
·.~ 

''i 
'~ ' 

LBL-27009 e.. ~ 
Pre rint 

11[11 Lawrence Berkeley Laboratory 
li:l UNIVERSITY OF CALIFORNIA 

Submitted to Journal of Magnetic Resonance 

Discrete Analysis of Stochastic NMR - ll 

S.T.S. Wong, M.S. Roos, R.D. Newmark, and T.E Budinger 

March 1989 

RECEIVED 
LAWRENCE 

BERKELEY LABORATORY 

JAN 3 1990 

LIBRARY AND 
DOCUMENTS SECTION 

TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 

which may be borrowed for two weeks. 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Discrete Analysis of Stochastic NMR - IT 

S.T.S. Wong, M.S. Roos, R.D. Newmark and T.F. Budinger 

Donner Laboratory, Lawrence Berkeley Laboratory, University of California, 

Berkeley, CA 94720 

Sam T. S. Wong 

Department of Radiology 

Brigham and Women's Hospital 

Harvard Medical School 

7 5 Francis St. 

Boston, MA 02115 



Abstract 

Stochastic NMR is an efficient technique for high field in vivo imaging and spectroscopic 

studies where the peak RF power required may be prohibitively high for conventional pulsed 

NMR techniques. A stochastic NMR experiment excites the spin system with a sequence of 

RF pulses where the flip angles or the phases of the pulses are samples of a discrete stochastic 

process. In a previous paper the stochastic experiment was analyzed and analytic expressions 

for the input-output cross-correlations, average signal power and signal spectral density were 

obtained for a general stochastic RF excitation. In this paper specific cases of excitation with 

random phase, fixed flip angle and excitation with two random components in quadrature are 

analyzed. The input-output cross-correlation for these two types of excitations are shown to 

be Lorentzian. Line broadening is the only spectral distortion as the RF excitation power 

is increased. The systematic noise power is inversely proportional to the number of data 

points N used in the spectral reconstruction. The use of a complete maximum length sequence 

(MLS) may improve the signal-to-systematic-noise ratio by 20dB relative to random binary 

excitation, but peculiar features in the higher order auto-correlations of MLS cause noise

like distortion in the reconstructed spectra when the excitation power is high. The amount of 

noise-like distortion depends on the choice of the MLS generator. 
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Introduction 

In all previous stochastic NMR studies (1-16), the RF excitation vector was assumed to lie along 

one axis in the rotating frame with the flip angle being a Gaussian white noise or a random binary 

sequence. The theoretical and experimental results presented in Part I {17) show that fixing the 

phase of the RF vector causes a notch artifact, a shift in the resonance offset and a non-uniform 

response across the spectrum. The spectral distortions can be made negligible by reducing the RF 

excitation power, but the maximum signal-to-noise (SIN) ratio may not be achieved. The advent of 

versatile RF transmitters allows other schemes for stochastic excitation. Two excitation schemes 

will be discussed in this paper: random quadrature excitation and random phase excitation. The 

first scheme excites the spin system with RF pulses that have two statistically independent random 

orthogonal components. The second scheme utilizes RF pulses that have a fixed flip angle and a 

uniformly distributed random phase. It will be shown that both schemes produce a predictable line 

broadening as the only spectral distortion, as the excitation power is increased. 

Closed form expressions for the first order input-output cross-correlation, average signal power 

and the signal power spectrum will be derived for the two excitation schemes. These expressions 

will be used to investigate the following aspects of the stochastic experiment: (1) The conditions 

under which the first order input-output cross-correlation will be a faithful estimate of the FID 

obtained by a conventional pulsed Ff-NMR experiment, (2) the saturation behavior when the ex

citation power is high, (3) the experimental parameters that maximize the SIN ratio, and (4) eval

uation of the signal power spectrum as an alternative estimate of the real spectrum. As in Part I, 

the assumptions of an isolated spin system and ergodic behavior are required. All RF pulses are 

assumed to be short relative to relaxation times. 

Due to the stochastic nature of the experiment, all quantities estimated from the stochastic 

input and output of the system should be regarded as random variables. The input-output cross-
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correlation, whose Fourier transform is an estimator of the spectrum, is one such quantity. The 

variance of the estimator, denoted as systematic noise, is usually non-white and may show up as 

structural artifacts. The overall noise level is determined by the sum of the systematic noise and the 

measurement noise from the sample and electronic hardware. It is important to keep the systematic 

noise level below the measurement noise level so that structural artifacts are not observed. Three 

sections are devoted to the analysis of systematic noise. An explanation of the nonlinear systematic 

noise associated with binary .MLS excitation reported by Blumich and Ziessow (8) will also be 

presented. 

Random Quadrature Excitation 

In this section, assume that the RF vector has two orthogonal components, ax( n) and ay ( n ), that 

are random, statistically independent and with identical probability distributions. The excitation 

sequence, written as a(n) = [ax(n),ay(n),O]T, must also satisfy two conditions. The first condi

tion is that ax(n) and ay(n) each have an even probability density function. This implies that they 

have zero mean values. For the case of non-zero mean excitation see reference (19). The second 

condition is that ax(n) and ay(n) are white: 

a2 
(a;(n) a;(m)) = 2 bnm 

where j = x or y, a2 = (a(n)T a(n)) is the average excitation power and bnm is. the Kronecker 

delta function. 

