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ABSTRACT

A Psegdé_JahnfTeiler}formalism is nsed:to'conStruct potential
functions for molecules With large amplitude internal motions. The
. types of molecules studied are MX (C3 , 1nvers1on) MX (D 3h° ax1al-'
equatorlal 1nterchange), XeF (dlstorted Oh’ pseudorotatlon),

MX7 (distorted D h? pseudorotation), and four—membered, pseudo

5

fonr-membered,"and five-membered rings (ring puckering).
The potential functions'for the MX3 (C3V) molecules. have the -

fOrm
2.2.1/2 2
) /

]+2KS

M]H

V(S) = [l (1+40 S
where S‘is_the_inversionfcoordinate;'and'Aeo, o, K are parameters
which are'rélated'to'structural and electronic factors. With this
potential we have determined the barriers to planarity in NH (2179 cm ),
PH (15736 cm” ) AsH (14154 cm ), and SbH (16649 cm )

The potential functions for the MX5 (D3h) molecules have the

-’

form _ o
V(s) = 5 be, [1-(1+4a’s?(1485) /%] + 1 ks?



) -vi-

where S is the eﬁial—equarOriai iﬁterehenge coordiﬁate; and Aeo, o, B, K .
'are parameteré'related to structurelvand electronic factors. We have '
‘ueed fhis ﬁotentiel~to calculare rﬁe axial—equetorial interchaﬁge barriers
in PF (1224 em ) AsF (913 em” ) NbF (1210 cm ) TaF (942 cm ),

and VF (592 cm” ) |

The potentlal function for XeF (distorted o ) has the form
V(R,0,4) = -aR” + bR" - cR” [sin'0 (SIL20 229 _ 1y 4 sin?o)

where R,6,9 are:pseudordtational,coordinates,’and a,b,c are parameters
which were determined using experimehtal data (electron diffraction,

infrared and Raman SPectra,fﬁeat capacity, electric field'deflection).

-1

The calculated radial barrler in XeF is approkimately'1650 cm T,

6

-1
while the angular barriers fall in the. nelghborhood of 120 cm '(C3V-‘+ Coy)o

q o |
240 cm (C2v © C ), and 360 cm (C3V e—C4V).
For the MX (dlstorted D ) molecules the potent1a1 has the form

2 2

V(p,0) = ‘21‘ Be_ [1-(1+4a"p ’(1—_:-62;32_))1/2] + Lgp?

K
7%’
whére,p,e are‘ﬁseudorotational'coordinates, and Aeo,-d, §, K are
'Aparameters related to structural and electroniC'factors.' The barriers
to planarity of - the equatorial fluorines were determined for .

IF, (1481 en D) and ReF. (2236 em™ ).
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The potential functions for the.fdur—membered,'énd pséudo
four-membered rings have the form
]+—K82

2)1/2 :

V(S) = = Ae [1 - (L+402s
2 o

-where S is the'puckering‘coofdinate and Aso, o, K are parameters
- related to eiectronic and structural factors.

The potential function for cyclopentane (five-membered ring)

"has the form

' 1, 2.1/2, . 1.2
V(p,8) =3 [1 (1+o p>/]+21<p
where p,0 are pseudorotational coordinates, and Aeo; K, o are related
to electronic and structural parameters. The barrier to planarity in
cyclopentane was calculated to be in the region of 2,300-2,600 cm 1.

The behavior of these molecules with large amplltude motion in

inhomogeneous electric'fields is also discussed.
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I. INTRODUCTION

In recent years several molecules (XeF VFS) have

6’ F7, ReF7,

" been synthe51zed, which exhibit unusual molecular motions not hormallyA

expected from relatively simple, highly symmetric inorganic molecules..

"There has been coneiderable.speculation, particularly for XeFG, about
-~ the hature and the origin of the behavior of these molecules. It has

_ even been proposed that commonly accepted ideas on structure and bonding

might have to be abandoned or at least modified to account for the

- properties of these molecules.

The purpose of ' this thesis is to demonstrate that these molecules
can be adequately, in‘faCt, qdantitatively dealt with in

the conventional Born-Oppenheimer approximation to molecular theory.

The basis of the Born—OppenHeimer epproximation is that the nuclear

motion is so much slower than the motions of the electrons about the
nuclei that the molecular Hamiltonian, H, can be expaﬁded in any desired,

complete set of nuelear'coordinates.(s).

(o}

The first term, H ,5iS'a‘purelyfelectronic Hamiltonian which represents

So
electrons moVing‘in-the'potential field due'to avfixed-nuclear frame

(So). Once the electronic ground state wavefunction is derived from

H, , it can be used to average the complete Hamiltonian, H, over the .

So

electronic motion and thus define the effective potential for -the



" nuclear motion in the grouﬁd electronic étate.i If we assume that H

has been expanded about thg botential minimum (equilibfium geometry)
_then averaging H over fhe ground electronic state will cause the linear
~ terms in Si to vénish. ‘This is obvious since there woﬁld not be.a

It is the_

true potential minimum if there were linear terms in 8,

quadratic térms, S

iSj,’which are the leading terms to survive this

averaging process.. Ndrmally, the descripfiqn of thejnuclear poteﬁtial
lét0ps at these qﬂédratic tefms. Howe&er, a bdsitive quadratic form
_fof the péfential is not‘édequate to éxplain lafgé amplitude'métions
or the exisfehce»of several identical ﬁotential.miniﬁa separated by
. large displacements in coordinate spacé.

The approach taken in this work is to include the'effecté of
excited éleétrdnic staées wﬂich cén coup1e to the.gréund electronic
state via the iinear'tefm‘in the expanded form of H.  Although the

.linéarlterm vanishés.in its average oﬁer the ground electronic state,

it will contribute second order and higher’order terms to the nuclear.
potential because of nqnzera, off diagoﬁal terms betwéep the ground
electrOnic:state_and»excitéd'electronic states used as electronic

bésis functibns.in which to:e&aluate the métrix_of the linear terms,
(BH/BSi)SO'Si. It will‘be seen that the~c6ntribution of the linear.ferms
.to_the nucleaf potential accoﬁnts nicely for the unusual'aspects of the'
molecules mentioned previously. _This'Freatment of the linear terms is

often referred to as the pseﬁdo Jahn-Teller approach.1’2’3’4



A

:/ﬁinimum problem of the NH

_uﬁderstood systems lends a large measure of'credibilitj to its

. In order to demonstrate_the'validity, aﬁd the generality of the

pSeudo JahnFTeller approach we have treated the more familiar double

3 like molecules (NHB,'ASH3? PHB’_SbHB)

~ from this point of view. We have aiso'applied it to a quite different

type of large amplitude nuclear motion, puckering.of'foﬁr-membéred,'

pseudo foﬁr4membered, and five-membered rings. The fact that this

formalism accounts-so’well,for the propertiés of these more completely

~application in the more novel-moleculeS‘(IF7, ReF, XeF63;VF5).
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II. INVERSION POTENTIAL FOR A M_X3 (C3v) MOLECULE

A; 'Derivation-of the Inversion Potential

- The inversion potential for MXB (CBV) molecules can be determined as
“follows. ‘Expand the vibronic Hamiltonién (Hv) about a D3H referehce

configuration in a complete set of symmetry coordinates (Fig. 2).

. : : . Z <3Hv> | 1 ZZ( 32Hv > | . |
H =H_  + =] S, * = Nsge=e—] S5, + ... (1)
v s, g L s K 2 4 98,05, s_ VIK L |

L

Detérmiﬁe.the eigenstates of Hvé , which is a pure electronic Hamiltonian

tepresenting electrohs moving in a D h'potential due to a fixed nuclear

3

framework.

H_ ly > = '€n]wn ) n=0,1,2,... ' (2)

" The zeroeth order vibrational potential can be determined for the

. electronic groun& state,-|w0'>.
. . . - . : ‘ aH . v .
— (| - g (> |
V(S =<y [H [y ) = e+ }KZWO[ <33K>S_ lw, ? sg

. 9 - (3)
. a2 . _
1 v '

+ L <¢,|<___> v ¥ s.s_+ ...
| 2 ;; o BSKBSL g O KL

o

For nondegenerate electronic states the linear term in SK'vanishes.

=

This can be understood by finding”the fepresentations generated by
[ ) and [==~) = in the D,, point group. We have
Mo : BSK s ~ 3h
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Fig., 1. Molecular orbital diagram for MH3 molecules.
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. Fig. 2. Symmetry coordinates for MX3(D3h) molecules.,
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S

1‘<8H > -=. PS o % Cor, e D @
\9¢ )5 | | |

0

where T is an irreducible representation of the'DBh'point group.  For
the‘iinéar-matrix element to be nonvanishing requires that the direct
prbduct of_the representations involved contain ‘A!

1 °

T xT . x T = A'xT, xA! =T B '>: (5)
lpo <Eﬁg> v lpo : 1 S L Sk _ ‘
v‘aSK S o .

We can'conclude_thst:the only'possible nonzero liﬁear matrix elements
can occur when 'PS' .equsls Ai . Becéuse totally symmetric motions

(SA;) change only -the dimensions but not the symmetry of the molecule
1 . .

we can,srbitrarily.moveualong.a tstally symmesric coofdinate (SAi)
withogt affecting the results of the preceeding discussion. We can
take advaﬁtagé of this by CHoosing the dimensions of the reference
sonfigurationlto.yield,

(wAi l <5§”—> v i ? % 0. :_ _ - (6)

where for'symmetry-:easdns alone a'zéronresult is not required. This
'now‘mskes all_the linear terms vanish and the potéﬁtial (3)

vsimplifies to



; : , K L. - o
where
. . ' (asz > | _—
C,. = V| \|\se=e vy - (7a)
KL o SSKSSL S o - _
R o .
" This is'nothing,more'than‘the quadratic approximation used as the -

starting poiﬁ; for é normal coordinate analysis. Since wé,are seeking a
potential of the déuble m;nimum type, aﬁd the pufély éuadratic'potentialvin
Eq. (7) is not of tﬁét form, the zefoethVOrdgf approximation t& the

. ground staﬁé potentiél (3) is clearly not adéqﬁéte. The next sfep
is to include thé gffe#t of higher electronicvstates on»tﬁe'linear :

term. We are interested in terms of the form

One might expect that the most important contributions come from the
lowest electronicvstates of_the'proper.symmetry.- The proper symmetry

is defined by

Al v

1 38

FIP x‘ P<3H> xvrwn —_Ai,x Fs 'X-rkb =-I-S xrw - Ai (9) 
Ko. ‘

This will.onlybbe true when 'FS eqﬁals'Fw . From the molecular

- K n _ :
orbital diagram (Fig. 1) we see that the first excited state is

WlA" ; where the triplet_sfate W3_ is.exéluded from consideration
2 ' , T A" :
2



because of the orthogonality of its spin function to the'singlet

spin of the ground state. The wlA' énd  wlA". can be coupled by |
o o 1 ‘ R , :

- ~ _“any symmetry coordinate transforming as FS (9). . Examining
the symmetry coordinates for. ‘MXB(DBh) 2 molecules (Fig. 2)
l shows that there. is a mode transforming as Aj. TFurthermore, this
'is identical to the motion involved in the inversion of MXB(C3V) 
L-‘ﬁolecules. -The contribution of this excited electronic state to
the potential can.now be calculated by diagonalizing thé‘followiﬁg
matrix _,' : T | C
: wl ' ) : 11’1 " )
LA A
|< LSTORAN L i 2
o " (10)
1 L AN bS, + fe_ - €
where a, b,‘and Aeb are defined by
; i . Y -
A | <3HV> I -
‘a. = (IP], n ’ : V1,n > ' - (11a)
U U\ TRy |
o _ o’ R . »
S ""._aHV | o - -
b o= < Upyn |l (me2) | Ve © (11b)
ALY T ' |
- f
Ae = €7 n" E;—':]_ v T Epam . o N . (11c)
e Ay o

L #

where we can define EIA;.= 0
nere aerh Y
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Tne eigenvalues of Eq. (10) are
: 1 PR 2,1/2
e= 3 [(Aeo+bsl) + (Ae +bS )(l+4a S /(Ae +bS ) )] a2

The presence‘éf the symmetrical stretching eonrdinate Sl in addition"

to the_inversion mode S2 allows an analytic description of the change

in bond length (M-X) in going from the plenarsto the'pyremidal form.
 Only a small change in bond 1ength would be expected, since the
~"symmetry and nature of the bonding do not change much during the

inversion. This assumption is quantitatlvely,Justifled by SCF

calculations‘on NH3 5"an'vaH3.6. If we now ignofe the'eoupling of S1

to S, by setting b equal to zero the eigenvalue simplifies to

t_ 1. L 2.2 : _a
€ = (2) [Ae0 - Aeo (1+40 SZ] o = B (13)

where et represents the lower root of.Eq. (12) because we are interested

in the ground state vibrational potential. The augmented ground state
potential is

v(s) = e, + V (8) | ] | - (14)

Because €. involves onlycS the>ohher coordinates ineVo(S) can be

L 2
ignored, leaving jnst the inversion potential,.

Sl 2 1/2 | 1, 2 o '
V(s,) = E-[Aeo_- Ae (1+4a S ) 1 + (z)c2 s | (15)



&
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Eipansion ofvthe first term in Eq. (15) yields
2 9 o ‘
€. R -0 Aeo S,” + u»Aeo S, t+..... _ . ..(16)

‘We can define a truncated potential by

C

ey 20 o2, o o4 -
VTrunc( ) ( -0 Ae + = 5 D) S2 \+ o AEOSZ- ’.(17)
If the foliowing situation,occurs
ke > o2 as
o 2 ‘ o v
the-pruﬁcated potentiai’has'the special form
| Verrune Sp) = = aS,” + bS, - - (19)
with .
a=aq Aeé - C,/2 - (19a)
and
b = a4Ae

(19b) -

' This shows both that the more‘complicated_potentiai (15)5has.the

_proﬁervsymmetfy (double minima) to express the inversion, and also that

‘in the limlt of 1 >> 4&2 the expan81on (17) is valid and the

2
potential takes a very simple form (19)
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Now that the form of fhe inversiohipotential has been established in
Egqs. (15 and 19) it femains to give the varidﬂs-parametefs a quantitative
_;ﬁeaning;f Working first with Eq. (15), values are needed for‘Aeo, o,

and C2.V'Asd can be found from the ultraviolet absorption spectrum of

" the MH3 moleoules7’$’9 and is just the lAi > lA; transition. Strictly

speaking Ae is the excitatlon with' respect to the planar form (D )

‘and what is observed experimentally is Ae 3V The correction_of

‘ .C ' D ) o
'A€°'3v_ to Aeo 3h'w‘ill be discussed latér. Values fOr‘CZ, the force.

3h configuration,

and o, the linear matrix element, can beiestablishedyby the following

- constant for the‘Az" motion in‘fhe"(hypothetieal) D

procedure; .Take the first derivative of the potential (15) and set

it equal to zero at the'miﬁimum (C3v) and maximum-(ﬁ3h) (Fig. 3).

ay -2 e 201 + 4a s 2) -1/2

|

32 +.CZS2 =0 ;(20)

This yields

_SZ-= 0 D3h maximum : - (20a)

/2

' -1 S - -
L 2Ae o (1 + 4a S ) 2 f 0 at the C3v minimum (SZ—SO) .(20b)

The second derivativeomust eqﬁal the Curvafure (Ko) at the C3V

cohfigﬁrationt(Sé)f :

2y 2 2, 1/2 i 2 -3/2 4 2 ~
- - 2A€ o (1+4a 2 ) + 8Ae o (l+4a 9 .2 »+ C2 = K0

2 . o . | | B (21)
' ' ' at S, = S
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XBL744-6145

Fig; 3. Dbublevminimum potential along the‘Sz(A;) path.
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decan be épProximated by>thé5Aé" fofce conéfaﬁt iﬁ'thé actual C3V
_conformation. To obtain the true Ko? the force cbnétant, which o
Lis based on a normal coofdinate analysis, must be corrected for .
ahharmonicify effecté ThlS ‘correction will be discussed later.

