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ABSTRACI' 

An exactly soluble model which mimics the propenies of { 001 } 

antiphase boundaries in the face-centered-cubic substitutional alloys 

(Ising antiferromagnets) ·with only nearest-neighbor interactions is 

developed. The three-dimensional model is extended to any dimension, 

including one- and two-dimensional systems. For three-dimensional 

systems, it is proven that, in the thermodynamic limit, antiphase boun­

daries are unstable at all temperatures. It is postulated that antiphase 

boundaries are unstable for all thermodynamic systems with dimension 

greater than one. In one dimension, where antiphase boundaries. can be 

defined mathematically, the concentration of antiphase boundaries is one 

half at both zero and infinite temperatures, but at all temperatures in 

between, the concentration is less than one half. Antiphase boundaries 

are found at equilibrium in higher-dimensional systems with small sizes, 

the order of those used in Monte Carlo simulations of the Ising model. 

The implications of this unusual size effect are discussed. 
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The definitive theory of the ordering face-centered-cubic (fcc) substitutional 

alloys is yet to be found.1 Ultimately, the theory must incorporate a description of both 

the electronic and the thermodynamic properties of the alloy, but the extreme complex­

ity of the problem usually requires simplification, commonly achieved by considering 

one of the two properties2. 

The most common approach to developing a theory for the thermodynamic pro­

perties of the ordering alloys makes use of the similarities between the simple binary 

substitutional alloy and the antiferromagnetic Ising model in the presence of a mag­

netic field. In this approach, an A-B binary alloy is mapped onto the Ising model: an 

atom of type A (B) is equivalent to an up (down) spin. The chemical potential 

difference between atoms of different types is equivalent to an external magnetic field. 

The energy is then written: 

E = ~ J .. C1·C1· - h ~ C1· 
~ IJ I J ~ I 
ij i 

where ai is an Ising spin at site i which can take on the values ±1, Jij is the interac­

tion energy between spins at sites i and j , and h is the external magnetic field. (The 
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particular model under consideration here is defined in an fcc lattice and such that 

Jij = J > 0 fori and j nearest-neighbors, and Jij = 0 for all other pairs). 

Real alloys are significantly more complex than the simple Ising model analogy. 

In particular, many body effects3, atomic-size,4 and fenni-surface5•
6 properties are all 

expected to play imponant roles in determining the true phase stability. It is unlikely 

that these effects can all be reduced to pairwise interactions. The Ising model, how­

ever, does provide a good starting point for understanding the thermodynamic proper­

ties of alloys, and the model can be made more realistic by successive inclusion of 

some of the neglected effects. In addition, the Ising model provides an important 

means for assessing the effects of approximations contained in theories, for any theory 

which solves the more complicated real alloy problem must be able to solve the 

simpler Ising model. 

Exact solutions to the Ising model are known only for one and two dimensions. 

Solutions for three-dimensional systems are known only through approximate methods. 

The effects of the approximations must be clearly understood and great care must be 

taken to insure that the results of any calculation truly represent the physics of the sys­

tem, and not the shoncomings of the approximation. 

Thus far, approximate methods have resulted in a widely accepted topology7 for 

the phase diagram of the nearest-neighbor fcc Ising antiferromagnet, but some 

discrepancies still remain. The thermodynamic calculations for this Ising system fall 

into three categories: small cluster variational techniques, numerical simulations, and 

low- and high-temperature expansions. The results of the different methods are often 

compared among themselves, for consistency, and also compared with experimental 

results believed to reflect Ising-like behavior (e.g. the Cu-Au alloys). 

One early small-cluster calculation on the fcc binary alloys was due to Shockley8, 

who calculatCd the Cu-Au phase diagram using a mean-field approach. The agreement 

with the experimentally known Cu-Au phase diagram was not satisfactory:" the 
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calculated phase diagram was topologically different from that of the experiments. 

The following years brought the development and application of the quasi-chemical 

method9, and later the cluster variation method1o-13 (CVM). The latter led to qualita­

tively good agreement with the experimentally determined phase diagrams, and the 

agreement with experiment was improved even further with the inclusion of "many­

body" effects14. In addition, CVM results produced the currently accepted topology of 

the nearest-neighbor fcc Ising antiferromagnet's phase diagram. 

One drawback of the small cluster variational techniques is that the finite size of 

the cluster imposes conditions on which phases can be examined. The cluster size is 

selected for the investigation of the particular phases believed to appear in the phase 

diagram, and this requires some previous knowledge of the phase diagram. Another 

shortcoming is that the number of states can only be counted approximately. 

