
•..

LBL-26601 co. ~

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

To be presented at the 15th International Conference
on Very Large Data Bases, Amsterdam, The Netherlands,
August 22-25, 1989, and to be published in the ?roceedings

Effective Resource Utilization for Multiprocessor
Join Execution

M.C. Murphy and D. Rotem

U'{(" ..•. DC .~)"'.1"1 '/ AND
CUMENTS S"'CT

1.;; ION

TWO-WEEK LOAN COpy
January 1989

This is a Library Circulating Copy

which may be borrowed for two weeks.

Prepared for the U.S. Department of Energy under Contract Number DE-AC03·76SF00098.

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

.. d

Effective Resource Utilization
for Multiprocessor Join Execution

LBL-26601

Marguerite C. Murphy· and Doron Rotem

Information & Computing Sciences Division
Computing Sciences Research & Development

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California 94720

January 1989

Proceedings of the 15th International Conference on
Very Large Data Bases, August 22-25, 1989, Amsterdam,

The Netherlands

* Also with the Computer Science Department, San Francisco State University.

This work was supported by the Director, Office of Energy Research, Applied
Mathematical Sciences Research Program, of the U.S. Department of Energy
under Contract No. DE-AC03-76SF00098.

,)

r \

.,
I·

Effective Resource Utilization for Multiprocessor Join Execution·

Marguerite C. Murphy*
Doron Rotem

Computer Science Research Dept.
Lawrence Berkeley Laboratory .

Berkeley, CA 94720'

Abstract
Conventional approaches 10 execution of database

queries on general purpose multiprocessors anempt to
maximize system throughput using inter-query parallelism
with a fixed number of processors. Standard uniprocessor
optimization techniques are used 10 minimize execution
time of individual queries. Our approach is 10 increase
pcrfonnance by utilizing intra-query parallelism as well as
minimizing overall resource requirements. Specifically,
processor and i/o bandwidth requirements"are minimized
by coordinating the order in which data pages are read into
memory and page joins assigned to available processors.
We present a scheduling strategy based on join indices and
prove lower and upper bounds on its resource requirements.
We then describe a heuristic for estimating the number of
processors required to complete join execution in minimal
time. Our simulation results indicate that these techniques
are effective with respect 10 processor utilization and buffer
requirements.

1. Introduction
Multiprocessors have recently entered the marketplace

as a cost effective high perfonnance alternative 10 high-end
mainframe uniprocessors. Multiprocessor architectures
exploit current microprocessor technology by integrating a
variable number of processors inlO a single system with all
processors sharing a single main memory and input/output
subsystem. High perfonnance is achieved primarily via
parallelism and to a lesser extent by sharing of inConnation

• Issued as tech report LBL-26601. This work is supported
by the Applied Mathematical Sciences Research Program of
the Office of Energy Research, U.S. Department of Energy
under Contract DE-AC03-76SF00098. Authors' elecuonic
mail addresses: rotem@csam.lbl.gov, murphy@lbl­
csam.arpa

t Also with Computer Science Department, San Francisco
State University. .

in main memory. With coarse grained parallelism (i.e. at
the process level) existing applications can be executed
concurrently without modification by simply assigning each
process 10 a separate processor (assuming the use of system­
call compatible operating systems). For example, any of the
major UNIX based relational DBMS (Ingres, Oracle,
Informix, Unify) can be executed with minimal
modifications on a SEQUENT multiprocessor [SEQU88].
Inter-query parallelism is achieved by running multiple
(independent) queries in parallel on multiple processors,
using standard uniprocessor algorithms and optimization

techniques:
Although impressive increases in system throughput

can be achieved with coarse grained parallelism, it does not
take advantage of the potential concurrency within the
individual processes themselves. There are two types of
parallelism that might be realized: parallel execution of
CPU operations on multiple processors and overlap of CPU
and I/O operations. Since the degree of CPU parallelism is
potentially unbounded, system perfonnance rapidly
becomes limited by the i/o bandwidth--the rate at which data
can be transferred 10 and from the stable storage devices into
main memory for computation. In this paper we continue
our investigation [MURP89] into new algorithms for
parallel execution of relational join operations within the
limits imposed by the i/o subsystem bandwidth.

Our approach is based on a decomposition of relational
join processing into a collection of page reads and page
joins (with dependencies introduced by the requirement that
data pages be read into memory before participating in any
page joins). We assume that data on secondary slOrage is
organized inlO fixed size pages with an indexing scheme
that allows construction of a "page connectivity graph"- a
bipartite graph with one node corresponding 10 each page of
each relation and one edge connecting each pair of pages
which contain at least one matching join attribute value
[MERR81]. Page connectivity graphs can be easily
constructed from join indices [V ALD87], Bc trees
[GOY A88] or intermediate results computed during index
join processing [BLAS76]. The granularity of processor
scheduling is the individual page join and the granularity of
i/o scheduling the individual page read .

