m -1))) - JLM JL;]. (2.20) 

Once again, an ordinary deterministic difference equation is obtained. The solution is 

Similarly, for m < 0, 

The Z-transform of r( m) is then given by 

00 

Z{r}(z) - L r(m) z-m 
m=-oo 

- Bt [(1 - JLRRoz-1)-1 «(M MT) - JLM JLIt) 

+«(M MT) - JLM JLIt) (1 - JLkRf z)-l 

-«(M MT) - JLM JLIt)] B. (2.23) 

The power spectrum is the Z -transform of r( m) evaluated on the unit circle of the com­

plex Z-plane: 

S(w) _ Z{r}(e-iwTR ) 

- Bt [(1 - #J.RRe eiwTR)-l «(M MT) - JLM JLIt) 

+«(M MT) - JLM JLIt) (1 - JLkRf e-iwTR)-l 

-«(M MT) - #J.M JLIt)] B. 

2.2 Random Flip Angle Excitation 

(2.24) 

In this section, we assume that the RF excitation vector lies only along the x-axis of 

the rotating frame (Figure 1.4a). The excitation vector a( n) has only one non-zero 

component, Ctx ( n), satisfying the following two conditions: 
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1. From Equations 2.1 and 2.2, ax ( n) represents the random flip angles of the RF 

pulses with a mean square value of Ql and 

2. a x ( n) has an even probability density function, i.e., positive and negative flip 

angles are equally likely. This implies that the mean ofax(n), J.1.i:, is zero. The 

effects of excitations with non-zero mean will be investigated in a later section. 

The matrix Ra(n) is simply 

1 o o 

Ra(n) = 0 cos ax(n) sin ax(n) 

o - sin ax(n) cos ax(n) 

which represents a rotation of the magnetization vector about the x-axis of the rotating 

frame for ax(n) degrees. The probability density function ofaxCn) is assumed to be 

even, so (sinax(n)) = 0 and (cosax(n)) = <Pa(1) where <PaCt) = (eiaz(n)t) is the 

characteristic function of the random variable ax(n). The characteristic function of a 

Gaussian white noise satisfying the above conditions is <PaCt) = e-a2t'1./2. A random 

binary sequence taking on two values, a and -a, each with probability 1/2 will also 

satisfy the above conditions. Its characteristic function is <PaCt) = cos( at). 

The mean of the rotation matrix Ra( n) is 

1 o 

o o 

Equation 2.6 gives the mean magnetization vector 

o 

o 

o 
Me(1- Et)<Pa(l) 

I'M= l- Et<Pa(l) 0 

1 

(2.25) 

(2.26) 
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The matrix A from Equation 2.11 is 

0 0 0 

A= 
-Me(1 - E 1) <Pa(l) 

1 0 0 (2.27) 
1 - El 'Pa(1) 

0 0 0 

where <Pa(l) is the first derivative of 'Pa(t) evaluated at t = 1. Equation 2.16 can now 

be evaluated to give an estimate of the spectrum 

Kl(W) = - iMe(I-Ed<Pa(l) 1_~ei(l;/+wTR) 
a2[I-E1 'Pa(I)] D(w) 

(2.28) 

where 

The first part of the right side of Equation 2.28 is dependent on Tl and the excitation 

power but independent of w and T2• Define the second part as 

1 - ~ e i (9+wTR) 

F(w) = D(w) . (2.29) 

F( w) has only T2 dependence but no Tl dependence. The function F( w) is periodic 

with a period of 27r /TR radlsec, or I/TR Hz. Integrating F( w) over one period gives 

27r /TR which is independent of T2 and the excitation power. Therefore, the integrated 

line intensity is purely determined by Th TR and the excitation power. The line shape 

is determined only by T2, TR, () and the excitation power. In conventional FT-NMR 

with TR comparable to Th the integrated spectral intensity is also determined by 11, 

TR and the excitation power,.but the line shape is independent of (), i.e., independent of 

resonance offset. Figure 2.1a shows the line shape (the absorption part) of Kl (w) for 

Gaussian white noise excitations with different RMS flip angles, i.e. with different exci-

tation power. Figure 2.1 b is a plot of the corresponding integrated spectral intensity as a 

function of the RMS flip angle. The plot is normalized by the integrated spectral inten­

sity at a = 0°. This is made possible by the fact that ](1 (w) is well defined even when 

a = 0°. Figure 2.2 shows the shape of lines at different resonance offset frequencies. 

These plots show the following saturation characteristics: 
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Figure 2.1: Kl(W) for random flip angle excitation with Gaussian white noise. (a) Line 
shape (absorption pan) and (b) integrated line intensity normalized by the value at a = 
0°. Tl = 0.5s, T2 = lOms, TR = O.lms and v = 250Hz. 
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Figure 2.2: Line shape of Kl (w) with different resonance offset frequencies. The exci­
tation is Gaussian white noise random flip angle excitation with a = 15°. Tl = O.5s, 
T2 = lOms and TR = O.lms. All the plots are on the same vertical scale. 

• At low excitation power the line shape resembles a Lorentzian line. 

• Line width (measur~ at half height) increases as the excitation poweris increased. 

• Line distortion appears at the negative of the resonance offset frequency as the 

excitation power is increased. 

• Integrated line intensity decreases rapidly as the excitation power is increased. 

• The line response across the spectrum is non-uniform. A line at resonance has a 

width at half height different from those for lines off resonance. 

To understand the saturation characteristics, consider the line shape function F( w) 

defined in Equation 2.29. For both the Gaussian white noise sequence and the random 
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binary sequence, 'Pa( 1) approaches unity as the excitation power dl approaches zero. 

F( w) then reduces to 

F(w) = 1 
1 - Eze i (wTR-9) 

(2.30) 

which is roughly a Lorentzian line with line width 1/,rrT2 Hz. A Lorentzian line with 

the same line width is 
1 

1 - i(w - B/TR )T2 ' 

Figure 2.3 shows that the only difference between F( w) and the Lorentzian line is a 

slightly larger baseline in F( w). The larger baseline is a consequence of aliasing due 

to under sampling. The narrower F(w) is relative to the total bandwidth l/TR , the 

smaller the baseline would be. This is usually the case in spectroscopy. Therefore, any 

line in the fonn of F( w) will be referred to as a Lorentzian line in this dissertation. 

With the assumption that the interpulse dephase is only caused by the resonance offset, 

B =. 27rvTR , the line is centered at v Hz. The reconstructed spectrum at low excitation 

power, e.g. the line with a = 1.150 in Figure 2.1, resembles the one obtained by a 

conventional Ff-NMR. 

As the excitation power is increased, 'Pa( 1) decreases from unity. The line shape 

becomes dependent on the the resonance offset, v. Figure 2.2 shows the shape of the 

absorption pan of Kl (w) for lines at different resonance offsets. When the line is at 

resonance, i.e. B = 0, F( w) reduces to 

(2.31 ) 

which is also a Lorentzian line centered at the origin. The line width in Hertz is now 

increased to 

(2.32) 

For lines not at resonance, F( w ) cannot be simplified. At w = -B /TR' the numerator of 

F( w) reduces to (1 - Ez). In general TR is much smaller than T2, as a result Ez is very 

close to unity and F( w) vanishes at w = -B /TR' the negative of the resonance offset. 
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Figure 2.3: A comparison of the line shape of (1 - ~eiwTR)-l (dotted line) with a 
Lorentzian line with the same line width (solid line). 

This creates a notch artifact for lines with a resonance offset which is small relative to 

the line width (Figure 2.2). When the resonance offset is large relative to the line width 

and such that 
2J'Pa(l) 

cos 8 < 1 + 'Pa(l) , (2.33) 

the notch artifact becomes less significant. However, the line shape is now given by 

where 

. 1 
F( w) ex: -----===----

1 - ~J'Pa(1) ei(wTR-B'} 

8' = cos-1 [cos 8 1 + 'Pa(1 )] . 
2J'Pa(l) 

(2.34) 

The line is Lorentzian centered at a new resonance offset v' = 8' j2rrTR. The line width 

in Henz is 

(2.35) 

which means that the line broadening is half that of the line at resonance. Consequently, 

the line height is about twice that at resonance (Figure 2.2). For Gaussian white noise 
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excitation and random binary excitation, the function <Pa(1) is smaller than unity for 

Q < 90° and is a monotonically decreasing function of Q. Equations 2.32 and 2.35 then 

shows that the line width at half height increases as Q is increased, Le. as the excitation 

power in increased. 

The results above explain the discrepancy between Bartholdi et ai's results [to] and 

Knight & Kaiser's [12] results. Bartholdi et al analyzed the experiment with continuous 

Gaussian white noise excitation. However, they did it only for spins at resonance. They 

obtained a Lorentzian line with a line broadening of a 2/27r Hz, where a2 is the excita­

tion power per unit time. In the analysis above, a Gaussian white noise excitation has 

<Pa(1) = e-a1
/
2• Assume TR to be very small and define a2 = Q2/TR. Equation 2.32 

then gives the same line broadening for spins at resonance. Knight and Kaiser also did 

a continuous excitation analysis, but with a totally different approach. They did the 

analysis in a laboratory frame, where each spin has a resonance offset frequency of its 

Larmor precession frequency. They obtained a small line shift and a line broadening of 

a 2 /47r Hz. For spins off resonance, Equation 2.35 gives the same line broadening and 

Equation 2.34 also predicts a line shift. The results of the two groups of researchers are 

different halves of the complete solution. 

For the analysis of the average signal power write (M MT) as 

rxz ryz r zz 

The individual components are obtained by solving Equation 2.18: 

rxx (2.36) 
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(2.38) 

and 

rxz = ryz = 0 (2.39) 

where 

Q = 
1 

(1 - Ei)( 1 - Ei cos 28 cpa ( 1) )[1 - 2(Er + Ei)( 1 + CPa (2) ) + Er Ei CPa(2)] 

1 
+2Ei(1 - Ei) sinZ 8(1 + Ei CPa(1))[2(1 + CPa(2)) - Er CPa(2)] 

+4Ei(1 - Er) sinZ 8( 1 - CPa(2) )(1 + Ei CPa(l)). (2.40) 

The expression for r zz is not shown since it is not required for later analysis. The average 

signal power is given by P = rxx + r yy . 

Figure 2.4a is a plot of the average signal power as a function of the RMS flip angle Q 

of a Gaussian white noise excitation. It has a peak at 1.15°. This means that the SIN ratio 

is at a maximum when the excitation sequence has a RMS flip angle of 1.15° . Notice that 

the SIN ratio is independent of the spectral resolution, as pointed out in the introduction . 

. Denote the RMS flip angle that gives the maximum SIN ratio as Qmax. Figure 2.4b 

shows that Qmax is approximately the Ernst angle, cos-1 (e-TR / T1 ). The Ernst angle is 

the flip angle that gives the maximum signal in a conventional Ff-NMR experiment that 

consists of one RF excitation every TR seconds. The peak RF power is proportional to 

the square of the RF field strength, i.e., square of the flip angle. A conventional Ff-NMR 

experiment with TR = lOOms will have an Ernst angle of 35° for the same spin system. 

Therefore, the peak power required for the stochastic experiment is roughly three orders 

of magnitude smaller than that for the conventional Ff-NMR experiment. 

In many cases TR is much shorter than T}, so Qmax will be less than 10° and CPa(1) 

very close to unity. The notch artifact is usually insignificant at this low level of excita­

tion. However, for Tz large such that the natural line width, l/rrTz, is small compared 

with the line broadening, log CPa( 1 )/'TrTR , at Q = Qmax, the difference in line broadening 
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Figure 2.4: Random flip angle excitation with Gaussian white noise. (a) Average signal 
power versus the RMS flip angle. (b) amaz versus TI/TR • The symbol * represents 
theoretical values and the solid line is cos-1 (e-TR / T1 ). Tl = 0.5sec, T2 = lOms, TR = 
0.1 ms and 1/ = 250Hz. 
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Figure 2.5: Non-uniform response of Kt(w) across the spectrum for Gaussian white 
noise random flip angle excitation. Eleven spins equally spaced across the spectrum. 
Tt = 0.5sec, T2 = lOOms, TR = O.lms and a = a maz = 1.150

• 

between on resonance and off resonance lines may still be large. This is demonstrated in 

Figure 2.5. To minimize this non-uniform response, the excitation level must be dropped 

below a max• This results in a loss of SIN ratio. 