Define the RF magnitude and phase, respectively, as 

f3(n) = Ja';;(n) +a~(n) (1] 

and 

_ 1 [ay(n)l 
</>(n) =tan ax(n) . 



With the assumption of short RF duration, the RF rotation matrix Ra ( n) is 

Ra(n) 

cos </>( n) - sin </>( n) 0 

sin </>(n) cos </>(n) 0 

0 0 1 

1 0 0 

0 cos ,B(n) sin ,B(n) 

0 -sin ,B(n) cos ,B(n) 

cos</>(n) sin</>(n) 0 

-sin </>(n) cos </>(n) 0 

0 0 1 

4 

cos2 </>(n) + sin2 </>(n) cos ,B(n) cos </>(n) sin </>(n)(1 -cos ,8( n )) -sin </>(n) sin ,8( n) 

- cos </>(n) sin </>(n)(1 -cos ,B(n )) sin2 </>(n) + cos2 </>(n) cos ,B(n) cos </>(n) sin ,8( n) 

sin</>( n) sin ,8( n) -cos </>(n) sin ,B(n) 

which has a mean 

where 

and 

J.LI 0 0 

1-'R = 0 J.LI 0 

0 0 J.L2 

J.L2 = (cos ,8 ( n)) . 

From Part I Eq. [1-7] the mean magnetization is 

. Me (1 - Et)J.L2 
I-'M= 

1 - EtJ.L2 

Combining Eqs. [1-5], [1-12] and [6] gives 

0 

A= 
Me (1- Et)J.LJ 

1 
1 - EtJ.L2 

0 

0 

0 

1 

-1 0 

0 0 

0 0 

cos ,B(n) 

[2] 

[3] 

[5] 

[6] 

[7] 
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where 

J.l3 = (ax(n) cos</>(n) sin,B(n)) = (ay(n) sin</>(n) sin,B(n)). [8] 

The estimate of the spectrum, K1 ( w ), is given by Eq. [I-15]: 

[9] 

Notice that K 1(w) has only 1 pole at w = 8/Tn = 21rv, which is the resonance offset of the 

spin. This implies that the line is Lorentzian centered at the expected resonance offset. The only 

deviation in the line shape from that obtained by a conventional Fr-NMR experiment with a long 

interpulse delay is the line width: 

1 1 
---log J.ll· 
1rT2 1rTn 

The second term is a line broadening that varies with the excitation power. It is important to notice 

that the line height and line shape are independent of 8. The dephasing·in the interpulse interval, 

8, determines only the line location. 

The covariance matrix of the magnetization vector is obtained from Eq. [I-17]: 

where 

AJ;(1- E1)2 

(M MT) = 1 - .Ei(Pl + P2) - E[p4 + Ef Ei(PlP4 + P2P4 - 2~) 
P3 0 

1 +E1cosa 
x 1 - E1 cos a 0 P3 

0 

0 

0 0 P4 - .Ei(PlP4 + P2P4 - 2~) 

Pl - ([cos2 ¢(n) + sin2 ¢(n) cos,B(n)]2) = ([sin2 </>(n) +cos2 ¢(n) cos,B(n)]2
), 

P2 - (cos2 </>( n) sin2 </>( n )[1 -cos ,8( n )]2
), 

P3 - (sin2 </>( n) sin2 ,8( n)) and 

P4 - (cos2 ,B(n)). 

[10] 
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The average signal power is the sum of the first two diagonal elements of (M MT): 

p- M2 (1- E ? 1 + EtJ.l-2 2P3 [11] 
- e 

1 
1 - EtJ.l-2 1 - .Ei(Pt + P2) - BfP4 + Ef .Ei(P2P4 + P2P4 - 2~). 

The average signal power P is not a function of(}, which shows that the response is uniform across 

the spectrum. 

The signal power spectrum can be obtained by combining Eqs. [I-23] and [10]: 

S(w) = 2P'Re { 1- EhJ.J.t1ei(wTR-8)}- p 

(1-.EiJ.J.DP [12] 

where Re {} means the real part of the complex quantity inside the braces. Comparing S ( w) with 

K 1 ( w) in Eq. [9] reveals that S( w) closely resembles the real part of K 1 ( w ). Therefore, the signal 

power spectrum is an accurate estimate of the real spectrum. The advantage of using the power 
' . 

spectrum is that it is calculated directly from the signal sequence. 

When ax( n) and ay( n) are identically distributed, zero mean Gaussian white noise sequences 

with a variance a 2, we have 

a2 
J.l.l - 1-g(4), 

a2 
J.l-2 - 1-2g(4), 

a2 a2 a2 
J.l-3 - 4 + (1 - 2) 9(4), 

1 a 2 3 
PI - 1 - 2 g( 4) - 8 g(2a2), 

1 a 2 1 
P2 - 2 g( 4) - 8 g(2a2), 

1 2 
P3 - 3 g(2a ), 

P4 - 1- g(2a2), 

where 

g(x) .= xe-x tFt(~, ~;x) 

;, 
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and 1F1 is a degenerate hypergeometric function (18) defined as 

ax a( a+ 1) x2 a( a+ 1)(a + 2)x3 

tFt(a,b;x) = 1 + bl! + b(b+ 1) 2! + b(b+ 1)(b+2) 3! + · ·· 

The corresponding line shapes of K 1(w) andS(w) are shown in Figs. 1aand 1brespectively. Notice 

that line broadening is the only spectral distortion as the flip angle is increased, and S(w) closely 

resembles K 1 ( w) (see Figs. 4 and 8 of Part I). Figure 1c is a plot of the average signal power as a 

function of a. It has a peak at 1.15°. This means that the RMS flip angle that gives the maximum 

SIN ratio, amax• is approximately the Ernst angle (see Fig.7 of Part 1). 