Given a page connectivity graph describing the page
joins to be perfonned, we first determine how many
processors 10 allocate 10 the computation, then schedule the
order in which data pages are read into memory from disk
and finally schedule each join for execution on a processor.
Initially we assume that sufficient memory is available 10
buffer pages until joining pages and processors are

available, implying that a page never needs to be read into
memory more than once. In [MURP89] we presented a'
family of practical read scheduling algorithms to use with
FIFO processor scheduling.

In [MURP89) we also present lower bounds on the join
execution time as well as bounds on the number of
processors required to complete processing in minimum
time. These bounds assumed page join processing times
were constant and equal to the page read time. In this paper
we relax this assumption and present analogous bounds for
arbitrary constant page join times as well as a more detailed
stochastic performance model which includes both constant
and exponentially distributed page join times. In addition,
we present a heuristic for estimating the actual number of
processors to allocate to a particular join graph and
introduce a modified scheduling algorithm to be used in an
environment with a bounded buffer pool size.

To summarize, the major contributions of this paper
are: (1) a heuristic for estimating the optimal number of
processors for a particular join graph, (2) a modified
scheduling algorithm to be used in environments with a
bounded buffer pool size,-(3) bounds on execution time and
number of processors assuming constant page join times, (4)
extensive simulation results corroborating algorithms,
bounds and heuristics.

This paper is organized as follows. The next section
summarizes our join processing strategy and the following
section our improved bounds on resource requirements.
Section four presents a performance model based on
queueing theory and the simulation model we implemented.
Section five summarizes the results of a series of
experiments designed to evaluate the effectiveness of our
strategy. In the fmal section we present our conclusions and
recommendations for practical implementation.

2. Join Processing Strategy
In this section we present a condensed review of

material presented in [MURP89]. We do this in order to
more clearly explain the extensions introduced in this paper
as well as to make this paper self-contained. After
describing our basic scheduling algorithm, we present a
heuristic extension for use in environments with a bounded
number of buffers available for join processing.

2.1 Multiprocessor Architecture
We assume a multiprocessor architecture with a flexible

number of processors, one main memory and a single
shared i/o subsystem. Each processor executes instructions
independently of the other processors and can be
individually scheduled. Data is stored and transferred in
fixed sized units, referred to as blocks on secondary storage,
buffers in main memory or simply pages of data. Data is
transferred between the i/o subsystem and memory over a
channel which has a concurrency of one (that is, at most one
i/o operation can be in progress at, aRy-time). Once a data
page is resident in a buffer, it can be accessed by any
number of processors simultaneously. Note that we do not
require simultaneous access to individual addressable units
of main memory.

2

The following figure summarizes the basic system
architecture, which is typical of that found in existing
commercial multiprocessors, i.e. [SEQU88b).

MaIn Memory

•
Processors

2.2 Preliminaries

Secondary
Storage

The following standard definitions and notations from
graph theory are used in the remainder of this paper. A
bipartite graph B(V ,E) consists of a vertex set V = VI u V 2

and V I n V2 = 0 and edge set 0 c: VI x V2, i.e. edges are

pairs of the form (x,y) where x e VI and y e V2. A
complete bipartite graph is a bipartite graph with the
maximum number of edges, i.e., lEI = IV 11 • IV21.

For a vertex in V. we denote by d(v) its degree, which is
equal to the number of edges incident on it. A connected
component C of B is a subgraph of B such that a path exists
between every pair of vertices of C and no path exists
between a vertex in B-C and a vertex in C. We can find all
the connected components of a graph B in O(IVI + lEI) time
using a depth-first search algorithm [Ah074].

2.3 Read & Processor Scheduling
We summarize here the scheduling algorithm presented

in [MURP89). The algorithm takes a bipartite graph B(V ,E)
as its input and produces a schedule S for p processors from
iL For expository reasons we divide the process of
producing a schedule into four stages. A schedule consists
of a read schedule and a join schedule. The rust· three stages
are directed towards producing an efficient read schedule.
In the final step we perform the join schedule.

In stage 1. we decompose the graph into its connected
components. In stage 2, for each component Ci we derive
independently an ordering of its page reads. In stage 3, we
compute for each component Ci with m edges and n venices
the function f(CO = m I p - n. We then concatenate the read
schedules of all the components in decreasing order of ((CO.

