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Abstract 
Conventional approaches 10 execution of database 

queries on general purpose multiprocessors anempt to 
maximize system throughput using inter-query parallelism 
with a fixed number of processors. Standard uniprocessor 
optimization techniques are used 10 minimize execution 
time of individual queries. Our approach is 10 increase 
pcrfonnance by utilizing intra-query parallelism as well as 
minimizing overall resource requirements. Specifically, 
processor and i/o bandwidth requirements"are minimized 
by coordinating the order in which data pages are read into 
memory and page joins assigned to available processors. 
We present a scheduling strategy based on join indices and 
prove lower and upper bounds on its resource requirements. 
We then describe a heuristic for estimating the number of 
processors required to complete join execution in minimal 
time. Our simulation results indicate that these techniques 
are effective with respect 10 processor utilization and buffer 
requirements. 

1. Introduction 
Multiprocessors have recently entered the marketplace 

as a cost effective high perfonnance alternative 10 high-end 
mainframe uniprocessors. Multiprocessor architectures 
exploit current microprocessor technology by integrating a 
variable number of processors inlO a single system with all 
processors sharing a single main memory and input/output 
subsystem. High perfonnance is achieved primarily via 
parallelism and to a lesser extent by sharing of inConnation 
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in main memory. With coarse grained parallelism (i.e. at 
the process level) existing applications can be executed 
concurrently without modification by simply assigning each 
process 10 a separate processor (assuming the use of system­
call compatible operating systems). For example, any of the 
major UNIX based relational DBMS (Ingres, Oracle, 
Informix, Unify) can be executed with minimal 
modifications on a SEQUENT multiprocessor [SEQU88]. 
Inter-query parallelism is achieved by running multiple 
(independent) queries in parallel on multiple processors, 
using standard uniprocessor algorithms and optimization 

techniques: 
Although impressive increases in system throughput 

can be achieved with coarse grained parallelism, it does not 
take advantage of the potential concurrency within the 
individual processes themselves. There are two types of 
parallelism that might be realized: parallel execution of 
CPU operations on multiple processors and overlap of CPU 
and I/O operations. Since the degree of CPU parallelism is 
potentially unbounded, system perfonnance rapidly 
becomes limited by the i/o bandwidth--the rate at which data 
can be transferred 10 and from the stable storage devices into 
main memory for computation. In this paper we continue 
our investigation [MURP89] into new algorithms for 
parallel execution of relational join operations within the 
limits imposed by the i/o subsystem bandwidth. 

Our approach is based on a decomposition of relational 
join processing into a collection of page reads and page 
joins (with dependencies introduced by the requirement that 
data pages be read into memory before participating in any 
page joins). We assume that data on secondary slOrage is 
organized inlO fixed size pages with an indexing scheme 
that allows construction of a "page connectivity graph"- a 
bipartite graph with one node corresponding 10 each page of 
each relation and one edge connecting each pair of pages 
which contain at least one matching join attribute value 
[MERR81]. Page connectivity graphs can be easily 
constructed from join indices [V ALD87], Bc trees 
[GOY A88] or intermediate results computed during index 
join processing [BLAS76]. The granularity of processor 
scheduling is the individual page join and the granularity of 
i/o scheduling the individual page read . 

Given a page connectivity graph describing the page 
joins to be perfonned, we first determine how many 
processors 10 allocate 10 the computation, then schedule the 
order in which data pages are read into memory from disk 
and finally schedule each join for execution on a processor. 
Initially we assume that sufficient memory is available 10 
buffer pages until joining pages and processors are 



available, implying that a page never needs to be read into 
memory more than once. In [MURP89] we presented a' 
family of practical read scheduling algorithms to use with 
FIFO processor scheduling. 

In [MURP89) we also present lower bounds on the join 
execution time as well as bounds on the number of 
processors required to complete processing in minimum 
time. These bounds assumed page join processing times 
were constant and equal to the page read time. In this paper 
we relax this assumption and present analogous bounds for 
arbitrary constant page join times as well as a more detailed 
stochastic performance model which includes both constant 
and exponentially distributed page join times. In addition, 
we present a heuristic for estimating the actual number of 
processors to allocate to a particular join graph and 
introduce a modified scheduling algorithm to be used in an 
environment with a bounded buffer pool size. 