Random Phase Excitation 

Random phase excitation is a special case of random quadrature excitation. It is obtained by setting 

the RF magnitude, j3( n ), in Eq. [1], to a constant flip angle a and assuming that the RF phase, 4>( n ), 

is uniformly distributed from -1r to 1r. The results obtained for random quadrature excitation are 

applicable, but now 

J.l.l 
2a 

- cos 2' 

J.1.2 - cos a, 

a 
J.1.3 - 2 sin a, 

1 
Pt - 8(3 + 2cos a+ 3cos2 a), 

1 2 
P2 - 8(1- cos a) , 

1 . 2 
and P3 - 2sm a 

P4 - cos2
a. 

The plots of K 1(w), P and S(w) for random phase excitation are almost identical to those for 

random quadrature excitation with Gaussian white noise and so will not be shown here. The dis

cussion in the previous section regarding the line shape, line distortion and optimum excitation 
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power also applies. 

The probability distribution of the RF phase, ¢( n ), is not necessarily continuous. For exam

ple, <P(n) may take on the values, ±45° and ±135°, each with a probability of 1/4. This can be 

implemented easily by using two independent binary maximum length sequences. The quaternary 

output of the MLS generators is then used to select four possible RF phases. This means that spec

trometers that perform quadrature RF phase cycling may easily be modified to implement random 

phase excitation. 

Systematic Noise and Measurement Noise 

The input-output cross-correlation and the signal power spectrum have been defined in terms of the 

expectation operator of probability theory. In practice, ergodidty is assumed and the expectation 

operator is approximated by a time average. For example, the cross-correlation of two processes, 

x( n) and y( n ), is estimated by 

1 N-1 

(x(n) y•(n- m)) ~ N I: x(n) y•(n- m). 
n=O 

[13) 

The approximation becomes an equality only when N approaches infinity, but in reality N is lim

ited. Since the observed x( n) and y( n) are samples of two stochastic processes, the time average 

defined on the right hand side of the equation above will also be a sample of a stochastic process 

and in general will have a non-zero variance. This variance will usually appear as colored noise in 

the time average, and it is referred to as systematic noise. In addition to the systematic noise, the 

observed x( n) and _y( n) also have measurement noise from the sample and the electrQnic hardware 

involved in the sampling process. To avoid structural artifacts resulting from the systematic noise, 

it is necessary to find experimental parameters such that the measurement noise is the dominant 

noise source. The following three sections will investigate how the measurement noise and the 

systematic noise decrease as N is increased. Gaussian white noise excitation and MLS excitation 
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will be compared with regard to systematic noise generation. 

First consider the case without measurement noise. In the previous sections the Fourier trans

forms of the input-output cross-covariance and the signal auto-covariance were used to estimate 

the spectrum. From Eqs. [I-8], [I-18] and [13] the time average estimators of the input-output 

cross-covariance and the signal auto-covariance are, respectively, 

1 {N-1 } kf(m) = Na2 nt E [M(n)- J.tM][a(n- m)- J.ta]T B [14] 

and 

1 {N-1 } 
rN (m) = N nt E [M(n)- J.tM][M(n- m) - J.tMf B, [15] 

where the·superscript N denotes the dependence on N. It is obvious that (kf"(m)) = k1(m) and 

(rN(m)) = r(m), i.e., they are unbiased estimators. The variances of "{"(m) and rH(m) are 

defined as 

[16] 

and 

[17] 

In practice, the acquired data include measurement noise from both the sample and electronic 

hardware. In most cases, the measurement noise is Gaussian white noise. When representing the 

transverse magnetization Mxy(n), or the signal, as a complex sequence, the measurement noise 

can be represented as Nx(n) + iNy(n) where Nx(n) and Nu(n) are independent and identically 

distributed. Gaussian white noises with a variance of cr /2, so that the noise power is cr. In general, 

it is safe to assume that the measurement noise is independent of the stochastic excitation sequence 

a ( n), and hence independent of the transverse magnetization. Define the noise vector as N ( n) = 

[Nx( n), Nu ( n), 0]. An estimator of the input-output cross-covariance with the measurement noise 

!'····" 
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included is 

1 {N-1 } kf'(m) = N 2 nt L [M(n) +N(n)- J.LM][a(n- m)- J.LaY B. 
a n=:O 

[18] 

Since the measurement noise and the excitation sequence are independent, the estimator is unbi-

ased, i.e. (kf(m)) = k1(m). FromEq. [18], the variance of the estimatoris 

(72 

Var{kf'(m)} + Na2 • [19] 

The total noise power in the estimate of the FID consists of a systematic noise term and a measure

ment noise term. The systematic noise is generally not white. To avoid structural artifacts resulting 

from the systematic noise, it is necessary to find the right parameters and experimental setup such 

that the measurement noise is the dominant.noise source. As in conventional FT-NMR, Eq. [19] 

shows that the measurement noise tepn is inversely proportional to the number of data points, N, 

used in the reconstruction. It will be shown in the next section that the systematic noise power is 

also inversely proportional to N, so that increasing N does not change the relative amount of the 

systematic and measurement noise power. It will be necessary to employ other means to make the 

measurement noise the dominant noise source. 