At this point we have a read schedule for the whole
graph. It now remains to schedule the page joins at each
step. This is done in stage 4 in a simple manner. We
maintain a queue of unprocessed joins as follows. Initially
the queue is empty. Let us assume that vertex v is
sclleduled to be read at time step i. We remove from the
queue the first p edges and schedule their corresponding
page joins on processors l.2 •...• P respectively. If the queue
contains less than p edges then some (or all) of the
processors remain idle at this step. We then insert into the

/\

\,l

end of the queue all the edges incident on v which have their
other endpoint memory resident By our definitions there
are A(v) such edges.

As stages 1, 3 and 4 are relatively simple we only give
here a more formal description of stage 2, which is
presented as Algorithm 1.
Algorithm 1:

Input: Component C with venex set V and edge set E.
Output: A read schedule S for C. We build S by

concatenating a new vertex to it each time the loop is
processed. the variable A(v) keeps track of the actual work
for each node. The degree of node v is denoted by dey).

Step 1: (Initialize) For all vE V, set A(v) := 0 and S := 0;
Step 2: (First Vertex) Choose a vertex Vx such that d(vx) =

max (d(v) where v E V}, ties may be broken
arbitrarily.

Step 3: (Add chosen vertex to S) Set last := vx. append last
to S.

Step 4: (Update actual): for all v E V-S, where v is
adjacent to last set A(v) := A(v) + 1;

While V -S ;t 0 do
BEGIN

" Step 5: (Choose all vertices with maximum A(v»Let
MAX be the set of all vertices not in S with
maximum A(v).

MAX:= (v E V-S I A(v) = max (A(v) and v E
YeS} }

Step 6: (Maximize potential) Set last :=w where w E
MAX with the value of dew} as large as possible
(break ties arbitrarily). Append last to S.

. Step 7: (Update actual) For all v E V -S update actual
work as in Step 4.

END

2.4 RestriCtions on the Number or Burrers
In case the number of available buffers is restricted to

some constant K, we may be forced to replace pages in
memory before all their associated joins are completed.
Such pages will have to be read again (at least once) to .
complete the execution of all their joins. We are interested
in identifying join graphs which may Coree such a
replacement For such graphs it is not possible to complete
the join execution using only IVI input operations.

In the next theorem we show a cOMection between the
structure of the join graph, the constant K, and page
replacements. The following definitions are used in the
theorem. A vertex subgraph of a bipartite graph
BcY1 ,V2.E). is itself a bipartite graph B·cYl',Vi.E') where
Vi' is a subset of Vi (i= 1,2) and E' consists of all edges in E
with both endpoints in Vi'. For a graph X, we denote by
min(X) the value of the smallest degree of a venex in X.
Theorem 1: Given a join graph B with IVI vertices, a join
execution for B requires at least IVI + 1 read operations under

3

a restriction of K buffers. if B contains a vertex subgraph B'
such that min(B ') ~ K.
Proor: Let us assume that B contains a subgraph B' with
min(B') ~ K and IVI = r. We observe that r ~ 2K. We will
derive a contradiction by assuming that it is possible to
complete the join of B with no page replacements.

Let us label the nodes of B' as v},v2 vr such that Vi is
the ith node of B' read by the schedule. When Vr. the last
vertex of B' is read in, it must join with at least K other
nodes from B' by our assumption on min(B'). Since there
are at most K-l available buffers, at least one of these
neighbors is not currently present in memory. This means
that at least one additional node of B' must be read in
contradicting the fact that Vr is the last node of B' read by
the schedule. D

TIle above theorem is of theoretical interest only since
identifying such a subgraph is an NP-complete problem
[GARE79]. In the next section we show how our heuristic
algorithm can be modified to operate efficiently under
buffer restrictions.

2.5 Modifications to the Heuristic ror Burrer
Restrictions

In the presence of memory restrictions. Algorithm 1 has
to be modified so that nodes can be replaced in memory and
then read again. In this section we describe informally how
our scheduling can be dynamically adapted to an
environment with only K buffers. In this case. some

, changes must be made to the read schedule when it cannot
. simply read a new node in because all K buffers contain
nodes which must still participate in more joins. At this
point we have to make a choice between two alternatives:
(a) In the next step no node will be read in and only joins

among memory resident nodes will be performed;
(b) Choose a node in memory (the "victim") and replace it

by an input node. The "victim" node will be reread at
some later point in order to complete its joins.
Our strategy, as before, is to attempt at maximizing the

amount of work in the system by "greedy" decisions. For
each node v we keep track of its actual and potential work
when it is read in using the counters A(v) and P(v)
respectively. We subtract one from each of these counters
with each join performed which involves node v. A node
Cor which P(v) becomes zero can be replaced by a new node
without any rereads.