To evaluate the signal po~er spectrum as an estimate of the spectrum Equations 2.23 

and 2.24 are made specific for random flip angle excitation to give 

S(w) = 
p - Eze i (8+wTR) [rxx <t'a(l) + ryy + irxy(1- <t'a(l))] 

D(w) 

+ P - Eze- i
(8+

w
T

R
) [rxx <t'~t~; ryy - irxy(l - <t'a(l))] _ P. (2.41) 

The power spectrum shown in Figure 2.6a closely resembles the absorption part of 

Kt(w) (Figure 2.la) at low excitation power. At higher excitation power, it has much 

less notch artifact. An advantage of using the spectral density as an estimate of the real 

spectrum is that it is calculated from the signal sequence only, so that the excitation se-
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quence er( n) need not be stored or regenerated. However, as shown in Figure 2.6b, the 

respons~ is still non-unifonn across the spectrum. It will be shown in later section that 

the non-unifonn response can be eliminated with a better excitation scheme. 

So far only results for Gaussian white noise excitations have been considered. The 

dependence of Kl(W), P and Sew) on the type of excitation that is used is embedded 

in <Po (1 ), <Pa(2) and CPa (1 ). Power series expansion shows that the differences in these 

functions between Gaussian white noise excitation and random binary excitation are 

~CPa(1)=~4 (1_72~2 + .. ) 

where ~<Pa(t) = Gaussian <Pa(t) - Binary <Pa(t). For a = a max < 0.175 rad (= 10°) 

the fractional differences, ~<Pa(1 )/<Pa( 1), ~<Pa(2)/<Pa(2) and ~CPa(1) /CPa(1), are neg-

ligible. This means that the response to Gaussian white noise excitation and random bi­

nary excitation will be almost identical. This is desirable since random binary sequence 

. can be approximated by binary maximum length sequences (MLS) which will be dis-

cussed in later sections. 

2.3 Wiener Series Analysis 

The functional relationship between the stimulus and response of a linear system fol­

lows the principle of superposition. The response of the linear system to an arbitrary 

excitation can be reconstructed from the impulse response using the convolution inte­

gral (Equation 1.1). However, every physical system is in some sense nonlinear, for 

which the principle of superposition does not hold. The impulse response of a nonlinear 
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Figure 2.6: Power spectrum S (w) for Gaussian white noise random flip angle excitation. 
T\ = 0.5s and TR = O.lms. (a) S(w) with different RMS flip angles. v = 250Hz and 
T2 = lOms. (b) S(w) for 11 equally spaced spins. a: = 1.150 and T2 = lOOms. 
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system provides little clue to the system response to any excitation other than the im­

pulse. The NMR spin system is a nonlinear system. The Bloch equations are nonlinear 

with respect to the RF excitation. A single hard pulse excites only the linear component 

which is the FlO. Nonlinear components appear in the magnetization response when 

the system is excited by more than one pulse in succession or by continuous excitation. 

The stochastic NMR experiment consists of a train of RF excitation pulses and therefore 

exhibits nonlinear magnetization response. The nonlinear transverse magnetization re-

sponse Mxy(n) = Mx(n) + i My(n) can be represented by a Volterra series expansion 

[7]: 
00 

Mxy(n) = LHi[ax(n)] (2.42) 
i=O 

where Ho[ax(n)] = ho is a constant and 

00 00 

Hj[ax(n)] = L ... L hj(mI 1 ••• 1 mj)ax(n - ml)··· aAn - mj). 
ml=-OO mj=-oo 

The Volterra series is a generalization of the Taylor series of a function of multiple ar­

guments. The functional Hi[ax(n)] is called the ph order Volterra functional and the 

function hj is the ph order Volterra kernel. The Hi term summaries the ph order non­

linearity of the response. It is a ph order convolution of the input with the ph order 

Volterra kernel. The linear kernel, hi (m), is the FlO obtained by a single pulse Ff-NMR 

experiment. However, there is no easy way to estimate the Volterra kernels from the sig-

nals obtained by the stochastic experiment, not even for hi (m). BlUmich and Ziessow 

[13,14] used a heuristic ansatz for the Volterra kernels to describe the noise-like spec­

tral distortion resulting from a binary MLS excitation. They attributed this distortion to 

linear Hadamard processing of the nonlinear spin response. In the following discussion, 

we will show that the spectral distortion in ](1 (w) is also due to a linear processing of 

the nonlinear magnetization response. 

As mentioned above, the impulse response of a nonlinear system provides little clue 

to the system response to any other type of excitation. It appears that the only way to 
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characterize the stochastic experiment is to study the nonlinear magnetization response 

for a great variety of deterministic excitation sequences. This can be accomplished ef-

ficiently by a Gaussian white noise sequence since, given enough time, there is a finite 

probability that any given deterministic excitation sequence can be represented arbitrar­

ily closely by some sample of the white noise sequence. Therefore, the spin system 

is subjected to infinite possible deterministic excitations. This is the basic principle of 

Wiener series analysis [7]. For the following analysis assume random flip angle exci­

tation by Gaussian white noise as discussed in the previous section. The Wiener series 

expansion of the magnetization response is defined as 

00 

Mxy(n) = L Gj[kj ; ax(n)] (2.43) 
j=O 

where Gj[kj ; ax(n)] is the ph order Wiener functional and kj is the ph order Wiener 

kernel. The difference between the Volterra series expansion and the Wiener series ex­

pansion is that the set of Wiener functionals {Gj } is required to be a complete set of 

orthogonal functionals in the sense that 

(2.44) 

for any Volterra functional Hm[ax(n)] of order m < j, while the set of Volterra func­

tionals {Hj} is not. The ph order Wiener functional is also required to be a Volterra 

series with the highest order of nonlinearity being the ph order, i.e. Gj[kj ; ax(n)] can 

be written as 

00 00 

Gj[kj ; ax(n)] = I: I: kj(ml 1 ••• 1 mj)ax(n - mt) ... ax(n - mj) 

+ ~ [m.~~··· m.~~ kl(j)(m,,· .. , mllo.(n - mil··· o.(n - mil] , (2.45) 

where k/(j) is called a derived Wiener kernel because the orthogonality requirement 

forces it to be zero when (j - 1) is odd and 
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00 00 

L: L: kj(nl' nl,···, nm , nm , ml, ... , mj-2m) (2.46) 
nl=-OO nm=-oo 

when j - 1 = 2m. The orthogonality requirement then allows the Wiener kernels to be 

calculated by multi-dimensional input-output cross-correlation 

since the product ax(n - ml)··· ax(n - mj) is a ph order Volterra functional. For 

j = 1, the first order Wiener kernel reduces to the input-output cross-correlation defined 

in Equation 2.7. 

According to Equation 2.45, each Wiener functional Gj [kj; ax( n)] with order j > 1 

may have a non-zero linear component kl(j)( m). The overall linear component hI (m), 

the first order Volterra kernel, must be the sum of kl ( m) and all the first order derived 

kernels, kl(j)(m). Forevenj, kl(j)(m) = 0, consequently, 

(2.48) 

From Equation 2.28 the Fourier transform of the first order Wiener kernel for the 

random flip angle excitation is 

(2.49) 

where D( w) is given by 

The derivations for the derived kernels are long and tedious (see Appendix A). Only 

kl (3) ( m) and kl (5) ( m) have been derived. The Fourier transforms of the derived kernels 

are 

(2.50) 
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and 

(2.51) 

where 
1 - Eh cos () eiwTR 

Y(W) = D(w) . 

The above expressions show that kI(j) is proportional to aj-I. Therefore, when the 

excitation power is vanishingly small, hI (m) = ki (m) = FID. As the excitation 

power is increased, the magnetization response becomes increasingly nonlinear as the 

contributions to hI (m) from the first order derived kernels increase: kl (m) becomes 

a less accurate description of the FID. The discrepancy between hI (m) and ki (m) is 

manifested as a notch artifact and non-uniform spectral response. 

The line shape of KI(3)(W) is shown in Figure 2.7. Compared with KI(W) in Fig­

ure 2.1 a, KI (3) (w) has a narrower line width and less notch artifact. The line shape of 

KI(s)(w), as shown in Figure 2.8, is quite different from that of Kl(w).The sum of 

Kl (w), KI(3)(W) and KI(s)(w) in Figure 2.9 is Lorentzian at low excitation powerlevel. 

At higher excitation power level the sum has a narrower line width and less notch artifact 

than KI (w) in Figure 2.1. It may not be a perfect reconstruction of an ideal Lorentzian 

line shape at high excitation power level, however, the sum is definitely a more faithful 

estimate than KI(W). 

The Wiener series analysis is a tool to provide a better understanding of the source 

of the saturation behavior. It shows that the first order input-output cross-correlation is 

inadequate in estimating the true FID when there are significant nonlinear components 

in the magnetization response. Other first order derived kernels must be included. Fig-

ure 2.5 shows that such compensation is necessary even when a = <l'max, i.e. when the 

magnetization response gives a maximum SIN ratio. However, the next two sections 

will show that compensation is not necessary when the RF phase is random. 



37 

a=20.00 

a=10.00 a=25.00 

-5000 -2500 o 2500 5000 -5000 -2500 o 2500 5000 

ro (Hz) (J) (Hz) 

Figure 2.7: Line shape of Kl(3)(W) forrandom flip angle excitation with Gaussian white 
noise. Tl = 0.5s, T2 = lOms, TR = O.lms and 1.1 = 250Hz. 

2.4 Random Phase Excitation 

In this section, assume that the RF vector has a fixed flip angle a, however, the RF 

phase is a random variable, ¢>( n), uniformly distributed from -7r to 7r (Figure l.4b). 

Furthermore, ¢>( n) is assumed to be time uncorrelated: 

(2.52) 
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Figure 2.8: Line shape of K1(s)(w) for random flip angle excitation with Gaussian white 
noise. Tl = O.5s, T2 = lOms, TR = O.lms and v = 250Hz. 

The excitation sequence a( n) is then given by 

a cos <p(n) 

a(n) = a sin <p(n) 

o 

which has a zero mean and satisfies equation 2.1 with 

o 0 0 

The average excitation power is (aT (n ) a (n )) = a2. 

(2.53) 

(2.54) 
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Figure 2.9: Line shape of I<l (w) + I<1(3)(W) + I<l(S)(W) for random flip angle excitation 
with Gaussian white noise. 11 = 0.5s, 12 = tOms, TR = O.lms and 1/ = 250Hz. 

With the assumption of hard pulses, the RF rotation matrix Ra( n) is 

Ra(n) 

cos ¢>(n) - sin ¢>(n) 0 1 0 0 cos ¢>(n) sin ¢>(n) 0 

- sin ¢>(n) cos ¢>(n) 0 0 cos a sin a - sin ¢>(n) cos ¢>(n) 0 

0 0 1 0 -sina cos a 0 0 I 

cos2 ¢>( n) + sin2 ¢>( n) cos a cos ¢>( n) sin ¢>( n ) (1 - cos a) - sin ¢>(n) sin a 

- cos¢>(n)sin¢>(n)(l-cosa) sin2 ¢>( n) + cos2 ¢>( n ) cos a cos ¢>( n) sin a 

sin ¢>(n) sin a - cos ¢>( n) sin a cosa 

(2.55) 



which has a mean 

ILR = o 

o 

o 

o 
Equation 2.6 then gives the mean magnetization 

o 

o 

cos a 

o 
Me (1 - Ed cosa 

ILM = 1 _ El cos a 0 

Combining Equations 2.4, 2.11 and 2.57 gives 

A = Me (1 - E1)a sina 
2(1 - El cos a) 

1 

o -1 0 

100 

000 

Equation 2.16 then gives Kl (w ), the estimate of the real spectrum, 
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(2.56) 

(2.57) 

(2.58) 

(2.59) 

Notice that Kl (w) has only 1 pole at w = (J /TR = 21iv, which is the resonance offset 

of the spin. This means that the line is Lorentzian centered at the expected resonance 

offset. The only deviation in line shape from that obtained by a conventional Ff-NMR 

experiment with long interpulse delay is the line width: 

The second term is a line broadening which increases with the excitation power. It 

is important to notice that the line height and line shape are independent of (J. The 

interpulse dephase (J determines only the line location. Figure 2.10 shows plots of the 

line shape and the integrated line intensity of Kl (w ) for different flip angles. Notice that 

line broadening is the only spectral distortion as the flip angle is increased. 
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Figure 2.10: Kl (w) for random phase excitation. (a) Line shape (absorption part) and 
(b) integrated line intensity normalized by the value at Q = 0°. Tl = 0.5s, T2 = 1Oms, 
TR = 0.1ms and II = 250Hz. 
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The probability distribution of 4>( n) is not necessarily continuous. One possible 

discrete distribution is for 4>( n) to take on the values, ±45° and ± 1350
, each with a 

probability of 1/4. This can be implemented easily by using two independent binary 

maximum length sequences. The outputs of the MLS generators combined to give four 

possible outcomes that are equally likely to occur. This quaternary output is then used 

to select the four possible RF phases. 