An estimator for the signal auto-covariance with the measurement noise included is 

1 {N-1 } rN(m) = N nt !;, [M(n) +N(n)- J.LM][M(n- m) +N(n- m)- J.LMJT B. 

The mean of this estimator is given by 

{ 

r(m) +al 
(rN (m)) = 

r(m) 

ifm =0 

otherwise. 

[20] 

[21] 

The bias term is a delta function with height a2 at m = 0. The Fourier transform of r( m) is the 

signal power spectrum, S(w ). Since the Fourier transform operator and the expectation operator 

are commutative the Fourier transform of both sides of the above equation gives 

[22] 
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where §N ( w) is an estimator for the signal power spectrum. Therefore, the bi.as term is just a DC 

offset in the signal power spectrum. The variance of the estimator for the signal auto-covariance 

is 

Var{fN(m)} 
_ { (lrN(m)l2

) -lr(m) + all2 

(lrN(m)l2) -lr(m)l2 

V { N( )} 0'2(0'2 + 2P) 
= arrm+ N 

ifm=O 

otherwise 

[23] 

where P is the average signal power. Once again, the total noise power consists of a systematic 

noise term and a measurement noise term. 

Systematic Noise in.k~(m) 

The variance of kfY(m), Var{kfY(m)}, can be obtained theoretically using Eqs. [14] and [16] by 

solving the stochastic difference equation (Eq. [1-5]) for a specific excitation sequence. The results 

cannot be expressed in simple closed forms, but can be calculated numerically (19). The numerical 

calculation has been done for random flip angle excitation using Gaussian white noise and random 

quadrature excitation using random binary sequences. Random flip angle excitation utilizes RF 

pulses that have random flip angle, but fixed RF phase (see Part 1). The variance has also been 

estimated by Monte Carlo simulations for all three excitation schemes: random flip angle, random 

quadrature and random phase excitation. 

Figure 2a shows the calculated variance of kfY ( m) with random flip angle excitation using 

Gaussian white noise and random quadrature excitation using a zero mean random binary sequence 

for different values of N. The variance is inversely proportional to N and for any given N the vari-

ance approaches a constant value as m is increased. The oscillation at small m for the random flip 

angle excitation has the same frequency as the resonance offset. It does not occur for random 
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quadrature excitation since the variance of kf ( m) with random quadrature excitation is indepen

dent of the resonance offset. Figure 2b shows the agreement between the analytical results and 

Monte Carlo simulations for random flip angle excitation. 

As shown in Fig. 2 the variance of kf" ( m) is a function of m, but it is reasonably flat for a large 

range of m. Define the systematic noise power as the average variance: 

1 M-1 

- J~oo M fo Var{kf(m)} 

- Var{kf(oo)}, [24] 

where V ar{ kf" ( oo)} is well defined and is inversely proportional to N as shown in Fig. 2. It was 

shown in Part I that K1 ( w) is Lorentzian when the excitation power is low. This implies that k1 ( m) 

is an exponentially decaying sinusoid with an amplitude jk1(0)j. Define the signal-to-systematic-

noise ratio as 

lk1(0)I2 

(S/N)sn = Var{kf"(oo)} · [25]. 

Figure 3 contains log-log plot of a Monte Carlo simulation of the signal-to-systematic-noise ra-

tio versus N for random flip angle excitation with three different random sequences. Figure 3a, 

obtained with Gaussian white noise, shows that the systematic noise power is inversely propor-

tional to N. Figure 3b was obtained with sub-sequences generated by a 31-bit MLS generator. 

The length of the sub-sequences was much smaller than 231 - 1, the period of the generator. Such 

sub-sequences behave just like random binary sequences, resulting in a plot very similar to that 

for the Gaussian white noise. Figure 3c was obtained with sub-sequences generated by a 15-bit 

MLS generator. There is a gain of almost 20dB in signal-to-systematic-noise ratio when N is a 

multiple of 215 - 1, the period of the 15-bit MLS generator. This behavior is a consequence of 

the auto-correlation of the complete MLS being a delta function with a small negative offset. The 

log-log plot of the Monte Carlo simulations of the signal-to-systematic-noise ratio versus N for 

random quadrature excitation are almost identical to those in Fig. 3. The corresponding plot for 

random phase excitation with a uniformly distributed sequence closely resembles that in Fig. 3a. 
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Systematic Noise in .-N(m) 

Monte Carlo simulations show that Var{r-N(m)} is very similar to Var{kf(m)}. For rN(m), 

define the systematic noise power as the average variance: 

Psn 
1 M-1 

- J~oo M fo Var{~(m)} 

- Var{~(oo)}, 

where V ar{ ~ ( oo)} is well defined. The signal-to-systematic-noise ratio is defined as 

p2 
(S/N)sn = Var{rf(oo)} · 

[26] 

[27) 

The log-log plots of the signal-to-systematic-noise ratio versus N for the three different random 

sequences obtained by Monte Carlo simulations are also shown in Fig. 3. The plots show that 

the systematic noise power is again inversely proportional to N when the excitation sequence is 

a Gaussian white noise or a sub-sequence generated by a 31-bit MLS generator. The systematic 

noise power drops substantially when N is a multiple of the period of the 15-bit MLS generator. 