As in Algorithm I, we read in the next node for which
A(v) is maximum as long as we have free buffers. Let us
assume that the next input node according to our read
schedule is x, anti there are no Cree buffers, i.e., the current
set of nodes in'memory is M where IMI = K and no member
v of M has P(v} = O. We compute the value of the total
maximum actual work over all nodes in M and compare it
with the total actual work which can be achieved in the
system by replacing a node in M with x. If the former value
is larger, we simply proceed with alternative (a). Otherwise
we choose a node y in memory for which the total actual

work in the system (computed after replacement of y with x)
is the largest possible. We then read node x into the buffer
currently occupied by node y.

The following adjustments must be made:
.. All joins involving node y must be removed from the

work queue.
.. The value of A(v) must be decremented for all

neighbors of node y.
.. The node y is placed in the queue of unread nodes

with its current value of A(y) and P(y) and will be scheduled
for reading according to our usual criteria.

.. As before, after node x is read in, we need to update
the values of ACv) for all nodes in the system which are
neighbors of x (increase by 1) and add aU joins involving x
and a memory resident node into the work queue.

3. Bounds Assuming Constant Page Join
Processing Time

In this section we assume that the join graph B(V ,E) is a
bipartite connected graph where V = VI U V2. The bounds
we derive here are based on knowledge of some simple
parameters of the graph such as the cardinalities of the edge
and vertex set or the size of the largest degree in the graph.
Of course it is possible to derive tighter bounds if we have
more information about the graph. Bounds are important
since they give us some ideal measures against which we
can compare our algorithms. We consider in this section
bounds on the number of processors required to complete
the join in optimal time. In the next section we deal with
bounds on the time required to complete the join with a
given fIXed number of processors.

We denote by Topt(B) the optimal time to complete a
join represented by the graph B, i.e. the minimum number of
time steps with an unbounded number of processors where
the join time is a constant C.
Lemma 1:

ToptCB) = I V I + C.
Proof: Let S be an optimal time schedule for the graph

B. At each time step we can read exactly one vertex of the
graph. Let us denote by Vn the last vertex read by the
schedule S. The processing of all edges incident on Vn can
be completed only after Vn has been read. Since the graph is
connected, there will be at least one edge incident on Vn and
therefore at least C additional time units are needed after all
the vertices have been read in order to complete the
execution.

In the following theorems we compute an upper and a
lower bound on Popt(B), the number of processors required
to complete the join in optimal time Topt(B). We derive a
bound which assumes that all we know about the graph is
IVI and lEI.
Lemma 2: The maximum number of page joins a schedule
can complete during the first i + C time units (with
unbounded number of processors) is

4

1:. for i even

{

'2

(i.l~~i+l) fori odd

Proof: Let us denote by BiCS) the subgraph of B read by a
schedule S during its flfst i steps. This subgraph consists of
the set of i vertices read by the schedule and aU edges of B
with both endpoints in this set Let ViI and V~ be the
vertices of Bi(S) which belong to VI and V2 respectively.
At step i+ I, the schedule S can perform all joins such that
their corresponding edges are in Bi(S). It is easy to see that
for any schedule S, the number of edges in Bi(S) is
maximized when this graph is a complete bipartite graph
with lViII = IV~I = i/2 when i is even and lViII = (i-1)/2 and

IVi:21 = (i+l)/2 for i. odd. The expression in the statement of
the lemma represents the number of edges in the graph
corresponding to each of these cases. C

Theorem 2: The number of processors required to
complete the join in optimal time on the graph B(V,E)
satisfies

P (B) ~ ex MAX{t§.IVI- "fIVI2
- 4/EI }

opt t • 2
where t = I VI + C - 2.
Proof: We first prove that the number of processors needed
is larger than the flfSt term in the curly brackets. Let us
assume that schedule S completes the join in optimal
execution time with Popt(B) processors. We observe that
there are t time units in which processors must complete all
lEI joins because no join can take place during the flfSt two
time units. Since a single processor can complete at most

ltJ joins during this period we have
IEIC

Popt (B) ~-t-
We now prove that the number of processors needed is

also larger than the second term in the curly brackets. We
denote by c(i) the number of page joins performed by S
during its flfst i+C time units. Then in order for S to
complete the join in optimal time, it has to perform the
additional 1E1-c(i) joins during the remaining time which ~

II VI- 11
IVI - i. Since each processor can complete at most l C J
joins during this period, we have the inequality

Popt(B) ~ C x rl~~ ~i)l
By Lemma 2, for 1 SiS IVI .