To summarize, the major contributions of this paper 
are: (1) a heuristic for estimating the optimal number of 
processors for a particular join graph, (2) a modified 
scheduling algorithm to be used in environments with a 
bounded buffer pool size,-(3) bounds on execution time and 
number of processors assuming constant page join times, (4) 
extensive simulation results corroborating algorithms, 
bounds and heuristics. 

This paper is organized as follows. The next section 
summarizes our join processing strategy and the following 
section our improved bounds on resource requirements. 
Section four presents a performance model based on 
queueing theory and the simulation model we implemented. 
Section five summarizes the results of a series of 
experiments designed to evaluate the effectiveness of our 
strategy. In the fmal section we present our conclusions and 
recommendations for practical implementation. 

2. Join Processing Strategy 
In this section we present a condensed review of 

material presented in [MURP89]. We do this in order to 
more clearly explain the extensions introduced in this paper 
as well as to make this paper self-contained. After 
describing our basic scheduling algorithm, we present a 
heuristic extension for use in environments with a bounded 
number of buffers available for join processing. 

2.1 Multiprocessor Architecture 
We assume a multiprocessor architecture with a flexible 

number of processors, one main memory and a single 
shared i/o subsystem. Each processor executes instructions 
independently of the other processors and can be 
individually scheduled. Data is stored and transferred in 
fixed sized units, referred to as blocks on secondary storage, 
buffers in main memory or simply pages of data. Data is 
transferred between the i/o subsystem and memory over a 
channel which has a concurrency of one (that is, at most one 
i/o operation can be in progress at, aRy-time). Once a data 
page is resident in a buffer, it can be accessed by any 
number of processors simultaneously. Note that we do not 
require simultaneous access to individual addressable units 
of main memory. 
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The following figure summarizes the basic system 
architecture, which is typical of that found in existing 
commercial multiprocessors, i.e. [SEQU88b). 

MaIn Memory 

• 
Processors 

2.2 Preliminaries 

Secondary 
Storage 

The following standard definitions and notations from 
graph theory are used in the remainder of this paper. A 
bipartite graph B(V ,E) consists of a vertex set V = VI u V 2 

and V I n V2 = 0 and edge set 0 c: VI x V2, i.e. edges are 

pairs of the form (x,y) where x e VI and y e V2. A 
complete bipartite graph is a bipartite graph with the 
maximum number of edges, i.e., lEI = IV 11 • IV21. 

For a vertex in V. we denote by d(v) its degree, which is 
equal to the number of edges incident on it. A connected 
component C of B is a subgraph of B such that a path exists 
between every pair of vertices of C and no path exists 
between a vertex in B-C and a vertex in C. We can find all 
the connected components of a graph B in O(IVI + lEI) time 
using a depth-first search algorithm [Ah074]. 

2.3 Read & Processor Scheduling 
We summarize here the scheduling algorithm presented 

in [MURP89). The algorithm takes a bipartite graph B(V ,E) 
as its input and produces a schedule S for p processors from 
iL For expository reasons we divide the process of 
producing a schedule into four stages. A schedule consists 
of a read schedule and a join schedule. The rust· three stages 
are directed towards producing an efficient read schedule. 
In the final step we perform the join schedule. 

In stage 1. we decompose the graph into its connected 
components. In stage 2, for each component Ci we derive 
independently an ordering of its page reads. In stage 3, we 
compute for each component Ci with m edges and n venices 
the function f(CO = m I p - n. We then concatenate the read 
schedules of all the components in decreasing order of ((CO. 

At this point we have a read schedule for the whole 
graph. It now remains to schedule the page joins at each 
step. This is done in stage 4 in a simple manner. We 
maintain a queue of unprocessed joins as follows. Initially 
the queue is empty. Let us assume that vertex v is 
sclleduled to be read at time step i. We remove from the 
queue the first p edges and schedule their corresponding 
page joins on processors l.2 •...• P respectively. If the queue 
contains less than p edges then some (or all) of the 
processors remain idle at this step. We then insert into the 
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end of the queue all the edges incident on v which have their 
other endpoint memory resident By our definitions there 
are A(v) such edges. 