Solving Equation 2.18 gives 

(M MT) = M;(1 - El)2 
1 - !Wz(l + cos2 a) - Ercos2a + EfWz(l - ~ sin2 a) 

1 + El cos a 
x~--==----

1 - El cos a 

! sin2 a 2 

o 

o 

o 

! sin2 a 2 

o 

o 

o 

The average signal power is the sum of the first two diagonal elements 

(2.60) 

P = M;(1 - E1)2 sin2 a 1 + El cos a 
1 - !Wz(l + cos2 a) - Efcos2 a + EfWz(l - ~ sin2 a) 1 - El cos a· (2.61) 

Notice that the average signal power P is not a function of the interpulse dephase B. 

This further shows that the experimental response is uniform across the spectrum. Fig­

ure 2.11 a is an example plot of the average signal power as a function of the flip angle 

a. The plot is almost identical to that for the random flip angle excitation (Figure 2.4a). 

The peak is at amax = 1.15°, which gives the maximum SIN ratio. Therefore, as dis­

cussed earlier, the peak power requirement for this type of excitation is usually orders 

of magnitude smaller than that for a conventional Ff-NMR experiment. Figure 2.11 b 

shows, once again, that amax is approximately the Ernst angle, cos-1 (e-TR / T1 ). 

The signal power spectrum can be obtained by combining Equations 2.24 and 2.60: 

S( w) = 2P'Re { I.} _ P 
1 - Ez cos2 ! e1(wTR-9) 

_ (1 - Eicos4 !)P 
1 - 2Ez cos2 ! COS(WTR - B) + Ei cos4 ! ' (2.62) 
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Figure 2.11: Random phase excitation. (a) Average signal power versus the flip angle. 
(b) (}max versus Tt/TR • The symbol * represents theoretical values and the solid line is 
cos-l(e-TR/TI). Tl = O.5sec, T2 = lOms, Tn = O.lms and v = 250Hz. 
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Figure 2.12: Power spectrum S (w) for random phase excitation with different flip an­
gles. Ii = 0.5s, T2 = lOms, TR = O.lms and v = 250Hz. 

where ReU means the real part of the complex quantity inside the braces. Comparing 

Sew) with K1{w) in Equation 2.59, it is obvious that Sew) closely resembles the real 

part of Kl{W), as demonstrated in Figures 2.10 and 2.12. Therefore, the signal power 

spectrum is also an accurate estimator of the real spectrum. The advantage of using the 

power spectrum is that it is calculated from the signal sequence only. 

2.5 Random Quadrature Excitation 

In this section, assume that the RF vector has two orthogonal components which are 

random but identically distributed and statistically independent (Figure l.4c). Denote 

the excitation sequence as a{n) = [ax{n),ay{n),O]T. The two components, ax(n) and 
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a y (n ), are statistically independent and identically distributed. They must also satisfy 

the following two conditions: 

1. ax(n) and ay(n) are time uncorrelated: 

where j = x or y and a 2 is the average excitation power. 

2. ax(n) and ay(n) each have an even probability density function. This implies 

that the mean values, J.tx and J.Ly. are zero. 

The covariance matrix for a( n) is the same as that for the random phase excitation in 

Equation 2.54. Define the RF magnitude and phase, respectively, as 

and 

</>(n) = tan-I [ay(n)]. 
ax(n) 

With the assumption of hard pulses, the RF rotation matrix Ra(n) is 

Ra(n) 

cos </>( n ) - sin </>( n ) 0 

sin </>( n ) cos </>( n) 0 

1 o o 

o cos,8(n) sin,8(n) 

o - sin,8( n) cos ,8( n) 

cos </>( n ) sin </>( n ) 0 

- sin </>(n) cos </>(n) 0 

o o 1 o o 1 

cos2 </>( n) + sin2 </>( n) cos,8( n) cos </>( n) sin </>( n)( 1 - cos,8( n)) - sin </>( n) sin,8( n) 

- cos </>( n) sin </>( n)( 1 - cos,8( n)) sin2 </>( n) + cos2 </>( n) cos,8( n) cos </>( n) sin,8( n) 

sin </>( n) sin,8( n) - cos </>(n) sin ,8(n) cos ,8(n) 

(2.63) 
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which has a mean 

J-Ll 0 0 

I-'R = 0 J-Ll 0 (2.64) 

0 0 J-L2 

where 

J-Ll = (cos2 ¢>( n) + sin2 ¢>( n) cos.B( n») = (sin2 ¢>( n) + cos2 ¢>( n) cos.B( n») (2.65) 

and 

J-L2 = (cos.B(n»). 

Equation 2.6 gives the mean magnetization 

o 
Me (1- E 1)J-L2 

I-'M = 1 _ EIJ-L2 0 

1 

Combining Equations 2.4, 2.11 and 2.67 gives 

where 

A = Me (1 - EdJ-L3 
1 - EIJ-L2 

o -1 0 

100 

000 

(2.66) 

(2.67) 

(2.68) 

J-L3 = (ox(n) cos¢>(n) sin.B(n») = (ay(n) sin¢>(n) sin.B(n»). (2.69) 

Equation [2.16] then gives K 1 (W ), the estimate of the real spectrum, 

(2.70) 

As for the random phase excitation, Kl (w) has a Lorentzian line at the expected reso­

nance offset Line broadening is the only spectral distortion as the excitation power is 

increased. The line width is given by 

1 1 
- - - log J-Lt, 
rrT2 rrTR 
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where the second tenn is the line broadening. The line height and line shape are inde­

pendent of B, which means that the KI (w) response is unifonn across the spectrum. 

Solving Equation 2.18 and 2.24 gives 

P = M2 (1 _ EI)2 1 + EIJ-l2 2P3 
e 1 - EIJ-l2 1 - Ei(PI + P2) - EfP4 + Ef Ei(P2P4 + P2P4 - 2~) 

(2.71) 

and 

Sew) 

(2.72) 

where 

PI - ([cos2 4>( n) + sin2 4>( n) cos,B( n) ]2) = ([ sin2 4>( n) + cos2 4>( n) cos,B( n)]2) , 

P2 - (cos2 <p( n) sin2 4>( n)[l - cos,B( n )]2), 

P3. = (sin2 4>( n) sin2,B( n)) and 

P4 = (cos2 ,B(n)). 

When aAn) and ay(n) are zero mean Gaussian white noise, 

a 2 
J-li - 1- g(4)' 

a 2 
J-l2 - 1-2g(4)' 

a 2 a 2 a 2 
J-l3 - 4 + (1- 2)g(4)' 

1 a 2 3 
PI - 1 - 2: g( 4") - 8 g(2a2), 

1 a 2 1 
"P2 - 2: g( 4" ) - 8 g(2a

2
), 

1 2 
P3 - 3 g(2a ), 

P4 - 1 - g(2a2), 

where 

g(x) = xe-x IFI(~'~;X) 
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and IFI is a degenerate hypergeometric function [25] defined as 

a x a( a + 1) x2 a( a + 1)( a + 2) x3 

IFl(a, b; x) = 1 + bIt + b(b + 1) 21 + b(b + 1)(b + 2) 31 + ... 

The resemblance of Kl(W), P and S(w) for the random phase excitation and those for· 

the random quadrature excitation is quite obvious. The plots of ](1 (w ), P and S (w ) 

are shown in Figures 2.13, 2.14 and 2.15, respectively. The discussions in previous 

section regarding line shape, line distortion, optimum excitation power, etc. also apply 

here. In fact, ifax ( n) and ay (n) are random binary sequences taking on the two values, 

±a/ v'2 with equal probability, the random quadrature excitation becomes a random 

phase excitation with flip angle a. 



49 

(a) 

11=15.0° 

11=5.0° a=20.00 

11=10.0° a=25.00 

·5000 ·2500 o 2500 5000·5000 ·2500 o 2500 5000 

CO (Hz) CO (Hz) 

(b) 

S 
1 

-~ 
~ 
c... 0.75 0 -= .... 
C)t) 
aJ 

0.5 -C 
~ 

"0 
aJ 
N .- 0.25 -= 5 .... 
0 
Z 

0 
0 5 10 15 20 25 30 

<X (degree) 

Figure 2.13: Kl (w) for random quadrature excitation with Gaussian white noise. (a) 
Line shape (absorption part) and (b) integrated line intensity normalized by the value at 
a = 0°. Tl = 0.5s, T2 = lOms, TR = O.lms and v = 250Hz. 
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Figure 2.14: Random quadrature excitation with Gaussian white noise. (a) Average 
signal power versus the flip angle. (b) amax versus Tt/TR. The symbol * represents 
theoretical values and the solid line is cos-l(e-TR/Tl). Tl = 0.5sec, T2 = lOms, TR = 
O.lms and v = 250Hz. 
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Figure 2.15: Power spectrum S (w) for random quadrature excitation with Gaussian 
white noise. Tl = 0.5s, T2 = IOms, TR = O.lms and v = 250Hz. 

2.6 Excitations with Non-zero Mean Sequences 

All three types of excitation discussed in previous sections assume that the excitation 

sequence a( n) has zero mean. However, in practice, an imperfect RF transmitter or 

RF amplifier may introduce an offset to the amplitude or the phase of the RF pulses. 

Distortions may results from such undesirable offsets. The effects of non-zero mean 

excitation will be discussed in this section. 

At low excitation power, the magnetization response is linear. The response to a non-

zero mean excitation a( n) will be the sum of the response to the mean component and 

the response to the zero mean component. This means that the only effect of the mean 

component is to introduce an output offset. The response to the zero mean component 
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Figure 2.16: Response of a nonlinear system. (a) Zero mean excitation. (b) Non-zero 
mean excitation. 

remains the same. When the excitation power is high, the magnetization response is 

nonlinear. Figure 2.16 demonstrates that the response of a nonlinear system to a non­

zero mean input not only has an output offset, but may also have a distorted response to 

the zero-mean component. 

A phase offset in the RF transmitter has no effect on the stochastic experiment be­

cause a( n) remains zero mean (Equation 2.53). This will be the case as long as ¢>( n) is 

distributed uniformly over a range of 27T' radians, because the expectations of products 

of cos ¢>( n) and sin ¢>( n) to arbitrary powers remain the same even when ¢>( n) has a 

non-zero mean. 

An amplitude offset in the RF transmitter or the RF amplifier will give a flip angle 

offset resulting in an excitation sequence a( n) with a non-zero mean. The non-zero 

mean excitation will move the spin system towards a more nonlinear regime (analo-
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gous to Figure 2.16b). Consider the extreme situation where a( n) = JL is non-random. 

Both the random flip angle excitation and the random quadrature excitation become a 

constant flip angle excitation, i.e. the well known steady state free precession (SSFP) 

experiment [1]. Let a(n) = [J.tx, 0, oy. Then 

1 ° ° 
Ra ( n) = JL R = ° cos J.tx sin J.tx (2.73) 

° -sin J.tx cos J.tx 

The magnetization vector acquires a steady state value JLM which is given by Equa­

tion 2.6: 

- (1 - Eh. cos 8) (1 - El cos J.tx) - Eh.( Eh. - cos 8) (El - cos J.tx) 

Eh. sin J.tx sin 8 

x Ez sin J.tx (1 - Ez cos 8) . (2.74) 

cos J.tx - Eh. cos 8( 1 + cos J.tx) + Ei) 

The steady state signal power is 

P - Bt JLMJL'f"B 

_ M;(1 - Ed! sin! J.tx (1 - 2Eh. cos 8 + Ei) . (2.75) 
(1 - Ez cos 8) (1 - El cos J.tx) - Ez(Eh. - cos 8) (El - cos J.tx) 

This equation shows that the steady state signal power is a function of the interpulse 

dephase 8, i.e. a function of the resonance offset (Figure 2.17). It means that the steady 

state response will not be uniform across the spectrum. 