·2
c (i) S ~

From which we conclude that for (II ;; ~ ~)I

Popt(B)~ Cx IVI-i
In order to make the bound as tight as possible we will find
the value of i for which the right hand side achieves its

r, , .,

"

\)

maximwn. We use elementary calculus to find that the right
hand side achieves its maximum when the value of i is the
closest integer to

IVI- ...flvl2 _ 41EI
By substituting this value of i into the right hand side we
obtain

P (B) ~ IVI- ...flvl2 - 41EI
opl 2

as c1aimed.D
In the next theorem we exploit more information about

the graph to derive an upper bound on Popt(B). We assume
that lEI. IV}I.IV21 are given. Without loss of generality let
IVII S IV21.
Theorem 3: The optimal number oflrocessors satisfies

Popl(B) S; II~~I X Ml
-L

where M =rCl ifC ~ 1 and M = lbJ ifC < 1.

Proor: We exhibit a simple schedule S' which completes
the join in optimal time using no more than the above
number of processors. The schedule S' is characterized by
the following rules: Let us calI a step in which a vertex of
V 1 is read a type I step and all other steps are called type II
steps.
3.1 The vertices of V2 are sorted in non-increasing order of

their degrees and relabelled vI.v2 vn such that VI is
the vertex with the maximum degree and Vn has the
minimum degree.
The schedule performs its reads in n+ 1 rounds each
consisting of a type II step followed by zero or more
type I steps in the following way:

3.2 In the first time step of round i (i<n+ 1) Vi is read. this is
followed by reading in all the vertices of VI connected
to it which have not yet been read. Round n+ 1 consists
of the final join.

3.3 All page joins are scheduled to take place as early as
possible. i.e. as soon as the two endpoints of an edge
have been read in and there is a free processor to
perform the join.

The number of new potential joins introduced at the end of
round i is at most equal to d(vi). the degree of Vi. For
simplicity. from now on we will assume that page joins are
performed only on the first step of each round (from round 2
onwards). i.e. on the first step of round i+ 1 we will attempt
to perform all remaining page joins involving Vi. (this is
possible as all endpoints of edges involved have been read).
The proof of the theorem has two parts, in Part I we prove

that it is sufficient to complete at each round A = r~l joins
in order to obtain optimal execution time. We then show in
Part II that A x M processors are sofficient to achieve this
goal.
Part I:

5

Intuitively. this result holds since there are lEI joins
which must be performed over n rounds and therefore A is
roughly the average number of joins per round. More
precisely. at the beginning of round i+l (for i<n) there are at
most d(vj) new joins to be performed. In case only A are
performed during this round. there are up to d(vi)-A
poc.entialjoins which may have to bedefmed to some future
round.

Note that the value of A is the ceiling of the average
degree of vertices in the set V2. so that there must be a first
index j such that d(vP S A. At the beginning of round j. the
total number of page joins deferred from all previous rounds
is at most

i '" j ·1

L (d(Vj)-A)
i = 1

On the other hand. by the decreasing order of degrees. there
will be a total of at least

n

L (A-d(Vi»
i =j

available processors to complete these deferred joins during
rounds j+ 1 j+2, n+ 1. Since as we noted before A is equal
or larger than the average degree in the set V 2 we have

A

from which it follows that
n

L (A - d(vi» ~
i =j

i=n

~ L d(vj)
i=l

i =j - 1

L (d(vi) - A)
i = 1

and the number of available processors is sufficient to
complete alI the page joins.
Partn:
Given a join time of C we will now show how the
processors can be scheduled during each round. If C S 1

each processor can complete lbJ joins in one time unit.

Therefore A x M processors are sufficient to complete A
joins in each round. In the case C > 1. we can use a group
of A processors at the beginning of each round. Since a
group of processors is utilized for at most C time units we
can reuse it every r CJ steps. In this way we will be using at
most A x M processors at any given step.a

4. Discrete Event Simulation
TIle dynamic behavior of our algorithm can be modeled

by a simple multi-server queueing model. At each step of
the read schedule a data page is read into memory. After the
read is complete. one or more joins to other memory
resident data pages may be enabled. As soon as a join is
enabled. it may be assigned to a processor for execution. If
all processors are busy, the enabled joins are queued until

they can be processed. The following diagram summarizes
this behavior.