‘Equations (20b) and (21) can be solved s1mu1taneously to yield o

."and C

' S = . (22a)
1+ so®s 2)3/2 - sne s,
. _ 0”0
Solve Eq.'(22a)-itefatively for o, then Cz‘is
2 -1/2

c, = ZAEOL (1+40LS )

‘2 - (220),

The same anélysis can be applied to the truncated potential (19)

to define the constants a,»and'b;

K e K

' ' K : 8s
o
We return now to the correction of AF ”Bh and LI The relationship
D - C o : -
between AEOvBhfand Aeo 3v can be visualized as in Fig. 5._'NH3 is

known to have a planar excited state3 (lAz") while the remaining -
molecules have a pyramidal excited state;3: Then the correction for

NH, is

st - L |
e M= pe Mg -8, (20



_.15_” '

PHs, AsHs, SbHy

XBL 744-6147

Fig. 5. Relationship of A€o3v ’tov'A€23h in MH3»molecules.
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where 61 isgjustrthe'barriet height and 62 is the energy required
to bend the excited state from the ground state pyramidal geometry

. - : . : . ' 7
to the planar form. &, is known from spectroscopic measurements

2
and has a value of 5400 cm_lf For PH3, v 3, SbHB,we have
D.h c - e
he 3 o~ ae Vs | (25)

0 o 1

where we have assumed 62 is less important than in the NH3 case due
' o ' ' D -
to the nonplanar excited state. A803 can now be corrected in an

iterative manner. Using the initial guess of the potential, where
3 | Do - Csv | |
it was assumed Aeo' = AEO , calculate the barrier height and

~apply Eq. (25). ‘This can be repeatéd_until the correction becomes -

c - N
negligible. The justification for this procedure is that Aeo gv(~.104 cm_l)

is roughly an order 6f magnitnde-larger than the barrier height

(~ 103 cmﬁ;) in MH§ molecules.
The correction'of'K0 for anharménicity is more involved than the

D o : A :

Aéo 3h adjustment. The initial assumption is that

Ky = Cp 7 e

c
where c, 3v is the A2" force constant in the actual Cay configuration.
‘ 3v v

The usual method of'calculating C2

“is by a normal coordinate

‘_analysis in which the 0 > 1 (VA w) transition is assumed to be entirely

calc
g»1 one
calc

would find V0+1 < Vgii because of the anharmon1c1ty‘of the potentiall

harmonic. Using this K in the potentlal and calculating v
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An iterative correction procedure is possible if we assume the true

~ harmonic contrlbution to VP is given by -

| 01
Vhar(l) = VexP + (V calc(l)) for the-fitat iteration (27a5
0>1 Vo1 , ration. .o L
{thereafter » o I R ' | .(27b)
har(l) har(l-l) célc(l) | e |
0?1 ‘ V0+l + (V 0+l ) forvthe‘i th iteration (i}l)
We can now correct Eé;
har(i) 2 . :
, S Cc. (V ) _ . | i
ko =Gy %}.— SR (28)
2w |

01

ThlS adJustment can be repeated until the difference (Ve calc(i))

is neg11g1ble. It should be stressed that after each iteration on

. D,
_either‘koﬁor Aeo Bhvone nust re—evaluate Eqs. (22a, 22b) or (23) to

obtain the corrected potential function.
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~ The inversionvcoordinate'sz is defined bylo o .

5,8 =V3r (88, ) = /38 S (29)
| 3 ‘

" where r is the M-X bond length and Bvis the angle of ‘an M-X bond

with respect to a planar configuration (Fig. 4). 'Bgcause'the
" literature values of the C3v force constant (C2 3V) are based on the

coordinate
szq =V3r (a0, ) =/3rba (Fig. &) = - (30)
o - "3 . :
S v 03 S , o
we must adjust C2 V . to our inversion coordinate S2 . The reason
Aol o :

B

-for chénging cbordiﬁatesvfrom Sza to=S2 is the anémaloﬁs béhavior
of Ao in the‘neighborhdod df-the planar coﬁformatidn.' Ad dogs not
change sign in'paSSing‘tﬁfough_the planar form, which méans it dées
not have the prqper éYmmetry td eipréss the inversion ﬁrocess}

However, if the'equilibfium structure is not too close to D, ,Ac is

3h?
suitable for expressing small equilibriﬁm displacementé, The
relationship between 023V and C23vxin the region of the equilibrium
' : ‘Aot " AB ' ‘ :
strgc#gre\(c3v9_1s
c c 2 o
T, 3v , v [dAd :
C = ¢,V <“_dzx8>c o (31)

2
8 T 3v
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' Fig. 4. Plot Qf o versus B for MX, molecules.

3
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A similar relationship ‘exists between the reduced mass based on the

two coordinates.-

dAB.

m

26 ‘mzAa (dAoc)z (32)

Cav

#Thebvaiue of. tégé]dAB)C3vi for é'sp§cific mblecuie can Be determined
frbm'the sloﬁeléfié plbt'of;u versus B (Fig. 4). The reduced masses
used‘ihbthe calculatiqn8~were based ‘on Wilson'sll;12 high frequency
épproximation; In this Case~the high fréqueﬁcy‘was taken as the Al

. . N

stretch and the low frequency as fhe_A1 bend, relative to the C

3v
. : . c ; )

form (App. 1). The actual force constants (ngg‘) used in the
calculations were based on the derived masses (32).

208 S o>1 /T2 |
.pexp is énte ed-in ( -l)' >& m A8 in ( ) ‘then CC3V
Vool - r n- (em ), an 5 amu _ 28
will be in"(mdyn/Ao). Formula (33) is just a rearrangement of
the familiar hv = éL- (g?l/z,' which shows how the frequency of a

harmonié.oscillator is determined bj_ité force:coﬁstantl(K) and mass
(m); Thevébpropiiéte éxperimentéll3vinformation used as input to the
potentiél'function caﬁ:be'foﬁnd in»TaBieil.

The énergy.leveis célculaﬁed from the potential wefé obﬁained.
by‘COmputer diagona1ization of the &ibfational Hamiltbnian iﬁ a
.'40-membér harmonic oscillator basis set.  The finél results can be
.fduﬁd in Tables 2”and 3. 'Ianab&e 2 we see thaf it took 3 ite:ations

., potential, while for all the other

to converge on the final NH3
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calc d v exp was obtained

S0-+1 0~>1

on the flrst iteration. Because'of,the relatively small barrier in

molecules almost exact agreement between v

-,'NH3 ompared to v0+1

while for the other molecules the well is so deep that it is very

we would expectia'large ahharmonicity correction

nearly harmonic about the potential minima. A small correction (3 cm—l)

to vgiic in PHgicoold be made, however it would not,sighificantly _

 alter the indicated parameters.

C. Discussion: Discussion of Computational Results
: and Comparison to Previous Work

~ For, the MH3 series we have found that the parameters o, and

_'868 are very close to'onity (Table.2). .Therefore the condition for
‘using the troncated potential 1> 4&2822) is not pet. 'Ihie'ie.wﬁy»
’:only the'fullypotentialb(lo) was used‘in the,calculations. |
- It is'interesting.to-compare the varioue’potentials used to
L 14,15,16

describe.NH3 inversion 2T withvthe‘one derived iﬁ‘this work.

. Thése include

1/24

v(s) = 5 [AeO—Ae6(1'+oc 52) 1+ 3 2 ¢,5° (This ‘.Jork-‘) o (342
V(S) = - C eech2 (£%)-+‘D'eech4 (g%o | (Manniog)14 (34b)
V(S) = K(a + bsz)‘2/(.1’.+ s)? (Newton)ls (%)
W) = Las?ely .sl* by empesd)  (swatem™® o (34d2_.

2 2
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vwhere'S is the invgréi6n coordinaté. ‘In Manﬁiné's potential C, p and

D are arbitrary éansténfsfwhichrwére ;djusted’to ébtaiﬁ'the best fit

:Lfg the availablé exﬁéiimental energy 1évels.‘ The afbifrary constants

K, a, and b in New#bn's'potential we;e‘fiﬁ té the fi}st four levels

E 0. splitting. This

of NHB

accounts for Newton's success at fitting O

]

S

with extra weighting given to the O A

> QA whilé not ﬁanaging
as.welllwith the ié1;.lA transition (Table 3)ﬁ‘ In Swalén's potential
the four cbﬁstanté a, b, Q, and c, .and also.tﬁe'reduCed-mass were
least sdugres fitﬂ;o the first fourteen energy Ievgls_in NHB'
| - The potential used héie (34a)>differs éréaﬁiy in form and
"coﬁcept‘from its preaec§3sors (34b,c,d). Bofh:Manning'éﬁd Newton

picked their partiéﬁlai form to obtain a reésbnably easy to solve form
fdr the Schrodinger equatioﬁj Swalen chose his.very fleﬁible potEnfial
“in ordéf.to get a very eiacf fi£ to thevenergy>1evels’(Tab1e 3), and
hence clqsely'appquimate the>true pofehtial. ~In this work the
parameters of the'potenfial have a &irectlbhyéiCal»interpretation

(éee theory p,lz);lénd méfé importaﬁtly the.form of,thé'potential is not
arbitrary but_derivéd, ﬁith ﬁarious approximations, froﬁ the exact non-
relativistic Hamiltqnian.' fhis suggests that if one treated the
. c. » D .

v o
AR o, Aeo and C2

obtain a fit as gobd or better than Swalen's five parameter potential.

constaats m as arbitrary one could probably

We 'have focused our discussion primarilyvon NH, simply because

_ 3
a comparable.amdunt of experiméntal and théoretical-iﬁformation is not
'available«fbr the ch'e'r'MH3 (PH3, AsH3, SbHS) molecules. The absence

of’an observable ihversion sblitting‘in the lbwer levels of these
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'mdleculés makes iﬁ impéssiﬁlé to fit ;n arbitrarf doﬁble_minimum
potential to'tﬁe data in order to obtain anzestimate“of'the barrier
;héighf; In this work detailed gxpérimehtél information (invéréi§n
 sp1ittings) is hot needed and we'h;ve‘caicula;ed_the inversion

potentials for the entire MH seriés (Table 2). The beét available

. 3
data on the_inversion potential‘in,the~moleculés dther than N_H3 is+
an. SCF calculationAon PH3-6 in which the barrier height was calculated

bérrier to be 15,736 em”
5

‘to be 13;012»cmﬁ1. We'c;alculate,the'PH3

(Table 2). A recent SCF calculation.on NH, ° placed the barrier at .

3

2,589 cm_1 compared to the best experiméntal'determination (Swalen)
: of‘2,018 em Y. This is a difference of about 257. In view of the

NH3 case it is not unreasohable that the two calculated barriers

for PH, differ by approximately 20%.

3
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‘Molecﬁles

Table 1. ;Experimental Déta for MH3
A8, (DEG)|r. ..(A) B A [ V5 (el |28 ey | 37 (09I | e 3V g .n—‘;&) '
Cyy 5 RO B R - Bl b JPA Sg EaCI A
N, | 21.8 | 1.011 | .e69| 950 | .832 | .443 | 1.024
PH, | 32.4 11.419 [1.390] 991 951 | 551 | 1.103
AsH,|  33.6 | 1.523 |1.549 906 | 951 412 1.085
SbH,|  34.0 1.712 |1.764] 782 | .951 | .343 | 1.008




- Table 2. Refined Parameters for MH3 Potential Function
| D ' o o D ' . 1 .

-1 ~3h .y (hdyn -"3h mdyn , -1 cale _3 exp, -1

u(§ ) 89 (mdyn—A) ko( % ) C2 ( 3 -) EBarriér(cm ) | V0+l<cm. 2 'V0+l(?m )
.826 - .881 - k43 806 - 1,787 859.5 950
NH, .897  .873 . - 531 - .890 2,226 961.6 950

| .890 .873 - .522 890 2,179 951.4 950

PH, 1.121  .792 .551 .608 - 15,736 988 991
Asﬁ3 .936 .807 L1246l 14,154 904 006
Sij 1.010 671 .343 .370 16,649 782 782

-CC-
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Table 3. Cdﬁparisou_of-Observed aﬁd Cbmputed<Properties of NH3

Obs. ~ This Work -Manningl4' 'S'.walenl-5 Newton16

‘Barfier T
ey S 2179 2072 2018 - - 2225

0 . 0.00 0.00  0.00 0.0 0.00
o - 079 . 078 - 0.8 - 0.83 . 0.79
L em.s 935 o _955 ek 933
1 :  968.3 965 . 961 . 966 956
a2 15976 - 1660 - ‘ 1610  '1596

2 1910 “  1852 | 1870 - 1882

3. 2383.5 ) 410 2360 2385

'3, - 2895.5 2891 " 2840 - 2897
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ITI.  EQUILIBRIUM AND AXTAL-EQUATORTAL INTERCHANGE
POTENTIAL IN MX (D, ) MOLECULES

"A.. Theory: Derivation of'Axial-Eggatoriel‘Interchange Potential

Inithis’chapter on‘Mstmolecnles our attention wili be focused |
'on tyo ereas. The first is the axiel—eqnatorial interchange potential;
The second is the nature of the potential in the neighborhood of the
bequ111brium structure and 1ts relation to interpretation of infrared
and Raman spectra.

The symmetry coordinates for a MX molecule of D3h symmetry are

5°
shown ianig. 1. 'From an examination of these coordinates we might
yexpect that a proper combination of the axial bend (s )vwith the
equatorial bend (S6) would lead to interchange of the axial X atoms
with two equatorial X atoms. This path is indlcated in Flg 2 By
symmetry there are two more paths equivalent tovthe one in Fig. 2,
which_can be constructed by * 120° rotations about the 03 axist

Therefore,from~any given D structure there are three neighboring

3h
equivalent structures differing only in the permutation of the

X atoms. Altogether'there are ten identicai D,, structures differing

3h
’ only by permutétion of X. The relationship-of these ten conformations
to one'another is schematicelly outlinedsinfEig. 3.

: The<construction of the potentiel_energy surface corresponding,
.to Flg. 3 is accomplished in a similar manner to that discussed in
.the first chapter. By analogy ‘the maJor consideration becomes -~ what

excited electronic states are coupled to the ground state via an E'

symmetry coordinate? The key to unlocking this question lies in
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S a
J
s Sa(A))
~ s - -
/ |
/ /
Sg, (E") Sg,(E)
> R
SedE)  Sg,EN) S, (EN) S7,(E)
. _
- Sgq(EM  Sgy(E")
S - XBL744-6148

Fig. 1. Symmetry coordinates for MXS(DBh) molecules.
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C 4, Transition State

| XBLT744-6149

Fig. 2. Path of axial-equatorial interchange in_MXS(D3h) molecules.
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XBL744-6150

Fig.'3.' Relationship of the ten eQuivalent D3h'configuratiqns obtained

by interchanging axial and equatorial X atoms. Each new con-
~ figuration is represented by its two axial atoms. Numbers in
the circles show that after the ten. unique permutations

(triangles) are exhausted previous permutations are obtained.
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studying the:molecular"orbifaifdiagramé foﬁnd in Figs; 4 and 5. We

see that in Both cases (figs. 4;5) the ground state has Symmetry 1A', ;
’Which means onlylekéited'staﬁés of lE' éyﬁmetry'cén'couplé to the ground
‘state via the E'coprdinateg From the moiécular orbital diagrams it.

is clear that thére aré many possible eicitedAstates OfilE' syﬁmetry;
Our task is t§ find the one that contributes the most to'fﬁg inter-
change process. We can narfow the'pbséibilitiés iwae consider the
Ainterchange path in more detail than indicated in Fig. 2. From normal

17,18

coordinate analysis it is found that the axial bend (v7) occurs

at much lower frequenéy than the equatorial bend (v6) in all of the
MXS molecules (Table 1). This implies thatvup to the Cav_tréﬁsition

state (Fig. 2) the axial bend contribﬁteé-most’to the exchange mode,

~Past the C,
4v

order to reach another D

intermediate the othér motion (S6) must predominate in
Bh‘configuration. Ho&ever,'we'can view the ..
S6‘cootdinate as an axial bend originéting-fhom the neighboring D3h

configuratidﬁ. (In'thié sense the axial bend is the predominant motion

on either side of the C, intermediate. From a molecular orbital

_ by ‘ »
ﬁiewpoint we are looking for excited molecular orbitals which can lend
bonding charactér,to-ﬁhe'axialIfluorines as they progress to the pﬁv
transifionVState. ?hat is, we'seek tq increase the overlap of the wave-
fuﬁctions'localized‘on theﬂaxial fluoriﬁes with orbitéls 1oca1ized

~on the éentral atom. With thésé considerafidns,the mbst reasonable
choice is the'A;’+ E" traﬁsiﬁion. The Ag orbital is mainly'the anti- .

symmetric coﬁbination of_2pé functions on the axial fluorines. The

E" orbitals are the dXz and dyz 6vbitals on the central atom, which
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MEEY
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Ay _4b |

Af(eq) Ar_

Al (ax) A

g/ Ab b

M B . ' MF5 I0e” ‘
M = V,Nb,Ta

Ground State: (E4)° (E])* (Aftoxn® (Afteqn? (A5)? W,
Ist Excited State: (Eg )2.(E§,)2(.t\’,(ax))2 (A’,(eq))z(A'é) (EM '/ 3’
| | . XBL744-615

Fig. 4. Molecular orbital diagram for MF

5 molecules of .the VF5 type.



4 ALEE”
» Az E'
s M

M

Ground stote: (AP (E5) €% (ADZ (A
AP EDP(EDE P (AN ED

Excited State

of "Interest":

Fig. 5. .Molecﬁlar orbital diagrém'for MF

-33~

DSh.
,Aﬂ*’
E/*’ o
E/l'
',E’*'
A% ,
*
Al
Ny_Ar
. A%'. {} :,  _j
E/ 4y _4b
Ay
MFg (10e”)
M =P, As

[

5

Tronsition of interest

AR A% E!