When a random component is added, a(n) = [ax(n) + J.tx,O,O]T, the experiment 

becomes a random angle excitation. The mean magnetization vector J.tM will acquire 

a value very similar to the steady state value, i.e., the spin system is shifted towards 

undesirable operating conditions. The reconstructed ](1 (w) will have a non-uniform 

response across the spectrum. This is verified by an analysis similar to Section 2.2 but 
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Figure 2.17: Steady state signal power as a function of the interpulse dephase. Ii = 0.5s, 
T2 = lOms, TR = O.lms and"/Lx = 1.15°. 

with a non-zero mean a( n) defined above. The mean magnetization vector is 

/LMz 

Ji.M - IL r-My 

(1 - Eh cos 8) (1 - El cos/Lx'Po(l)) - ~'Po(l)(Eh - cos 8) (E1'Po(1) - COS/Lx) 

Eh sin /Lx sin 8 

x ~ sin /Lx (1 - Eh cos 8) (2.76) 

cos /Lx - Eh cos 8( 'Po(l) + cos /Lx) + Ei<Po(l) 

When the random component has zero power <Po(l) = 1 and the Ji.M above reduces to 

the steady state solution in Equation 2.74 as expected. The estimate of the spectrum is 
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D(w) - (1 - ~cosOeiwTR) [1- El COS/-Lxt.pa(1)eiwTR ] 

_~t.pa(l)eiWTR(~eiWTR - cosO) [Elt.pa(1)eiwTR - COS/-Lx]. (2.78) 

Figure 2.18a shows the line shapes of Kl (w) obtained using a random binary excitation 

with a fixed RMS flip angle of 1.150 but different values of /-Lx. The lines exhibit two 

different artifacts as the mean excitation increases, a notch artifact at zero resonance 

offset and a mirror image artifact at the negative of the resonance offset of the line. 

These distortions are analogous to the those caused by the input offset to a nonlinear 

system shown in Figure 2.16b. Figure 2.18b shows the reconstructed Kl (w) for twenty­

one lines equally spaced in frequency and centered at zero resonance offset. The line at 

zero resonance offset disappears due to saturation by the mean excitation. The overall 

response across the spectrum is highly non-uniform. 

A similar analysis has been done for a binary quadrature excitation sequence a( n) = 

[Ctx(n) +~, Cty(n) + ~,O]T. The expressions for the mean magnetization and Kl(W) 

are too complicated to be shown here (see Appendix B). However, the plots in Fig­

ure 2.19 show distortions in the line shapes very similar to those for random binary flip 

angle excitation in Figure 2.18. 

Binary maximum length sequences (MLS) are frequently used to approximate ran­

dom binary excitations, not only because they are easy to generate but also because the 

Hadamard transform can be used to calculate the input-output cross-correlation. An-bit 

binary MLS generator will produce sequences with a period of 2n 
- 1. In order to use the 

Hadamard transform, the full length of the sequence must be used. The same sequence 

can be repeated many times to improve the SIN ratio by coherent signal averaging. This 

means that the sequence is repeated every (~ - 1 )TR seconds. One important fact about 

MLS that takes on the values ± 1 is that the sum of one full period of the sequence is one 
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Figure 2.18: Line shapes of ](1 (w) obtained by random binary flip angle excitations with 
a non-zero mean. Tl = 0.5s, T2 = lOms, TR = O.lms and RMS flip angle is 1.15°. (a) 
Lines with different mean flip angles, J.Lx. 1/ = 250Hz. (b) Twenty-one lines at different 
resonance offsets. J.Lx = 1.15°. 
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Figure 2.19: Line shapes of Kl (w) obtained by random binary quadrature excitations 
with non-zero means in both components. Tl = O.5s, T2 = lOms, TR = O.lms and 
RMS flip angle is 1.15°. (a) Lines with different mean flip angles. v = 250Hz. (b) 
Twenty-one lines at different resonance offsets. J1. = 1.15°. 
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( a) 

(b) 

·500 o 500 1000 

Figure 2.20: Computer simulated line shapes of Kl (w) using random flip angle excita­
tion with binary MLS. (a) 9-bit MLS generator. (b) IS-bit MLS generator. Tl = 0.5s, 
T2 = lOms, TR = O.lms, v = 100Hz and RMS flip angle = 1.15°. 

or minus one. This implies that the sample experiences a non-zero mean excitation. If 

(2n - 1 )TR is small compared to Tl and T2, the effects of exciting with the full period of 

the MLS repeatedly will be similar to having a non-zero mean random binary excitation. 

Distortions may appear in the reconstructed spectrum as demonstrated by the computer 

simulations shown in Figure 2.20. The use of a 9-bit MLS generator results in a notch 

artifact near zero resonance offset The artifact does not occur when a IS-bit MLS gen­

erator is used. This explains most of the artifacts reported by Chaudhuri [22] since he 

used only an 8-bit MLS generator. 
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Chapter 3 

Systematic Noise 

In the previous chapter, the input-output cross-correlation and the signal power spec-

trum are defined in tenns of the expectation operator of probability theory. In practice, 

ergodicity is assumed and the expectation operator is approximated by a time average. 

For example, the cross-correlation of two processes, x( n) and y( n), is estimated by 

I N-l 

(x(n)y*(n-m)) ~ N L x(n)y*(n-m). 
n=O 

(3.1) 

The approximation becomes an equality only when N approaches infinity, but in re­

ality N is limited. Since the observed x( n) and y( n) are samples of two stochastic 

processes, the time average defined on the right hand side of the equation above will 

also be a sample of a stochastic process and in general will have a non-zero variance. 

This variance will usually appear as colored noise in the time average, and it is referred 

to as systematic noise. In addition to the systematic noise, the observed x( n) and y( n) 

also have measurement noise from the sample and the electronic hardware involved in 

the sampling process. To avoid structural artifacts resulting from the systematic noise, 

it is necessary to find the right imaging parameters and experimental setup so that the 

measurement noise is the dominant noise source. The first three sections of this chapter 

will investigate how the measurement noise and the systematic noise decrease as N is 

increased. A comparison of Gaussian white noise excitation and MLS excitation will 

be made in tenns of systematic noise generation. In 1982 BIUmich and Ziessow [14] 

showed that high power MLS excitation results in noise-like distortion in the recon-
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structed spectra. The last section of this chapter is a detailed analysis of the origin of 

this noise-like distortion. 

3.1 Systematic Noise and Measurement Noise 

First consider the case without measurement noise. In the stochastic experiments an-

alyzed in the previous chapter, there are two possible estimators of the real spectrum, 

Kl (w) and S( w). They are the Fourier transforms of the input-output cross-covariance 

and the signal auto-covariance. From Equations 2.7, 2.19 and 3.1, the time average 

estimators of the input-output cross-covariance and the signal auto-covariance are, re-

spectively, 

1 {N-l } kf(m) = Na2 Bt ~[M(n) - PM][a(n - m) - Paf B (3.2) 

and 

1 {N-l } r N (m) = N Bt ~ [M(n) - PM][M(n - m) - PM]T B (3.3) 

where the superscript N denotes the dependence on N. It is obvious that (kfV (m )) = 

kl (m) and (~( m )) = r( m). i.e., they are unbiased estimators. The variances of kf (m) 

and rN (m) are defined as 

(3.4) 

and 

(3.5) 

In practice, the data acquired include measurement noise from the sample and elec­

tronic hardware. In most cases, the measurement noise is a Gaussian white noise. When 

representing the transverse magnetization Mxy( n ), or the signal, as a complex sequence, 

the measurement noise can be represented as Nxy( n) = N x ( n) + iNy( n) where N x ( n) 

and Ny( n) are independent Gaussian white noise with a variance of cr /2, so that the 

noise power is u2. In general, it is safe to assume that the measurement noise is also 
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independent of the stochastic excitation sequence a( n), and hence independent of the 

transverse magnetization. Define the noise vector as N(n) = [Nx(n),Ny(n), 0]. An 

estimator of the input-output cross-covariance which includes the measurement noise is 

1 {N-l } kf(m) = No:2 Bt !; [M(n) +N(n) -#LM][a(n - m) -#LaY B. (3.6) 

Since the measurement noise and the excitation sequence are independent, the estimator 

is unbiased, i.e. (kf' (m)) = kl (m). From Equation 3.6, the variance of the estimator is 

Var{kf(m)} - (lkf(m)12) -lk1(m)12 

- (N~ Bt {'E[M(n) -I'M][a(n-m) -I'X}B ') 

-lk,(m)I' + (IN~' Bt {'E N(n)[a(n - m) -l'aY} BJ) 
1 N-l N-l 

- Var{kf(m)} + N 2o:4 !; f; (72o:20ni 

(72 
= Var{kf(m)} + No:2' (3.7) 

It shows that the total noise power in the estimate of the FID consists of a systematic 

noise term and a measurement noise term. The systematic noise is generally-non-white. 

To avoid structural artifacts resulting from the systematic noise, it is necessary to find 

the right experimental setup so that the measurement noise is the dominant noise source. 

As in conventional FT-NMR, Equation 3.7 shows that the measurement noise term is in­

versely proportional to the total number of data points, N, used in the reconstruction. It 

will be shown in the next section that the systematic noise power is also inversely pro­

portional to N, so that increasing N does not change the relative amount of systematic 

and measurement noise power. Hence, some other means must be sought to make the 

measurement noise become the dominant noise source. 

Similarly, an estimator for the' signal auto-covariance with the measurement noise 
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included is 

1 . {N-l } 
fN(m) = N Bt ~[M(n) +N(n) - J'MHM(n - m) +N(n - m) - J'MY B. 

The mean of this estimator is given by 

{ 

rem) +0-2 
(fN(m)) = 

rem) 

(3.8) 

ifm=O 
(3.9) 

otherwise. 

The bias tenn is a delta function with height (72 at m = O. The Fourier transform of 

r( m) is the signal power spectrum, S( w). Since the Fourier transform operator and 

the expectation operator are commutative, Fourier transform of both sides of the above 

equation gives 

(SN(W)) = Sew) + ~ (3.10) 

where S N (w) is a noisy estimator for the signal power spectrum. Therefore, the bias term 

is just a DC offset in the signal power spectrum. The variance of the noisy estimator for 

the signal auto-covariance is 

ifm=O 

otherwise 

(3.11) 

where P is the average signal power. Once again, the total noise power consists of a 

systematic noise term and a measurement noise tenn. 

3.2 Systematic Noise in k~ (m) 

The variance of kf" (m), V ar{ kf" (m)}, can be obtained theoretically using Equations 3.2, 

3.4 and the stochastic difference equation (Equation 2.4) for a specific excitation se­

quence. The steps are laborious, and the results cannot be expressed in simple closed 
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fonns, but can be calculated numerically (see Appendix C). The numerical calculation 

has been done for random flip angle excitation using Gaussian white noise and random 

quadrature excitation using random binary sequences. The latter is also a special case of 

random phase excitation as discussed in the previous chapter. The variance has also been 

estimated by Monte Carlo simulations (see Chapter 1) for all three types of excitations 

using Gaussian white noise, or binary maximum length sequences (MLS). 

Figure 3.1 shows the theoretically calculated variance of kfV (m) with random flip 

angle excitation using Gaussian white noise for different values of N. For any given N, 

the variance approaches a constant value as m is increased. The constant value decreases 

by a factor of two for every doubling of N. This means that the variance is inversely 

proportional to N. The oscillation at small m has the same frequency as the resonance 

offset. Figure 3.2 shows the theoretically calculated variance of kfV (m) with random 

quadrature excitation using zero mean random binary sequences for different values of 

N. The oscillation noted in Figure 3.1 is not present since the variance of kf' ( m) with 

random quadrature excitation is actually independent of the resonance offset. Figures 3.3 

and 3.4 show comparisons of results obtained by theoretical calculation and Monte Carlo 

simulations for the two different types of excitations. All figures show good agreement. 

For the random flip angle excitation the variance of kf' (m) behaves differently at small 

m for lines on- and off-resonance (Figure 3.3), but it approaches to the same constant 

value. 

As shown in Figures 3.1 and 3.2 the variance of kfV(m) is a function of m, but it is 

reasonably flat for a large range of m. Define the systematic noise power as the average 

variance: 

Systematic Noise Power 
1 M-l 

M 2: Var{kf(m)} 
m=O 

V ar{ kf ( 00 )}, (3.12) 

where V ar{ kf' (oo)} is well defined and is inversely proportional to N as shown in 
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Figure 3.1: Theoretically calculated variance of kf'(m) with random flip angle excita­
tion using Gaussian white noise. 11 = 0.5s, T2 = lOms, TR = O.lms, v = 250Hz and 
RMS flip angle of 1.15°. 