As an alternative to the small cluster approach, many investigators have resorted 

to numerical calculations utilizing Monte Carlo methods. Unlike the small cluster 

variational methods, Monte Carlo methods require no prior knowledge of the phase 

diagram, but interpretation of the results is often difficult, and finite-size effects are not 

always entirely understood. 

The initial Monte Carlo results of Binder15 and Phani et. al. 14 for the fcc binary 

alloy with only nearest-neighbor interactions disagreed with those of CVM, which 

necessitated reexamination of both results17- 20. The conflict centered on the exact 

location of the triple-point [the point where the disordered, the L 10 (AB-type), and the 

L 12 (AB3-type) phases are in equilibrium]. While the calculated transition tempera­

tures of the stoichiometric compounds were not too different (the Monte Carlo calcula­

tions gave slightly lower transition temperature for all compositions of the alloy), 

Binder's Monte Carlo results placed the triple-point at T = 0, and CVM placed the 

triple-point temperature at a nonzero value, of the order of the pair-interaction 

energy9-12. 
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One source of this discrepancy arises from the frustration present in the fcc lat­

tice. The frustration may lead to the appearance of (001} antiphase boundaries, which 

are explicitly excluded in CVM, and difficult to interpret in Monte Carlo studies. A 

(001} antiphase boundary in the h = 0, T = 0 case is depicted in figure 1, using a 

description similar to Kikuchi and Sato's21• The configurations of the four possible 

(001) planes for the perfectly ordered case are shown. Each dark symbol (either 

square or circle) represents an up spin (Cu atom), and the lighter symbols represent 

down spins (Au atom). The L 10 phase is constructed by stacking the planes in one of 

four configurations: ( ... AaAaAaAa ... ), ( ... AbAbAbAb ... ), ( ... BaBaBaBa ... ) or 

( ... BbBbBb~b ... ). An antiphase boundary is introduced by a slip of one half of the lat­

tice by [a 12, a 12, 0] where a is the cubic lattice spacing. This is the equivalent of 

going from ( ... AaAaAaAa ... )-type stacking to ( ... AaAaBbBb ... )-type stacking. (In the 

definition of antiphase boundary used here, it extends throughout the entire crystal; 

domains separated by antiphase boundaries are not considered). The dashed boxes in 

the figure contain one nearest-neighbor tetrahedron of the face-centered-cubic lattice, 

with two atoms from each of the planes. Each of these tetrahedra has two up spins 

and two down spins, the minimal energy configuration, for both Ba and Bb stacking 

order. This is also true for Aa and Ab stacking. It therefore costs no energy to stack 

the planes in a random order ( ... Zz2z:Z:z:Zz ... ) where each Z (z) is a plane of type A (a) 

or B (b). The system has an infinitely degenerate ground state. An infinitesimal next­

nearest-neighbor interaction, however, removes this degeneracy. 

Antiphase boundaries are present in the Monte Carlo calculations18·-20, as 

revealed by studies of the triple point region. The presence of antiphase boundaries in 

the Monte Carlo results raises important issues. In Binder's calculations, one antiphase 

boundary would result in a state with no long-range order, but, physically the system 

still has a large degree of long-range order, at least in two dimensions, and is very 

different from the random, disordered configuration. With a more precise definition of 
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order (which accounts for the long-range order still present in the antiphased state), the 

Monte Carlo calculations yield a nonzero triple-point temperature18-20. The puzzle is 

not completely solved, however, for the triple-point temperature in the Monte Carlo 

results is roughly two-thirds of the triple-point temperature predicted by the best avail­

able CVM results 7. In addition, the transition temperatures predicted by the Monte 

Carlo methods are still consistently lower than those of CVM . 

It is not yet clear whether or not antiphase boundaries appear in the true phase 

diagram of the nearest-neighbor fcc Ising antiferromagnet. There are reasons to expect 

that the boundaries might be present. Antiphase boundaries cost no energy, but there 

is an entropy associated with their presence. This entropy is generally neglected. In 

the thermodynamic limit, the free energy is of order n 3 [where n 3 is the number of 

spins (atoms) in the system], and the contribution from antiphase boundaries is of 

order n , hence negligible. 

This argument suggests that the antiphase boundaries are present even as T -+ 0, 

but do not affect the thermodynamic properties of the system. Clearly, the system 

with antiphase boundaries is considerably different from the system without them, 

regardless of their influence on the free energy, and so it is imponant to determine 

whether or not antiphase boundaries exist at a given temperature. 

Slawny22 made significant progress in this direction when he suggested that the 

one-dimensional structure of this system does directly influence its thermodynamics. 