1A
 | E”, 3E V4

XBL744-

2p

5F

6152

molecules of the PFS'type.
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can provide. some bonding character to intermediate configurations.
‘This is shown pictorially in Fig. 6.
Using the states, |1Ai )y llE; ), |;E;'), and llE; ) as our basis

states we can comstruct the matrix of the linear term,

A aﬁv ; aHV' : :
Hy = Spr _ - Sey S : (1)
linear 8SE, Ex BSE, E o . .

X o y

Recalling that there are four coorindates of Efvsymmetfy, S6x’ 87%

transforming as E' and S, , S, as EF; we can cast the matrix in the
. 6y’ 7y Ty - .

form o : S
1,4 1., : 1.,
|7y , | E)) o l.Ey)
. . (2)
1, . | B , , .
| Ay ) -€ o asS, +bS. as, + bSg
1 v . o 5 . . v . s e
IIEX ) g T DSg, S, +dS. +le -€ o es_7y f_fs6y
llE' ) + bS,  eS. 4+ £S. - -cS, -dS, +Ae <€
y T7x 6% o

. 7y 6y . 7y 6y

where a, b, c, d, e; f and Aeé are defined by.

H 8H | _ .
a = ¢'u]] <as "> Tely = tay <as "> ey  (2a)
7x/ S \" 7y So o v '
4 N AU ‘ _aﬁ \ o '
S .1 v 11 1 v 1,
b = (Al <L————> |"E' ) = (Al (}———-) | "B ) ‘ (2b)
- N 1 R BS6X, g - x ‘l‘ asﬁy S y . ‘
. h . .0 ) [o} o
S = ; :
OH. | A A '
¢ = (g <as "> ey = <'1E'|~<a,s- "> tery (2¢)
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kS

Stabilized Intermediate

XBL744- 6153

Fig. 6. _Stabilization of intermediate forms by mixing of Al and E"

_ 2
orbitals.



—-36-

OH R M.\ 4 . o
d= (g <¥z> RARICRE1] <§S—!> ey (24)
x 6x/s T Y \®ex/s_ 7 ' o
: o » o . v
1., (_oH L, 1 gemy
e = (g (———) gy £= ¢l (——-—) ey (2e)
Ty as7y s y _ X BS6K S y .
o : : y "o
Ae =€ _e, = .e : S (e

1
Al ,
in Eq. (2) there are no%vanishing matrix elements #nvolving the totally.

where we can define € = 0, Although'they have not been included

symmetrig cobrdinate_SAi.' Since we d§ notiexpect_a largekchangé in
bond leggth dﬁring thé‘intérchangé p#bcess the depg?de§Ce'on SAi will
bé ignoredf _BeéauSe of the.threefold symmetry ébouf eéch‘configuration
(Fig. 3) we can confine ouf attentian;to_One>of the three‘eﬁuivalent-.
paths connecting a ﬁarticular permutation to its ﬁeighbors. For

'cdnveniencé we will chioose the path diagrammed in Fig. 2, which means

we -can set S6y’ and S7y éqﬁal to zero. 'The matrix Eq. (2) becomes

T
‘IlA' )':- —.e DR - aS,_ + bS | | 0
Tl ' ST 7x "6x S
ety | as._ +bs, eS._ 4 dS, + be - 0
X Co7x 0 TT6x 7x 6% o . S
’llE' ) o | S0 -cS__ - dS
Uy : ) : 7x 6x

- Because this matrix is block factored we can focus on the upper

submatrix which contains the lowest root.
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Py o/ —e . as. dbs,
: 1 T - _ 7x 7 6x
| 'lllA' ) aS.’ + bS o eS,. +dS,_ + e - €
N Tx SIx 6x 0TI 6x = o’
~ The eigenvalues of Eq. (4) afe
. | .4(as7x+bs6x)2” 1/2
== + +cS., +dS, ) (1 + (5)
€=3 (A€o+cs7i+d$6x)' ‘(AEO cS7x 6x)' (Bt +cS. +dS )2.
' ' o 7x  6x

If the assumption is made that _Aeo.>> (cS7k+dS6x) over the range of

the distortions involved,Eq. (5) simplifies to

/2

. _ | 6
€100 - ()

Do =

' . 4 2, 2. 1
Aeo [1 - (1 + 5 (aS7x+b$6x) (1'_-ZE—’(cs7x+dS6x)))
: Ae T o . :
o .
where wé ha&e displayed the lowest éigenvaiue, because we are interested

in the ground staté‘vibrational potehtial. Including the quadratic

terms the full interchange potential becemes

) =€, +3

l . 2 ) . -
—_— - - : 7
v( low 2 C7-S7x *2 C6.86x o : 7

S6x’vs7x

-If we expand elowfabout S7x’ SGx equal to zero%thé legdlng Ferm coqpling 

S to S has the form
6x :

7x
ab - o y
~ e S7x Sex - ®
This implies that close to the origin Sgx follows S, in a iinéér.

- fashion. We.cén see this by requiring the interchange potential (7)

to be at a minimum in S_ . for each valﬁé of S_ .
: - 6x : 7x
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BV ~ ab "
S, . - Ae 7x 6 6x
6x
. : 9
s ) T ab ’
Sex T AE C ’

. The linear COupling'approximation in Eq. (9)'is'physica11y reasonable be-

cause (i)} it is the leading term coupling S6x to_S7X and (ii) it should

dominate higher order coupling_termslclose‘to the equilibrium position (in
the region before t'he'C4v intermediate). Substitution of the linear coupling -

approximation (9) back into the potential (7) leads to the final form

1/ 2

S (10

L e 22 e Wl/20 0 1.
V(S7x) -(Z)Aeo.[l (1‘+ 4 o Ch (1v+ B$7X)) ] + (Z)K S

where o, B, and K are donstaﬁts to be determined later.
We have succeeded in reducing what was originally a four dimensional
problem; Eq. (2), to a parametric potential in one dimension (s, The

interplay between S is visually displayed in Fig. 7. We see

6x 7x

“and S
that P1 is the shortest path_between.adjacent D

3h_conformatiq:)ns. This

path is omne in‘which both the SGx and S?x coordinates change at eﬁual

rates"throughout.the inter¢hénge. This path can be eliminated from
consideration because it is éxperimentally determined that the axial
bend isAenefgeticélly,ld&er than the equatorial bend (Table 1). -Thus,-

at least close to_the'D configuration the slope must be smaller than

3h

that indicated for Pi. P3 represents thebopposite extreme in which

value while S, remains static.'
3h 6x ,

This; of course,,is‘physically”unreasonable. The actual path is

57# changes completely to its new D

‘determined by the édupling of S6x and'S?x, Eq. (9), and is linear insofar

as the coupling is dominated by the first:termfin the expansion .of
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XBL744-6154

Fig. 7. Possiblé_interchénge paths (Pl,Pz;P3) linking two
neighboring Dsh forms., The line labeled OC represents

the location of all po‘ssibleC4V transitibn4gtétes.j



~40-

Eloﬁ in Eq. (8). Since this coﬁpling depends on quantities which are
“difficult to determine we cénnot_céiculate it directly. However, by '
consideration of the previous arguments we can make a physically rea-

“sonable.guess. This guess is represented by the path Pz,vlocated’_

and P

midway between Pl 3¢ For the purposes of 1éter calculations we
will let P, define the C,, intermediate structure by
s = .75S o (11)
° D3 - | o

‘In contrast ‘to the st molecules we have chosen not to expand the MX5

potential about the symmetrical C,. transition state but rather about

bv
the D3h equilibrium position. The reason for not expanding about the

C4v configuration is that the exact locati6n of this intermediate form -

,is.not known, in contrast to the well defined gedmetry 6f.the planar

3
we'shouldbhotfexpect the potential to be reasonable beyond the Cﬁv

MX, intermediate. Because of this and the linear coupling approximation

transition state. ~This is n0=real'prpblem becaﬁse we can assume an
identical potential extending from the other D3h form to the C4v transi-

tion state. The justification for this is the interchange of Sex and

8 bgyond the C, form (see page 31 ). |
We can define a truncated form of the full potential (10) by first

3h
4

‘expanding € about the equilibrium D configufation.v

Low
€, N Ae o? g2 (1 % BS,.) + Ae o $2 (1+ 3 S )2‘+I"' - (12)
low o 7x "7 7 To 7x _ 7x }

Retaining_térms-df_order four or less the truncated'potential'is

S a2 1.2 9 4 4
Vtrunc(s7x) = ( Agoav + 2K)87x - Aeoa S7x

8 s;’X + be (13)
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For simplicity we can rewrite Eq. (13) as

2 3

VeruneS720 =:é 9% " P Syt csi  witnb, ¢> 0 _-(145
~where

a =‘—Aeoa2 + %-K o . E (14?)

b= feo8 (14b)

e &éo&é | - | R (L4c)

The constant "c" is greater than zero because"AEo a‘ndq4 are both positive.
The parameter 'b" is assumed positive in order that cubic term can

counterbalance the positive quartic term to produce a potential maximum,

(agv > = 0, at the . Cyy transition state. "a" can be either positive or
7x /. : :
: S

;egative:and;its sigﬁ’has.inferesting implications as to the shape of the
potential. The effeet "a" has on the potent1a1 is explored in Fig.: 8
Thevcase e.S 0 leads to a symmetricalyqpadruple'minimum'potential'with-.
two‘different'types ofeequiiib;iﬁm positionsfn'These cofrespond to a
slight bending of tﬂe ex1al atoms (Fig. 9). We mighe predict a distorted
equilibrlum p051tion in cases Qﬁere the d orbitals on the central atom

. are no;_too hlgh’in energy_above the‘ground MF5 state. This would allow
nehhanceaﬁ mixing of tﬁe E;<dxz) and.the-Ag(fZPz) orbitals, thereby
stebilizing.fhe distorted cbnfiguration (Fig.'6). The symmetry.of the
E"and Ag orbltals is such as to allow another stabllized geometry not’

plctured in Fig. 6 but equlvalent to the form S1 in Figs. 8 and 9 S is

presumably higher_ln energy than S due to 1ncreased F—F'repulsion as

2

the axial atoms directly approach an equatorial F atom in the motion

S7x <0 (Fig 9)



or
' S.=01| S
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Fig. 8. Possible potential functions for MF5 molecules.
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Fig. 9;' Distorted D3h equ111br1um structures for MF5 molecules.
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A'compafisonjof the molecular orbital diagrams'(Figs. 4 and 5)

reveals that d .orbitals play a more‘important.role in the VF_ series

5

than in the PF5 seriés’because they are energetically more accessible.

. Within the VFS series the "atomic" d'orbitals of ‘I‘aF5 and NbF5 are

considerébly‘higher_in energy than for VFs.l9 Therefore VFs'is the most

,likely.peptaflubride to undergo the type of distortion just discussed.
_There is expetiﬁehtal.evidenCezo that__VF5 is slightly distorted from a

D, configuration, while the remaining pentafluorides display é‘DBh

3h ne
20,21

"equilibrium structure. The unusual behavior of VF. will be dealt

5

with in the following discussibn section. -For now we will treat VF_ as

5
an ordinary Déh molecule because our present concern is only in deter-
.mining the interchangg poteﬁtial, not the défails of the potential in‘
the equilibrium region. |

_Althdugh Fig.IS and the precediﬁé discugssion are based on thé
truncated potential (14) the full potential (105 will disﬁlay the same
behavior in Eoth cases (a S 0, a Evd)f We éan make béthvpoten;ial

3

This involved taking various derivatives of the potential and felating

forms (10,14) quantitétive-in the saﬁe manner as in fhe Mi, chapter..
them to étructural and equilibfium parameters. - The resulting simultaneous
equaﬁions‘were sol?ed_for:the unknown quantitiés in the potential fﬁnc—
tion. _Wifhout displaying:the.intermediété stepsbthe finél sets of
eqﬁations are preéented forlboth the full and truncated potentials.

. Fér thé full pdtential:based on aD

3h equilibrium position we have

K=1% +20% 0 3 (15a)
. (o] . (o] .



~45-

‘(1+l.5BSo) ' ".7‘ k-

o | —— —77 - 1) = — (15b)
hs (e N ) abeg |
7 (av85 ) (407s +60’8S2) 50 (45 _+685%) 28

| ; \ - 77 2.2 . 1/2 =0

(1+4a2s2 (1485 ) ) 372 C(rae2s? (1488 )P (+ao2st aes

. : (o] (s} . L . (o] o . (o] . 0 ‘

(15¢)

_where ko is equal to the curvature (2nd derivative) at the D3h equilibrium

position. Equations (15b) and (15¢) can be solved for o, and B by an
iterative procedure.

For the truncated potential based on a D_,, minimum we

v 3h
k_ L o ’
a = T ) . : . (16.3.)
b =2 (16b)
kg
c = 5 (16c)
88 '
0
B. Calculation: Definition of Potential Parameters
 and Presentation of Results
‘The interchange coordinate (ij) used in the calculations was
defined byzz |
- o .
Sy T g (A8 5Ty B g5t 20815708967085¢) o an

where AB ié-the'change in éngle between the axial fluorines (labeled 5,6)

and the equatorial'fluorines'(1abe1ed'1,2,3), and r is the M-F bond

distance. If we use the relationship, éo =:,75 SDBh (11),.whiéh



86—

defines the C 1ntermediate (S ),iand the fact that AB = 305 for

4y

SD (Fig. 7), we can employ the definition of S (Eq. 17) to find
- “3h

.S,.-‘ .
. ° .
-So = .680 Ty F | | ' v : (18)
The initial value for'ko-was taken as the force constant calculated

. from the Vorl transition by the formula

SR 2 R
= (5.9x10 )(vo-+1)- m, (19)
where m iS‘the reduced mass associated with the § coordinate. m7

7 7x
11,23 .
was calculated using Wilson s high frequency approx1matio

" (Appendix 2). The stretching coordinate S (E ) and the bending coor-
dinate S (E') were taken as the high frequency motions while S (E )

was the low frequency vibration.

The experimental datal7 18 21 24 25

and the final results are
displayed in Tables 2 and 3. Because,of the absence of ultraviolet

spectra in the literature for the pentafluorides, theilAi'? 1E'-(A€ )

transition was'estimated. In the case of_Ast.and PFS’ Ae was estimated

from an_SCF26 calculation. For VF_., NbF A€ was approximated

52 NoFg, TaF
as the difference between the Hartree energy19 of a M atomic d-orbital
and a fluorine 2p orbital.- |
Ihe interchange.barrier'was calculated for.both the full potential.
(Eq. le and the truncated'potential (Eq. 14). The reasonably close
-agreement for both forms is duedto tbe validity-of the inequality,.-

l >>4 o S (14+8S ), allow1ng truncation of € to fourth order (12).

low

For MF5 molecules we see that a ~ .2,-8 ~ .6, and SO ~ 1, which sets
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4a S (l+BS ) 6.

From the form of the full potential (10) we see that for sufficient-
A;y‘negative values Of_s7x the quantity inside theusquarebroot wiil
'hecome negetive;hfielding an imaginary potential. This, of course, is
physically unreasonable, however this breakdown occurs at a potential
'energy approx1mate1y one hundred times greater than the calculated
barrier height. ForvpurPOSes of_calculating‘barrier heights and
eqoilibrium.behevior the potential form (10) is physicelly well.behaved
in theAregions of'interest;' | |

EnergyAlevelevwere caiculated for VF5 and'PF5 using a forty'member
harmonic oscillator basis set. ' The full.potential was used for this .
calculation.; The results ere,fouhdiin Tahle 4, Due'to enharhonicity
the calculated v o 1 tfansition for.VF5 and PFs is ~ 5 cqﬁl lower than
‘the observed transitlon (Table 2) One could correct for this by in- |
' creasing k as dlscussed in Chapter 1 however this small correction

would not greatly change the computed barrier height or the inherent

enharmonicity_of the potential.
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C. Discussion: Discussion of Computational Results and

Comparison tb Previous Work on‘Axial-EQuatorial Interchange

27

: 22,27 v .
Previous attempts™ ’°  to calculate the barrier to interchange in

s . .
ﬁentafluoride molecules have been based on such crude potential functions
that the values obtained: can only be considered as order of magnitude
estimates.'rIﬁ theéegiﬁétanées the potential was.épproximated by only
,quadratic'tefms with the:barrier.heighﬁ taken as the Qalue of_the‘
_quadratic pbtential_ét-an éppropriate1y ch'osenC4v intérmedigte géometry.
This approaéh,.at best, can‘only lead to an-uppériliﬁiﬁ to the true
barrier, since it lacks the'higher order terﬁs which give the potential
tﬁe.propéyaanhafﬁonicigy to.p?oduce a.pdﬁgntial ﬁaximum at the C4v form.
'We'éan gét a rough i&ea of how to correct the previous estimates by
.considering the_barrier.caléulated from the”trunpated pﬁtential (14)

of this work. At the C
- , 4y

form (i.e. at So) tﬁe truncated potential yields
| k | | .
B arrier = 2 g2 -~ (20)
. barrier 8 o :
From this we conclude that earlier estimates were about four times too

5
3,280 cm—l. Scaling‘qumes' value by the correction factor (.25) we

large. Holmes and“c'_o—workérs27 found the barrier in AsF_ to be

obtain 820 éﬁfl which is in much clbéef agreement with our_figure. The
'correctipﬁ factor of one—fourﬁﬁ is only meaningfﬁl-in cases whefe the
truncated potential_is-valid. In céées where»the fuli potential'isv
necessary, as in chapter 1, thefe.is7no straigﬁﬁforward comparison to
the quadratic poténtigl.  However, in the fﬁture, it might be taken

as é'rough rule—of-fhumb thét "inversion" barriers based_Soleiy on a
quadratic¢ potential aré épproximately four times too iarge;

-~ . . *
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Examination of‘the barrier heights (Table 3) reveals that with
the exception of VFS’ the pentafluorides have an average interchange |
barrier of-about l,OSO_Cm>1.