For arbitrary N and a given type of excitation the signal-to-systematic-noise ratio for rN ( m) is 

approximately 3dB lower than for kf ( m ). When a 15-bit MLS generator is used and N is a 

multiple of the period, the difference is approximately 6dB lower. This is a disadvantage of using 

the signal power spectrum to approximate the true spectrum. The signal-to-systematic-noise ratio 

of the signal power spectrum for random quadrature excitation and random phase excitation are 

once again almost identical to those in Fig .3. 

Nonlinear Systematic Noise With MLS..Excitations 

The expressions for J<1 ( w) for the three different excitation schemes predict three possible types of 

spectral distortion: a line broadening, a shift in resonance offset and a non-uniform response across 

the spectrum. However, in 1982 Bliimich and Ziessow (8) showed that noise-like distortion might 

result from excitations with MLS at high power. They attributed the distortion to linear processing 
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of a nonlinear spin response and used a heuristic ansatz for the Volterra kernels to describe the 

distortion. The following analysis will show that the distortion is actually due to characteristics of 

the MLS which are manifest in k1 ( m) and K 1 ( w) when the spin system is driven into a nonlinear 

regime with high excitation power. 

The Monte Carlo simulated line shapes of K1 ( w) for random flip angle excitation using zero 

mean binary MLS are shown in Fig. 4a. As the RMS flip angle is increased, there is an increase 

in the relative amount of noise-like distortion in addition to line broadening and a notch artifact. 

This agrees with Bliimich and Ziessow's experimental observations. The systematic noise due to 

the variance of kt(m) in these plots should be negligible since N(=512000) is very large. There 

is less noise-like distortion when a Gaussian white noise generator is used, as shown in Fig. 4b. 

A comparison of k1 ( m) generated with MLS and Gaussian white noise, in Fig. 5, shows that the 

noise-like distortion with MLS excitation is due to spurious components at m = 62, 143 and 255. 

The theory discussed in previous sections for random binary sequences does not predict these 

spurious components. They are artifacts resulting from the properties of the MLS. 

A random binary sequence a:( n) that takes on the values ± 1 equally likely should have a zero 

third order auto-correlation: 

(a:(n) a:(n- i) o:(n- j)) = 0. [28] 

Figure 6 is a plot of (a:( n) a:( n - i) a:( n - j)) calculated numerically over a range of i and j 

values for a sub-sequence generated by a 31-bit MLS generator. It shows that the third order auto

correlation is zero almost everywhere except at (i,j) = (3,31), (31,3), (6,62), (62,6), (12,124) and 

(124,12), where it has a value of 1. The spikes at (6,62) and (62,6) are related to the spurious 

component of k1 ( m) at m = 62. 

The fact that a spike occurs at ( 31, 3) is a direct consequence of the algorithm used by the 31-bit 
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MLS generator. Figure 7 is a block diagram of the 31-bit MLS generator. The generator consists 

of a 31-bit shift register with the exclusive-OR of the 31st bit and the 3rd bit fed back to form the 

oth bit, the bit at the input of the register SR1. Therefore the Oth, 3rd and 31st bits of the MLS are 

highly correlated, giving rise to the spikes at (31,3) and (3,31). Similarly, the 1st, 4th and 32nd bits 

are also highly correlated. By propagating this triplet along the sequence, it can be shown that the 

oth, 6th and 62nd bits are also highly correlated, giving rise to the spikes at (62,6) and (6,62). This 

indicates that the spikes are MLS generator dependent and are not due to the use of sub-sequences. 

No spikes appear in the third order auto-correlation of a sequence generated by the Gaussian white 

noise generator used to obtained Fig. 4b. 

The fourth order auto-correlation is 

(a(n) a(n- i) a(n- j) a(n -l)) = 0 [29] 

when l is strictly bigger than i and j. Calculations of the fourth order auto-correlation of a sub-

sequence generated by a 31-bit MLS generator show spikes at (i,j, l) = (3,19,143), (19,3,143), 

(3,7,255) and (7,3,255). These spikes are related to the spurious components of k1(m) at m = 143 

and 255. The reason a spike occurs at (3,19,143) is similar to that for the spike at (62,6) of the third 

order auto-correlation. The oth, 3rd, 19th and 143rd bits are highly correlated due to the propagation 

of the highly correlated triplet, the Oth, 3rd and 31st bits. 

The auto-correlations of orders higher than two are related to the nonlinear components of 

the magnetization response. Consider the random flip angle excitation experiment, wherein the 

magnetization response can be written as a Volterra series (20): 

00 

Mxy(n) = LHi[a(n)] 
j=O 

n n n 

- ho + L ht(i)a(n- i) + LL h2(i,j) a(n- i) a(n- j) 
i=O i=O j=O 

n n n 

+ LLL h3(i,j,l) a(n- i) a(n- j) a(n -l) + .. ·. [30] 
i=Oj=O l=O 
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A Volterra series is a generalization of the Taylor series of a function of multiple arguments. The 

jfh order Volterra functional, H3 [a( n)], summarizes the jth order nonlinearity of the magnetization 

response and is given by a ph order convolution of the input with the jth order Volterra kernel, hi. 