Figures 3.1 and 3.2. From Chapter 2 Kl (w) is Lorentzian when the excitation power is 

low. This implies that kl (m) is an exponentially decaying sinusoid (Figure 3.5) with an 

amplitude Ik1(0)1. Define the signal-to-systematic-noise ratio as 

(3.13) 

where the subscript sn means systematic noise. Figure 3.6 shows a log-log plot of 

the signal-to-systematic-noise ratio versus N for random phase excitation obtained by 

Monte Carlo simulations. The plot shows once again that the systematic noise power 

is inversely proportional to N. Figures 3.7 and 3.8 are corresponding plots for random 
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Figure 3.2: Theoretically calculated variance of kf" (m) with random quadrature excita­
tion using a zero mean random binary sequence. 11 = 0.5s, 72 = lOms, TR = O.Ims, 
v = 250Hz and RMS flip angle of 1.15°. 

flip angle excitation and random quadrature excitation, but for three different types of 

excitation sequences. Figures 3.7a and 3.8a are obtained with Gaussian white noise, 

Figures 3.7b and 3.8b with sub-sequences generated by a 3I-bit MLS generator and 

Figures 3.7c and 3.8c with sub-sequences generated by a I5-bit MLS generator. A sub­

sequence here means a small section of the full MLS. The length of the sub-sequences 

generated by the 31-bit MLS generator is much smaller than 231 - 1, the period of the 

generator. Such sub-sequences behave just like random binary sequences, resulting in 

a plot very similar to that for the Gaussian white noise. However, it is very interesting 

to notice from Figures 3.7c and 3.8c that the signal-to-systematic-noise ratio does not 
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Figure 3.3: Variance of kf (m) with random flip angle excitation using Gaussian white 
noise. Dotted curve is theoretical calculation, solid curve is Monte Carlo simulation. 
Tl = 0.5s, T2 = lOms, Tn = O.1ms, N = 25600 and RMS flip angle of 1.150

• (a) 
l/ = 250Hz, (b) l/ = OHz. 
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Figure 3.4: Variance kf" (m) with random quadrature excitation using a zero mean ran­
dom binary sequence. Dotted curve is theoretical calculation, solid curve is Monte Carlo 
simulation. Tl = 0.5s, T2 = IOms, TR = O.lms, v = 250Hz, N = 20480 and RMS 
flip angle of 1.15°. 

follow the 1/ N behavior whenever N is a multiple of 215 - 1, the period of the IS-bit 

generator. The signal-to-systematic-noise ratio for MLS excitation with N equal to a 

multiple of the period of the MLS is about 20dB higher than that for Gaussian. white 

noise excitation with the same N. Such desirable behavior is a consequence of the auto­

correlation of the complete MLS being a delta function with a small negative offset. 

This is one reason why the Hadamard transfonn, which applies to the full MLS, is so 

popular in linear system analysis. 
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Figure 3.5: (a) Real part and (b) imaginary part of kl (m) with random flip angle excita­
tion using Gaussian white noise. 1i = O.5s, T2 = lOms. TR = O.lms, v = 250Hz, and 
RMS flip angle of 1.15°. 
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Figure 3.6: Log-log plot of signal-to-systematic-noise ratio of kf"(m) versus N, ob­
tained by Monte Carlo simulations with random phase excitations. 1i = O.5s, T2 = 
tOms, TR = O.lms, v = 250Hz, and RMS flip angle of 1.15°. 
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Figure 3.7: Log-log plot of signal-to-systematic-noise ratio of k{"Cm) versus N, ob­
tained by Monte Carlo simulations with random flip angle excitations. The excitation 
sequences are (a) Gaussian white noise, (b) 31-bit MLS and (c) 15-bit MLS. 11. = 0.5s, 
T2 = tOms, TR = 0.1 IDS, v = 250Hz, and RMS flip angle of 1.150
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Figure 3.8: Log-log plot of signal-to-systematic-noise ratio of kf(m) versus N, ob­
tained by Monte Carlo simulations with random quadrature excitations. The excitation 
sequences are (a) Gaussian white noise, (b) 31-bit MLS and (c) 15-bit MLS. 11 = 0.5s, 
T2 = lOms, TR = O.lms, v = 250Hz, and RMS flip angle of 1.15°. 
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3.3 Systematic Noise in rN (m) 

Theoretic~ calculation of the variance of rN ( m) is more formidable than that for the 

variance of kf(m). Results obtained by Monte Carlo simulations will be presented. 

Figure 3.9 is a plot of computer simulated V ar{ rN (m)}. As a function of m, it is very 

similar to V ar{ kf (m)}. For rN (m), define the systematic noise power as the average 

variance: 

Systematic Noise Power 
1 M-l 

M E Var{~(m)} 
m=O 

~ Var{rN(oo)}, (3.14) 

where V ar{ rN ( oo)} is well defined. The analysis in the previous chapter showed 

that the signal power spectrum is very similar to K1(w). This means that the signal 

auto-covariance function, rN (m), is very similar to the input-output cross-covariance, 

kf (m), i.e., rN (m) should also look like an exponentially decaying sinusoid. The am­

plitude of this sinusoid is rN (0) which is real and becomes the average signal power 

P when N approaches infinity. Therefore, for the signal auto-covariance rN ( m), the 

signal-to-systematic-noise ratio is defined as 

p2 
(S/N)sn = Var{rf(oo)}. (3.15) 

Figures 3.10, 3.11 and 3.12 are log-log plots of the signal-to-systematic-noise ratio ver­

sus N for the three different types of excitations obtained by Monte Carlo simulations. 

They show that the systematic noise power is again inversely proportional to N when 

the excitation sequence is a Gaussian white noise or a binary sequence generated by a 

31-bit MLS generator. Once again, with the IS-bit MLS, the systematic noise power 

drops significantly when N is a multiple of the period of the MLS. Comparing the cor­

responding plots (Figures 3.6,3.7 and 3.8) of signal-to-systematic-noise ratio versus N 

for kf (m), the signal-to-systematic-noise ratio for rN (m) is generally about 2dB to 3dB 

lower than that for kf (m) for a given N and a given type of excitation. When a IS-bit 
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MLS generator is used and N is a multiple of 215 -1, the drop is about 6dB lower. This is 

one disadvantage of using the signal power spectrum to approximate the true spectrum. 
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Figure 3.9: Monte Carlo simulated variance of .,.N (m) with random quadrature exci­
tation using a Gaussian white noise sequence. 71 = 0.5s, T2 = tOms, TR = O.lms, 
v = 250Hz, N = 25600 and the RMS flip angle is 1.15°. 
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Figure 3.tO: Log-log plot of signal-to-systematic:..noise ratio of rN(m) versus N, ob­
tained by Monte Carlo simulations with random phase excitations. Ii = 0.5s, T2 = 

. tOms, TR = O.lms, v = 250Hz, and RMS flip angle of 1.15°. 
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Figure 3.11: Log-log plot of signal-to-systematic-noise ratio of rN (m) versus N, ob­
tained by Monte Carlo simulations with random flip angle excitations. The excitation 
sequences are (a) Gaussian white noise, (b) 31-bit MLS and (c) IS-bit MLS. Tl = 0.5s, 
T2 = lOms, TR = O.lms, v = 250Hz, and RMS flip angle of 1.15°. 
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Figure 3.12: Log-log plot of signal-to-systematic-noise ratio of rN(m) versus N, ob-
tained by Monte Carlo simulations with random quadrature excitations. The excitation 
sequences are (a) Gaussian white noise, (b) 31-bitMLS and (c) IS-bit MLS.l1 = 0.5s, 
T2 = lOms, TR = O.lms, II = 250Hz, and RMS flip angle of 1.15°. 
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3.4 Nonlinear Systematic Noise With MLS Excitations 

The closed form expression of Kl (w) obtained in Chapter 2 predicts only two types of 

spectral distortion: a line broadening and/or non-uniform response across the spectrum. 

However, in 1982 Bllimich and Ziessow [14] showed that noise-like distortion occurs in 

the reconstructed spectra when a high power MLS excitation is used. They attributed the 

distortions to linear processing of a nonlinear spin response and used a heuristic ansatz 

for the Volterra kernels to describe the distortions. The following analysis will show that 

the distortions are actually due to characteristics of the MLS which manifest themselves 

in kl (m) and Kl (w ) only when the spin system is driven to a nonlinear regime with high 

excitation power. 

Figure 3.13 shows Monte Carlo simulated line shapes of Kl (w) for random flip an­

gle excitation using zero mean binary MLS. As the RMS flip angle is increased, there is 

an increase in the relative amount of noise-like distortion in addition to line broadening 

and a notch artifact. This agrees with Bllimich and Ziessow's experimental observations. 

The systematic noise due to the variance of kl (m) in these plots should be negligible 

since N(=512000) is very large. Figure 3.14 shows that there is less noise-like distor­

tion when a Gaussian white noise generator is used. A comparison of kl (m) generated 

with MLS and Gaussian white noise in Figure 3.15 shows that the noise-like distortion 

with MLS excitation are actually due to spurious components at m = 62, 143 and 255. 

Theoretical results for a truly random binary sequence obtained in the previous chap­

ter do not predict such spurious components. They are artifacts resulting from peculiar 

properties of the MLS. 

A random binary sequence a(n) that takes on the equally likely values of ±1 should 

have a zero third order auto-correlation: 

(a(n)a(n - i)a(n - j)) = o. (3.16) 

A plot of (a( n ) a( n - i) a( n - j)) calculated numerically over a range of i and j for 

• 
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Figure 3.13: Monte Carlo simulated line shapes of Kl (w) for random flip angle excita­
tion with sub-sequences generated by a 31-bit MLS generator. 11 = 0.5s, T2 = lOms, 
TR = O.lms, 1/ = 2500Hz and N = 512000. 

a sub-sequence generated by a 31-bit MLS generator shows that the third order auto-

correlation is almost zero everywhere except at (i,j) = (3,31), (31,3), (6,62), (62,6), 

(12,124) and (124,12) (Figure 3.16). At these points the third order auto-correlation has 

a value of 1. The spikes at (6,62) and (62,6) are clearly related to the spurious component 

of k\ (m) at m = 62. 

The fact that a spike occurs at (31,3) is a direct consequence of the algorithm used by 

the 31-bit MLS generator. Figure 3.17 is a block diagram of the 31-bit MLS generator. 

The generator consists of a 31-bit shift register with the exclusive-OR of the 31 st bit and 

the 3rd bit fed back to form the Oth bit, the bit at the input of the register SRI. Therefore 

the Oth, 3rd and 31 st bits of the MLS generated are perfectly correlated, giving rise to 
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Figure 3.14: Monte Carlo simulated line shapes of Kl(W) for random flip angle ex­
citation with sequences generated by a Gaussian white noise generator. 11 = 0.5s, 
T2 = 10ms, TR = O.lms, v = 2500Hz and N = 512000. 

the spikes at (31,3) and (3,31). Similarly, the 1st , 4th and 32nd bits are also perfectly 

correlated. By propagating this triplet along the sequence, it can be shown that the rfh, 

6th and 62nd bits are also perfectly correlated, giving rise to the spikes at (62,6) and 

(6,62). This indicates that the spikes are MLS generator dependent and are not due to 

the use of sub-sequences. No erroneous spikes occur in the third order auto-correlation 

of a sequence generated by the Gaussian white noise generator (Figure 3.18). 

The fourth order auto-correlation is 

(a(n) a(n - i) a(n - j) a(n -1)) = 0 (3.17) 

when 1 is strictly bigger than i and j. Figures 3.19 and 3.20 are plots of the fourth order 

auto-correlation calculated numerically for a sub-sequence generated by a 31-bit MLS 
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Figure 3.15: Monte Carlo simulated real part of kl (m) for random flip angle excitation 
with sub-sequences generated by (a) a Gaussian white noise generator and (b) a 31-bit 
MLS generator. Tl = 0.5s, T2 = lOms, TR = O.lms, v = 2500Hz, a = 25° and 
N = 512000. 
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Figure 3.16: Numerically calculated third order auto-correlation of a sub-sequence gen­
erated by a 31-bit MLS generator. The sequence takes on the values ± 1. N = 20000. 

generator with I being 143 and 255, respectively. The plots show spikes at (i,j, I) = 

(3,19,143), (19,3,143), (3,7,255) and (7,3,255). These spikes are clearly related to the 

spurious components of k1(m) at m = 143 and 255. Figure 3.21 is a plot of the fourth 

order auto-correlation with 1 = 100. Expected spikes occur at ( i, j, I) = (100,0,100) and 

(0,100,100) and there are no erroneous spikes. Therefore, there is no spurious compo­

nent of k1(m) at m = 100. The reason for a spike at (3,19,143) is similar to the reason 

forthe spike at (62,6) of the third order auto-correlation. The oth, 3rd , 19th and 143rd 

bits are perfectly correlated due to the propagation of the perfectly correlated triplet, the 

oth, 3rd and 31 at bits. 