The exceptionallj low barrier in VF5 is due to low lying d orbitals
on the vanadium as was discussed earlier (page 44) _For these barrlers,
~ and the corresponding potentials we have calculated the inversion splitting

7 l in all cases,

‘1n the lowest level (Table 4) and found 1t to be ~ 10~
. including VFS' This splittlng corresponds to. an exchange frequency of
lO4 cycles/sec which is in accord with the observation of only one.
fluorine-peak.in'thevnmr spectrum of the studied pentafluorides.

The lack of_ohservahle splittings makes the fitting of an arbitrary
interchange potential impossible. However, not'knowing the actual
' barrierlheight, makes it difficult to assess the validity of the_derived
potential (10). The.successrof predicting the barriers and energy levels
in.the MH3 Series,‘and as we"will see in later chapters, a similar ahility
" of this general approach to handle systems more conpletely'characterized
'_than the MFd nolecules lends some measure of credibility to‘the_reSults.
One_way'of testing these results is in a Hartree—Fock‘SCF,'or
perhaps CI, calculation.. The most likely candidate for the computation

is PF5 since it has the fewest number of electrons of the pentafluorides.
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. D. Theory: Derivation of Equﬂibrium.Pdteﬁtial and Application

to Interpretation of MX5 (D3h)'Spectra

In thé previous sections we hayé considered.the equatorial—axial
"inﬁerchange‘path and have demonstratédlthatjit §an be apprépriately
 represéﬁted as a bﬁé dimensional path.thrOugh'a four dimensional space.
Our interest centered én cémpufation of the barriervheight whicﬁ is a
property of the.potentiai faf'éway from the equilibrium structure. We
will now iﬁvestigate tﬁe'nature of the potentiél'about the equilibriﬁm‘
'fegion a@d therefore mustsconsider bptﬁ a%ial céordinafesi(S7X,S7y) on
equal footing. This_does not reéuire‘a difference.in approach‘as‘the
initial matrix (3) determines the potehtial in all regiohs of space.
Wheregs wesprevioﬁs;y ignored'the coordinates'(s7y,s6§) we ﬁgst now

include them and resolve (3) for €, . This complicates matters con-

. low _
siderably since the resulting determinant yields a complicated cubic
equation for €. Instead of solving the determinant involving both S 94

and S, we can look now just at the S ) éolutionvand-use the fact that

7y . Ty
“Athe'entixe-potential must exhibit D3h’symmetry to deduce a potential -
involving bot.h‘S7x and S7y' Setting S7x’S6x equal to zero we getva

matrix invoiving just the E; coordinates.
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between the S7 potentlal (23) -and the S

,eompérison of the S7y motion to the‘S
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T | 1
(1Y ] [
] AD - ‘ ”| ED) | Ey) _
Has 0 S_ +b8
1 7y
11" Ae ~e - eS. +fS
X 0. 7y ~ 6y
' (21)
(1, , S -
|"E") eS. +fS - Ae ~€
y -7y "6y o

The approximate potential becomes

- é)Aeou—_(l + 4(aSgy + bS) )” 2] vy s = '<-21->_C_65_§y (22)

where we- have used the approx1mat10n Ae >> (eS7y+fS )_tq simplify the

potent1a1 to that dlsplayed ' This is analogous to the preeedure used

in ‘the previous section (Eqs. 5 and 6). Using the linear coupling ap-

_ proximation (8) between S6y”and S7yﬂWe get for the final form of the

potential

2 2 1/2] + ( )KS o : '~.. (23)
y :

V(S,) = el (1 + ta’s

where «, K,'Aeo are the same quantities as in Eq. (10) and have the

_same numerical values (Tables 2'and 3) . There is a noticeable difference

7% potential (10) In the S7y

potential there 1s‘no term corresponding_to the,(1+BS7x) term in the S7x

form. The reason for this-is clear from a symmetry standpoint.. A

7% motion (Fig. 1) shows that the:

potential in the S7yl> 0. a.nd.S7y < 0 directions must be equivalent on the



-52-

basis of symmetry. The corresponding symmetry argument does not require
S > 0 .and S <0 to be equivalent.
7x : 7x
In their trunéated form the S7x and S7y poténtials are

2 .3

. V(S7x) - aS7x.— bS'7x + CS7x : o (24?)
.V(S7y) = aS7y_+>cS7y' . - o _ (24b)

where a, b are the same in both potentials. The parameter 'b" is zero

in V(S7y) for the just discussed symmetry reasons. What we'areiseeking K
is a combined S7x,S7y<potential, which at.first guesswwé might take as

the- sum of‘Eq. (24a) and.Eq. (24b) toAgive 

3 4

v _ 2 .2 4 el £y
v.(s7}-{,s7y) = a(S?{ T8 - bSy Hels, + 5790 (25)

This potential is not acceptable because the cubic and quartic terms are

3h

not invariant to all D.,  operations. What is needed, and of course, what
would have been,qbtaihed from an exact solution of Eq. (3), are terms

coupling S7x and S7y which_makéA(25).invariant'under the Dgq} point group.

Knowing the aSYmptotié'foxms in the S7x;and S7yvdirections we can
"connect" both potentials and provide the proper symmetry by transforming
to polar coordinates (p,ej and modifying the cubic and -quartic terms té.
yield |
B _ 2 3 4
V(p,0)= ap” = b cos(38) p~ + cp (26)
where 6 is measured from the axis defined by the-S7X‘> 0 direction. In
direction
Ty
(@] =‘g) the pqlar‘form (Eq,’26) gives the correqt:asymﬁtotic behavior

ﬁhé limits corresponding to the Sy direction (8=0) or the S

(compare to“Eqé. 24a; 24b) .
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apz_; bp3 + cp4 . »S7x >b_- 'sjy‘= 0-,_. _ ‘ (26a)

(p,0) -

ap’ + op” S970 Sy =0 (26b)

T
V(ps'z-) -
It is obvious that the polar potentiél in Eq. (26) is now invariant'to'D3h

operations. Working backward»to the full poténtial we can write a form
with Dsh'symmetry as

/ 2.

V(p,0) = e [1 -(1rbolo2 (148 cos (30000 M2 + ik o? (21)
'As ;‘firsf sfep in determiningkthé eigeﬁvalues of ﬁhe eqﬁilibriﬁm

fbténfial'(26327) wé éan compare contbufs of‘coﬁstant potential between

é purely duadratic potentiai and the one presented hére‘(Fig. 10). in 

the quad;atic form the contours are éifcﬁ1ar,_because'td»sécond.order”

| ates » | 3h.i$ a circle. The B

derived fdfm’generates_a_more_physically”reasonable contour which also’

" in the coordinates the only form invariant under D

‘v.méintains.the proper D, symmetry.

The eigenfuqctions of the quédratic_potential_ban be used to

‘evaluate the eigenvalues of the derived potential. The wave functions
generated by the Quadratic potential are defined in Appehdix 3. The basic
result. of Appendik 3 is that the wave functions of a two dimensional

quédfatic potential can be expressed in polar coordinates as § =

. . i. . . . S i .
R (p)e 1m6.29 "To..compute the eigenvalues of the derived potential we
n. ; v

form the matrix_elements‘of the "perturbation"
4

(28)

Vpert. -~ b cos(38)p~ + cp
‘in the quadratic basis. Because the second term is purely radial it

Will_cohtributebbnly to the diagonal elements, due to orthogonality of
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- Quadratic Potential |
V.= op2 '

Derived .P'oter‘rtial |
v:-apz—b»cos (30)p° +cp?

XBL744- 6|57

Fig.‘lO. Contours of constant potential for the quadratic and

derived poténtials.



-55-

' . C xim® ' o _'
the angular functions, e v, The angular term can have only certain

off diagonai contributions. _Sfates with "m" différing.by‘iS caﬁ

 gouple Qia the cos(36) term (Appendix 3). USing this‘infdrﬁation we

vcan‘qualitétiQely construct a correlation diagram between thé_quaératic

and derived éigénﬁalueé fof sbme of the lower 1evels:(Fig. 11). The

'fi¥st E' lével,is loﬁéred in energy due té its interaction witﬁ the’

second E' level'(seCOnd order perturbation theo?y). The second ﬁ'

.remains aéproXimately'at the same energy since its interactions with

the first and third_E' levels tend to_caﬁce1 each othgr; lThe second

Ai level is_loﬁered through its interaction wifhvits counterpart in the

next higher'level; . B
If_:hé‘pe:tﬁfbation (28) is not too large it will ﬁot.appreqiably

‘s;ramble the quadfatic basis functions. 1In this limit_&e can approxi- |

mate the selection fules fog‘infrared and Raman transitions in.PF5 type

-;moiecules‘by ﬁSing-thé quadratic eigenfunctibns.‘ For infrared transitions,

‘matrix élements ofvﬁhevfdrﬁ.lecosélm') , (m|sin®|m") will determine | |

the seléction rﬁlesf This yields Am = *1 for allowed infrared transitions.

Deterﬁiniﬁg the selection rules for thé alibwed Ramanvtransitions is not:

as clear cut, however tBe_first-few’alIowed transitions will be indicated.

These are

AL-EL . (292)
Ai +Ai (29¢)

where by comparison to Fig. 11 we see that among the lower three levels

all possible transitions are Raman allowed. -
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Ef .A(‘ \\ : ,
. ’ — Al .

hv

hv

_ /7
. —_— . Ay
v=ap? o - | V= opz-bcos(39)p3+cp4

XBL744-6158 .

Fig, 11. Correlation diagram for eigenVaers of the quadratic

. 'and_defiﬁed potentials.'



-57-

For D., symmetry the highest allowed "true" degeneracy is two

3h
(Eftype level) élthqugh for the qﬁadratic form the actual degenéracies

'gan be much larger. Thése-afe'aCCidental'degenéraciés due to the fact
that a circle has more than D3h symmetry.‘ When the cos(30) term is

introduced the overall symmetry is lowefed to D,, and the degeneracies

3h
“are 1ifted; The generallefﬁect of the quadratip term (c§4)'is to cause
' ﬁighe; leﬁéls to_diverge,:however fhevbeﬁavior of levels ciose tb the

’ grqund.state'wiil be'govefnéd mainly'by the cubic term. The most

. interesting featﬁfe of the eigenvalues_of'thé derived potential is the
. ‘ 1 transition relative to the v1+2(E;-Ef) transitién.

‘This effect is crugial to the interpretation'of‘tﬂe spectra and is due

’16W¢ring-of the Q;+

to cross terms in S7X gnd'S7y (cos(36) term) which can only arise from
| | 30

.treating tﬁe ﬁibrational'poteﬁtial as two diménsional. Witt aﬁd

» CO—wokkers_tfeéted the E' Vibration as a one diﬁensionél mdtiop to
estimétesthe effects df énharmoﬁicity'(cuﬁic term) and theréfore.concluded
that'ﬁigher ievéls must convefgef HenCe they were forced to hypo;heéize o
various possible_éxplahations for an uhusually intense "aﬁomalous" peak

at an énéréy higher.than the ﬁain,Q braﬁch in'the Raman épectra of E" |
fundaﬁental of PFS.' We see ﬁhaf this.featuré comésvout_quite naturally

~in the our treatment of the E' mode, it»ié the v, ,(E'-E') transition.

a _ 1+2
The effect of states above those indicated in Fig. 10 is not ciear cut.
The high degeneracy.of'the upper states (above_Z) will be split in a com—
plicated manner,_with somé gaining_enefgy, some remaining.unaffected, and
sémg beingﬂlowered, One might expect that the "a&efage" transition energy‘

'would>be slightly 10Wered»due to the cubic term (-b cos(36)p3f). The net

effect should be a slight increase in intensity to the low enérgy»side of the‘Q_
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branch; relative to the high energy side.” This is consistent with the

observed spect:a.30-
Another factor which should be explored is the relative population

of the excited states for such a.low energy mode. For PF, this is dis-

5
played in Table 5. Just on the basis of pdpqlatibn thevvo_;leaman
“"transition should be ~ 127 more intense than the v ' transition.

V12

This is roughly what is ekperimentally observed. The higher statgs,
ﬁhich coﬁstitute}the’feﬁaining:40% of the popﬁlétioﬁ, wili‘most likely,
not be obséfved és;sharp'speétral featqresa' This is dﬁe both to.the -
removal of the high degenefacy; and.aiso to thé smearing of the re-
| maining 40% over many levels. |
In_vigﬁ of the‘digcuésidn_in this sectiom, it.should be emphasized
that the energy'level.gomputation found in Table 4 was done oh the
inﬁerchéhge potehtial Vts7x), énditherefore igvnot inten@ed tobrepresent
the actual viﬁrationél ieveié, Its purpose was to deterﬁihe the

9 barrier, and -
3
"on the ‘equilibrium potential (26,27). -The effect of the cubic term in

4

also to get an estimate of the effect of the anharmonic term (-b$

"inversion" Splittings'dﬁe to tunneling through the C

the_V(S7x) potentiai_isvroughly 4—5.¢m-1 in the lower states (Table 4).
“Its effect on thé e@uilibrium poteﬁtial.shdqld actually be smaller due
to averagiﬁg §ver the 6 coordinate. The observed 9pli£ting of the twb
Q brancihes"in'PF5 is 3 cmfl, Which is reasonable ACCdrd'with the
abgve reasoningﬂ _ o

. .To this point we havé‘been considering the equilibrium behavior

“of "normal" D.

3h mo}ecules, that is, molecules with'a'single potential’
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minimum at the D, structure. VF does not fall into this category

3h - - 5

since there is evidence of a slightly distorted equilibrium structure

in the_lower vibrational states.?? We have already investigated the

‘reasons for this distortion. Our focus now is on gaining a qualitative
bicture of the equilibrium pbtential and its lower vibrational states.

‘Earller we saw that the truncated potential (14) ylelded a non D3h minimum’

of lowest energy for values of the parameter "a" < 0. 1In this case the
truncated.form (14)‘must_actually contain higher oreer terms in S7x
because a polynomial to order four can yield at most a»total of three
distinct»potentiai maxima and potential minima. For VF5 there are four -
total minima and maxima between S7X=Q and S7x=so'» To eorreet_the truncated
potential; terms to at least orderifive are‘neceSSary, and to get a Bound
potential at large‘S;#'we sheuld go to order six. Atithis point the
truncated potential is actualiy‘less convenient‘to‘werk with than the ‘
full potential (10); The'immediate_problem is:te modifylthe potential to
describe the entire equiibrinm region. This is achieved identieally'as
D3n molecnles by ineiusien of:the cos(365'term. "The
potential is then identical in form to Eq 27, but with the understanding
that (a Ae —(—OK)“O (12,13) to obtain the distortton. _Under these cir—_

cumstances the potential has three potential minima when the"projection of

the axial bonds into‘thevequatorial_plane'is'located midway betwean the

'three equatorial M-~-F bends, three saddle points of higher energy when the

projection is along the eQuatbrial-M—F bonds, and a potential maximum at

“the D cdnfiguratien. This can be physically pictured as a hindered

3h

,pseudorotation between the three m1n1ma, whlch are separated by an

: angular as well as a radial" barrier. To gain a qualitative description

of the 1ower vibrational,states requires an idea of the‘depth and location
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of tﬁe$é ﬁinima. From consideratidn'of-fhe‘16W¢r 1imité'of reéolufion
- of the eiecfric.fieiﬂ focuéing“eipefimentszo and electron diffractmon
",measurément.sz4 on VF5 we can roughl§-limit the distortioﬁ to the following
£ange ,

1° < A8 < 4° - N € )

‘where AB is the“a#iai Bend'és defined p;eviqusly (Eq. ;7). This cor-
responds to a small distmmtibn, with the potential minima'located
-close to.S=0.l This Qould bé expected'on1y if a = 0,.bécause a}<< 0
would 1ead'to a‘relativély distant miﬁiﬁum; .For a ~ 0 the maxima_at"
_ D3h and the anguiaf barrie?s would not Be‘very large.

" : : 18 | - o :
The experimental spectrum of VF5 is most unusual. It shows a

perfectiy‘normal sbectia for a D3h molecule for all the fundamentals

excébt thé E' axial bend. . The Raman spectra placésvthefE' fundamental at
99 cm—liwhile infrared measufeﬁentszindicate'a'Qalue of 109.5 cﬁ—l.

In addition thevovertbne of the‘E' mode occurs at 227 cm—; in the - .
Ra@gn spectra,'whiéh is‘toé_lafge to.explgip as sim§1y 2vE, (2%x99 - 198 cm_l).