Slawny noted that the excitation spectrum of a particular ground state is extremely sen-

sitive to its one-dimensional structure. Since the excitation spectrum determines a par-

ticular ground state's thermodynamic properties, the one-dimensional disorder has a 

dramatic influence on the thermodynamics of the system. Slawny's exact arguments 

apply to a class of systems satisfying three criteria: the system must have a finite 

number of 4egenerate, periodic states in the ground-state manifold which all meet the 

Peierls' condition23 : that there be an energy gap between the ground state and the first 

··~ - -·1 
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excited state. For these systems, the "true" ground state is the state which admits the 

largest number of low-lying excitations. 

The nearest-neighbor fcc Ising antiferromagnet clearly violates the first two of 

these conditions. The ground-state manifold contains an infinite number of not neces­

sarily periodic states. Slawny introduces interactions into the model which insure 

long-range order in three dimensions so that the conditions of his theorem are met, and 

then considers the limit as these interactions go to zero. He concludes that antiphase 

boundaries do not appear in the low temperature expansion for the nearest-neighbor 

fcc Ising antiferromagnet Based on Slawny's arguments, Mackenzie and Young24, 

and later, Lebowitz et al.25 calculated low-temperature expansions about the "true" 

ground state: the ordered L 10 phase without antiphase boundaries. This is a somewhat 

surprising result: the "true" ground state of the system is "selected" based solely on 

entropic contributions, and the result of this "selection" is the completely ordered state. 

Slawny's conclusions most probably apply to the fcc Ising system under con­

sideration here, but there is some danger in his approach. The infinite one-dimensional 

degeneracy of the model only exists in one point of parameter space. The fact that an 

infinitesimal next-nearest-neighbor interaction removes the infinite degeneracy suggests 

that limiting processes may not be applicable. 

Assuming that Slawny's conclusions are correct, there is still more work to be 

done. It is of interest to understand the behavior of the Ising model at temperatures 

for which low-temperature expansions are no longer valid. Slawny's arguments do not 

indicate whether or not antiphase boundaries appear at higher temperatures. 

The purpose of this paper is to investigate, in greater detail, whether or not anti­

phase boundaries appear in the equilibrium phase diagram of the nearest-neighbor fcc 

Ising antiferromagnet (and by analogy, in the simple binary substitutional alloy). The 

approach chosen is the construction and solution of an exactly soluble model for cubic 

{001} antiphase boundaries which violates the first two Slawny criteria. This violation 
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is of the kind encountered in the nearest-neighbor fcc Ising antiferromagnet. The 

insight gained by solution of this _simple model can be applied to the more difficult 

Ising problem, and to understand the role of antiphase boundaries in more complex 

real alloys. 

Section II of this paper develops the model, which is subsequently solved in sec­

tion Ill. Analysis of the results comprises section IV, and section V contains the con­

clusions. 

II. The Model 

The excitation spectra of each state in the ground-state manifold of the nearest­

neighbor fcc Ising antiferromagnet are characterized by a set of common low-lying 

excitations. State dependent differences in the spectra appear at the third-level of exci­

tation26. This difference is directly related to the antiphase structure. For zero exter­

nal field (chemical potential difference), the state with the highest number of third­

level excitations is the L 10 phase, and this number decreases as the number of anti­

phase boundaries increases. 

The model constructed here mimics these properties as closely as possible while 

still allowing a simple exact solution for the thermodynamic properties. Similarly to 

the nearest-neighbor fcc Ising antiferromagnet, the model below has an infinite ground 

state degeneracy in which the states are not necessarily periodic. The antiphase 

dependence of the excitation spectra is very similar in the two systems. Each state in 

the ground-state manifold of the constructed model admits a common set of lowest­

lying excitations, but the number of second-level excitations is determined by the anti­

phase structure of the state: a state with more antiphase boundaries has fewer second­

level excitations. 

The model system is composed of n planes, each of which contains N sites. The 

planes are indexed by the subscript k, and each site within a plane is indexed by the 
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subscripts i and j. The thermodynamic variables are defined to be CJijk and :Ek, both 

of which can assume the values ±1. A configuration is designated by { CJ, :E} and the 

internal energy is: 

where the indices run over the entire system, and periodic boundary conditions are not 

assumed. The first term accounts for the elementary excitations of the sites; they have 

energy 2£ (The energy scale is set by the value of E.). The second sum represents an 

antiphase-structure dependent interaction between excitations on adjacent planes. An 

antiphase boundary in the model occurs at a plane k such the :Ek~A::+l) = -1. The fac­

tors containing the CJ's impose the restriction that both sites i, j, k and i, j, (k+l) 

must be excited. The parameters 'Yo and 'Y are positive dimensionless constants such 

that 'Y < 'Yo· The 'Yo term in the interaction is antiphase-structure independent, but the 'Y 

term is not. The energy of two juxtaposed excitations is ( 4 + 'Yo - "()E in the normal 

state, and (4 + 'Yo + y)E in the antiphased state. 

