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Abstract

The anisotropic expansion and contraction of crystals of YBaZCu307_x
(YBCO) during thermal processing, oxygenation and cryo-cooling result in
intra- and intergranular stresses that are largely relieved by microcrack-
ing. Acoustic emission signals produced during microcracking are
qualitative and quantitative measures of the degradation in strength and
electrical connectivity in a sintered ceramic. A method is described for
detecting and evaluating acoustic emission generated within YBCO samples
during processing. The intensity, onset temperature and duration of
cracking during post-sintering cooldown depend upon the oxygen partial

pressure. Sudden changes in oxygen pressure also induce cracking. The

influence on cracking of sample porosity is also discussed.
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Introduction

YBaZCu307_ (YBCO) undergoes a phase transition from a tetragonal,
non-superconduc%ing, oxygen-poor phase to an orthorhombic, super-
conducting, oxygen-rich phase during cooling through a transition
temperature which is dependent upon the oxygen partial pressure. The
transition occurs over a rather narrow range of oxygen stoichiometry and
is accompanied by a strongly anisotropic lattice distortion (1,2). The
uptake of oxygen is rapid at temperatures above 400°C (3), resulting in
rapid dimensional changes as the transition takes place (4). In sintered
polycrystalline samples the induced strain causes inter- and intra-grain
cracking, visible in optical and electron micrographs. These cracks
reduce the strength of the ceramic, its current-carrying capacity, and
its resistance to environmental attack. Here we report preliminary
results of an acoustic emission study of microcracking in YBCO.

xperimental Details

The acoustic emission apparatus (shown schematically in Figure 1)
consists of a sample holder enclosed in a tube equipped with gas flow
controls. A piezoelectric sensor coupled to the sample by means of an
acoustic waveguide converts the acoustic signals to voltages which are
digitized and processed by the Acoustic Emission Technologies System
5000. The flow tube, sample holder, and waveguide are made of fused
silica. A light spring maintains contact between waveguide and sample.

—_

slatly

Figure 1 - Acoustic emission apparatus.

Uniaxially pressed powder compacts of YBCO with a relative green
density of 67% were mounted in the apparatus, sintered at 940°C to a
final density of 80-85% and cooled under carefully controlled conditions
of temperature and oxygen partial pressure.

Results

Sincering and cooling (50°/hour) in an atmosphere of pure argon
resulted in a low and fairly constant level of emissions during the
cooldown phase (Figure 2, upper trace). In air or in pure oxygen,
however, a great deal of acoustic activity was observed during cooling
(Figure 2, middle and lower traces). In air, intense cracking begins at
about 500°C, peaks around 400°C, and continues down to about 300°C. 1In
oxygen, the onset of cracking takes place at about 600°C, and che



temperature range of high cracking intensity is narrower.
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Figure 2 - Acoustic emission during cooling.

Further experiments, in which the 0, pressure was changed rapidly at
constant temperature, show that cracking“also results from removal of
oxygen from the ceramic, albeit at a lower intensity than for oxygen
introduction. Typical data for a sample held at 600°C while the ambient
gas was rapidly changed from oxygen to argon and back to oxygen are shown
in Figure 3. The relative AE intensity for increasing vs. decreasing
oxygen content is temperature dependent as are the absolute intensities. These
observations are consistent with the known oxygen uptake/discharge kinetics of YBCO
(3,4).

Cold isostatic pressing of the ceramic powder to a relative density
of 76% followed by sinctering and cooling in oxygen resulted in a final
density of 90-92%. The intensity of cracking during cooling of these (
samples was not significantly different from that observed for porous "
samples. The more dense pellets reacted more slowly to rapid changes in
O, partial pressure at constant temperature, giving broader peaks for
both oxygenation and deoxygenation. The integrated intensities of the
cracking responses were, however, not reduced.
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Figure 3 - AE due to rapid changes in
oxygen partial pressure at 600°C.

Discussion

By detecting and processing acoustic signals generated within the
ceramic material during heat treatment and manipulation of oxygen partial
pressures, a direct correlation has been found between oxygenation and
microcracking. While it is not possible in experiments conducted at
ambient pressure to completely separate cracking due to oxygenation
stress and cracking due to anisotropic thermal contraction, the strong
dependence of cracking behavior on oxygen partial pressure demonstrates
the importance of oxygen uptake in the production of microcracking.

In order to minimize microcracking during ceramic superconductor
processing, it is essential to avoid unnecessary changes in temperature
or oxygen partial pressure. While the relationship between micro-
structure and cracking is not yet well-defined, it may be that a critical
grain size exists, below which microcracking is greatly reduced.

Acoustic emission detection offers a unique means of determining the
causes and extent of microcracking during ceramic processing. A compre-
hensive study of the effects of variations in processing parameters and
composition on cracking in sintered YBCO and of the effects of cracking
on critical current density is under way with the goal of reducing or
eliminating cracking and mitigating its deleterious consequences.
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