As stages 1, 3 and 4 are relatively simple we only give 
here a more formal description of stage 2, which is 
presented as Algorithm 1. 
Algorithm 1: 

Input: Component C with venex set V and edge set E. 
Output: A read schedule S for C. We build S by 

concatenating a new vertex to it each time the loop is 
processed. the variable A(v) keeps track of the actual work 
for each node. The degree of node v is denoted by dey). 

Step 1: (Initialize) For all vE V, set A(v) := 0 and S := 0; 
Step 2: (First Vertex) Choose a vertex Vx such that d(vx) = 

max ( d(v) where v E V}, ties may be broken 
arbitrarily. 

Step 3: (Add chosen vertex to S) Set last := vx. append last 
to S. 

Step 4: (Update actual): for all v E V-S, where v is 
adjacent to last set A(v) := A(v) + 1; 

While V -S ;t 0 do 
BEGIN 

" Step 5: (Choose all vertices with maximum A(v»Let 
MAX be the set of all vertices not in S with 
maximum A(v). 

MAX:= ( v E V-S I A(v) = max (A(v) and v E 
YeS} } 

Step 6: (Maximize potential) Set last :=w where w E 
MAX with the value of dew} as large as possible 
(break ties arbitrarily). Append last to S. 

. Step 7: (Update actual) For all v E V -S update actual 
work as in Step 4. 

END 

2.4 RestriCtions on the Number or Burrers 
In case the number of available buffers is restricted to 

some constant K, we may be forced to replace pages in 
memory before all their associated joins are completed. 
Such pages will have to be read again (at least once) to . 
complete the execution of all their joins. We are interested 
in identifying join graphs which may Coree such a 
replacement For such graphs it is not possible to complete 
the join execution using only IVI input operations. 

In the next theorem we show a cOMection between the 
structure of the join graph, the constant K, and page 
replacements. The following definitions are used in the 
theorem. A vertex subgraph of a bipartite graph 
BcY1 ,V2.E). is itself a bipartite graph B·cYl',Vi.E') where 
Vi' is a subset of Vi (i= 1,2) and E' consists of all edges in E 
with both endpoints in Vi'. For a graph X, we denote by 
min(X) the value of the smallest degree of a venex in X. 
Theorem 1: Given a join graph B with IVI vertices, a join 
execution for B requires at least IVI + 1 read operations under 
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a restriction of K buffers. if B contains a vertex subgraph B' 
such that min(B ') ~ K. 
Proor: Let us assume that B contains a subgraph B' with 
min(B') ~ K and IVI = r. We observe that r ~ 2K. We will 
derive a contradiction by assuming that it is possible to 
complete the join of B with no page replacements. 

Let us label the nodes of B' as v},v2 ..... vr such that Vi is 
the ith node of B' read by the schedule. When Vr. the last 
vertex of B' is read in, it must join with at least K other 
nodes from B' by our assumption on min(B'). Since there 
are at most K-l available buffers, at least one of these 
neighbors is not currently present in memory. This means 
that at least one additional node of B' must be read in 
contradicting the fact that Vr is the last node of B' read by 
the schedule. D 

TIle above theorem is of theoretical interest only since 
identifying such a subgraph is an NP-complete problem 
[GARE79]. In the next section we show how our heuristic 
algorithm can be modified to operate efficiently under 
buffer restrictions. 

2.5 Modifications to the Heuristic ror Burrer 
Restrictions 

In the presence of memory restrictions. Algorithm 1 has 
to be modified so that nodes can be replaced in memory and 
then read again. In this section we describe informally how 
our scheduling can be dynamically adapted to an 
environment with only K buffers. In this case. some 

, changes must be made to the read schedule when it cannot 
. simply read a new node in because all K buffers contain 
nodes which must still participate in more joins. At this 
point we have to make a choice between two alternatives: 
(a) In the next step no node will be read in and only joins 

among memory resident nodes will be performed; 
(b) Choose a node in memory (the "victim") and replace it 

by an input node. The "victim" node will be reread at 
some later point in order to complete its joins. 
Our strategy, as before, is to attempt at maximizing the 

amount of work in the system by "greedy" decisions. For 
each node v we keep track of its actual and potential work 
when it is read in using the counters A(v) and P(v) 
respectively. We subtract one from each of these counters 
with each join performed which involves node v. A node 
Cor which P(v) becomes zero can be replaced by a new node 
without any rereads. 