Read pages
into memory

In order to evaluate our algorithms and heuristics. we
implemented a stochastic simulation model. Input
parameters are summarized in the followingJable:

Input Descrip!ion
NumNodes Total Number of Nodes in Graph
Relation 1 Number of nodes in frrst Relation (Oot)
Alpha Fraction of Edl!es present in 2T8ph
Mean Mean CPU Processin.l!: Time
Distribution Exponential/Constant Processin.l!: Time
Seed Random Number Seed
Runs Number of Replications
Lookahead Depth of Potential Cost Evaluation
NumProcs Number of Processors (ODtionai)

The fltst step of our simulation is to generate a random
graph by partitioning the nodes into two subsets. If the
number of nodes in the fltst subset is not specified. a
random partition is perfonned. Next the number of edges is
determined as the product of alpha and the maximum
number of edges possible. We randomly select this number
of edges (without replacement) from all possible edges and
construct a bipartite graph. This graph represents a page
connectivity graph. The page connectivity graph is then
used as input to our scheduling algorithm to produce a page
read schedule giving the order in which pages (nodes)
should be read into memory. This schedule is augmented by
a list of joins (edges) ordered by the times at which they
become enabled.

This join list is then input into a discrete event
simulation [LA WK82] of a multiprocessor with n
processors. Each processor has a join processing time
(service time) described by a random variable. The random
variable has either a constant or exponential distribution
with a fixed mean. Throughout the simulation. random
numbers are generated using techniques described in
[P ARK88]. If the number of processors is 'not specified. the
simulation will estimate the number of processors required
to complete processing in optimal time (popt) and use this
number eluring simulation of join execution.

6

The following table lists the output parameters of our
simulation'
OutDut Description
Poot Estimated Ootimal Number of Procs
Execution Time Simulated total execution time
Utili7.ation Simulated Processor Utilization
NumBufs Number of Buffers reauired

4.1 Optimal Number of Processors
The optimal number of processors is estimated by

assuming that the page join times are constant and equal to
the page read times. In [MURP89) we presented lower
bounds on the execution time in tenns of the total number of
nodes (IVQ. the number of edges (lEI) and the number of
processors (p):

Execution time ~max {I VI + I, 2p + 1 + f' EI ~ p21 }
In initial experiments we observed that the simulated

execution time was almost always equal to the lower bound.
Intuitively this should be the case when the processor
utilization is sufficiently low that joins rarely need to wait to
be processed. We then estimate the optimal number of
processors as the value of p for which

IVI+ 1 =2p+ 1 +r'E,~p21
In the following experiments we evaluate the use of this

estimate when the page join times are constant. but not
necessarily equal to the page read time. Intuitively. if the
page join times are close to. the page read times, the
estimated optimal number of processors should be close to
the true optimal value.

5. Simulation Experiments and Results
In this section we present the results of an extensive

series of simulation experiments designed to verify our
algorithms. bounds and heuristics. The charts displayed in
this paper are representitive of the results we obtained.

5.1 Comparison with Random Schedule
In this experiment we compared the execution time

produced by the read schedule of Algorithm 1 with a
random read schedule for three typical graphs. As we can
see in Charts 1 and 2. AJgorithm 1 is consistently better (by
roughly 20%) when the number of processors is less than
the optimal. As expected. increasing the number of
processors above Popt has little effect on the execution time
since no additional improvement is possible.

5.2 Execution Time and Popt
This experiment measured the execution time produced

by AJgorithm 1 for a wide range of typical join graphs. The
parameters of these graphs are given in the two tables
below. The trends in Charts 3 and 4 are consistent with our
predictions. i.e. the execution time decreases with the
number of processors and increases with the number of
edges. The charts level off at the optimal execution time

" , , ,
I '

v

\:
'"

slightly before we use Popt processors, i.e. no further
. ... ft that point. Improvements 10 execuuon tIme occur a er
Graph Symbol
Split=45-55% Alpha = .25 • Split=45-55% Alpha = .60 ~-
Split=25-75% Alpha = .25 • Split=25-75% Alpha = .60 tl

Number of Nooes Split Alpha Popt
75 45-55% 0.25 7

25-75% 0.25 5
45-55% 0.6 15
25-75% 0.6 11

25 45-55% 0.25 3
28-67% 0.25 3
45-55% 0.6 6
28-67% 0.6 5

5.3 Burrers and Popt
Our simulation model assumes that a buffer is freed

whenever all joins associated with the node have been
completed. In this experiment we measure the maximum
number of buffers used by Algorithm 1 under this
assumption. We observe a few interesting trends in these
Charts (5 and 6):

(1) The relative sizes of the relations and densities of
the graphs is significant, i.e. graphs which are more evenly
split and/or denser require more buffers.