,~ 
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Figure 3.17: A 31-bit MLS generator implemented with a 31-bit shift register. 

The auto-correlations of orders higher than two are related to the nonlinear compo­

nents of the magnetization response. Consider the random flip angle excitation experi-

ment, wherein the magnetization response can be written as a Volterra series: 

n n- n 

Mxy(n) = ho+2:ht(i)"a(n-i)+2:2:h2(i,j)a(n-i)a(n-j) 
i=O i=O j=O 

n n n 

+ 2:2: 2: h3(i,j,1)a(n -i)a(n -j)a(n -I) + "', (3.18) 
i=Oj=OI=O 

where hi is the ith order Volterra kernel. For a zero mean excitation sequence a( n ), the 

input-output cross-correlation is given by 

I 
- 2(Mxy(n) a(h - m) 

a 

- ht(m) + -.; t t h2(i,j)(a(n - i) a(n - j) a(n - m) 
a i=Oj=O 

+-; t t t h3(i,j, 1)(a(n - i) a(n - j) a(n -1) a(n - m). (3.19) 
a i=Oj=O 1=0 

A truly random binary sequence will have a zero third order auto-correlation and so 

the second order Volterra kernel does not contribute to kt (m). When a( n) is a sub­

sequence generated by the 31-bit MLS generator in Figure 3.17, the spikes in the third 

order auto-correlation will give rise to terms depending on the second order Volterra 

kernel in Equation 3.19. For example, consider the spikes at (i,j) = (6,62) and (62,6), 
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Figure 3.18: Numerically calculated third order auto-correlation of a sub-sequence 
generated by a Gaussian white noise generator. The sequence has a variance of 1. 
N = 10000. 

they will contribute the following terms to kl(m): 

Q [h2(m + 6,m+ 62) + h2(m + 62,m+ 6) + h2(m - 6,m +56) 

+h2(m + 56, m - 6) + h2(m - 56, m - 62) + h2(m - 62, m - 56)] . (3.20) 

The spin system is a causal system and so h2(i,j) is zero whenever i or j is nega-

tive. This implies that the terms h2(m - 56, m - 62) and h2(m - 62, m - 56) do not 

contribute to kl (m) until m is bigger than or equal to 62. This explains the spurious 

component of kl (m) at m = 62. Similarly, the various unexpected spikes in the fourth 

order auto-correlation will generate terms like h3(m - 140, m - 124, m - 143) and 

". 
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Figure 3.19: Numerically calculated fourth order auto-correlation of a sub-sequence 
generated by a 31-bitl\tlLS generator, (a(n) a(n-i) a(n-j) a(n-143)). The sequence 
takes on the values ±1. N = 10000. 

h3(m - 140, m - 137, m - 255) that give rise to the spurious components of kt(m) 

at m = 143 and m = 255. When the excitation power is low, the magnetization re­

sponse is linear with respect to the excitation and the higher order Volterra kernels are 

insignificant compared to the linear kernel ht. Therefore, the unexpected spikes in the 

higher order auto-correlations of the l\tILS do not cause significant spurious components 

in k t (m). However, when the excitation power is increased, the higher order nonlinear 

components in the magnetization response become larger than the l~near component and 

the spurious components in kl (m) are observed. Also, when the excitation sequence is 

a random binary sequence, the even order Volterra kernels are zero and hence no spu-
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Figure 3.20: Numerically calculated fourth order auto-correlation of a sub-sequence 
generated by a 31-bitMLS generator, (a(n) a(n-i) a(n-j) a(n-255)). The sequence 
takes on the values ±1. N = 10000. 

rious component can be generated from the even order kernels. When the sequence is 

a MLS with high power, the even order kernels are not necessarily zero and spurious 

components may be generated from these kernels. 

For one dimensional NMR spectroscopy, the optimum excitation power level that 

gives the maximum signal-to-noise ratio is usually so small that the magnetization re­

sponse is roughly linear (see Chapter 2). Therefore, the undesirable features in the higher 

order auto-correlations of MLS do not cause significant noise-like distortion in the re­

constructed spectrum. However, these undesirable features will make the interpretation 

of multi-dimensional stochastic NMR data very difficult. One easy way to reduce the 
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Figure 3.21: Numerically calculated fourth order auto-correlation of a sub-sequence 
generated by a 31-bitMLS generator, (a(n) a(n-i) a(n-j) a(n-100)). The sequence 
takes on the values ±1. N = 1()()()(). 

amount of noise-like distortion for a given excitation power is to use a MLS generator. 

with more feedback paths (taps). For example, a 30-bit MLS generator consists of a 30-

bit shift register with the exclusive-OR of the 1st , 4th , 6th and 30th bits fed back to form 

the Oth bit. Erroneous spikes will only occur in auto-correlations of order 5 or higher, 

therefore, only Volterra kernels of order 5 or higher will contribute spurious components 

to kl (m). As shown in Chapter 2 the integrated line intensity decreases rapidly as the 

excitation power is increased, i.e. as the system is more nonlinear; we expect the non-

linear components of the magnetization response to decrease rapidly with the order of 

the nonlinearity. Hence, the spurious components generated by the sth order Volterra 
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Figure 3.22: Monte Carlo simulated line shapes of Kl (w) for random flip angle excita­
tion with sub-sequences generated by a 30-bit MLS generator. Tl = O.5s, T2 = lOms, 
TR = O.lms, 1.1 = 2500Hz and N = 512000. 

kernel is usually much smaller than those by the 3rd and the 4th order kernels. Con­

sequently there will be less noise-like distortion when the 30-bit MLS is used. This is 

demonstrated by the Monte Carlo simulated Kl (w) in Figure 3.22. The lines have much 

less noise-like distortion than those in Figure 3.13. 
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Chapter 4 

Experimental Verification 

4.1 Experimental Setup 

To verify the theoretical results of the previous two chapters, stochastic NMR exper­

iments were done on a 0.5T whole body imaging system. Experiments at 0.5T are 

justified by the fact that the analysis is independent of field strength, and the results 

will be applicable to studies at field strength 10 to 20 times greater. The imaging sys­

tem was developed by mM Corporation, Massachusetts Institute of Technology and 

Lawrence Berkeley Laboratory. It consists of a 1 meter bore superconducting mag­

net, gradient power supplies (Oxford Instruments, Oxford, England) and a spectrometer 

(rBM/MIT/LBL). The flexible architecture of the system allows many different types of 

NMR experiments, including stochastic NMR, to be performed with very little hardware 

modification. 

The RF transmitter has sixteen 2-word ECL registers that determine the magnitude 

and phase of an RF pulse. These registers are loaded by software and selected using four 

TTL digital logic lines. These four lines are usually driven by the pulse programmer 

which compiles and runs the pulse program set up by the users. To perform stochas­

tic NMR with binary MLS excitation, a circuit was built to interpose two 31-bit MLS 

generators between the pulse programmer and transmitter (Figure 4.1). The 31-bit MLS 

generator is a 31-bit shift register with the exclusive-OR of the 3rd bit and the 31 st bit 

fed back to form the first bit after the next clock pulse (Figure 3.17). One pseudo-random 
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Figure 4.1: Modification of the hardware required for stochastic NMR with MLS exci­
tations. 

binary number is generated at the 31 st bit after every clock pulse. The schematic dia­

gram of the additional hardware required to do stochastic NMR with MLS excitation 

is shown in Figure 4.1. Each of the two MLS generators has eight dip switches which 

allow a selection of 256 different starting points of the MLS. The starting point of the 

two MLS generators must be different and the cross-correlation of the outputs of the 

two generators must be calculated to ensure that there is no correlation between the two 

sub-sequences generated. 

Only one MLS generator is used for random flip angle excitation. The output of 

this MLS generator will select two phase registers which are preset to give two RF 

vectors that have the same magnitude but 1800 out of phase. To perform random phase 

excitation or random quadrature excitation, both MLS generators are enabled, yielding 

a 2-bit binary number that selects one of four different phase registers. These phase 

registers are preset to have the same magnitude but four different phases: ±45° and 

± 1350
• Both MLS generators can be enabled and clocked in software (via the pulse 
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programmer). Every pulse sent to the MLS generator will generate a RF pulse which is 

then followed by sampling of one signal data point. The algorithm used in the hardware 

MLSgenerator is also implemented in software to regenerate the random sequence for 

calculation of the input-output cross-correlation. Non-zero mean sequences can also be 

generated easily. For example, random flip angle excitation with any non-zero mean can 

be achieved by presetting the two phase registers to have different magnitudes but still 

are 180° out of phase. 

As discussed earlier, random flip angle excitation, random phase excitation and ran­

dom quadrature excitation can all be implemented with random binary sequences. Ex­

cept at very high excitation power, random binary excitation and Gaussian white noise 

excitation give almost identical responses. Also, the hardware implementation of a 

Gaussian white noise sequence is substantially harder. Therefore Gaussian white noise 

excitation was not implemented for this dissertation. 

The sample used is a sphere with a diameter of lOcm filled with a copper sulphate 

solution. The Tl and T2 of the sample are measured to be 160ms and 140ms respectively. 

However, due to static field inhomogeneity (lppm), the effective T2, Ti, is only 45ms. 

All the experiments were done with a TR of 200l-'s. This corresponds to an optimum 

RMS flip angle of about 2.8°. The width of the reconstructed spectrum is l/TR = 

5kHz (Equation 2.15). The duration of the RF pulse is 251-'s, which corresponds to an 

excitation bandwidth of about 40kHz. Therefore, the RF pulses satisfy the hard pulse 

assumption made in Chapter 1. The flip angles of the RF pulses were calibrated by a 

conventional NMR experiment that consisted of a single RF pulse followed by sampling 

of the FID; the peak height of the reconstructed spectral line is proportional to the sine 

of the flip angle. The number of data points, N, sampled for each experiment is 65536. 

• 
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4.2 Experimental Results 

Initial results showed that there was an unexpected component with very broad line 

width in addition to the line from the copper sulphate solution. The broad component 

was significant only when the excitation power was high, i.e., when the line from the 

copper sulphate solution was highly saturated and gave out very little signal as shown 

in Figure 4.3a. Further investigation with the copper sulphate sample removed from the 

magnet showed that the broad component was Lorentzian (Figure 4.3b) and behaved like 

a stochastic NMR line with an optimal flip angle CXmax = 25°. The broad component 

disappeared when the RF probe was removed from the magnet. This suggested that the 

signal was resulted from the plastic material in the RF probe. Using Ernst angle formula, 

Tl of the plastic material is about 2ms, and from the line width, T2 is about 0.5ms. This 

suggests that stochastic NMR is a very good tool for studying samples with very short 

T2• In order to avoid confusion in the interpretation of the spectral line of the copper 

sulphate solution, the plastic line was obtained for each study and subtracted to correct 

the baseline. 

The first set of experiments was performed with random flip angle excitation. Fig­

ure 4.4 is a plot of the average signal power as a function of the RMS flip angle. The 

average signal power is given by the time average of the magnitude square of the sam­

pled signal sequence. The symbol * represents experimental data and the solid line is the 

corresponding theoretical prediction. The plot shows good agreement between theory 

and experiment. It also shows that Qmax ~ 3.0°. This corresponds to a peak RF power 

of only 1/500 of that needed to give the Ernst angle for a conventional pulsed FT-NMR 

experiment using a 25J..Ls RF pulse with TR = Tl = l6Oms. 

Analysis in Chapter 2 shows that there will be line broadening and a notch artifact in 

Kl (w) as the excitation power is increased. Figure 4.5 is a side-by-side comparison of 

experimental and theoretical line shapes of Kl (w). There are three important features 
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Figure 4.3: Experimental line shapes of Kl(W) for random flip angle excitation with 
MLS. The copper sulphate solution is (a) inside and (b) removed from the RF probe. 
Tl = 160ms, Ti = 45ms, TR = O.2ms, v = 60Hz, N = 65536 and a RMS flip angle 
of 24°. 

of the lines that should be noticed: (1) the line width, (2) the notch artifact and (3) the 

noise-like distortions. The line broadens and the notch artifact gets worse as the RMS 

flip angle is increased. They behave just as predicted in Figure 4.5b for random binary 

flip angle excitation. Since the experimental excitation sequence is a MLS, it is not 

surprising to have noise-like distortion. The noise-like distortion increases as the RMS 

flip angle increases. This agrees with BlUmich and Ziessow's observations [14] and the 

Monte Carlo simulated results shown in the previous chapter (Figure 3.13). The Monte 

Carlo simulated result in Figure 3.15 shows spurious components in kl (m) at m = 62, 

143 and 255. These spurious components are expected to be present in the experimental 

results since the hardware MLS generator is the same as the one used in the Monte 

Carlo simulation. Figure 4.6 shows the real part of kl (m) obtained by experiment with 

an RMS flip angle of 24° and a resonance offset of 1250Hz. It looks strikingly similar 

to Figure 3.15 even though the Tit T2 and the imaging parameters are different. The 

spurious components are at m = 62, 143 and 255. 