As in Algorithm I, we read in the next node for which 
A(v) is maximum as long as we have free buffers. Let us 
assume that the next input node according to our read 
schedule is x, anti there are no Cree buffers, i.e., the current 
set of nodes in'memory is M where IMI = K and no member 
v of M has P(v} = O. We compute the value of the total 
maximum actual work over all nodes in M and compare it 
with the total actual work which can be achieved in the 
system by replacing a node in M with x. If the former value 
is larger, we simply proceed with alternative (a). Otherwise 
we choose a node y in memory for which the total actual 



work in the system (computed after replacement of y with x) 
is the largest possible. We then read node x into the buffer 
currently occupied by node y. 

The following adjustments must be made: 
.. All joins involving node y must be removed from the 

work queue. 
.. The value of A(v) must be decremented for all 

neighbors of node y. 
.. The node y is placed in the queue of unread nodes 

with its current value of A(y) and P(y) and will be scheduled 
for reading according to our usual criteria. 

.. As before, after node x is read in, we need to update 
the values of ACv) for all nodes in the system which are 
neighbors of x (increase by 1) and add aU joins involving x 
and a memory resident node into the work queue. 

3. Bounds Assuming Constant Page Join 
Processing Time 

In this section we assume that the join graph B(V ,E) is a 
bipartite connected graph where V = VI U V2. The bounds 
we derive here are based on knowledge of some simple 
parameters of the graph such as the cardinalities of the edge 
and vertex set or the size of the largest degree in the graph. 
Of course it is possible to derive tighter bounds if we have 
more information about the graph. Bounds are important 
since they give us some ideal measures against which we 
can compare our algorithms. We consider in this section 
bounds on the number of processors required to complete 
the join in optimal time. In the next section we deal with 
bounds on the time required to complete the join with a 
given fIXed number of processors. 

We denote by Topt(B) the optimal time to complete a 
join represented by the graph B, i.e. the minimum number of 
time steps with an unbounded number of processors where 
the join time is a constant C. 
Lemma 1: 

ToptCB) = I V I + C. 
Proof: Let S be an optimal time schedule for the graph 

B. At each time step we can read exactly one vertex of the 
graph. Let us denote by Vn the last vertex read by the 
schedule S. The processing of all edges incident on Vn can 
be completed only after Vn has been read. Since the graph is 
connected, there will be at least one edge incident on Vn and 
therefore at least C additional time units are needed after all 
the vertices have been read in order to complete the 
execution. 

In the following theorems we compute an upper and a 
lower bound on Popt(B), the number of processors required 
to complete the join in optimal time Topt(B). We derive a 
bound which assumes that all we know about the graph is 
IVI and lEI. 
Lemma 2: The maximum number of page joins a schedule 
can complete during the first i + C time units (with 
unbounded number of processors) is 
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1:. for i even 

{ 

'2 

(i.l~~i+l) fori odd 

Proof: Let us denote by BiCS) the subgraph of B read by a 
schedule S during its flfst i steps. This subgraph consists of 
the set of i vertices read by the schedule and aU edges of B 
with both endpoints in this set Let ViI and V~ be the 
vertices of Bi(S) which belong to VI and V2 respectively. 
At step i+ I, the schedule S can perform all joins such that 
their corresponding edges are in Bi(S). It is easy to see that 
for any schedule S, the number of edges in Bi(S) is 
maximized when this graph is a complete bipartite graph 
with lViII = IV~I = i/2 when i is even and lViII = (i-1)/2 and 

IVi:21 = (i+l)/2 for i. odd. The expression in the statement of 
the lemma represents the number of edges in the graph 
corresponding to each of these cases. C 

Theorem 2: The number of processors required to 
complete the join in optimal time on the graph B(V,E) 
satisfies 

P (B) ~ ex MAX{t§.IVI- "fIVI2 
- 4/EI } 

opt t • 2 
where t = I VI + C - 2. 
Proof: We first prove that the number of processors needed 
is larger than the flfSt term in the curly brackets. Let us 
assume that schedule S completes the join in optimal 
execution time with Popt(B) processors. We observe that 
there are t time units in which processors must complete all 
lEI joins because no join can take place during the flfSt two 
time units. Since a single processor can complete at most 

ltJ joins during this period we have 
IEIC 

Popt (B) ~-t-
We now prove that the number of processors needed is 

also larger than the second term in the curly brackets. We 
denote by c(i) the number of page joins performed by S 
during its flfst i+C time units. Then in order for S to 
complete the join in optimal time, it has to perform the 
additional 1E1-c(i) joins during the remaining time which ~ 

II VI- 11 
IVI - i. Since each processor can complete at most l C J 
joins during this period, we have the inequality 

Popt(B) ~ C x rl~~ ~i)l 
By Lemma 2, for 1 SiS IVI . 