The partition function of this system, which contains nN sites, is then written: 

znN = L e-~E((a~)) 
(a~) 

where J3 = llk8 T, k8 is Boltzmann's constant, and T is the temperature. 

III. The Solution of the Model 

Let J.li denote the number of sites in plane i which are excited, and vi the 

number of these for which the equivalent site in plane (i + 1) is also excited. The 

number of ways configurations for a two plane system is 

(1) 

where Ct/ is the binomial coefficient: 
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M N! C N = _ __,.;,__;_ __ 
(N -M)! M!. 

The first coefficient in (1) is the number of ways to choose the J,L 1 sites on plane 1, the 

second, the number of ways to choose the v1 sites on plane 2 which are juxtaposed 

with an excitation on plane 1, and the last, the number of ways to place the remaining 

excitations on plane 2. There are restrictions on the values for J,L 1, v1, and J,L2• All 

physically allowed configurations Of the planes are included by summing over all terms 

for which expression (1) is defined. 

The analysis above is easily extended to the case of n planes. The energy in 

terms of the J.l.i and vi is 

11 11-1 
E = 2£ L Jl.i + £ L vi('Yo- 'Yl:il:i+1>· (2) 

i=1 i=1 

The partition function is 

(3) 

where L is a sum over all configurations of the antiphase boundaries, the remaining 
{I} 

sums run over all physical values of J.l.i and vi, w = e-2P£ and xi = e -P£('Yo- -yi;I; •• >. 

The terms involving V11 _1 and J.111 reduce to 

""' ""'Cv•-•c~• -v.-1 X v•-l w~• = (1 + w)N -~·-• (1 +X w)~•-•. 
~ ~ ~•-I N - ~·-• 11-1 11-1 

If the variable Yk is defined by the following (descending index) mapping: 

YJc = w 
(1 + XJcYic+1) 

(1 + YJc+1) 

then the partition function is then given by 

Y11 = W • 

II N 
znN = l:ll o + Y~c> . 

{I}Ic=1 

(4) 

(5) 

.,-; 
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The sum over all configurations of the antiphase boundaries, which is not performed 

analytically, is complicated because each Y1c depends on the antiphase structure of all 

the layers ~ k. (The sum has been calculated numerically for small n .) The apparent 

asymmetry of this solution is caused by the method of solution; it can be demonstrated 

(analytically for small n, numerically for larger n) that the expression for a given 

configuration is independent of the end from which the mapping (4) is begun. 

IV. Analysis 

Expression (5) can be used to prove that in the thermodynamic limit, the free 

energy of the three-dimensional system is exactly the free energy of one of the two 

states without antiphase boundaries. Slawny's conclusions that only one of the many 

states of the ground-state manifold should appear in the low temperature expansions is 

indeed applicable to this system. Even more imponantly, in the thermodynamic limit 

antiphase boundaries have zero concentration at any finite temperature. 

The free energy of the d -dimensional model system (i.e. a system where 

N = nd-1) is proportional to the natural logarithm of the partition function 

{ II ~I} F = -kB T In L n (1 + Yt)" - . 
(I} lc=l 

(6) 

The two states without antiphase boundaries contribute the largest terms to the sum, 

and the next largest terms are from configurations with just one antiphase boundary. 

This makes physical sense, because each antiphase boundary replaces approximately 

nd-l second-lowest-lying excitations by slightly higher ones. The result of this 

replacement is a reduction in the value of the product over k. The free energy can be 

written 

where S max is the largest term in the sum over configurations in (6), i.e. that 



- 11 -

corresponds to the two perfectly ordered states, and the sum over {l:'} includes all 

configurations except those two corresponding to S max· The first term in (7) is propor­

tional to nd. For the last term of expression (7) to contribute to the free energy, it 

must also be proportional to n d. The second largest terms in the sum over antiphase 

configurations differ from the largest for some m < n of the Y1c. Define ex to be the 

geometric mean of the ratio of these altered terms to their corresponding values in the 

product for the system with no antiphase boundaries: 

{ 
1 + 

}

lim 
m Y· 

ex=TI 1 <1 
j=l 1 + Ymaxj 

If the number of configurations with only one antiphase boundary is taken to be 2" 

obviously an overestimate since 2" is the total number of configurations -- then the 

last term in equation (9) is less than or equal to 

(8) 

The only way in which (8) can be of order nd is if (2",..,'m ex)> 1, which is possible 

only if n 2-d lm > 0. Since 1 S m < n, antiphase boundaries do not appea?7 in the 

free energy for d > 2. 