In one diménsion it is well known that low barriers lead to very
< _. 31 - ' ‘ S
anharmonic spacings. Qualitatively, this could be consistent with
- the "abnormally 1arge-dvertone (227 cm_l) as compared to the observed  ,

- fundamental (99 cm_l) in the Raman épectra of VF This ié most likely

5°
a gross simplification bécauéeftheitwo dimenSional form of the potenfial
.as well -as fhe'presénée of angular bérriers,will_yield a'compliéated

assortmént of levels pfobably ablé to account for the spectra aiSo. In
 aﬁy;case, tﬁé_main fegtures ofithe'"true" VFslpotential should include -

small éngular‘ahd radial barriers and a slightly displaced minimum,
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Table 1. "Axial Bend (\)7) -and Equatbfial Bend (\)6) Frequencies

PR i 533 : s
AsF ‘- Hl_ 3712 -‘ ‘iéo
v, .282  S 169
Tar, 213 ‘i21

NbF. - 226 136




 Table 2. Experimental Data for MF
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Molecules

094

1.23

v, (e ™) 'rM_l;_(A‘)  myCam) | kG "-So(A) se EI
’.PFS. 175 | 1..55_v 9.49 ' .1?1 ~L.05 3.0
,Ast 130 :.1_.74 9.92 099 1.18 3.0

virs o 109 1.71 9,58 '..0.67 1.6 1.3
NbF, 136 ’ :1..8‘8_" ©10.16 i1l 1.28 2.0
. TaF 121 .‘1.81' 10.93 | 1.7
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Final Results for M?S Potential Function

-1, 1, Full | Trunc ' —i

o ¢ .‘) 8 Q& ) _ ““Barrier EBarrier (em )
PF5 - .199 .605 1,224 1,197
AsF L1750 ..406 ‘ 913 873
VE .180 -.600 592 571
NbF5 .160 727 . 1,210 1,142
TaF .168 688 942 897
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5 5

' Table 4. Computed’ Ene_rgy ’-Le\iels fior VE_ and PF

0+1 169.5. | 105.2
1e 2 . 164.4 - 100.9
2% 3 | 158.6 . 959

3+4 ' 153.8 . 89.8
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. Téble_Sg Relative population of V ?ibrational levels for PF, at 298°K

7

assuming 175'cm—; spacings. *

5

. Levei   '_'  Degeﬁeracy o Population
0 1 32
1 2 +28
2 3 7 ' .18
3 B .10
4 ', - | 5 - . .06
5 | e - .03
6 7 .01
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_IV. RING PUCKERING IN FOUR-MEMBERED,
_ PSEUDO FOUR-MEMBERED, AND FIVE-MEMBERED RINGS

A. Derivation of Puckering Potentials:fbr Four-Membered,
. Pseudo Four-Membered, and Five-Membered Rings

‘In'thiSFChapter we will explo;e fing puckéring'in fOur-membered,
'pseudovfbur—meﬁbéred, ahd_five—membered:ringsﬂ The molecules we
"&ili péy particuléf‘attentionfto ére.diSplayed iﬁ.Fig. i. vThe_
appropriatejring puckefing syﬁmetryvcoordinates for these types of
molecules can be found in.?ig,IZ. In 4t-membered rings the putkering
motion occurs in only one'dimension.(SBl); while in S-meﬁbered rings
E"-,ISE" ). In the

: . 2a 2b
pseudo 4-membered rings one of the coordinates is a torsion about a double

there are twb degenerate puckering coordinates (S

_bond (SAZ) and is éxpéctéd to occur at-much ﬁigher energy-than the other
motion (SBZ)k Théreféfe in;pseudo 4;mémb§red ripgs the puckering

can be treated és_é one dimensional motion.

Ihe moleculés under cdnsideratién consist of én entirely G-bonded‘

framework, with the exception of cyclopentene which contains’a'ﬂ-bbnd;
‘Thé electrOnic structureé?§f'such'"Saﬁurated" (no 7 bonds) and
"slightly"~uﬁsaturatéd,(6ne T bond) rings are diagrémﬁed in Fig. 3.
The'ﬁost‘éeneral{feéfuré of these systems is the existence of many>
'0;6* type transitions_atva relatively.high'energy (9-10.eV).32 “In
the case of ﬁhe slightly'unsaturated_fings tﬁere are a clﬁstervof
lower eﬁergy ﬂ-n*, O—N* ttansitions, 3,34 however the ﬂ* orbitals-are
,'notAexpeCted to cénfributé significantly to the puckering potential}.

The 7* orbitals are iqcalized_primérily.aboﬁt the doubly bonded carbons.
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’//////, (:Piz ////////f(:f*Z\\\\\\\\
CHy CH2 CH2 CH2

Trlmethylene Oxlde (TMO) | Tr»imethylene Sulfide_ (TMS)

A 2\2
/ e

CH2 Ch

‘Cyclopentene | B Cyglopentone ,
| I XBL?44-6!4O

‘Fig. 1. Examples of four—membered, pseudo four—membered and

: five-membered rings.

¢
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‘4 Membered ring (C5,) - Pseudo 4 Membered ring (Cy,)

'S _un L | .'»"S'.//
| . . - B

5 Membered ring (Dg,) |
| o XBL744-614|

Fig.»Z.'Ring puckering symmetry coordinates for‘4—membered

pseudo'Q-membefed.and 5-membered rings.
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| T *

beg | ey

Saturatedring  © Slightly unsaturated ring
D N XBL744-6142
Fig. 3. Schematic diégram'of,ﬁhe eléctronic'structure‘of the | |

: excited étates ofASaturated and slightly unsaturated

cyélic compounds.
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" During fﬁé puckeriﬁg motion the dbubly bound-carbons movg.as a single
unit (Fig. 2) whiqh pfeservés the local symmetry about these carbons.
:Ihese factors imply‘that the W* orbitals are ﬁeakly coupled'to the |
rest of the rihg system during the distortion; As a result they don't
participate stfongly in the puckering'proceSS‘ahd willvbe ignored.

We saw in earlier chapters on MX3,‘and'MX molecules that one

5
' particular.eléctronic.transition cduld Be identified as coupling
: stfdhgest‘to'the aistortiOn coordinate’' (s). In ring systems the .
situatioﬁ is not as clearfgut. From.the electronic structure diagram‘
(Fig. 3).we,géélfhat'thefe7afe many excited electronic states in an
energy range (AE) small compared to fhé transition energy (Ae;f,
In this.cluster’there_Will be many states of.thé pfopef_symmetry
coupled to;thé grouhd;eiectronic state &ia thé'puékefiﬁg motion. This
complicatés matters‘considerébly aé thé resﬁlting déterminantvwduld
be gf high order,'aésuming §f course that we'codld‘identify all the
in§olvéd.excited»electfbnic siates in the first place. Fortunately,
Symmetry conéiderations permit a-éimplification 6f>the déterminant
to a form whose‘footé can be'found:aﬁalftically.
~ The construction of the determinant prbceeds as iﬁ earliér ‘
chapters. Firsf we determine the grouﬁd electronic'sfate of the various
1moiecules. | |
’ 1

fA1  (sz) h-membered ring - (TMO, TMS) . . (Qa)

A (sz) " Pseudo 4-membered ring (cyclopentene) (1b)

Al (DSh) S—membered_ring (Cyclopentane) (1)
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Thése,all_have totally symmetric ground electronic states. This is
because there are an even number of electrohs in all the systems,
,with a maximum ohbital’degenéracies of two (DSh) and one (sz).

Because the degeneracy is one id C, molecules all the electrons

2v
must be paired, hence a singlet state. Iﬁ the cyclopentane molecule
.(DSh) we can attribute one_basis orbital (sp3 on carbon, 1s on
 hydfbgén)vpér valence electron. This implies that of the possible

2n (n is aﬁ.integér) lineér éombination of basis 6rbitals, n mplecular
-orbitalslwill be filled by 2n electrons. :Thus cycloﬁeﬁtane also

has a’singlef spin in the ground electronic state.

The symmetries of the ground'eléctronié state‘and‘thé puckering

coordinate determines the aliowed Symmetryvof the excited electronic
statesf_“which caﬁ:couple_to the grouhd electfqnic state in the |

linear matrix element. For the molecules under consideration here

the allowed-symmef;y,of the excited electronic states are

B (MO, ™S) C, (2a)
13 (Cyclopentené)  C- (2b)
E (Cyclopentane) D (2¢)

2 5h

In-fhe'oﬁe diméhsional Caées‘(sz) the determinant of the linear

.matrix eiements.will'have the form
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H

1, 1 oL 1
"2, [ By (D)) | By, . .. l Bl?z(n) )

IlAi ) - € o, Sy ay Sp . .0 S

s 1 - 71,2 1,2 1,2
.IlBl o)) a; Sy Ae -~ €

Rl 1,2 ©
L o (3
B 2) o, S Ae -8 (::) ,
1,2 2 Bl,2
'8, @) o S, fe_ - €
i 1,2
where '
. ' oH . :
' I N v y 1. : »
o = Ay |<-—————BSB > | 7By o) o G
‘ ' 1,27 5o '
Ae = elB - elA (Ab),_
1,2 1
where we define
EiA = 0
1
The notation_Bl 9 méans we use the Bl coordinate in the four membered
. b

,ring case (2a) and the B

2 coordinate in the pseudo -four-membered ring-

case (ZB). For simplicity, we will use just the B1 coordinate . in
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the remaining equations, because the identical equations result for

the B2 coordinate. In constructing the determinant we have made two

' -assumptions. ‘One is that AE < Aeo (Fig. 3) which was discussed
previously{ The second approximation is in negiecting coupling to
- other modes. In the one dimensional case (Cév) the other modes

which can couple to B are determined by the direct product of

1,2
the excited electronic states. The direct product is B - = A .
- , -1, 2 1,2 1

This tells us that ohly vibrational modes of A1 symmetry can couple
to the ring puckering mode. . .

For planar riﬁgs an'A1 motion can be a symmetrical stretching

- of the bonds or an in plane bending motion. As in earlier chapters
we do not expect the Ay coordinates to. couple strongly to the

distortion mode hence the A contribution to the determinant (3)

1
is ignored.

The detefminant (3) YieldS'the following pblynomiel equation in

€
| om0 n-1 .2
- e(de =€) --_'(K.__‘zf-l ™) (Ae - €) | SBl =,,0
This can be solved exactly to give
€=%Aeo[li(l+4a2)l/2] (e

where

o ) - n o -
.‘ 2 = _LE :E: aKz , _;l | _ (62)

‘A€
: (o]

=
(]
B



term to the lower root of Eq

_IE

~Th- .

The puckerlng potentlal is defined by -adding the usual quadratlc

(s, )=

For cyclopéntane (DSh) the determinant is

Al)

1w :
.l E2a(¥>?

(1))

l"
| [ E2a(n)5)

|t EL

(n) )

1

A,

AL )

1

gv

Ell

2a-

E"

E"

2a_

E"

1
2

AEO [1 - (l+4

1 " \
| Ey (1))

ocl S-E"

2a

‘Ag _

OLl ‘SE!"

'Ae
) 0

2

| E

(6)-to.g1ve

)1/2

(1))

iy

- €

]+ —-K S

.

2
2 B

tey @) ey, @y

. e Q.

1

S

n TED

Ae -
[o]

2a

- €

(7

o Sy
n E2b

Ae - €
o

(8)
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where
VE : L H.\ : .
= ¢ L v 1, oL [y 1, 9a
o = All g | Ep, () = (7A] | o I_Eva(n)> (9a)
2 2a/So L . 2b/So
Aed = €1E" - €1Aa' . g . ~ . (gb) .
2 1 - [ '
where we define
€ = 0
-'1A'
1

The same two approximations as used in the one dimensional case have
been used for cyclopentane. However we have ignored moré‘coupling
terms here due to the two dimensional nature of puckering in 5 member

rings. - The possible coupling modes are determined by E X El =

2 2 .
| Ai + Aé + Ei . The resulting polynomial'equétion in € is
: ' n 1.
- e(be &)™ (2 a 2ye o)L (2, +52,) =0 (10)
: o K=1 X o] _ E2a E2b' 7 ,

This can be solved exéctly to yield N v

(o}

£ = %-AS ‘[i * (1+4@2(Szn + 32"’))1/2] ’ " (1D
: o ) E E .
. 2a _2b
with :
v . n - R .
2 1 "2 : 2 : C
o = 2 OLK ‘ (113)
. Ae K=1 . :
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The determinant and resultihg solution for € look very similar- to the -
_one dimensional case, the difference being the inclusion of another
‘dimension in the puckering motion. Addition of the quadratic terms
defines the puckering potential for cyclopentane.

: 1 +g2
—-Ae ol1- (1+4a (SE" E" R 1/2 21+ 21 (52

n ] ) n n
B B, ~ F2a P 2 E2a ey,

V(S ) (12)

This form can be expressed conveniently-in poler coordinates as

/2] 2 K p2 'a (13)

V(p,e),= %- (1 - (l+4a o )1
where we finditﬁatvthere is no anguiar dependence to the potential.
The lack of angﬁlat.deéendence'implies'a free pseudorotation. . This
eupports‘ekperimental observations and eatlier theoreticel wqu.35_4o
Thisvaspect will be tteated_in more detail in‘the discussion section.

The'puckeringupotentials:(7,13) derived in this chapter are
identical in form to the inversion poteﬁtielafor MX3 molecules
(Chap. 1 Eq. 15) -ThetefOre the truncated forms and.all the equatiohs
: used to determine the potentlal parameters will also be the same.
For the reader's cenvenience this information will be summarized.

Refer to chapter 1 for details.

The truncated fotms of Eq. (7)'and Eq. (13) are

) = -ass  +bsl
1,2 P2 1,2

(14)

VTrunc(S_B
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VTrunc . (15)
where

' K , - : _

a = 4—° ' (16a)
K ' o

b = - °2~ ' - (16b)

8S :

o

S° is replaced by pb for the D5h poteﬁtial (15). So_is the valué of
the puckefing'coordinate‘at the poteﬁtial mninimum, Ko represents
the actual cunvﬁture at the potenfial miﬁimum and can inifially be
, approximated_by the nofmal coordinaté fofcé constant. Coﬁrections
to Ko cén.be made itefatively as described in tﬁg MX3>chapter.

The eﬁuations Which determine the paramétérs a, K, and Aeo'fdr.

the full puckering potentials (7,13) are

o Ko - |

- = Co (17a)
(+hals 232 gpe s ? | e
o CXC

K = 2, a? (1+4dzs°2)*1/2 - o (17b)
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B. Comparison‘of Derived Theureticallvauckering Potentials
to Empirically Derived Puckering Potentials

It is interesting to compafe the various potentials empirically
‘determined for ring:puékering in 4-membered, pseudo 4-membered, and .
5-membered rings with the.forms_deriVed in this work, These previous

potentials inclu&e o

2

| . | D N
Vo, = 124602 + 5601407" + 130.2 exp(-268.02) (TNO) . (18a)
ol _ >+ 1L ,
v = - 673820 + T422202% (mioy*? o ase)
cm . _ ‘ o ' : '
S 43 o | '
v ., = - 235002° + 506000z" (mMs)" @)
cm : B ' _ ' o
| .2 oy o 44 _
A =" 33850z + 123400z (Cyclopentene) (20)

Wheré é(A) is an'éppropriafely;defined pﬁckefing goordinafe. A
comparisbn ofﬁéalcﬁlateé éﬁd observed energy levels for these potentialé
cén-be found in.Téble 1, 2 and 3. .The'most interesting feature of these
tables is»thé-excél}enf‘agréemént betweeén .the calculéfed-and observed
transitiéns_fdrAéﬁéh'a simple form-oflthé poteﬁtial; .In the TMO
work42 it.was"fouﬁdH£h%t the‘two;pafameter potéﬁtial (18b)’, where
an:inﬁefted parabéiic barrier waé‘used,.éé§e an overall more accurate
fit to,fhe’experimént thén the'four_éarameteg form Eq,_(lBa), where
the potential barrief was éonstrained fb be‘gaus$ién. Similar fesults

31

~ were noted by the workers on TMS. " This indicates that this simple

form must be very close to the true potqntial. This also demonstrates

that there is a "preferred”-fofm for'the puckering.potential, and
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/

fhat empiriéallyzchoosiﬁg a differeﬁt.form_with“mofe adjustable
parameters doeévnpfAinsure.épvimproved or eﬁen'equivalentffit to
_experimeﬁf; In éddition to the méleCules.discuSS¢d in detail here
"it_shouid.be mentione& that the two parameter poténtiél
vV = —'ax2”+'.brx4 V (21)
: has given very accurate resﬁlts for néarly all 4-membered and pseudo
,4—mémbered ring mdleculeswas |

| The su¢cess of'thg_two ﬁarameterbform Eq._(21) can be ﬁnderstood
iﬁ termSVOf_thevpotéhtials-derived in this chapter. We see that
Eq. (21) is nothing ﬁore tﬁan_the truncatea form Eq.A(14) of the
~full potential (7). The fact that the trﬁncatéd form does.such
a good job implies that the_e#pansion of thé fﬁll potential (Chap. 1,
-Eq; (16)) 1is wvalid. The cfiterionnfor the vaiidity dfbthe expansion
~was that ii»>> 4&2802. This criterion can be tested in the molegﬁles
.conéidered hefe.‘;The'results are indicated-ih Table 4. Ko was
‘ detérmined.f;omrtﬁe corresﬁoﬁding'literature potentials (18,19,20)'
by thé.relgﬁiqn K§'= 4a Eq. (16a).. Sé,;tﬁe potential minimum, was
also~caléulafed frqmvthe'potentiais.: Aeo was approgimdted froﬁv
published spectré'on cyclic'hjdrocarbdns,321where‘by observatihon
most cyclié,systemshhadiabsorptions'averaging ~ 70,000 cm-l