• 
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Figure 4.4: Average signal power for random binaryfiip angle excitation. The excitation 
sequence is a sub-sequence of a 31-bit MLS generator. The symbol * represents exper­
imental data and the solid line is the theoretical prediction. Tl = 16Oms, Ti = 45ms, 
TR = O.2ms and v = 500Hz. 

Theoretical analysis in Chapter 2 shows that the signal power spectrum has less notch 

artifact than Kl (w ). Also, the noise analysis in Chapter 3 shows that measurement noise 

. should appear as a DC offset in the signal power spectrum. Figure 4.7 a shows the signal 

power spectra of the same data sets used to obtained Kl (w) in Figure 'i.5a. They show 

good agreement with the theoretical predictions shown in Figure 4.5b except for a DC 

offset resulting from the measurement noise. The notch artifact is indeed smaller than 

that in Kl (w ). It is very interesting to notice that the signal power spectrum shows 

insignificant noise-like distortion even when the excitation power is very high. This 

may be another advantage of signal power spectrum over Kl (w) as an estimate of the 

real spectrum. 
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Figure 4.5: Line shapes of Kl(W) for random binary flip angle excitation. (a) Exper­
imental results using a 31-bit MLS generator and (b) theoretical predictions with truly 
random binary sequences. 11 = 160ms, Ti = 45ms, TR ..:.. O.2ms, N = 65536 and 
v = 60Hz. 
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Figure 4.6: Experimentally obtained real part of kl (m) for random flip angle excitation 
with a sub-sequence generated by a 31-bit MLS generator. 11 = 160ms, Ti = 45ms, 
TR = O.2ms, II = 1250Hz, N = 65536 and a RMS flip angle of 24°. 

Figures 4.8, 4.9 and 4.10 are the corresponding results for random phase and/or 

random quadrature excitations. There is very good agreement between experimental 

and theoretical results. As predicted in theory (Chapter 2), there is no notch artifact 

observed in ](1 (w ). All other aspects are very much the same as those for random flip 

angle excitation. 

A non-zero mean excitation sequence may set up a steady state magnetization re­

sponse that results in a notch artifact at zero resonance offset and a mirror image artifact 

at the negative of the resonance offset of the line (see Chapter 2). Figure 4.11 is a com-

parison of experimental and theoretical results for a non-zero mean excitation sequence 

that takes on the two values, 0 and a, equally likely. The resonance offset is 100Hz 

and a is 5°. Notice the erroneous component at -100Hz, the negative of the resonance 

offset. The artifact is significant even for such small flip angle. 
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Figure 4.7: Signal power spectrum for random binary flip angle excitation. (a) Exper­
imental results using a 31-bit MLS generator and (b) theoretical predictions with truly 
random binary sequences. 11 = 160ms, T; = 45ms, TR = O.2ms, N = 65536 and 
v = 60Hz. 
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Figure 4.8: Average signal power for random quadrature/random phase excitation. The 
excitation sequence is a complex sub-sequence generated by two 31-bit MLS generators. 
The symbol * represents experimental data and the solid line is the theoretical prediction. 
Tl = 160ms, Ti = 45ms, TR = O.2ms and 1/ = 500Hz. 

As discussed in the introduction chapter of this dissertation, one reason for applying 

discrete excitation and characterizing the stochastic experiments with discrete analysis 

is that the theoretical results correspond exactly to practical experiments. This is veri­

" fled by the good agreement between theoretical and experimental results shown in this 

chapter. 
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Figure 4.9: Line shapes of Kl (w) for random quadrature/random phase excitation. (a) 
Experimental results using two 31-bit MLS generators and (b) theoretical predictions 
with truly random binary sequences. Tl = 160ms, Ti = 45ms, TR = O.2ms, N = 
65536 and v = 60Hz. 
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Figure 4.10: Signal power spectrum for random quadrature/random phase excitation. (a) 
Experimental results using two 31-bit MLS generators and (b) theoretical predictions 
with truly random binary sequences. Ti = 160ms, T; = 45ms, TR = O.2ms, N = 
65536 and v = 60Hz. 
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Figure 4.11: Line shape of K 1 (w ) for random flip angle excitation with a binary sequence 
that takes on 0 and Q. (a) Experimental result using a 31-bit MLS generator and (b) 
theoretical predictions with truly random binary sequences. Tl = 160ms, Ti = 45ms, 
TR = 0.2ms, N = 65536, v = 100Hz and Q = 5°. 
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Chapter 5 

Summary and Conclusion 

The analysis in the previous chapters will be summarized in the following three sec­

tions. The first section will compare the saturation characteristics of the three different 

excitation schemes. The effectiveness of using the Fourier transform of the input-output 

cross-correlation and the signal power spectrum as estimates of the spectrum will be ad­

dressed in the second section. The third section will discuss the pros and cons of using 

MLS to approximate the random binary excitation. The fourth section is an outline of 

possible future work. The last section is a grand summary of the dissertation. 

5.1 Comparison of Excitation Schemes 

Studies of only one type of excitation, the random flip angle excitation, have been re­

ported in the literature. Analysis of the input-output cross-correlation for continuous 

excitation [3,10,12] reported line broadening and a slight shift in resonance offset as 

the only types of spectral distortion at high excitation power. However, the analysis in 

Chapter 2 shows that there is also a notch artifact at the negative of the resonance offset. 

In addition there is a non-uniform line broadening across the spectrum, lines close to 

zero resonance offset have twice the line broadening of lines far off resonance. When 

the RMS flip angle is set to the RMS flip angle that maximizes the SIN ratio, the notch 

artifact is usually insignificant. However, the non-uniformity of the response may still be 

quite noticeable for lines with natural line width small compared to the line broadening. 
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To improve on the results of previous workers, two new types of excitation were 

introduced in Chapter 2, the random phase excitation and the random quadrature excita­

tion. The random phase of both types of excitation removes the notch artifact and gives 

a uniform line broadening across the spectrum. The shift in resonance offset of the re­

constructed lines is usually negligible, leaving the line broadening as the only distortion. 

The line broadening results in a loss of resolution, however, it is predictable and it does 

not affect the integrated line intensity. 

The random phase excitation and the random quadrature excitation give almost iden­

tical average signal power that is independent of the resonance offset. The signal-to­

noise ratio is maximized when the RMS flip angle is equal to amax , which is approx­

imately the Ernst angle, cos-1 (e-TRIT1). For RMS flip angles up to amax , the perfor­

mance of the two types of excitation are identical and both the Fourier transform of the 

input-output cross-correlation and the signal power spectrum are good estimates of the 

true spectrum. In addition, a max is usually one to two orders of magnitude smaller than 

the Ernst angle for a conventional pulsed FT-NMR experiment with TR ~ T1• This 

corresponds to a reduction of the peak RF power requirement by a factor of 102 to 104 

when compared to the conventipnal pulsed FT-NMR experiments. 

The average signal power obtained with the random flip angle excitation is very sim­

ilar to the other two types of excitation except for a small dependence on the resonance 

offset of the line. This is a consequence of the non-uniformity in the spectral response of 

this type of excitation. Even though the signal power spectrum has much less notch ar­

tifact than the Fourier transform of the input-output cross-correlation, the signal power 

spectrum still suffers from the non-uniformity in response across the spectrum, even 

when the RMS flip angle is a max• The amount of non-uniformity can be reduced by 

dropping the RMS flip angle below a max , i.e. by sacrificing the SIN ratio. 

The comparison above shows that the random phase excitation and the random 

quadrature excitation are better excitation schemes than the random flip angle excita-

.. 
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tion no matter whether the Fourier transfonn of the input-output cross-correlation or the 

signal power spectrum is used to approximate the real spectrum. 

5.2 Comparison of K1(w) and S(w) 

At low excitation power such that the magnetization response is linear, both the Fourier 

transfonn of the input -output cross-correlation, K t (w ), and the signal power spectrum, 

S( w), are good estimates of the real spectrum. At higher excitation power, they show 

slightly different saturation behavior. The advantages of Sew) over Kt(w) are 

1. S( w) is obtained from the signal only. The excitation sequence need not be stored 

or regenerated for the reconstruction. This simplifies hardware and software de­

sign. 

2. In the case of random flip angle excitation, Sew) shows much less notch artifact. 

3. S(w) is much less sensitive to the undesirable spikes in the higher order auto­

correlations of the MLS. Consequently, it shows much less noise-like distortion. 

4. Sew) will look smoother, less noisy than Kt(w) when the measurement noise 

is the dominating noise source because white measurement noise will behave as 

white noise in Kt(w), whereas this noise appears as a DC offset in S(w) . 

The disadvantages are: 

1. The signal-to-systematic-noise ratio for Sew) is about 3dB lower than that for 

Kt(w). 

2. The measurement noise is transfonned to a process consisting mainly of a DC off­

set. The non-white systematic noise may result in observable structural artifacts 
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when the signal-to-measurement-noise ratio is low. A longer signal sequence, i.e. 

a large N, must be used to guarantee a higher signal-to-measurement-noise ratio. 

5.3 Pros and Cons of MLS 

Theoretical analysis shows that at the optimal excitation power that maximizes the av­

erage signal power, rru:tdom binary sequences and Gaussian white noise sequences give 

almost identical spectral response. The major advantage of random binary sequences 

over Gaussian white noise sequences is that random binary sequences can be approxi­

mated by maximum length sequences (MLS). The advantages of MLS are: 

1. MLS is inexpensive to generate in hardware and software. The sequence can be 

regenerated any time it is needed. 

2. The binary nature simplifies the computations of cross-correlations and auto-correlations. 

Time consuming multiplication operations are replaced by simple additions and 

subtractions in the Fast Hadamard Transform algorithms. The computation time 

is even shorter than using Fast Fourier Transform algorithms. 

3. The periodic nature of MLS allows coherent signal averaging to improve SIN 

ratio. 

4. When Gaussian white noise sequences or truly random binary sequences are used, 

the systematic noise power is inversely proportional to N, the total number of 

signal points used to calculate the cross-correlation and auto-correlation by time 

averaging. However, when a MLS is used and N is equal to an integral multiple of 

the period of the MLS, there is a gain of about 20dB in signal-to-systematic-noise 

ratio over Gaussian white noise sequences and truly random binary sequences of 

similar length. 

... 

.' 
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However, one must observe some precautions when using MLS: 

1. The sum of a full MLS that takes on the values ±a: is non-zero. Therefore, if the 

product of the period of the MLS and TR is comparable or shorter than Tl and 

T2, the magnetization response may acquire a non-zero steady state component 

that results in an artifact at the negative of the resonance offset and a non-uniform 

response across the spectrum. If this is the case, a MLS with a longer period must 

be used. This may result in a large N. 

2. MLS has very undesirable higher order statistics. Auto-correlations of high or­

ders have unexpected generator-dependent spikes. These spikes excite high order 

nonlinear components of the spin system and cause noise-like distortion to be in­

troduced into the Fourier transform of the input-output cross-correlation when the 

excitation power is high. The amount of noise-like distortion is usually insignifi­

cant at the power level that maximizes the SIN ratio, i.e. when the magnetization 

response is nearly linear. One way to reduce the noise-like distortion for a given 

excitation power is to use a MLS generator that has more bits being fed back to 

fonn the oth bit (Section 3.4). The noise-like distortion can also be reduced sig­

nificantly by using the signal power spectrum to approximate the real spectrum. 

5.4 Future Developments 

Bliimich and Ziessow [13,14,15,16,17,18,19,20] have demonstrated experimentally that 

the same set of data that is used to estimate the one dimensional spectrum can also be 

used to study the correlations between different resonances and multiple-quantum co­

herence effects in complex spin systems. The multi-dimensional spectroscopic informa­

tion is related to the multi-dimensional input-output cross- correlations. It is a logical 

extension of this dissertation to characterize the reconstructed multi-dimensional spectra 
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obtained with discrete stochastic excitations, namely, to 

• identify the types of multi-dimensional spectroscopic information that the spectra 

deliver, possibly as a function of excitation power, 

• find the optimal excitation power that maximizes a given type of spectroscopic 

information, yet maintaining a reasonable SIN ratio, and 

• compare the information content of the spectra obtained with different types of 

excitation sequences, e.g., Gaussian white noise sequences versus random binary 

sequences. 