For d > 2, it can be proven explicitly that the antiphase boundaries themselves do 

not appear. Assume that the second largest terms in the sum arise from configurations 

with approximately n antiphase boundaries, and that there are 2" of these 

configurations. With arguments similar to those developed above for the free energy, 

the contribution from these terms to the concentration of antiphase boundaries is found 

to be zero: 

lim (2",..,'m n 111-4/m ex)"""-'m = 0 , d > 2 
n-+oo 

(9) 

This is physically reasonable since it has been argued that, if present, antiphase boun­

daries must affect the obversable thermodynamic properties of the system. In this 
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situation, the absence of antiphase boundaries in the free energy is indicative of their 

zero concentration. 

While antiphase boundaries cost no energy in the ground state, there is an energy 

associated with their creation at any nonzero temperature. The energy of one boun-

dary is proportional to the "antiphase excitation gap", 2~. multiplied by the neces­

sarily finite number of juxtaposed excitations which scales with the area of the planes, 

nd-l. In the thermodynamic limit, the energy cost becomes infinite (ford > 1). This 

argument suggests that antiphase boundaries have zero concentration in any version of 

this system with dimension larger than one, and that antiphase boundaries appear only 

for d = 1. [A seemingly unphysical one-dimensional antiphase boundary is defined 

mathematically by setting d = 1 in expression (6).] 

For d > 1 it is possible to write down the complete partition function of the 

model in a compact form, which can then be used to calculate all the thermodynamic 

functions. Since no antiphase boundaries appear, the partition function is determined 

·entirely by the period-one fixed point of the mapping (4). (For the case with no anti­

phase boundaries, the Xt of ( 4) becomes a constant, x _ = e -~£('Ya-"f), independent of k ). 

The partition function is 

(10) 

where y is the period-one fixed point of the mapping (5) with x _ substituted for Xt: 

y = 112 {x- w - I + [ (x_ w - 1)2 + 4w] 112 } (11) 

(Surface effects are neglected). 

The free energy is easily calculated from equations (10) and (11). In the limit 

'Yo= y = 0, the free energy is that expected for an assembly of nd non-interacting 

two-state systems. (Strictly speaking, in this limit antiphase boundaries appear, but 

since they do not alter the excitation spectra of the various states, their contribution to 
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the free energy is strictly one dimensional and vanishes in the thermodynamic limit. 

The concentration of antiphase boundaries is exactly one half for all temperatures.) For 

'Yo~ y = 0, the boundaries (which are again decoupled from the system) appear but, the 

two-state systems are now correlated. With 'Yo ~ 0, y ~ 0, the system has no antiphase 

boundaries; the sites are, however, still correlated. The heat capacity per site for 

d = 3 (figure 2), which displays a Schottky anomaly, shows that the correlated system 

is still very similar to a collection of isolated two-state systems. 

In one dimension, the antiphase boundaries can be defined mathematically and are 

expected to occur. The entire expression (5) must be used to calculate the thermo­

dynamic properties. The partition function is calculated for periodic one-dimensional 

systems containing up to sixteen sites, and the concentration of antiphase boundaries is 

computed. This concentration is plotted as a function of ~£/( 1 + 13£) in figure 3 for · 

'Yo = 0.8, and (a) y = 0.1, (b) y = 0.3, and (c) y = 0.6. (The abscissae are zero at 

infinite temperature, and one at zero temperature.) The results are not very sensitive to 

the number of sites: there is no perceptible difference between the four- and sixteen­

site calculations. At very low temperatures (right side of figure 3), the concentration 

of antiphase boundaries is one half, exactly the value expected from averaging over all 

of the ground states. The physical difference between the three curves is the antiphase 

excitation gap, 2j'E, which increases from curves (a) to (c). As the temperature 

increases from zero, the concentration of antiphase boundaries decreases; the system 

becomes more ordered, with respect to antiphasing, as the temperature is increased. 

(In this situation, "order" is proportional to the concentration of antiphase boundaries; 

the boundaries themselves do not fonn an ordered structure but are distributed ran­

domly over the sites of the system). The physics behind this unusual behavior is quite 

clear. The system begins to order so that the number of excitations available to it at 

lower temperatures actually increases, just as in the three-dimensional case. The 

apparent ordering actually results in an increase in entropy. As the temperature 
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increases further, the concentration of antiphase boundaries increases towards its 

infinite temperature value of one half. 