(2) Adding more processors helps to reduce the number
of required buffers as joins have to wait less time for
execution. If the number of processors is less than Popt, the
number of buffers required increases sharply.

5.4 Join Time and Popt
In the following series of experiments we vary the page

join times between 0.1 and 2.0 (the units are fraction of the
time required for a page read). In this experiment we
measured the execution time (Charts 7 and 9) and processor
utilization (Charts 8 and 10) for the optimal number of
processors (popt), the optimal number of processors plus a
constant one (popt +1) and the optimal number of
processors less one (popt -1). We observe that the two
metrics are highly correlated with the number of processors.
The execution time is constant (and bounded by the optimal
time) until the processors "saturate" (i.e. utilization
approaches one), at which point the execution time increases
roughly linearly with the page join time.

5.s Exponential vs Constant Join Times
These experiments were designed to examine the

effects on processor utilization and total execution time of
stochastic variations in the page join times (Charts
11,12,13,14). We compared the performance of two typical
join graphs assuming exponentially distributed join limes
with the performance using constant page join times having
the same means. We did not find significant differences in
execution time or processor utilization, indicating that our
bounds based on an assumption of constant page joins times

7

are reasonable approximations to the situation of
exponentially distributed page join times.

6. Conclusions and Future Work
In this paper we studied the problem of optimizing join

execution on multiprocessors from both the theoretical and
practical point of view. We derived lower bounds on the
execution time and optimal number of processors based on
the structure of the join graph. We then devised a heuristic
scheduling algorithm which produces an order of reading in
the pages on the relations and scheduling the joins on the
processors. We identified several parameters which might
significantly affect the resource utilization requirements of a
join plan. These include: size of the graph, density of
edges, relative sizes of relations, distribution of join time
and number of processors. We conducted a large number of
experiments with our heuristic in order to examine the effect
of all these variables on the resource requirements and their
inter-depcndencies.

Our results indicate that the heuristic performs well
under a wide range of conditions and the resource utilization
achieved by it matches quite closely the theoretical lower
bounds.

Future work in this area includes examining more join
strategies and also algorithms for additional relational
operators. In the near future we plan to integrate buffer
restrictions and heuristic strategies into our simulation
models. In addition, we plan to implement our algorithms
and obtain performance measurements on a commercial
multiprocessor such as SequenL

We believe that in the future query optimizers for
databases which run on multiprocessors will have to be
enhanced in order to take full advantage of the parallelism
offered by such a system. Such optimizers will need to
incorporate cost functions based on accurate predictions of
resource requirements and execution time in order to
correctly evaluate the costs associated with different join
plans. The research presented here is a fll'st step in this
direction.

7. Rererences
[Ab074) Aho, A. V., J. E. Hopcroft and J. D. Ullman.

(1974). The Desi2n and Analysis of Computer
Algorithms. Reading, Mass, Addison-Wesley.

[BLAS76) Blasgen, M. W. and K. P. Eswaran. (1976). On
the Evaluation of Oueries in a Relational Data Base
System. IBM Technical Repon #RJ1745 (#25553)
Computer Science (April 8, 1976).

[GARE79) Garey, M. and D. Johnson. (1979). Computers
and Intractability. San Francisco, W.H. Freeman
and Company.

[GOY A88) Goyal, P., H. F. Li, E. Regener and F. Sadri.
(1988). "Scheduling of Page Fetches in Join
Operations Using Bc-Trees." Proceedings of 4th
International Conference on Data Engineering,Los
Angeles, CA,IEEE.

[LAWK82] Law, A. M. and W. D. Kelton. (1982).
Simulation Modelini and Analysis. New York,
McGraw Hill.

[MERR81] Merrett, T., Y. Kambayashi and H. Yasuura.
(1981). "Scheduling of Page-fetches in Join
Operations." Proceedings 7th International
Conference on Very Large Data Bases,Cannes,
France.

[MURP89) Murphy, M. C. and D. Rotem. (1989)."Processor
Scheduling for Multiprocessor Joins." Fifth
International Conference on Data Engineering.Los
Angeles, CA,IEEE.

[PARK88] Park, S. K. and K. W. Miller. (1988). "Random
Number Generators: Good ones are Hard to Find."
CACM. 31(10).

[SEQU88] Sequent Computer and Codd & Date Associates.
(1988). Combinin~ the Benefits of Relational
Database TechnOlogy and Parallel Computjni.
Technical Seminar, San Francisco, CA, September
28,1988.