‘(1.4 mdyn-R) . & is then solved for by Eq. (17a).
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From Table 4 we see that the'expansion;parameter, 4&2802, is

>much smaller for_TMO_thanvfor TMS and_cYclopentene. This indicates
"ythat the truncated form of the potential (l4);spproximates the full
potential (7) more accurately'for TMO than for TMS ano cyclopentene.
:ConSEquently the‘energy levels ealonlated for TMO using the truncated
"potential should be‘elosef to the‘observed levels than for the analogous -
computations inhTMS‘and cyelopentene (Tables 1,2,3). The agreement
_hetween experimentrand calculation isvsubstantially better in TMO
(Table 1) than in TMS (Table 2) or»cyclopentene (Table 3). Eecause
"TMS and-cyclopentene.have almost identieal'valnes_for the expansion l'
narametet, 4d2802 (Table.4); ne‘might‘exPect the difference between
combuted and observed transitions in‘both cases to be of similar sizes.
This is confirmed: by comparing Table 2(TMS) with Table 3 (cyclopentene@
In the TMS and cyclopentene cases we f1nd that the hlgher levels,
calculated by the truncated potentlal, occur on the high ftequency
side of the observed.ttansitions. This indicates that‘the outer‘walls
"of the'truncated'potential are too steep The theory devived in the .
first section is 1n agreement with this observation. This can be
-demonstrated by'looking at the next higher term (beyond fourth order)

in the expansion of‘the full potential (7). This gives:

vHS) = - 2A€0.a686 (22)

Because this term is negatlve it implies that the full potential n

'w1ll have less steep .outer walls than the truncated form (14).
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Cyclopentanevis~diffefen£ from the'ether moieculee discussed S0
far in that it has two degenerate puckering coordinates (Fig. 2)
,«This lead to a-two dimensional potential (12) which could be
‘eonveniently.expressed in polar coordinates Eq. (13). In the polar
form the potential did not contain any angular dependence, which'
Aie analogous to‘the problem of a rotating—vibreting diatomic molecule
vcdnstrained-to rotete in a plane, Heece, cyelopentane is said to.
undergo a free pseﬁdorotatibn.

In.pfevious‘theoretical investigations en eyelopentane37 it
has been pﬁoﬁosed that the absence of an angular term in the poteﬁtial
is primarily a geometrical consequence, Because it appeared to.be a
feature'indeﬁendent of the detailed.natuie of the assumed intermolecular
forces. This work confifﬁeltﬁis observation ana demonstrates ifs
origin’in a efraightforward manner. |

Angﬁlar barriefS'can-arise from twe"different types.of coupling.
The fifst.type is the coupling of_a-degenerate cOordiﬁate with other
vibrationel motioes,, This is generally a smell effect because the
'coupliné term.willfdepend inversely on the force constant of tﬁe."other"
- mode(s). :Tﬁeee other modee(s) usuallyedccur at sﬁbstantially higher
energy than the puckering motion, and will have a "large' force
"constant. The secoed type of coﬁpling, and the most important, is
the couplingvofea degenefete pair of;cberdinatee to themselves. We
saw an e#ample of fhis in the MX g chapter, whererthe angular bafrier
| in VF. arose from this type of self coupling. In MX (D ) molecules

5

the p0831b1e coupling modes were defined by E' x E' =E' + Al' +.A2',
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- which shows that the E' coordinate caﬁ_gouple to itself. . For cyclopentane-

we found fhat E2" X E2" = A2'v+ Al' + El' -sh that the puckering
-;chordinate E2” cannht couple to itself. The only §hﬁrcevpf an angular
term in cyclopentane is_ffom coupling of fhe firsf type, which impliés
é‘small of eﬁen negligible angular barrier(s). Because these arguments
‘are based maihly'on group theory contepts;rthe geometfical basis of
| pseudorothtion in.dyélbpenfane is chnfirmed.

Anothervinteresfing aspect'ofvthe cyclopenténe potential is
_the bahrier,height-to planarity, Thé calCulatibn of - the barrier"
héight was dohe withhthe full hotential (13) rather than the truncated
~ form (15). A.look_ah Table 4 shows that for cyclopentané 4&2802
is equal to 1.32 which indicates thatvthe eXpansion’df the full
-potaatiél cohvefgeé verffslohly. With - the ﬁncertéinty infthe.lOCation
hf the pothntial minimum, po,é6 calqulated'from_&ifféfent types of
experiments? and ;he approximations psed in pinpoihting AEO the
calculated fange of the potentiél}barfier to hlanafity is
2,300—2,600‘cmf1. Pitzer and Donath??»eétimhtéd the barrier at
1,680'cm_l, by taking into hchbpnt'c;g—h bond angle strain, torsional
'forces, and honbonded infefactioné. Allinger andvgo—horkers39_found
the hafrier to be 2;220 cm;l, usiné}a'semiclassicél approach. Finally,

38 o - i - :
quland3 placed the barrier at 2,820 cm L using an SCE model,



Téble31.~.Comparison of calculated and obsérved transitions in TMO.

. From the work of Borgers étaal.42

-1 = -6738z% + 742220z" (See 18b)

Trénsition-  | 'Caiculated'(ém-l)vf e Obéerved (cm_l)
0.1 . s34 534
1-2 1 89.9 : 89.9
23 1048 1047
VR 128.2 . 1181
4=5 ._" 129.2 o ~ 128.8
56 138.7 | 138;9
67 . w1 147.3
-8 154.7 | © 155.0
8-9 | , f»” 161.6 } © 161.6
o-10 1680 168.2

S 10-11 a0 174.9
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Tébleiz.v Comparison of calculated and observed transitions in ™S .

From the work of Borgers and Strauss.43

V-1 = -23500z% + 506000z" (See 19)

cm
Transition . ‘Calculated (cm_l)v - Obéerﬁed (cm—l)
0-1 o .27 ‘ o Y
1-2 . 139.8 . 138.3
3-4 L.o86.1 - - 85.7
45 632 627
56 . 85.0 - : 84.3
7.8  100.8 L 997
89 1079 1078
9-10 - 114.3 - . . 114.0

10-11 ' S 120.2 . ,118.3
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Table 3. Comparison of calculated and observed transitions in -

¢yclopentene. . From the work of Laane and Lord..44

v -1 = -338502% + 123400z" (See 20)

Transition  ~ Calculated (cm-l) © Observed (cmfl)

0-1 N | .91
1-2 _— ,.126.6‘__‘ o ara
2-3 36 250
34 o8L7 o 83.1
s . @2 - 76.6
s-6 e a0
-7 101 - 9.8
7-8 . 108.2 107.5
89 115.3 . . 113.3
90 1218 R 119.4

10-11 127.8 . 126.1
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Table 4. Experi‘me‘ntal%’liz_[f4 and derived parametérs‘for some cyclic

" compounds.

- Ko | :So o Mass.  ' 'Aeo o 4@2802
ey ay (aﬁu)- (mdyn-d) ()
™o Sh 067 912 1.4 1.9 .065
™S . 1.78  .152  104.7 1.4 1.8 .30
qulopenteﬁe n 117 155.5 1.4 2.2 .27
Cyclopentane  1.43 .48 28.1 1.4 12 1m:




-87-{:

V. PSEUDOROTATION IN IF, AND ReF7'

A. Derivation of Pseudorotation Potentials for IF_ and ReF7
- i

In this chapter we will consider distortions of a MX. molecule

7

. from a D5h structure. The molecules which will be specifically

studied are‘IF7 and ReF.. The symmetry coordinates for a MX, (Dgy)

- molecule are drawn in Fig._l. The distortion which will be diécussed

1

2 a,?llb)'
equivalent to the puckering of a S5-member (DSh)vring, which was

is one along the E sﬁmmetry coordinates ‘(S11 This is

discussed in detail for cyclopentane in the previous chapter. However

“for MX7 moleéuies_there is an additional feature, the coupling of the

_axiél.bend S7(Ei) to the puckering motion..‘For cyclopentane we .
found that the possible modes whiéh could couple to the puckering

» . : '-,. .vn=.v+ Y AL '
ygre deflned by_E2 X E2 E1 Al A2 o In a MX

7 molecule there

! | modes, and two A} modes (Fig. 1). For

2 1

' reasons to be discussed later, we will couple only the axial bend

modes, three E

vare no A 1

1 : e . . 7Y
S7(E1) ;o the d;stqrtlon coordinates Sll(EZ)’

As in MX, and MX

3 5 7

be considered to arise from a coupling of the ground eleectronic state

- molecules the distortidn in the MX. case can

to a certain electronic state via the distortion coordinates,slla; 8111

47
7’
in Figs. 2_énd'3.v We see that both IF

éﬁd ReF, are diagrammed

7

7 and-ReF7 have a,totaliy- :

symmetric gfouﬁd electrdnic state 1Ai. The only‘ailowed_éymmetry
)

of the“eXgited'electronicﬁstate that coUpies'to the lAl grdund

The electronic structures of both IF

electronic via the_Eg distortion coordinate must be 1E5. In both
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IF7'and ReF7 the#e ﬁill be many transitions 1eading to 1E; excited

states, however to pick the one that contributes most to the distortion

‘process we can use the same guidelines as in the MX_ chapter. These

5.
were (i) the molecular orbital from'which‘the eléctron is.eicited
should be localized on the atoms involved in the distortion,, (ii)

the excited molecular orbital into which the electron goes should be

0

‘one that can best‘help stabilize the discorted geometry, These factors
indicate'that_toe distortion process is facilitated by a charéc’
transfer process io which charge-is tranéfe:med from an orbitél
’localized:on the ligaod atoms to an excited'molccoiar orBitaljlocalizcd'
'.on.the\cencfal atom., This.transfef'of charge‘sﬁoﬁld haoev;he'efféct of
'rélieving some of the repulsive forces due to the proximity of the '
five equatorial ctoms,i With these considerations'the»most reasonable
choiccvof.craositions is from the.Ei (on) orbital to the El" (5 dxz,yz)
otbitalo localized on tﬁe central atoms (Re, I). Thecsymmetries of

the excited states formed by'this'transition.will be Ey' X El" =

'Ez" + Al" + A2" ‘which contalns the species of 1nterest E2"

We are now in a position to construct the matrix of the linear

term in the electronic basis ll 1 llE" The matrix

.,E2b .

can be written as



1,
1A
E" )

2a
'1‘n
l 2b _

where

11

7y

7x

Ae
(o]

‘where we
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1 ' l'n . ’ "
|71 |"E5, - |75, )
- € C11511p
cllsilé c7ys7y + Aeo—e Cqop s7X (1)
- C.S_ . —C. S. + he -¢
Cllsllb 7% 7x 7y 7y o
L A - f 3n N
1 v 1 ;1 v 1
= ("A! | —)  |TEY. ) =(A! | < ) | "ED. ) (2a)
1 <®Slla>s 2a 10 \35 ., /s 2b
(o] 0 -
o [ H , : oH
. 1.y Vv 1., = 1 1 N 1,
=By, li(as Eja! = ¢ E2b‘<88 ) | "Eqy, (2b)
7yl S ) 7y] S
: 7 o o
f sH
= l‘n v 1,
=By, | (as ey, ) - (20)
. 7x7/S
o
=g - €
N § 1] 1 []
Ey A
definer £ =0
: L,
1

Fér'simplicity we can work with the determinant of the matrix (1) in-the

form

i L "
o

l r 1 1"t '. l 1"
1Ay "Ep, RN
- € Al A,
A1 | Fl + Aso - € B2 (3)
A2 Bé | - B1 + Aeo - €
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. where

| _.Ain_.- = CySp. : (42)

/ 'Az = Ci1 S (4b)
B,. = Cry S7y.;. ',,(4c)

B % Crx S7x (4d)

The resﬁlting polynomial eqﬁation in € is

2. .
2 ) =

(5)

Y 2. 2. 2., 2 e e 2
- ;[(Aeoje) - (B1;+ B2 Y] + 2A1A232 - (Al +A2 )(Aeo—e) f Bl(A1 jA 0

With the assumption khat Aeo > e, B which should be valid for

1"’A BZ s
small distortiomns, the cubic equation (5) can be simplified to a second

order equation in €.

g ‘ 2 2.
2AA.B B.(A,"=AT)
17272 171 2
_E(Aeofe) + -AEO . f s .

2

. 2 .
- - ‘(Al + A2 Yy =0 v  ‘(6)

'This.eQuation shows explicityvthe coupling of the puckering motion’

(Al’AZ) to the axial bend'(Bl; Bz).' In the limit that the coupling ‘

cbnstants C7x and C7y are zero,.the second and third terms in Eq. (B)
would vanish and we would be left with essentially the same eqﬁation

as in the tyclopentane-moleéule. The roots of Eq. (6) are



-9~

‘ ' v2AAB'B(A A)
__; REPWRY; 1%2%7
e = 5 de [1E(1+ —5 A 5 {(ag+ 2) Ae_ Ae
eo _ : ~ Yo

~

This can be recast into the origihal coordinates (4) to'yield:

152 | _ ' )

1 1/2 ,
= E-Ae [1+(1+4a {(s 21571) - zexsllasllbs7X + Bys7y(sllb 11 )}) 1 (8)
where .
11 . , » :
o = Ké—- -‘ . . - (9a)
o - :
Bx == . o -~ (%)
. 0 '
: ‘By. = A ‘ - (9e) .

The full diétortion potential, including éxial-coupling, is defined

by adding the appropriate quadratic terms to .the lower root of Eq. (8).

V(S 7y S11a2511p) = "’A€ [1 (1+4“ {(S 11b) -28 Slla 11657% -
) (10)
12 , Ly (s2 4 g2
(Sllb 11 )}> +3 K7(S7x * 8y

2 L2
* 3 %11 Graa * S1ap)
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The leading terms of an expan51on of. Eq. (10) which couple the EE and

EI modes are of the Fform

'2 2

v -te o’ [8 375 S111 Slla) = 28511251165 7% S

couple

]

We can solve for the El motlon in terms of the E!

"2

the Ei coordlnates ‘to follow the E; motion in such a way ‘as to

‘minimize the potential energy Eq. (10). .This can be accomplished

mode by requiring .

'

by taking,-BV/BSE,-= 0 and solving the resulting equation for El
in tefms_of E;; . The equivalent approximation was made in the MXS

tAchapter (Egs. 8,9) to reduce a tw0xdimensiohal_potential_to a one

dimensiohal potential.

o 8V¢°ﬁple'+'K S éAe a“B__ S + K s =0 B (12)
9, 35, ~7°7x 7x lla 11b 7 %7x

‘2Aeocx Bx

7 X S11a S11p

The same approximation applied to‘S7y gives

Ae 0B : :
_O0 YV g2 _ g2
57y X G11p ~ S11a) (13)

These equations for 'S , S, can be substituted back into V in
. TRy TIx : couple

Eq.  (11).
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Lk [g? &sz i )2 +4s s2 SZ’_] (18)
Py P1mp ~ 1 11a "11b

o

Vc-ouple

In this form Kl4)Ithene’is an angular dependence to the potential =~ ¢ .

.in the form of the»cross-terms'ln S11a end Sllb‘

.’By_“ Bx,'Eq. (14) takes on-a particularly simple form.

If we assume that

ae2 0% , s .
Vcouple STTX (Sllb + 3113? (15)

7

There is no angular>dependence'to Eq. (15)”if polar coordinates are
introduced For 31mp11c1ty, and also because 1t seems phy51ca11y )
plau51b1e that B 67 , we w111 use form Eq. (15) for Vcouple
in the remainder of this chapter

In thlS approximation (15) the full potential (10) reduces

to Just ‘a functlon of the E; coordinates.

‘ ] . . , , 1/2
v(slla;sllb) = —-Ae [1 (1+4a [(s llb) + 82 (s 11b) ]) ]
1. 2 .
+ 3Ky (5714 F Si1p) (16)
where
, 2';,A6062a2 _ - :

-
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In polar éoordinateé (p,0)  the fﬁli,pofential'in Eq. (16) becomes

V(p,0). = £ Ae [1—(1+4d2p2(1+62p2))1/2] +1x

The truncated form éf Eq. (18) will look like
2 4 N
VTrunc(p 6) = - ap + bp (19)

whére'a,b afevadju;table parameters.