Whereas antiphase boundaries have zero concentration in the infinite three­

dimensional model, · they do appear with nonzero concentration at equilibrium in 

finite-sized clusters with periodic boundary conditions. These are precisely the type of 

systems used in the Monte Carlo calculations. It is therefore possible that these results 

reflect the presence of antiphase boundaries which are unstable in the thermodynamic 

limit Figure 4 is a plot of the concentration of antiphase boundaries (for d = 3) 

versus the same function of (3£ used in figure 3, for 'Yo = 0.5 and 'Y = 0.2, for systems 

with up to 163 = 4096 sites. (The Monte Carlo calculations are often performed on 

systems containing on the order of 6000 sites18- 2<). Figure 5 is the same type of plot 

for the parameters 'Yo = 0.8 and 'Y = 0.6. 

As in the one-dimensional case, the concentration of antiphase boundaries is one 

half for very low temperatures. For a finite range of temperatures an increase in tem­

perature reduces the concentration of antiphase boundaries. Unlike the one­

dimensional case, these results depend on the size of the system. For larger systems, 

the concentration of antiphase boundaries decreases more rapidly as the temperature 

increases. This makes physical sense, since the energy cost of a nonzero temperature 

antiphase boundary scales as n 2. In the thermodynamic limit, the concentration of 

antiphase boundaries is zero everywhere except at T = 0 and T = oo. The actual value 

of the minimum is also a function of the antiphase excitation gap. 

It is very likely that the nearest-neighbor fcc Ising antiferromagnet behaves simi­

larly. Further insight is gained by analyzing how Ising model maps onto the model 

solved here. The most notable feature is that the effective value of the antiphase exci­

tation gap for the Ising model is magnetic field dependent. The gap actually decreases 

as the triple-point field is approached, suggesting that antiphase boundaries are more 

likely to appear, as is observed in the Monte Carlo studies18-20•28• It seems unlikely, 
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however, that the effective value of y can ever be identically zero, which is a neces­

sary condition to have a nonzero concentration of antiphase boundaries in the thermo­

dynamic limit. 

The connection between complete disorder and and the appearance of antiphase 

boundaries needs to be carefully examined. Clearly, an antiphase boundary is not 

definable in the disordered state. If, however, there is any amount of long-range order, 

the concept of an antiphase boundary is meaningful and it is then important to under­

stand the relationship between the three-dimensionally disordered state and the one­

dimensionally disordered state. It is conceivable that, near the transition temperature, 

three-dimensional disorder could couple to (and reduce the value ot) the antiphase 

excitation gap, resulting in an increase of the number of antiphase boundaries. 

This analysis may explain the depression of the transition temperatures found in 

Monte Carlo methods relative to CVM results. The appearance of antiphase boun­

daries near the order-disorder transition may be interpreted as complete disorder, 

resulting in the observed depression. Funhennore the relative depression of the transi­

tion temperature would be largest near the triple point because of the funher reduction 

in the effective value of y due to the magnetic-field (chemical-potential) dependence. 

This is the observed behavior (figure 6). 

The role of in-plane direct correlations in the Ising system, which are completely 

neglected in the model developed here, must be evaluated more carefully. In the Ising 

model, a large number of excitations in a plane can result in a plane which is "anti-

phased". Hence, antiphase boundaries could arise from this mechanism. 

V. Conclusion 

The model developed and solved here is a considerably simplified version of the 

nearest-neighbor fcc Ising antiferromagnet which mimics its ground state properties. 

The model provides a unique insight into some of the characteristics of the more 



- 16-

complicated Ising system. 

The simplified model is analyzed for consistency with the predictions of Slawny. 

As Slawny conjectured, the "true" thermodynamic ground states of the three- and two­

dimensional versions of this system are in fact the states with the largest number of 

low-lying excitations -- the ordered states without antiphase boundaries. Furthermore, 

in the thermodynamic limit, antiphase boundaries have zero concentration at any finite 

temperature. 

In the (mathematically defined) one-dimensional system, antiphase boundaries do 

appear. Their concentration at zero and infinite temperatures is equal to one half, and 

is less than one half at intermediate temperatures. There is a range of temperatures for 

which increasing the temperature results in a more ordered antiphase structure. The 

degree to which the system orders is determined by the antiphase excitation gap, 2')'E. 

Larger degrees of order correspond to larger values of y. 

The behavior of the model for systems with sizes on the order of those used in 

the Monte Carlo calculations was investigated .. It was found that for all finite-sized 

d -dimensional systems antiphase boundaries will appear at equilibrium with nonzero 

concentration. The antiphase boundaries are more likely to appear in smaller systems, 

and systems in which the antiphase excitation gap is small. 