·2 
c (i) S ~ 

From which we conclude that for (II ;; ~ ~)I 

Popt(B)~ Cx IVI-i 
In order to make the bound as tight as possible we will find 
the value of i for which the right hand side achieves its 

r, , ., 
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maximwn. We use elementary calculus to find that the right 
hand side achieves its maximum when the value of i is the 
closest integer to 

IVI- ...flvl2 _ 41EI 
By substituting this value of i into the right hand side we 
obtain 

P (B) ~ IVI- ...flvl2 - 41EI 
opl 2 

as c1aimed.D 
In the next theorem we exploit more information about 

the graph to derive an upper bound on Popt(B). We assume 
that lEI. IV}I.IV21 are given. Without loss of generality let 
IVII S IV21. 
Theorem 3: The optimal number oflrocessors satisfies 

Popl(B) S; II~~I X Ml 
-L 

where M =rCl ifC ~ 1 and M = lbJ ifC < 1. 

Proor: We exhibit a simple schedule S' which completes 
the join in optimal time using no more than the above 
number of processors. The schedule S' is characterized by 
the following rules: Let us calI a step in which a vertex of 
V 1 is read a type I step and all other steps are called type II 
steps. 
3.1 The vertices of V2 are sorted in non-increasing order of 

their degrees and relabelled vI.v2 ..... vn such that VI is 
the vertex with the maximum degree and Vn has the 
minimum degree. 
The schedule performs its reads in n+ 1 rounds each 
consisting of a type II step followed by zero or more 
type I steps in the following way: 

3.2 In the first time step of round i (i<n+ 1) Vi is read. this is 
followed by reading in all the vertices of VI connected 
to it which have not yet been read. Round n+ 1 consists 
of the final join. 

3.3 All page joins are scheduled to take place as early as 
possible. i.e. as soon as the two endpoints of an edge 
have been read in and there is a free processor to 
perform the join. 

The number of new potential joins introduced at the end of 
round i is at most equal to d(vi). the degree of Vi. For 
simplicity. from now on we will assume that page joins are 
performed only on the first step of each round (from round 2 
onwards). i.e. on the first step of round i+ 1 we will attempt 
to perform all remaining page joins involving Vi. (this is 
possible as all endpoints of edges involved have been read). 
The proof of the theorem has two parts, in Part I we prove 

that it is sufficient to complete at each round A = r~l joins 
in order to obtain optimal execution time. We then show in 
Part II that A x M processors are sofficient to achieve this 
goal. 
Part I: 
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Intuitively. this result holds since there are lEI joins 
which must be performed over n rounds and therefore A is 
roughly the average number of joins per round. More 
precisely. at the beginning of round i+l (for i<n) there are at 
most d(vj) new joins to be performed. In case only A are 
performed during this round. there are up to d(vi)-A 
poc.entialjoins which may have to bedefmed to some future 
round. 

Note that the value of A is the ceiling of the average 
degree of vertices in the set V2. so that there must be a first 
index j such that d(vP S A. At the beginning of round j. the 
total number of page joins deferred from all previous rounds 
is at most 

i '" j ·1 

L (d(Vj)-A) 
i = 1 

On the other hand. by the decreasing order of degrees. there 
will be a total of at least 

n 

L (A-d(Vi» 
i =j 

available processors to complete these deferred joins during 
rounds j+ 1 j+2, .... n+ 1. Since as we noted before A is equal 
or larger than the average degree in the set V 2 we have 

A 

from which it follows that 
n 

L (A - d(vi» ~ 
i =j 

i=n 

~ L d(vj) 
i=l 

i =j - 1 

L (d(vi) - A) 
i = 1 

and the number of available processors is sufficient to 
complete alI the page joins. 
Partn: 
Given a join time of C we will now show how the 
processors can be scheduled during each round. If C S 1 

each processor can complete lbJ joins in one time unit. 