For a zero mean excitation sequence a(n), the input-output cross-correlation is given by Eq. [I-8]: 

kt(m) 
1 

- 2 (Mxy(n) a(n- m)) 
a 

- ht(m) + ~ t t h2(i,j)(a(n- i) a(n- j) a(n- m)) 
a i=Oj=O , 

+-; t t t h3(i,j, l)(a(n- i) a(n- j) a(n -l) a(n- m)) + · ·. 
a i=Oj=Ol=O 

[31] 

All the even order Volterra kernels are zero for an NMR spin system and do not contribute to 

kt ( m ). When a( n) is a sub-sequence generated by the 31-bit :MLS generator in Fig. 7, the unex

pected spikes in the fourth order auto-correlation will give rise to terms that depend on the third 

order Volterra kernel in Eq. [31]. For example, consider the spike at"( i,j, l) = (3,19,143)·, which 

contributes the following terms to k1 ( m ): 

a 2 [h3(m + 3,m + 19,m + 143) + h3(m- 3,m + 16,m + 140) 

+h3(m- 16, m- 19, m + 124) + h3(m- 124, m- 140, m- 143)] . [32] 

The spin system is a causal system so h3 ( i, j, l) is zero whenever i, j or l is negative. This implies 

that the term h3(m - 124, m- 140, m - 143) does not contribute to k1 (m) until m is bigger 

than or equal to 143. This explains the spurious component of k1(m) at m = 143. Similarly, 

the other unexpected spikes in the fourth order auto-correlation will generate terms of the form 

h3( m- 137, m- 140, m- 255) and h3( m- 140, m- 137, m- 255) that give rise to the spurious 

component of kt ( m) at m = 255. When the excitation power is low, the magnetization response is 

linear with respect to the excitation and the higher order Volterra kernels are insignificant compared 

to the linear kernel ht. Therefore, the unexpected spikes in the higher order auto-correlations of 

the MLS do not cause significant spurious components in kt(m). However, when the excitation 

power is increased, the higher order nonlinear components in the magnetization response.become 
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larger than the linear component and the spurious components in kt ( m) are observed. 

For one dimensional NMR spectroscopy, the excitation power level that gives the maximum 

signal-to-noise ratio is usually sufficiently small that the magnetization response is roughly linear, 

therefore, the spikes in the higher order auto-correlations of the :MLS do not cause significant noise

like distortion in the reconstructed spectrum. However, these features will make the interpretation 

of multi-dimensional stochastic NMR spectroscopic data very difficult since the multi-dimensional 

NMR information is related to higher order Volterra kernels. One way to reduce the amount of 

noise-like distortion for a given excitation power is to use a different :MLS generator. For example, 

a 19-bit :MLS generator consists of a 19-bit shift register with the exclusive-OR of the 1st, 2nd, 5th 

and 19th bits fed back to form the Qth bit. Erroneous spikes will only occur in auto-correlations 

of order 5 or higher, therefore, only Volterra kernels of order 5 or higher will contribute spuri

ous components to k1 ( m ). As shown in Part I the integrated line intensity decreases rapidly as 

the excitation power is increased, i.e. as the system becomes more nonlinear; this means that the 

nonlinear components of the magnetization response decrease rapidly with the order of the non

linearity. Hence, the spurious components generated by the sth order Volterra kernel are usually 

much smaller than those generated by the 3rd and the 4th order kernels. Consequently there will 

be less noise-like distortion when the 19-bit :MLS is used. This is demonstrated by the results of 

a Monte Carlo simulation of K1(w) shown in Fig. 8, where the lines have much less noise-like 

distortion than those in Fig. 4a. A 30-bit :MLS generator also has this desirable property. One 

additional advantage of using the 19-bit MLS is that the period (=524287) is not prohibitively long 

and so the entire :MLS can be used to achieve the 20dB gain in signal-to-systematic-noise ratio 

over excitations with Gaussian white noise or random binary sequences. 
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Experimental Verification 

The experiments were performed on a 0.5T, 1 meter bore, home built imaging system (developed 

by IBM Corporation, Massachusetts Institute of Technology, and Lawrence Berkeley Laboratory). 

A circuit was built to interpose two 31-bit MLS generators between the pulse programmer and 

transmitter to implement binary MLS excitation (19). The sample was a 10cm sphere filled with 

an aqueous copper sulphate solution. The 7l and T2 of the sample were measured to be 160ms and 

140ms, respectively. However, due to static field inhomogeneity (1ppm), the effective 12. Ti, was 

only 45ms. All the experiments used a TR of 200~-ts. which corresponds to an optimal RMS flip 

angle of 2.8°. The RF pulsewidth was 25~-ts. which gives an excitation bandwidth of about 40kHz. 

The width of the reconstructed spectrum is 1 /TR = 5kHz. The flip angles of the RF pulses were 

calibrated with a conventional one pulse NMR experiment. The number of data points sampled for 

each experiment N(=65536) was a very small fraction of the period of the MLS (231 - 1), hence 

the excitation sequence behaves like a random . binary sequence. Initial results showed a broad 

line resulting from the plastic material in the RF probe (17). In order to avoid confusion in the 

interpretation of the spectral line of the copper sulphate solution, the plastic line was obtained for 

each study and subtracted to correct the baseline. 