In order to get quantitative values for the three,parameteré'of the
| fﬁll potentialin'Eq.‘(18),.d,.6, Kil,_weAmust find threg.lineariy
indebendent.félativaships among-them; Using the twO“der&vativé .

. conditiOns (i) firét derivative of the potentiél is zero at p=0 ;
(potentiél-maximﬁﬁ)_aﬁd at p=po_(équilibrium geometry),'and (2) the
second deriv;tive.eduals the _cﬁrvature_lio_(z férce const;nt) at the

equilibriuﬁ positioh P,> We can get'twb relationships;_‘Thése are

a (l+2$ p 2 4d252 ' o

[l+4a 0, (1+6 0 )]1/2 8Aéop°2

(20a)
[1+4a o 2 (14+8% )]3/2

S 2A€0a2(1 +:262p2) - R
K, = - S _ (20b)
11 [1+4azp§(1+6 )]1/2
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YOU‘might :ecall that in;the MX5 chapter fhere were also thfee

parameters, and using conditions on the derivatives we were abde

Ato quantitati§ely défiﬁe all three (Chap. 2,:Eq; (15a,b,c)). 1In the:

TMXS-caséAthe origin of thé third_rglationshibfWés that the third

derivatiQe.ofAthe ﬁoteﬂtiai be zero at the ﬁofential.maximum.‘ This

—iﬁsured fhat the symmetrvaésvof the double minimum‘variety. However,
7

derivative is always identically zerobregardless'of the valhes-of the

| the lack of "a cubié term in the MX_ potential méans the third

three parameters;f Hence, we must look elsewhere.for anoﬁher
relation, | |

We can find this thira equation in the form of thg coupling'
relationsﬁips in EQs.'(lZ,lB) in coﬁjunction wifh tHe-definitioﬁ ofv
Stin qu (1?}; In tﬁe:apprqniﬁatioph.Bx ~2 Sy in'Eg:}(lS) it turns fut
 ‘that the magnitudefbf the axial bend lS7|,is constant and can be.

related to the puckering coordinate p as

e . o 2 ' C
: |S7| f as < K > Po - . (21) 

where we now have the three Egqs. (20a, 20b, 21)-to solve'for O, 8, -

K,,. In Eq. (21) |S71 and p_ are determined by electron diffraction

11
48,49

measurements, . and K7 is simply the force constant of the axial

bend.
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"B, 'Definition of Coordinate System. anﬁ Estlmate
' - of Some Potentlal Parameters

The symmetry coordinates for the axial bend (S7) and the equatorlal

puckerlng mode (Sll) are defined by50

T . . .
© L M-F(aX) conn und ohg o ° 4 (AB. +AB._-AB. .- i °
S = ——:%;e——- [(A626+A827 DBgg-0Bg)sinT2® + (B +AB S -8, ¢ AB,;)sin 144°]
(223)
_ . , | | . B
- M-F(ax) ; - o o .
Sty = ———;gr—f-[(A816+A817) +_(§626+A627+A§56+4657)cos72 . (22p)
+ (AB36‘+‘A837 + 0B, + A647).cosl§4 ]
Syq, = M-Fleq) (g 08, - BB B ) sinl4s®
a ) /§ 26 i )
- . (23a)x
- (MByg ~ 0By, - BB, + AB47):sie72 ]
Co L M-F(eq) popq " _ .
S11p =7 . [(AByg-AB17) + (BB, 0B, +ABs, AB57)°°3144 |
| '_(23b)
o+ (AB36—A637 + AB46 AB47) cos72°]
where rM—F.iS the.M-Fvbond:distance, and ABij is the change in angle

between.the equatorial'flu0rines-(1 2”3.4 5) and the axial fluorines

(6,7).' For the ax1al coordinates in Eqs. (22a, 22b) the terms A816, 617 .
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4

also represent thevéﬁgular.displaéementifrom the linear axial configura~

tion, since the motion in S7i.is dirécted tqwafds one of the equatorial

,fétomg (Fig;il). For the puckering motion (23a, 235) ABijvalso
. represéﬁﬁs the anglevof a.M-Feq bond with a hypothetical planar
airangémént of the five equatoriél atoms. This fact allows us to-

. convert easily f;om the coordinate system uséd inﬂthe electron
diffraction work48’49:t§ the symmetry coordinates in Eqs. (22,23). The
electron‘diffraction coordinates were,

o, = a° cos2 (§~i:+.¢) 1=1, . ,v., 5 B (24)

.-ﬁhefe di is the angle the.i'th fluorine makeS'with the»h?bothﬁtical

pianar ring; The parametef, ¢, is the phase of thé distortion, in

the sense of the relatiGe émounts of S Thaﬁ is,‘¢é0 |

11‘a-g.md S

corresponds to a distbrtion-juSt along S

11b°
B,-while ¢=45° corresponds

11

to just Sllé,'ahd intermediate phases, 0° < ¢ < 45°, represent some

P oo . 48
linear comblnatlon of Slla and Sllb'

in effect define@ Sllb because the o, are identlcgl to the ABij’

With-S11b quantitativély fixed, so is the equilibrium'geometry,pdj

If we now take ¢=0 we have

Because

11b°

11a=0

lla’aﬂd S

therefore the choice ¢=0 is for convenience. For ¢=0 we have S

it (py) 1s independent of the relative phase (¢) of S

ﬁhich_lea#es P, = lsllbl'
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The conversion of the dlffraction parameter (B) for the axial

‘bend to the symmetry coordinate in. Eq (22) is also straightforward
w

_The parameter B represents . the magnltude'of the axial bend, where
B is the: M-F( ) bond angle relative to a linear arrangement of the
H‘ax1al fluorines. We can 1dent1fy B directly with ABIG and A817
'87y. In the preceding sectron we eaw that the magnitude offthe axial-
»bend [871 was.constant (21), thus the absolute value'ofis7§; which
 is fixed by B, also represents |S7]} |
The mass (mli) associated with the puckering mode’(Sll) can be

taken as the inverse of the eorresponding G-matrix element(so]

where mFiis the mass of a fluorine atom. - Wiison's high freqnency approxi-

11 o ' . .
mation 1is not needed for the .puckering motion because there is only

2

there 'are no~eross terms in the G-matrix. Defining the axial bend

one mode of E] symmetry for a MX7 (DSh)-molecule (Fig. 1). Hence,

'mass_(m7) is more invdlved,-becauée there are three Ei motions (Fig. 1).

For simplicity, and’aleo'because the axial motion is not our primary
~interest, thevmass-(m7) will be approximated by its diagonal cdmponent
in the G-matrix;so"

, - 2memy B : .
m, = g;gﬁ;—iaa; . o (26)
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where My is the mass of the central atom (M)
The force constants assoc1ated w1th the puckerlng mode (K ). and

~axial bend (k7) were calculated by the equation

K ,(5.9><10‘7)(v0+1)-m" | @D

" where, with m (amu) and V (cm-l), K will be in mdyn/A (Chap. 1,

| 01
Eq. (33)).

Since the Ez" mode is inactive51_53“in both the Raman and
o , ' ' N E) -
infrared, a suitable guess must be made for Voil' of the puckering -

-motion before ko can be calculated via Eq. (27). A good approximation

to the Eg motion.in MX7 (DSh) molecules is.the:Téﬁ mode - of octahedral

‘MX_, molecules, A visual comparison of the T, mode (Fig; 4) with the

6 2u

Slla coordinate (Fig. 1) shows that these two motions are almost

: ‘ _ ' » 54
identical. Therefore the T2 fundamentals'of ReF6 and TeF6 ) (IF6

does not exist) should be reasonable guesses for the EV fundamentals

Ell 2 E"
. 2 _ -1 2
, ‘of,ReF7 and IF7 We w111 take VO?l (ReF7) = 150 em and V0+1

(IF7)'= 200 emt (Table 1). }An independent check of this approach

is- provided, in that'thevTiﬁ bend for MX6 meleeules (Fig. 4) is

gimilar. to the A; (S4) mode (Fig. 1) in'vMF7 molecules. For Re_f‘6
V.. =257 cu © and in TeF, ¥ = 325 em T, For ReF 7y 3 = 299 cm
T , 6 'T 7 As
. T 1u 17 Z1 1u o MX6 MX7g 2
and in IF V 4, =2365cm . We see that V.. <V, , . vThlS is
~7 A2 . Tlu A2

physically reasonable in that MX7 molecules contain an extra’equatonial-

fluqrine which should lead to a slightly steepef potential for the

-1

umbrella type motion due to ihcreased F-F repulsion. The extra
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XBL744-6139

. Fig, 4;_’T1u(bénd) and'Tzu_éymmetry coordinates

- for an octahedral molecule.
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“2u T2

motions,due to the symmetry of the modes. The corresponding comparison

eduatorial fluorine.should not be as big a factor in the T E "

between the T , E." motions should be better than the A", T.
A 2u? 72 » R 2 1u

. comparison,

 THe;é1ectronic transition energy Aeo‘(lAi > 1E'2') was approximated

in both IF, and ReF, due to a lack of published ultrawiolet spectras:.

7
" In the case of ReF

7
7 Aeo.was crudely estimated as the difference-19 in-
energyxbetween a F(2p) orbital and a Re(54d) orbital (Fig; 3), which
places_Aeo ~ 65,000-cm_1 (l.3.mdyn/A).' Because the 54 orbitals of

I are virtualrorbitals (not occupied in the I electronic ground state),

7}: However the 5d's

on I will be substantially higher in energy than those of Re, so-

it is more difficult fo estiﬁate Aeo than for ReF

‘Ae_ is arbitrarily placed at A ~ 100,000 em™’ (2 mdyn/A).

With'Aso,‘kb,yk7, Pys and |S7| now quantitatively_defined it

"is possible to find quantitative puckering_pqtentials_fortlF7 and ReF7
. using the relations (20a, 20b, 21). The final results are found in
Tdﬂe2. .

C. DiScussiQn of Other Work on IF7 and"ReF7

and ReF. is from

7 7

It was concluded from an

The most direct evidence for distortions in IF
electron diffraction mea‘surements.4~’49

analysié of the radial distribution curves for both molecules that

"

5 (Slz coordinates coupled in a particular

only a distortion along the E

1

1

éxperimentél data. The suggested coupliﬁg was of the form

.way‘to the axial bend E (E?) could ‘account most precisely for the
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ED* ED ey 29)
‘which is identicél to the’couﬁling we have derived in the first
seétion (11). One_lihitation'of the’diffraction experiments‘is that
ithey coﬁld nbt éupply direct evidence for a dynamic model (psepdo—
rotatibn).' The diffraction work could only determine the magnitude
of'the'?uckefing4and'axial distortion.

Eiectric field’deflecﬁibn experimenté are complimentary to the
«diffragtion work, in tﬁat they can dis£inguish betwéen a static
,deforﬁationﬁand.a pseudo-rétating_model; assuming that there is
sbme'sort'of dipdie'momenf} If thé‘dipolé_momeht‘is_static then its
magnitude and orientation in the moleculaf frame will be essentially
-temperatﬁre.inaependent. On the other hand, if the dipole moment
is fixgd in~magnitﬁdé but éhanging-orientation in tﬁe_moiecﬁlar frame
_(psuedorotating)' ifsfbehéviqr will bebstrOnglyrteﬁperature dependent.
Both IF. and ReF .

7 7

deflection wbrk.SS-FurthérmOre, ReF7 shows a stronger effect than IF7,

show a strong temperature dependénce in the field

which-is4in-agreemént.with‘the 1arger_axiéi distortion»iﬁ_ReF7? hénce'
aulargér dipole~#oment}_The phenomenon of eleqtric field
déflection'is‘discussea‘in detail?in the_last chapter. The
’vskefchy dut1ine pfesénted here is only to point out that;there is
strong-evidehce fOrva pseudo:otatiﬁg; quelfin IF7'and'ReF7. From

the: form of the full potentialv(18),(novangular dependeﬁce) we bave

"derived. a pséudorotating'-model for both IF7 and ReF7.
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Our "assignment of the fundamental frequencies in IF7zand ReF7

can be found in Table 3. A comparisoﬁ of various assignmentsSI—s3
assignment of the Ei axial bend (Vz);the A;_umbrella motion (V4),

Jthe Ei,équétdrial~stretch (V8), and the E{’axial bend (Vlb)'

and CO—quEérSSS_assigned v, = 257 v(:mb_l and v, = 365 em ! in IF7;
' 1

. : 52 : -
while Eysel ‘and co-workers  assigned  V = 257 cm .

ffor IF, and ReF. shows that there is stfong-disagreemént over the
Claasen

- -1
7 = 3637cm agd V4

Eysel based his assignment on a comparison of the band contours of

5h

dangerous becausé the'axial bend (VZ) is stronglyvcoupied to the

these modes with those expected for a static D structure. This 1s

psuedorotating mode (E;) which could drastically change the nature
of the éxpected band contours. Further evidence against Eysel's

.assignmént'is the_comparisonvofxv4(ﬁg) for MX7'molecu1es to VTﬂ.(bend)
L s o Tu
of MX, molecules, where for TeFg V.. . .= 325 cm 1} If, as Eysel .
6 . Tlu . _
-1, Mg M '
5= 258 cm ~ then VT” > VA".
. : lu - 2

was rationalized in the previous section. For these reasons we accept

~ preposes, V which is contrary to what -

Claasen's assignment of Vv, and V. in IF

7 7
F(t)rvIF7 Claasen.places the Ei equatorial stretch at V8 = 352 cm-fl
and the E} axial bedd at V;, = 510 en™t, while Eysel places Vg = 510 cm™t
'aﬁd V10 =.310vcm_l, 'Claaéenfs unusual_assignment of a stretching .

tméde ha&ing a much.lower'frequencyIthan_a bending mode was motivated '

by an impr&&éa fit to the cbmbinafion bands, This assignmént is physically
vuhreasonable; because we saw‘earlier_that V7 which is also an axial bend
occurs at 257>cm;1.'.Thus'VlO, also an axial bend, should océur at a

similar ffeqﬁency. ,Théfproblem of assigning combinationiénd overtone
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bands will in some part be complicated_hy the.pseudorotation mode.

10 10

Claasen's assignment of V9 and,V10 in ReF. has been changed to be

consistent withxthe'lF7 assignment.

In addition to the problem of assigning the fundamentals for IF7

For these reasons'Eysel's assignment of V, and V,. is accepted here.

and ReF7,.there is a strlking difference in the appearance of thel
IF7.and ReF7‘spectra. Claasen noted that53 "(1) two bond stretching,

infrared-active fundamentals are found for IF7, nhere'as only one.is
observed for ReF7,_(2) rwo intense and highly polarizedvRaman,bands
are observed forI_F7
of ReF7 have half -intensity w1dths roughly twice as great as those of

and only one for ReF-, (3)'the;infrared fundamentals

IF7;' We will comment on the flrst and third observations, as Claasen
has already proposed a reasonable explanation for the second observation.
_An'MX7(D5h).molecule has 18 degrees of vibrational freedom which

fall under the symmetry species ZA’ + 2A" + 3E' + 2E! + E" + E"

2 2 1 2
{Fig. 1) The species A', EE, Eé are Raman active, while AE, Ei’are o
infrared active and E" is inactive in both Raman and infrared The .

2,
"

2

Eg x E; ='Ei + Ai + Aé Although.we treated the'axial bend (E')-i
1"

oupling in detail we would find the same general features for E2

possible modes which can couple to the E dlstortion were defined by

coupling with the remaining Ei modes and the Ai modes (there is no

Aé mode).‘_Thexleading coupling term for these other cases would be

of the form

Laeptoy @

Vcouple
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1 1

- T mode, andvA is a product of 1ineartmatxixvelements Eq;'(ll).- The

where T' is an E! or A! coordinate, K is the force constant of the

two Ai modes in MX. molecules are symmetrical sfretches:(Fig. 1)

7
which occur at a relatively high energy, thus K is large. The net

1

motions would be relatively unaffeéted‘by small or even moderate E

effect ‘would be a small cbupling term (29), which means the Al

"
2
‘distortions. -There are'twojEi'bending_modes and one E{ stretch.

Because the Ei bend occurs at relatively low energy (small K) the

1

a degenefate'Ei mode to the E; distortion will be.two-fold (1) the

Ei frequency<wili-shift as a function of the E;7coordinates (2) the .

mode will be split by the coupling. Even though

'coﬁpling will»be'strbnger than in the A! case. The effect of coupling_

1]

1

fthé’coupling-to the Ei’stretéh will be weaker than the Ei bend, the

removal of the'dégeneracyzwill enhance the brdadening effect'df the

doubly degenerate E

coupling. Because the A; strétch:and‘Ei stretch occur at comparable

fréquencies in the infrared for IFF, it is concieveable that the:

llarger E; distortion in the ReF.,
Ei streﬁch to, in effe¢t, mask the A; stretch. In summary, the

- theory derived hefé'pfédiétSfthat the infrared fuhdamentals will be

case'Would'sufficiently‘broaden‘the

2

‘perturbed much more by the EY motion than the Raman bands. -Also,
‘the effect in ReF7:wiil be 1érger-than in IF

.