The assumption of isolated spin systems will no longer be valid, i.e. the Bloch equations 

are not applicable. Density matrix notations must be used to describe the spin systems. 

RF excitations and spin-spin interactions must be treated using quantum mechanics. 

Thus the analysis will be substantially more complicated than that in this dissertation. 

As discussed in the previous section, MLS is the ideal excitation sequence for one di­

mensional spectroscopy at low excitation power. In multi-dimensional stochastic NMR, 

spectral information is obtained through spin-spin interactions which are basically non­

linear interactions. The spin system must be driven to a nonlinear regime. The undesir­

able higher order statistics of MLS may lead to the reconstructed spectral information of 

. limited value. One formidable task is to investigate the nonlinear response for different 

MLS generators so that the unexpected spikes in the auto-correlations can be used to in­

fer spectral information. Another formidable task is to search for binary, or multi-level, 

random sequences that possess the advantages of the MLS, but with better statistical 

properties. 

So far the randomness of the experiment is introduced through RF excitations. How­

ever, randomness may be introduced through TR. Knight and Kaiser [26] have analyzed 

the input-output cross-correlation of the Bloch equations driven by a random telegraph 
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signal. One possible application of such stochastic experiments is to achieve spectral 

localization or selective excitation through use of non-white excitation processes. 

The advance in gradient coil design allows fast switching of magnetic field gradi­

ents [27,28,29]. Stochastic gradients may become another source of randomness in the 

forseeable future. Since the gradients are tightly related to the spatial distribution of 

spins, stochastic gradient approach are applicable to NMR imaging. The analysis will 

be very similar to that in this dissertation because the Bloch equations are usually appli­

cable. 

Finally, NMR imaging and spectroscopic imaging can also be achieved by stochastic 

RF excitations together with time varying gradients. Based on a linearized model Roos et 

al [23] have obtained theoretical expressions describing the spatial localization function 

achieved with sinusoidal gradients. They have verified their results experimentally and 

extended the idea to spectroscopic imaging. Further work needs to be done to 

• study the saturation effects when the analysis includes the full Bloch model, 

• obtain results with different types of excitation, 

• study the localization functions and SIN ratio as a function of the excitation power 

and 

• obtain results with different time varying gradient waveforms. 

The main problem of these studies is that the magnetization response will no longer be 

wide-sense stationary due to the time varying gradients. Most of the results cannot be 

expressed in a closed form and Monte Carlo simulations will be required for the analysis. 

5.5 Summary 

This dissertation presents an analysis of a stochastic NMR experiment that consists of 

exciting the spin system with RF pulses where the flip angles or the phases of the pulses 
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are samples of a discrete stochastic process. The analysis shows that the maximum 

signal-to-noise ratio is achieved when the RMS flip angle is approximately the Ernst 

angle. The Ernst angle for the stochastic experiment is usually more than an order of 

magnitude smaller than that for a conventional Fr-NMR experiment. This results in a 

peak RF power requirement that is several orders of magnitude smaller than the conven­

tional experiment. 

The analysis shows that the maximumsignal-to-noise ratio is achieved when the 

RMS flip angle is approximately the Ernst angle. When the RMS flip angle is below the 

Ernst angle, the input-output cross-correlation is a good estimate of the FID. Increase 

of excitation power causes line broadening. In addition, the use of random flip angle, 

fixed phase excitation causes a notch artifact and a non-uniform response across the 

spectrum both of which are not found in two new types of excitation, the random phase 

excitation and the random quadrature excitation. The signal power spectrum is also 

a good estimate of the real spectrum. The approximation of the cross-correlation by 

a time average causes systematic noise. The amount of systematic noise is found to 

be significantly reduced when an· entire maximum length sequence (MLS) is used for 

excitation. Noise-like distortion at high power MLS excitation is discovered to be related 

to the number of feedback paths in the MLS generator. 

This dissertation shows that stochastic NMR with random phase excitation or ran­

dom quadrature excitation using MLS is simple to implement and is an effective tech­

nique for high field in vivo NMR studies. 
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Appendix A 

Derived Wiener Kernels 

One difficulty in deriving the derived Wiener kernels is to find a set of consistent nota­

tions that can be extended to different orders of derived Wiener kernels. One approach is 

to extend the matrix notations in Chapter 2 to tensor notations, however, the derivation 

would become very cumbersome. The approach taken here is to deal with the compo­

nents of the magnetization vector individually. The derivation is long and tedious, even 

for kl (5), due to the large number of terms involved. The derivation of Kl (3) (w) for ran­

dom flip angle excitation will be outlined here. A similar derivation is used to obtain 

Kl(5)(W). 

According to Equations 2.46 and 2.47 kl (3) ( m) is 

00 

k1(3)(m) = -3a2 L k3(n, n, m), (A.1) 
n=-oo 

where 

(A.2) 

Denote the real and imaginary parts of k3(n,n,m) as k3x(n,n,m) and k3y(n,n,m) 

respectively. Similarly, denote the real and imaginary parts of kl (m) as k1x( m) and 
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kly(m) respectively. Using the stochastic difference equation, Equation 2.4, and Equa­

tion A.2 we obtain the difference equations 

k3x(n, n, m) = Eh cos B k3x(n - 1, n - 1, m - 1) 

+Eh sin 8 k3y(n - 1, n -1, m - 1) (A.3) 

and 

k3y(n,n,m) - -E2 sinBe-a2./2k3x(n -1,n -I,m - 1) 

+Eh cos B e-a2./2k3y(n - l,n -I,m - 1) (A.4) 

with the following boundary values 

k3x(0,0,m) - 0, 

k3y(0,0,m) 
-1 

- "6 k1y(m), 

k3x(n, n,O) - ° and 

k3y(n, n, 0) - -1 k (0) E' -nal/2 "6 ly 1 e . 

Take the double Z-transform of k3x( n, n, m) and k3y( n, n, m): 

and 

00 00 

K 3.x(w,w,z) = L L k3x(n,n,m)w-n z-m 

n=Om=O 

00 00 

K3y(w,w,z) = L L k3y(n,n,m)w-n z-m
• 

n=Om=O 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

(A.9) 

(A. 10) 

The double Z-transform of k3( n, n, m) can be obtained by combining Equations A.5 to 

A.lO 

00 00 

K 3(w,w,z) - L L k3(n,n,m)w-n z-m 

n=Om=O 

-i [Kl (z) + kly(0)Ele-a2./2w-lj 
6 y 1 - Ele-a2./2w-l 

1 - Ehei8w-1 z-l 

xl _ Ehcos8(1 + e-a2./2)w-1z-1 + Ej:e-a2./2w-2z-2 ,(A.ll) 
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where Kty(z) is the Z-transform of kty(m). The Z-transformof kt(3)(m) evaluated on 

the unit circle of the complex Z-plain gives Kt(3)(W). Using Equation A.I 

(A.I2) 

Combining the last two equations together with K t (w) in Equation 2.49 gives 

(A.13) 

where 
I - ~ cos () eiwTR 

Y(w) = D(w) 

and 
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Consider the binary quadrature excitation sequence a(n) = [ax(n) + 72,ay(n) + 
72'OV where ax(n) and ay(n) are independent and each takes on the values ±~ with 

equal probability. Define the RF magnitude and phase, respectively, as 

and 

f3(n) = vaT(n) a(n) 

= Vaz + J.Lz + V2J.L[ax(n) + ay(n)] 

<p(n) = tan-1 [ay(n) + J.LIV2]. 
ax( n) + J.LI V2 

The RF rotation matrix Ra( n) is given by Equation 2.55, which has a mean 

14:1'1 J.Lz - J.L3 

JLR = J.LZ ~ J.L3 

where 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 



U sing Equation 2.6 the mean magnetization is 

where 

/-L3Eh(cos8 + Sin8)(/-L2 + 1+rl) - /-L3 

/-L3Eh(sin 8 - cos 8)(/-L2 + 1+rl) + /-L3 

{/-L1[1- Eh(l + /-Lt) cos 8 - ~/-L~ + Ei (t+r )2] 

+2Eh/-L~[Eh(/-L2 + 1.ft') - cos 8]} 

D - (I - EII'I) [I - Ez(1 + I'I)cos8 - EiI4 + Ei C ~I'I) 2] 
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(B.7) 

-2E1Eh/-L~ [Eh(/-L2 + 1 ~ /-L1) - cos 8] . (B.8) 

Define I-'CiX = (Ra(n) ax(n)) and I-'CiY = (Ra(n) ay(n)), then 

p r -8 

I-'CiX = r q t (B.9) 

8 -t -2r 

and 

q r -t 

I-'CiY = r p 8 (B.lO) 

t -8 -2r 

where 

:rz [ ;a/-L 2 (1 - cos va2 + /-L2) - sin a sin /-L] , P - (B.1I) 
4 2 a +/-L 

q -a [ ~I' j ] v'2 2 2 (1 - cos a2 + /-L2) + sin a sin /-L , 
4 2 a +/-L 

(B.12) 

a 
r - v'2 sin a sin /-L, (B.13) 

4 2 

8 - ~ [Sina cos 1'- a sin jal + 1'2] 
va2 + /-L2 

and (B.14) 

t - ~ [Sina CDSI' + j. a sin jal + 1'2] (B.15) 
a2 + /-L2 . 
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The input-output cross-covariance is then given by 

(B.16) 

c 
where B = [1, -i,OV, 

A - (M(n)aT(n) - ILMIL; 

- [ILax(RoILM + C), ILay(RoILM + C), 0] (B.17) 

and 0 = [0,0, 0V. Fourier transfonnation of k1(m) gives Kl(W). 

, 
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Appendix C 

Theoretical Calculation of Variance 

Theoretical calculation of the variances of kf" ( m) and .,.tv ( m) is a laborous process. 

The results are usually in the fonn of difference equations which can only be studied 

numerically. The steps are outlined here for the variance of kf" (m) for random binary 

quadrature excitation. 

Consider the binary excitation sequence a(n) = [G'x(n),G'y(n),OV where ax(n) 

and aye n) are independent and each takes on the values ±a/v'2 with equal probability. 

The RF magnitude and phase are, respectively, a and 

A.. ( ) _ -1 G'y(n) 
'l/n-tan (). ax n 

(C.l) 

The RF rotation matrix Ra(n) and its mean I-'R are given by Equations 2.55 and 2.56 

respectively. 

The variance of kf" ( m) is defined as 

(C.2) 

U sing the expression of kf" ( m) in Equation 3.2 the first tenn on the right is 

(C.3) 

J 

,J. 
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where B = [1, -i,OV and 

O:x(n) -o:y(n) 0 

r(n) = O:y(n) O:x(n) 0 (C.4) 

0 0 0 

When n = j, (rT(n-m)M(n)MT(j)r(j-m)) = 0:2PwherePis the average signal 

power. When n # j, 

where the symbol * is the complex conjugate operator. Therefore, it is only necessary 

to consider n > j. 

When n - m > j, iterating Equation 2.4 gives 

(rT(n - m)M(n)MT(j)r(j - m)) = 

(JLRRe)m(rT(n - m)Ra(n - m)Re) (JLRRe)n-i-m-l (M(j)MT(j)r(j - m)) 

+(JLRRe)m(rT(n - m)Ra(n - m))[(ReJLR)n-i-m-l + ... + J] 

xC(MT(j)r(j - m)). (C.6) 

The second term on the right can be obtained by straightforward manipulations: 

14(1 - Et)2o:2 sin2 o:(Ez cos2 ~)2m[1 - (EI cos o:)n-i-m] 

(1 - EI cos 0:)2 

x sin m8 cos m8 

o 

sin m8 cos m8 0 

cos2m8 

o 
o 

o 
The first term on the right of Equation C.6 can be obtained by solving a set of four simul­

taneous difference equations with the following four unknowns: (Mx(j)Mz(j)O:x(j -

When n - m :::; j, it can be shown that 

(rT(n-m)M(n)MT(j)r(j-m)) = (JLRRe)n-i(rT(n-m)M(j)MT(j)r(j-m)). 

(C.7) 
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A set of nine simultaneous difference equations can be obtained with the nine unknowns 

being the nine components of (rT(n - m)M(j)MT(j)r(j - m)). By solving these 

two sets of simultaneous difference equations the variance of kf" ( m) can be calculated. 
J 

-J.. 
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