[SEQU88b] Sequent Computer Systems. (1988). Systems
Overview. Product Description, Sequent Computer,
Beaverton, ORE.

[V ALD87] Valduriez, P. (June 1987). uJoin Indices." ACM
Transactions on Database Systems. 12(2): 218-246.

Chart 1:
Execution

Time
75 Nodes

: : ~!\ \ /r ~O:IOO"lhm 1

100'~ ,/ l~-Rarmn
80 ~ __ • __ Q __ O __ O

60~~~~~~--~-

2 3 4 5 6 7
Number of Processors

Chart 2:

Execution
. Time
40r

3sf

25 Nodes

8

19+56 Nodes
Alpha. 25

Popt

• ... Algorithm

:: t'_._2=-O-O L.--O-7-~-1-8-N-o-d-e-s-"
201 , , , , , Alpha-.25
123 456

Number of Processors

8

Chart 3:
Execution

Time

1000r

800

75 Nodes

600 l\.\ 400~ ~
200·I~''~ 0.;;;:0_ --a .

·--i-.-~e=_=Q-O-O-o-o
0- I I I I I I I I It'

1 2 3 4 5 6 7 8 9101112

Chart 4:

Execution
Time

Number of Processors

25 Nodes

1:~~
40:~~a '~~9
2 0 t • • _!=ii!!!!!!!9-

0- I I I I· .

1 234 5 6
Chart S: . Number of Processors

Buffers
75 Nodes

8 0 O-o-o-o-o--o--o-o-O-O~ _
70i'., ~ ---Q

60 • ~~~
50\. ~&:::.-.-.-.-.-.
40 ., D-.o.-o-o-o-o 30 .--._._. __ ._. __ • __ ._.
20
10
OL---~~--~~~~--~~~--

1 2 3 4 5 6 7 8 9 10 1112
Number of Processors

Chart 6:

25 Nodes

25~

20f~~
• 0---0-0-0

Buffers 1 51'''_''_ .=P.=P.=P. 10 • ___ • ___ • ____ • ___ • ___ •

5

O~--~--~--~------~----
1234567

Number of Processors

J
I '

," I, ,

Chart 7:

Execution
Time

Chart 8:

Alpha - .4

;:~f· . .~
60 .~~~ .-. .:::::

;~I4--~ ___
0.1 0.5 1.0 1.5 2.0

Page Join Time

Proc. Alpha _ .4
Util.

1

~:: r-e

0.4 ~!Y
0.2

•
o~j--~-~-----~

.1 .5 1.0 1.5 2.0

Chart 9: Page Join Time

Execution
Time

Chart 10:

Alpha •. 1

~:~l /. 100 •
80 /
60 • ~
40·-·~O-~0

2~f
0.1 0.5 1.0 1.5 2.0

Page Join Time

Proc. Alpha - .1
Util.

.. - Popt + 0

.0- Popt + 1

..- Popt • 1

(30 + 20 Nodes)

.. - Popt + 0

·0- Popt + 1

.. - Popt • 1

... Popt + 0

.0- Popt + 1

... Popt· 1

(30 + 20 Nodes)

1

:::i.~/·// ·po~+O
.0- Popt + 1

0.4
/ ~ .• - Popt· 1

0.2.~ '--____ ...1

o~~--~--~-----......
.1 .5 1.0 1.5 2.0

Page Join Time

9

Chart 11:

Execution
Time

100

80

60

40

20

Alpha •. 4

o Llllil.Jl;lUliUl~
0.10.51.01.52.0

Page Join Time

Chart 12:

Processor
Utilization

Chart 13:

Alpha - .4

1 .-. 0.8 .~_o

0.6 I 0.4V
0.2 04-1-____ _

0.10.51.01.52.0
Page Join Time

Alpha •• 1

70r------
601-----.;
5 0 f.=--=-__

Execution 4 0
Time 30

20
1 0
o

Chart 14:

0.10.51.01.52.0
Page Join Time

1

0.8

Alpha •. 1

Processor 0.6
Utilization 0.4

0.2

0 .. ·------0.1 0.51.01.52.0
Page Join Time

• Constant

.. Exponential

(30 + 20 Nodes)

... Constant

.0- Exponential

(30 + 20 Nodes)

• Constant

II Exponential

(30+20 Nodes)

... Constant

.0- Exponential

(30 + 20 Nodes)

'i~ ~

LA~NCEBERKELEYLABORATORY

TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD

BERKELEY, CALIFORNIA 94720

I,:..~~