The model can be used to infer properties of the more complicated nearest­

neighbor fcc Ising antiferromagnet and, additionally, suggests a possible resolution of 

the discrepancies between Monte Carlo and CVM results. In the nearest-neighbor fcc 

Ising antiferromagnet, the effective antiphase excitation gap is magnetic-field depen­

dent. As the triple-point field is approached, the gap decreases, and antiphase boun­

daries appear in the Monte Carlo calculations. Furthermore, as the planes become 

more and more disordered, the effective energy cost of a nonzero temperature anti­

phase boundary may decrease. It is then possible that near the transition temperature, 

the concentration of antiphase boundaries might rapidly increase (for finite-sized 
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systems). Since the order-disorder transition is known to be first order, it is unlikely 

that the energy cost per unit area of an antiphase boundary can ever be identically zero 

at finite temperature below the transition. 

The role of in-plane direct correlations in the Ising model needs to be assessed 

more carefully. The chance that a significant number of excitations can "create" an 

antiphase boundary leaves open the possibility that the boundaries may be stable in the 

infinite three-dimensional Ising system. The density of excitations required for the 

"creation" of an antiphase boundary is quite high. This information, combined with 

the knowledge that the phase transition is first-order, suggests that the nearest-neighbor 

fcc Ising model completely disorders before an antiphase boundary is "created". It is 

therefore plausible that complete (001} antiphase boundaries do not appear in the true 

equilibrium phase diagram of the nearest-neighbor fcc Ising antiferromagnet. 

Acknowledgements 

This research was supponed, at the Lawrence Berkeley Laboratory, by the Direc­

tor, Office of Energy Research, Office of Basic Energy Sciences, Materials Science 

Division, U. S. Department of Energy, under Contract No. DE-AC03-76SF00098. 

References 

1 D. de Fontaine, Lawrence Berkeley Laboratory Repon No. LBL-18773-1984 

(unpublished). 

2 Rare exceptions do consider both properties. See, for example, P. Turchi, M. 

Sluter, and D. de Fontaine, Phys. Rev. B .3.Q , 3161 (1987). 

3 A. Reich and L. M. Falicov, Phys. Rev. B .3.Q, 3117 (1987). 

4 K. Terakura, T. Oguchi, T. Mohri, and K. Watanabe, Phys. Rev. B .ll , 2169 

(1987). 



- 18 -

5 H. Sato and R. S. Toth, Phys. Rev. ill, 1833 (1961). 

6 H. Sato and R. S. Toth, Phys. Rev. ill, 469 (1962). 

7 R. Kikuchi, Progress of Theor. Physics Supple. .81 , 69 (1986). 

8 W. Shockley, J. Chern. Phys. 2, 130 (1938). 

9 E. A. Guggenheim, Proc. Roy. Soc. (London), Ser. AJ.jQ , 552 (1938). 

10 R. Kikuchi, Phys. Rev. ll, 988 (1951). 

11 C. M. van Baal, Physica M, 571 (1974). 

12 R. Kikuchi, J. Chern. Phys. QQ, 1071 (1974). 

13 N. S. Golosov, L. E. Popov, and L. Ya. Pudan, J. Phys. Chern. Solids~ , 1149 

and 1157 (1973). 

14 D. de Fontaine and R. Kikuchi, Nat. Bur. Stand. (U.S.), Repon No. SP-496, 1978, 

p. 999. 

15 K. Binder, Phys. Rev. Lett. ~, 811 (1980). 

16 M. K. Phani, J. L. Lebowitz, and M. H. Kalos, Phys. Rev. B 2.1, 4027 (1980). 

17 A. Finel and F. Ducastelle, Europhys. Lett. 1 , 135 (1986). 

18 U. Gahn, J. Phys. Chern. Solids, .41, 1153 (1986). 

19 H. T. Diep, A. Ghazali, B. Berge, and P. Lallernand, Europhys. Lett 2 , 603 

(1986). 

20 H. Ackermann, S. Crusius, and G. Inden, Acta Metallurgica ~, 2311 (1986). 

21 R. Kikuchi and H. Sato, Acta Metallurgica 22, 1099 (1974). 

22 J. Slawny, J. Stat. Phys. 2Q, 711 (1979). 

23 S. A. Pirogov and Ya G. Sinai, Teor. Math. Fiz. ~, 358 (1975); 22, 61 (1976). 

24 N. D. Mackenzie and A. P. Young, J. Phys. C 14 , 3927 (1981). 



- 19 -

25 J. L. Lebowitz, M. K. Phani, and D. F. Styer, J. Stat. Phys., ~, 413 (1985). 

26 The excitations of the nearest-neighbor fcc Ising antiferromagnet form a discrete 

energy spectrum. A third-level excitation is then defined as any excitation which 

has the third lowest excitation energy. 