Figure 9 shows the experimental line shapes of K 1 ( w) and S( w ), and a plot of the average 

signal power as a function of the RMS flip angle for the random phase (random quadrature) exci

tation. The plots are very similar to those in Fig. 1 with three exceptions: (1) There is noise-like 

distortion in the experimental Kt(w), (2) as discussed in the previous sections S(w) has a DC offset 

resulting from the measurement noise and (3) S( w) shows insignificant noise-like distortion even ~ 

when the excitation power is high. Finding noise-like distortion in the experimental K 1(w) is not 

surprising since the experimental excitation sequence is a sub-sequence of a 31-bit MLS, while the 

theoretical results are obtained for a random binary sequence. The noise-like distortion increases 

as the RMS flip angle increases, in agreement with BlUmich and Ziessow's observations (8) and 
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the Monte Carlo simulated results shown in the previous section (Fig. 4a). The fact that S(w) 

shows insignificant noise-like distortion is an advantage of S(w) over Kt(w) as an estimate of the 

spectrum. Also notice that neither K 1(w) nor S(w) has a notch artifact. 

Monte Carlo simulations of k1 ( m) in the previous section show spurious components at 

m = 62, 143 and 255 when a 31-bit MLS generator is used. Figure 10 shows the real part of 

k1 ( m) obtained experimentally for random flip angle excitation with a 31:-bit MLS generator. It is 

very similar to the Monte Carlo simulated results in Fig. 5 even though 11. T2 and the acquisition 

parameters are different. The spurious components are indeed at m = 62, 143 and 255. 

Conclusion 

Analysis in Part I (17) showed that the spectrum obtained with random flip angle excitation has \ 

several different saturation artifacts: a line broadening that varies with the resonance offset, a slight 

shift in resonance offset and a notch at the negative of the resonance offset. To minimize the non-

uniformity in line broadening, a sub-optimal RMS flip angle must be used. In order to improve on 

these results, two new excitation schemes have been introduced, the random phase excitation and 

the random quadrature excitation. The random RF phase of both excitations removes the shift in 

resonance offset and the notch artifact, and gives a uniform line broadening across the spectrum. 

The line broadening results in a loss of resolution, but it is predictable and does not affect the 

integrated line intensity. 

The random phase excitation and the random quadrature excitation give an average signal 

power that is independent of the resonance offset. The signal-to-noise ratio is maximized when 

amax is approximately the Ernst angle, cos-1 ( e-TR/Tl ). For RMS flip angles up to amax• the per

formance of the two excitations are identical and both the Fourier transform of the input-output 

cross-correlation and the signal power spectrum are good estimates of the true spectrum. In addi-
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tion, amaz is usually one to two orders of magnitude smaller than the Ernst angle for a conventional 

pulsed Fr-NMR experiment with TR :::::J T1• This corresponds to a reduction of the peak RF power 

requirement by a factor of 102 to 104 when compared to the conventional pulsed Ff-NMR experi

ments. 

The stochastic experiment provides two·estimators of the spectrum, the Fourier transform of 

the input -output cross-correlation, K 1 ( w), and the signal power spectrum S ( w). At low excitation 

power, such that the magnetization response is linear, both K 1(w) and S(w) are good estimates 

of the real spectrum. At higher excitation power, they show slightly different saturation charac

teristics. The advantages of S(w) over K1(w) are: (1) S(w) is obtained directly from the signal, 

and so the excitation sequence need not be stored or regenerated for the reconstruction, simplifing 

hardware and software design, (2) in the case of random flip angle excitation, the notch artifact is 

less pronounced in S(w) (see Part 1), (3) S(w) shows much less noise-like distortion and (4) S(w) 

will appear smoother and less noisy than K1 ( w) when the measurement noise is the dominating 

noise source because white measurement noise will behave as white noise in K 1(w), whereas this 

noise appears as a DC offset in S(w). The disadvantages are: (1) The signal-to-systematic-noise 

ratio is approximately 3dB lower for S(w) than for K 1(w), (2) The S(w) of two nearby spectral 

lines interact nonlinearly in the overlapping region (see Part I) and (3) the measurement noise is 

transformed to a process consisting mainly of a DC offset The non-white systematic noise may re

sult in observable structural artifacts when the signal-to-measurement-noise ratio is low. A longer 

signal sequence, i.e. a large N, must be used to guarantee a higher signal-to-measurement-noise 

ratio. 

Theoretical analysis shows that at the optimal excitation power that maximizes the average 

signal power, random binary sequences and Gaussian white noise sequences give almost identical 

spectral response (see Part 1). The major advantage of random binary sequences over Gaussian 
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white noise sequences is that random binary sequences can be approximated by maximum length 

sequences (MLS) with the following advantages. (1) MLS is inexpensive to generate with hard

ware and software. The sequence can be regenerated any time it is needed. (2) The binary nature 

. simplifies the computations of cross-correlations and auto-correlations. Time consuming multi

plication operations can be replaced by simple additions and subtractions in the Fast Hadamard 

Transform algorithms. The computation time is shorter than that required for Fast Fourier Trans

form algorithms. (3) The periodic nature of MLS allows coherent signal averaging to improve the 

SIN ratio. (4) When Gaussian white noise sequences or truly random binary sequences are used, 

the systematic noise power is inversely proportional toN, the total number of signal points used 

to calculate the cross-correlation and auto-correlation by time averaging. However, when a MLS 

is used and N is equal to an integral multiple of the period of the MLS there is a gain of approxi-

mately 20dB in the signal-to-systematic-noise ratio over Gaussian white noise sequences and truly 
·, 

random binaiy sequences of similar length. 

However, one must observe some precautions when using MLS. The sum of a full MLS that 

takes on the values ±a is non-zero. Therefore, if the product of the period of the MLS and TR is 

comparable or shorter than T1 and T2, the magnetization response may acquire a non-zero steady 

state component that results in an artifact at the negative of the resonance offset and a non-uniform 

response across the spectrum (19). If this is the case, a MLS with a longer period must be used. 