Therefore A x M processors are sufficient to complete A 
joins in each round. In the case C > 1. we can use a group 
of A processors at the beginning of each round. Since a 
group of processors is utilized for at most C time units we 
can reuse it every r CJ steps. In this way we will be using at 
most A x M processors at any given step.a 

4. Discrete Event Simulation 
TIle dynamic behavior of our algorithm can be modeled 

by a simple multi-server queueing model. At each step of 
the read schedule a data page is read into memory. After the 
read is complete. one or more joins to other memory 
resident data pages may be enabled. As soon as a join is 
enabled. it may be assigned to a processor for execution. If 
all processors are busy, the enabled joins are queued until 



they can be processed. The following diagram summarizes 
this behavior. 

Read pages 
into memory 

In order to evaluate our algorithms and heuristics. we 
implemented a stochastic simulation model. Input 
parameters are summarized in the followingJable: 

Input Descrip!ion 
NumNodes Total Number of Nodes in Graph 
Relation 1 Number of nodes in frrst Relation (Oot) 
Alpha Fraction of Edl!es present in 2T8ph 
Mean Mean CPU Processin.l!: Time 
Distribution Exponential/Constant Processin.l!: Time 
Seed Random Number Seed 
Runs Number of Replications 
Lookahead Depth of Potential Cost Evaluation 
NumProcs Number of Processors (ODtionai) 

The fltst step of our simulation is to generate a random 
graph by partitioning the nodes into two subsets. If the 
number of nodes in the fltst subset is not specified. a 
random partition is perfonned. Next the number of edges is 
determined as the product of alpha and the maximum 
number of edges possible. We randomly select this number 
of edges (without replacement) from all possible edges and 
construct a bipartite graph. This graph represents a page 
connectivity graph. The page connectivity graph is then 
used as input to our scheduling algorithm to produce a page 
read schedule giving the order in which pages (nodes) 
should be read into memory. This schedule is augmented by 
a list of joins (edges) ordered by the times at which they 
become enabled. 

This join list is then input into a discrete event 
simulation [LA WK82] of a multiprocessor with n 
processors. Each processor has a join processing time 
(service time) described by a random variable. The random 
variable has either a constant or exponential distribution 
with a fixed mean. Throughout the simulation. random 
numbers are generated using techniques described in 
[P ARK88]. If the number of processors is 'not specified. the 
simulation will estimate the number of processors required 
to complete processing in optimal time (popt) and use this 
number eluring simulation of join execution. 
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The following table lists the output parameters of our 
simulation' 
OutDut Description 
Poot Estimated Ootimal Number of Procs 
Execution Time Simulated total execution time 
Utili7.ation Simulated Processor Utilization 
NumBufs Number of Buffers reauired 

4.1 Optimal Number of Processors 
The optimal number of processors is estimated by 

assuming that the page join times are constant and equal to 
the page read times. In [MURP89) we presented lower 
bounds on the execution time in tenns of the total number of 
nodes (IVQ. the number of edges (lEI) and the number of 
processors (p): 

Execution time ~max {I VI + I, 2p + 1 + f' EI ~ p21 } 
In initial experiments we observed that the simulated 

execution time was almost always equal to the lower bound. 
Intuitively this should be the case when the processor 
utilization is sufficiently low that joins rarely need to wait to 
be processed. We then estimate the optimal number of 
processors as the value of p for which 

IVI+ 1 =2p+ 1 +r'E,~p21 
In the following experiments we evaluate the use of this 

estimate when the page join times are constant. but not 
necessarily equal to the page read time. Intuitively. if the 
page join times are close to. the page read times, the 
estimated optimal number of processors should be close to 
the true optimal value. 

5. Simulation Experiments and Results 
In this section we present the results of an extensive 

series of simulation experiments designed to verify our 
algorithms. bounds and heuristics. The charts displayed in 
this paper are representitive of the results we obtained. 

5.1 Comparison with Random Schedule 
In this experiment we compared the execution time 

produced by the read schedule of Algorithm 1 with a 
random read schedule for three typical graphs. As we can 
see in Charts 1 and 2. AJgorithm 1 is consistently better (by 
roughly 20%) when the number of processors is less than 
the optimal. As expected. increasing the number of 
processors above Popt has little effect on the execution time 
since no additional improvement is possible. 