27 Antiphase boundaries naturally appear for the case in which Xt = 1. Physically, 

this corresponds to all states in the ground-state manifold having identical excita­

tion spectra. Hence for this case, one clearly needs to include all possible 

configurations in the low-temperature expansion for the partition function. The 

contribution of the antiphase boundaries, however, is thermodynamically negligi­

ble, and the concentration of antiphase boundaries is one half for all temperatures. 

28 From the calculations presented here, it seems plausible that antiphase boundaries 

would appear in Monte Carlo systems even for systems with very small next­

nearest-neighbor interactions, and one would not expect any kind of discontinuous 

behavior in the Monte Carlo results as the next-nearest-neighbor interaction is 

allowed to go to zero. There is also some question concerning the role of the 

superdegenerate point in the phase diagram. There does not seem to be any evi­

dence for a disordered-type phase stemming from this point in the phase diagram. 

Rather, the phase diagram seems to contain only the L 1o. L 12, and the disordered 

phases. See reference 25 for more details. 

Figure Captions 

Figure 1 The four possible (001) planes of the perfectly ordered h = 0, T = 0 case. 

Each dark (light) symbol represents an up (down) spin. The planes 

labeled Ba and Bb are the configurations produced by placing planes a and 

b, respectively, on top of plane B. The dashed boxes contain one of the 

nearest-neighbor tetrahedra which compose the fcc lattice. Each of these 

tetrahedra is in the minimal energy configuration, containing two up spins 
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and two down spins. The planes can be stacked in any order: 

( ... ZzZzZzZz ... ), where each Z (z) is a plane of type A (a) or B (b), and 

the energy is still minimal. 

Figure 2 The heat capacity per site, au lift, where u is the internal energy and 

t = J3-1, for a three-dimensional system for both correlated and uncorre­

lated systems plotted versus J3. The correlated system has parameters 

'Yo= 0.7 and 'Y = 0.2 While the correlated system is considerably more 

complex than the collection of non-interacting two-state systems, the heat 

capacity still displays the characteristic Schottky anomaly. 

Figure 3 The concentration of antiphase boundaries plotted as a function of 

f3£/(l + J}E) for the one-dimensional system for three values of the parame­

ters: (a) 'Yo= 0.8 and y = 0.1; (b) 'Yo= 0.8 and y = 0.3; and (c) 'Yo= 0.8 

and 'Y = 0.6. The abscissae are zero at J3 = 0 and one at J3 = -. [Anti­

phase boundaries are defined mathematically in one dimension by putting 

d = 1 in expression (6).] The curves display a minimum in the concentra­

tion of antiphase boundaries at some intermediate temperature. For some 

range of temperatures, the antiphase structure actually becomes more 

ordered as the temperature is increased. The depth of the minimum is 

strongly dependent on the antiphase excitation gap, 2)'E, which determines 

the energy difference between excitations involving an antiphase boundary 

and those which do not. The minimum is deeper for the larger values of 

'Y· 

Figure 4 The concentration of antiphase boundaries plotted as a function of 

f3£/( 1 + J}E) for three-dimensional systems of finite size n 3 for 'Yo = 0.5 and 

y = 0.2. The abscissae are zero at J3 = 0 and one at J3 = -. The curves all 

display a minimum in the concentration of antiphase boundaries at some 

intermediate temperature. The depth of the minimum is strongly 

.. 
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dependent on the size of the sample and is deeper for larger samples. The 

depth of the minimum also depends on "(. 

Figure 5 The concentration of antiphase boundaries plotted as a function of 

J3E!(l + j3E) for three-dimensional systems of finite size n3 for 'Yo= 0.8 and 

'Y = 0.6. The abscissae are zero at p = 0 and one at p = oo. The curves 

display a minimum in the concentration of antiphase boundaries at some 

intermediate temperature. The depth of the minimum is strongly depen­

dent on the size of the sample. The minima of the curves are deeper in 

this plot than they are for their counterparts in figure 4 because of the 

larger value of "(. The n = 16 case displays a considerable range of tem­

perature for which the concentration of antiphase boundaries is numerically 

negligible. In the thermodynamic limit, n -+ oo, the concentration of anti­

phase boundaries is zero over the entire range of p (except the endpoints 

p = 0 and p = oo ). 

Figure 6 The equilibrium phase diagrams of the nearest-neighbor fcc Ising antifer­

romagnet predicted by the CVM 17 (dashed line) and Monte Carlo19 (solid 

line) methods. The transition temperature predicted by the Monte Carlo 

results is depressed relative to those predicted by CVM. The model con­

structed here suggests that the Monte Carlo results are influenced by the 

presence of antiphase boundaries which do not appear in an infinite sys-

tern. 
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