This may result in a large N. The auto-correlations of high orders may have unexpected generator

dependent spikes. These spikes excite high order nonlinear components of the spin system and 

cause noise:-like distortion to be introduced into the Fourier transform of the input-output cross

correlation when the excitation power is high. The amount of noise-like distortion is usually in-

significant at the power level that maximizes the SIN ratio, i.e. when the magnetization response 

is nearly linear. One way to reduce the noise-like distortion for a given excitation power is to use a 

MLS generator that has more bits being Jed back to form the Qth bit (Fig 7). The noise-like distor-

I· ~ 
11 
l 

·p.J 

l 
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tion can also be reduced significantly by using the signal power spectrum to approximate the real 

spectrum. 

Finally it has been shown that stochastic NMR with random phase excitation or random quadra

ture excitation using MLS is simple to implement and is an effective technique for high field NMR 

studies. This is particularly relevant for in vivo studies. 
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Figure Captions 

Figure 1 (a) Line shape (absorption part) of K 1(w), (b) S(w) and (c) the average signal 

power for random quadrature excitation with different RMS flip angle a. T1 · 0.5s, 

T2 = 10ms, TR = 0.1ms and v = 250Hz. 

Figure-2 (a) Theore~cal variance of kf' ( m) for random flip angle excitation using Gaus

sian white noise (solid) and random quadrature excitation using a random binary 

sequence (dotted). (b) Theoretical (dotted) and Monte Carlo simulated (solid) vari

ance of kf" ( m) for random flip angle excitation using Gaussian white noise with 

N = 25600. T1 = 0.5s, T2 = lOms, TR = 0.1ms, v = 250Hz and a = 1.15°. 

Figure 3· Monte Carlo simulated log-log plot of the sigpal-to-systematic-noise ratio of 

kf" ( m) (*) and ~ ( m) ( o) versus N for random flip angle excitations. The excitation 

sequences are (a) Gaussian white noise, (b) 31-bitMLS and (c) 15-bitMLS.Ti = 0.5s, 

T2 = 10ms, TR = 0.1ms, v =250Hz, and aRMS flip angle of 1.15°. 

Figure 4 Monte Carlo simulated line shapes of K 1(w) for random flip angle excitation with 

sub-sequences generated by (a) a 31-bit MLS generator and (b) a Gaussian white noise 

generator. T1 = 0.5s, T2 = 10ms, TR = 0.1ms, v =2500Hz and N = 512000. 

Figure 5 Monte Carlo simulated real part of k1 ( m) for random flip angle excitation with 

sub-sequences generated by (a) a Gaussian white noise generator and (b) a 31-bit MLS 

generator. T1 = 0.5s, T2 = lOms, TR = 0.1ms, v = 2500Hz, a = 25° and N = 

512000. 

Figure 6 Numerically calculated third order auto-correlation of a sub-sequence generated 

by a 31-bit MLS generator. The sequence takes on the values ±1. N = 20000. 

Figure 7 A 31-bit MLS generator implemented with a 31-bit shift register. 
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Figure 8 Monte Carlo simulated line shapes of K 1 ( w) for random flip angle excitation with 

sub-sequences generated by a 19-bit MLS generator. 11 = 0.5s, T2 = 10ms, TR = 

0.1ms, v =2500Hz and N = 524287. 

Figure 9 Experimental results. (a) The line shapes of K1(w), (b) S(w) and (c) the average 

signal power for random quadrature/phase excitation obtained with two 31-bit MLS 

generators. T1 = 160ms, Ti = 45ms, TR = 0.2ms, N = 65536 and v =60Hz. 

Figure 10 Experimentally obtained real part of k1 ( m) for random flip angle excitation with 

a sub-sequence generated by a 31-bit MLS generator. 11 = 160ms, Ti = 45ms, 

TR = 0.2ms, v = 1250Hz, N = 65536 and aRMS flip angle of 24°. 
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Symbols 

0 oh 

0 uppercase oh 

0 zero 

1 ell 

1 one 

k lowercase kay 

K uppercase kay 

nth italic n superscript italic th 

T1 italic tee subscript 1 

T2 italic tee subscript 2 

() theta (Greek) 

J.L mu (Greek) 

J.Lx mu (Greek) subscript italic x 

J.La bold mu (Greek) subscript alpha (Greek), a vector 

ILM bold mu (Greek) subscript italic M 

ILR bold mu (Greek) subscript italic R 

a alpha (Greek) 

ax alpha (Greek) subscript italic x 

a bold alpha (Greek), a vector 

/3 beta (Greek) 

" w omega (Greek) 

8nm delta (Greek) subscript italic nm 

4l upper case delta (Greek) 

<P phi (Greek) 



'Pa variation of phi (Greek) subscript alpha (Greek) 

1r pi (Greek) 

v nu (Greek) 

(j 

A 

B 

sigma (Greek) 

bold A 

boldB 

C boldC 

C a bold C subscript alpha (Greek) 

1Ft subscript 1 italic F subscript 1 

.Nx calligraphic N subscript italic x 

.A! bold calligraphic N 

M bold, italic M, a vector 

Mxy italic M subscript italic xy 

Pt p subscript 1 

Ra bold R subscript alpha (Greek), a matrix 

Ro bold R subscript theta (Greek) 

Re calligraphic R and italic e 

Z calligraphic Z 
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