5.2 Execution Time and Popt 
This experiment measured the execution time produced 

by AJgorithm 1 for a wide range of typical join graphs. The 
parameters of these graphs are given in the two tables 
below. The trends in Charts 3 and 4 are consistent with our 
predictions. i.e. the execution time decreases with the 
number of processors and increases with the number of 
edges. The charts level off at the optimal execution time 

" , , , 
I ' 
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slightly before we use Popt processors, i.e. no further 
. ... ft that point. Improvements 10 execuuon tIme occur a er 
Graph Symbol 
Split=45-55% Alpha = .25 • Split=45-55% Alpha = .60 ~-
Split=25-75% Alpha = .25 • Split=25-75% Alpha = .60 tl 

Number of Nooes Split Alpha Popt 
75 45-55% 0.25 7 

25-75% 0.25 5 
45-55% 0.6 15 
25-75% 0.6 11 

25 45-55% 0.25 3 
28-67% 0.25 3 
45-55% 0.6 6 
28-67% 0.6 5 

5.3 Burrers and Popt 
Our simulation model assumes that a buffer is freed 

whenever all joins associated with the node have been 
completed. In this experiment we measure the maximum 
number of buffers used by Algorithm 1 under this 
assumption. We observe a few interesting trends in these 
Charts (5 and 6): 

(1) The relative sizes of the relations and densities of 
the graphs is significant, i.e. graphs which are more evenly 
split and/or denser require more buffers. 

(2) Adding more processors helps to reduce the number 
of required buffers as joins have to wait less time for 
execution. If the number of processors is less than Popt, the 
number of buffers required increases sharply. 

5.4 Join Time and Popt 
In the following series of experiments we vary the page 

join times between 0.1 and 2.0 (the units are fraction of the 
time required for a page read). In this experiment we 
measured the execution time (Charts 7 and 9) and processor 
utilization (Charts 8 and 10) for the optimal number of 
processors (popt), the optimal number of processors plus a 
constant one (popt +1) and the optimal number of 
processors less one (popt -1). We observe that the two 
metrics are highly correlated with the number of processors. 
The execution time is constant (and bounded by the optimal 
time) until the processors "saturate" (i.e. utilization 
approaches one), at which point the execution time increases 
roughly linearly with the page join time. 

5.s Exponential vs Constant Join Times 
These experiments were designed to examine the 

effects on processor utilization and total execution time of 
stochastic variations in the page join times (Charts 
11,12,13,14). We compared the performance of two typical 
join graphs assuming exponentially distributed join limes 
with the performance using constant page join times having 
the same means. We did not find significant differences in 
execution time or processor utilization, indicating that our 
bounds based on an assumption of constant page joins times 

7 

are reasonable approximations to the situation of 
exponentially distributed page join times. 

6. Conclusions and Future Work 
In this paper we studied the problem of optimizing join 

execution on multiprocessors from both the theoretical and 
practical point of view. We derived lower bounds on the 
execution time and optimal number of processors based on 
the structure of the join graph. We then devised a heuristic 
scheduling algorithm which produces an order of reading in 
the pages on the relations and scheduling the joins on the 
processors. We identified several parameters which might 
significantly affect the resource utilization requirements of a 
join plan. These include: size of the graph, density of 
edges, relative sizes of relations, distribution of join time 
and number of processors. We conducted a large number of 
experiments with our heuristic in order to examine the effect 
of all these variables on the resource requirements and their 
inter-depcndencies. 

Our results indicate that the heuristic performs well 
under a wide range of conditions and the resource utilization 
achieved by it matches quite closely the theoretical lower 
bounds. 

Future work in this area includes examining more join 
strategies and also algorithms for additional relational 
operators. In the near future we plan to integrate buffer 
restrictions and heuristic strategies into our simulation 
models. In addition, we plan to implement our algorithms 
and obtain performance measurements on a commercial 
multiprocessor such as SequenL 

We believe that in the future query optimizers for 
databases which run on multiprocessors will have to be 
enhanced in order to take full advantage of the parallelism 
offered by such a system. Such optimizers will need to 
incorporate cost functions based on accurate predictions of 
resource requirements and execution time in order to 
correctly evaluate the costs associated with different join 
plans. The research presented here is a fll'st step in this 
direction. 
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