It was mentioned at the.beginning of this chapter that only

2

reason for this is now clear, because the axial bend occurs at much

cOupling.of the'axial_bend td_the E!' pucker would be considered. The_

lower energy than the remainiﬁg Ei modes, and .the two Ai stretches
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(Table 3).‘.Hence,"éoupliﬁg to the égial.bend_will predominate over the
other couplings, |

At thé presénf time there are no published_values for'the barriéfs
to planari;§ inilF7 and Réf7. The estimates here place the IF;~barrier
_at 1481 Cm_l an& the ReFj.bafrier at 2236 cm-l. Thé-erro; of these j
values ﬁill'bé»dn the order of the errof in esfimating Aeo. Since.l
thére-ére no évaiiable ultraviolet speqfra for IF7.0; ReF7 there is no
way to determine tHe error in-Aeo; However, it is unlikely thgt the

. approximate Aeo'svare beyond a % 30% (2-3 eV) range of their true values.
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Table 1. Fundamental frequenc1es for the T, and.Tzu modes of

1 (b d)

the octahedral molecules TeF6 and’ ReF6

U -1 - PR &

Tiatbenaf™ D Toy (em ™)
TeFg - 325 ‘ . 197
ReF 257 . PV
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7'and ReF7.

Table 2, Experimental dnd potential parameters for IF

" Parameter IF7 ' . ReF7
r . . ' |
- MeFCeq) (B) .1.86> | 1.86
r v ' .
M-F (ax) (3) 1.79 | 1.79
Ell . . . } -
vli (cm'l) o 200 150
mq (amu) R I 9.5 9.5
mdyn o -
k, ) 224 126
E! , _

V71 N . 257 1 .217
n (amu) 6.3 6.3
-mdyn, o , - :
k) L2450 175
P A 44 .630

. ‘Aeo (m}lyn?A) . 2 - .-:"_1.3
sl @ 230 .375
o« ® st Lge7
s @ _ . .254 : .283
~ mdyn : o . o :
ko OO 1.83 o 1.39

.Barrier.to_l. : : o
Planarity (em 7). 4 - 1481 o 2236
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and ReF

7

_ Table 3. Assignment of Fundamental Frequencies for IF -

’Fundamenta1> -Symmetfy : IF7 (em ) - 'ReF7 (cm™

| v, - Al 676 . 736
v, At s s

v. A 670 _' 703
v, ‘_ "> A" o 365 299
R f  746 703
v R s | _1 . 353
v B s ' 1 BPIT,
v, . E} - 510 | © 597
v - . ;,: B 352 g9

v v; CE , st - 352

V.. : EY oon? 150

aThese are guesses baéed_on'TeF6, ReFG,(see'Calculation section).
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. V1. PSEUDOROTATION IN XENON HEXAFLUORIDEl(XeF6)

A. Theory: Derivation of the Pseudorotational Potential Function (XeF6)

The coordina£e system’whi§h will be used in this éhépter'to.describe
the internal motioné of XeFé:are the symmetry coordihétes of an octahedrél
(Oﬁ) Mxé molecule. These are pictured. in Fig. 1. ' From tﬁe symmetry we
séevthat distortions 6f,aﬁ'MK6,molecuie from an pctahedral geometry can
take place along pathways in a twelve dimensional space. Our foéus inA»
this éhapter will be primarily on distortions>arising.from Tlﬁ displace-
ments (ﬁostly S4(Tiu bend)), which gre:stronglj_éoupled to’Fhe Izg(ss)
mode., Other ﬁossible éouplings will alSovﬁe considered in detail.

| 'vThe electrénic stfucture of XeF6-i$‘diagramméd in Fig. 2., . From the
moiecular_orbital‘diagram (Fig. 2) we might expect thaf‘the first‘ex—
cited elGCfrOnic'state (Tlu) is relativély close to the_ground electfonic
- state (lAlg), whiie the.other excited eleétronic states are of_cqnsider—

ably higher emergy than the T state. There are actually two T

1lu lu

R 1 N
states, a singlet "T. state and a triplet 3T state, however .ortho-

1lu
with the singlet spin on lA

1u

gonality of the triplet spin on 3

1lu 1g

precludes coupling between these states. Spin-orbit effects can mix

-lTlu And.STlu,to nodify this argument, which will be discussed in a later

section. In this section only coupling of the lTlu étate with the

lu distortions will Be'considered._

: The.pbssible;nmdes which can couple to a‘Tlu distortion are defined

1A ground state via T
1g v

=A +E +T . From Fig. 1 we find that the
Iu - "1g g : : .

E, and T
g

-bvalu * T f T

species A

1g 2¢g

1’ 2g.correspdnd to acfual'symmetry coordinates while -

Tlg'doesfnot. In addition we note that.Tzu(S6) displacements do not

couple to the T

1u distortions. Of the mers that couple, the ng(ss)
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: lur
o e -
SefTid | o | ’.4‘34‘“,“) - st

7 / | /4 /
T Sy ) o =ls | sy |
’ /47?//34 b2 .'/;77Zf A ' | /:§7Zﬁ' '

\ ”SGG_(T2u) ' o' Seb(T2y) <! SeclT2y!

o S3Tiy)

b Sy | S

]
XBL744-6125

Fig. 1. Symmetry coordinates for an Qctahedral MX6(Oh)_molecule.
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*
'-nu
T
5p ‘lu
*» A
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g g lu
K _ 2
Alg Eq— —
55 —3- .
A AL A
Tiy
1)
. - AIg o ,
Xe : 6F
. XeFg (14e”) ~
‘ i (A 22 N2 2 2 2 2k 2
Ground State: ﬁglg) .(Tlux) g?luy) nguZ) ,(Ega) (Bg )™ (B1g)
N2 N2, £ 2 2, 2, \2,.%
1st '] d 18 h
1st Egc1§e :State‘. FAlg): (Tlux) (Tluy) ‘Tluz) ‘Ega? (Egb) (Alg)
Lok 1 3, ‘
T Tiw Ty .
: XBL 744-6126

Fig. 2..'Molecu1ar 6rbital diagrém ofVXeF6(Oﬁ).

1lg
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‘motion should be of lowest enefgy!since it is.a bending mode, while

Alg(sl) and Eg(Sz) are‘stretching modes. Thisiimplies that thé T

force constant is considerably smaller than that of'Eg or

" its coupling to the>T

1u

Alg’

2g

hence

motion will be strongest. Essentially for the

same reasoning as in all the previous chapters the coupling of the sym—

" metrical stretch, Al
g

]

to the distortion mode"(Tlu).will be ignored.

The matrix of the 11n§ar terms in the Tlu(s3’s4)’_Eg(SZ) and

ng(Ss) codrdinates-arising from an éxpansion of the vibronic hamiltonian

o aa gk oy . 11
in symmetry coordinates can be evaluated in theelectronlc-basisl T

)

Iu ~?
1. ! 1
I Tlu )v’ I Tlu ’ . v
y 'z :
1 : 1 1 1 |
| Alg ! Ty, |"ry,? 1"y,
b y z
1 n : .
| A -€ €45 3,748 4x ©383,%7¢,S4y ¢3S 4.+, S 42
IlT c.S,.+¢,S .,Are'+—€2—.(—3s +/38, )-€ .c.S' eSS
1u 3"3x 44x T o 5 2b “2a’ i 57 5xy - 5 5%z
. ‘ ) ‘ . . c - ’
~|]*r e,S, +c,S C.S,. Ae + —2 (38, +/35, )-€ oS
1w’ | B3y 4% 5°5xy o s 26T 2a % 5yz
1 : - S : - o 2/3 -
| T1u c3832+C4S4z C5SSXZ CSSSyZ Aeo'-~/- (552a
(1)
where
1 Hy 1., _,1, ,9Hy 1 1, 8By 1
=T ) [TA) =TT, ) A =CT. |G=—) |TA,) (2a)
3 u, SS3X.S . lg. o luy 883y g 1g ) luZ 3332 So ig .
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Il S o 1 1

c4-( T I(BS | (same_definition for Tluy’ Tluz) (2b)
) ' '
My 1 OH, , : ) -
c2 I( v llTl ) = l( A4 IlTlﬁ ) (same definition
s e 3 S x - for 1T, 1. ) (20)
o _ ‘ o luy luz’ °
’ 1, 1 11
c=( |( )»|T)—<T |( y |t ) =
5 lux BSS y S 1 BSS Xz S 1u
(1p I(r_an"  ) |1T ) | (2d) -
o 1u S lu S ‘
y ~5yz §
1A86>= elT - alA o where we define elA =0 | (2e)
1lu lg : o _ 1g.
For simplicity we cén‘wofk with the'determinant of Eq. (1) in the
form . »
1 1 1 1,
| A "1, "1y, I
_ X y .2
1 ' o
| _Alg} 1 - | Ay A, A
e, A Ae +C.-€ B B
luxv 1 1 1 2
~|1T ) A B Ae +C,-¢ B
lu’ 2 1 o "2 3
oy
|t A, B - B e +ce
1lu 3 2 ' : 3 o 3 7.

(3
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‘where
A= oSy oS, T

A, = c383y-+ c454y ‘  “ . (4b)

AT esSy TSy o - o)
(44d)

17 C555uy

37 °5%5y2 (4£)
o -2 (f352b"f As,y - e
(?SZb +7/3 8, e ‘(45) '

s, wy

The resﬁlting,polynbmial equation in € from the determinant (3) is
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AU T N 2. . '
_—e[(Aeo—e)- + (Cl-f-C2+c3) (Aeo—e),: + (Clc2 + C2C3 + ClC3

2 2 2 - 2
B -31-32-33)(Ae°-e) + (C;CyCq + 2B;B,B5 - BIC,
22 2 . 2,2 2 2
- ByC) =BG - (Be -e)“(A]+ A5 + AD)

1A3B2 + 2A1A2Bl -+ 2A2A333 — Al(C2+C3)

+A(A£é—e)(2A

9 iy o
= 85(C; + Cg) = A3(C; +C))) + (-2A,A,B,B,

L 2.2 . 2.2 .92
2ﬁﬂf§3—2%@gﬁz+Aﬁ3+A§2fAﬁl

+ ZAlAZBlCB + 2A1A3BZC2 + 2A2A333C1 - A1C2C3

2 2

| = 40)Cq - A0 =0 S | e

Thelqhaftic equation in € (5) can be reduced to one of order two'by '
recognizing that Aeo >>g for small or even‘moderaté displacements.

This approximation is reasonable becauseiAeo represents’ an electronic

:rénsition'which typicallyfallsin the energy range of 1O_z‘—lO5 cm'-1

while € is basically the energy associated with distorting the octahedral

configuration which will-bebon the order of vibrational energies

'102—103 cmfl. :Dividing ﬁhrbﬁgh by (Aeé—E)z ~ Aei -in Eq. (5) we have.
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cn2 2 2
lCZ+C1C3+C2C3—BI—B2—B3)

Ae
o

. (e
;e[(Aso—s) + (Cl+cz+C3) +

9 929 9

(C1C2C3+2B1B2B3—B1C3—B2C2_B3C1) 1
7

]

+ _
Ae

14y 1844B,12414, 2A3B3=4,(C)

-(A2+A2+A§) -+ (ZA;A B Bl+2A A.B —AZ(C +C3?

2, 2 ' : L o e
- Az(cl+c3)5A3(cl+cz) /Aeo + (—2A1A232§3 = 2A;A,B B,

_ : 2.2 2.2 272 '
- 24,A.B 1B, +‘ng3 + A3B, + AJBT + 251A332c2_+ 28,A,8,C4

o e m 2. - 2. 2 2 o
+ 28)A)B,Cy = AC,Cy = AYC,Cy = ARCIC, | /he ] = 0 | (6)

127173

where Eq. (6) is now of order two and can be solved exactly. Before

solving for the roots of Eq.'(6)'we can rewrite it in a simpler form

- {(Ae ) + U+ L4 | ox et 4 L » %)
R Ae  Ae” : Ae Ae : _
- o o o 0
where
U = (C+C,+Cy) (8a)
V= (CCytCiCa¥CyCy=By=By-By) . . (8b)
e occarmnn nle a2l p? | -
V= (C[C)C4+2B)B B4-B C3-B,Cy-B4Cp) ' (8c)
o202 20 o |
X - (A1+A2*A3) o o o | (8d)
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Y w5 a2(c 2. 2 |
Y = (2A1A3B2+2A A,B +2A2A3B3 1(C2+C3)-Az(Cl+C3)—A3(C1+C2)) - (8e)

L ' 22,22 ,
Sz = (—2A1A23233 2A1A3B1B3 2A2A3BlB2+Al 3 ALB 5 ) (8£)

2.2
A3B1 + 2A1AZBlCB + 2A1A3B202 + 2A2A3B3Cl

2 L2 2
=~ AJC,C, AZClC3 A3C1C2)“

*

The roots of Eq. (7) are

Y Z 1/2
- 4 e~ ge7) |
1.1 \2 W : v W[ - o
€= (7) -(Aeo+U+ —+—3) ¢ (;AEO""U'F_'I"—“E) 1+ V A
: A€o  ae’ Ae Aso \ (Ae +U+ o= Ae‘ AeZ)
©
-We can expand the lower root of Eq. (9) to yield
Xz, o Y242
-(x- Re, ~ ne? ) o x- Ae Aeg) _ ’
€, = — + — e (10)
low V., W, o pe YV . W3
"('A€o+U+A-E‘+——2—) : (A€°+U+K€—+'~—2)
o AB&, o _Aeo-
. With the approximatibn
1 _ o~ 1o U VWL, ' ‘
v ' Aeo(l Be Ae? o Ae] e ‘(ll)
(Ae +U + —+ ——) - e °
AE AE
' ° "o

and keeping only terms of order three or less in‘AEo Eq. (10) becomes

lei’ = — A? + UXHZ " x24-z;+vx-uy o a2
ow o Aeo A€0 g . . )
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We can transleteltlow‘beck iﬁto'the A, B, C coordinates using the
definitions in Eqs. (8).

2

.(Ai’“Az*Ag) 2 2. 2 |
€10y = " " A FAD(C HC HC) Sy
] B |

4+ (2A.A.B. + 2A.A.B. + 2A.AB A (C,+

1438y + 2844,8, 28483 3) A (Cy+cC )
2 2
- A3(Cl+ Cz). ) /Aso
2 2y | 2 2‘ 20,2, 2. 2
+(A +A2 49 , (cC +clc3+czq3-e1 ByBp) (A Ay A7)
e A3
[o] (o]
+(-2A AB.B. - 2A.A.B.B, - zA A.B.B. + A2 2 a2g2
1828285 1438185 284818y + 4By + A58,

» 2 : . _
- + A3 1 + 2A1A2B1C3 + 2A1A3B2C2 + 2A2A3B3Cl

2, . 2 A2c
T ACyCy 850105 - Ay 1C2)/A€

(2A,A B + 2A AB, + 2A A B, A (C

= (Cy#CyHCy) (24,458, + 24,448, 383

3) 3)

R ACK 3) A%(C1+C2) ) /0€

To form the complete dlstortlon potentlal the quadratic. terms for the E ,

ng, 1u(b nd)”? and Tlu(stretch) must be added to €1 (13) For sim-—

pllcity we w111 look at each v1b{etional mode 1ndiv1dually, includlng its
- coupling terms to the»T1u motion. To translate €1 (12)1nto the origl—

nal set of symmetry coordinates use the transformation Egs. (4a-4i).
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The potentlal for the Alg stretch (Sl) is
' : l W2 .

where kl is the Al (S ) force constant. The Alg—Tlu coupling was
ignored in deriving € (13) which is why the Alg potential (14)
‘has a-simple form. |

The potential for the Eg stretch (Sz)_canjbe written as

1 ..2 2

VEg(Szafszb’SAx’SayéS4z) =73 Ky(5y, +5) (15)
V3 ¢ - I
+ F__Z_‘L_ SZa(si(# siy - zsiz_) '
oy
o 3 c,c, ’
+ S 2 g ' SZb (Siy - Szx)
Aeo ,

where only the leading terms coupling E (S ) to the Tl. bend‘(S4) have

been included from € (13) "The Eg(SZ)_force constant,is Kz.

'The potential fornthe Tlu stretch‘(SB) is
. . L _ 2. 2 2
VTlﬁ'stretch(s3x’83y’832’S4x’s4y’saz)_— (2)k3(s3xfks3y.+832)v“
l2 c3c4 l '
- Ae (S3k 4x4-53 s4 4-532 4z) (16)
o -

where, as for .the Eg mbde,'onlyfthe'leadingIterms coupling the Tluvstretch

to the Tlu bend are indicated. -K3 is ‘the Tlustretch force constant.
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For the.izg(ss).pétent}al we havg

i Ly 2 2 2
(

) Vng SSxy’SSXZ’SSyz 4x’ 4y Az) - 5' kg (85xy SXZ.fSSyz>
9 - ' (17)
. 2c4 5 a ‘ . ' .
_+ A2 (54x 4y 5xy 4x55xy + S4xs4235xa-+54y84285yz)
0. A

where ks is the T (S ) force constant. Only the leading terms coupling the

28 lu bends are included in VT

2g
Ihe Tzu(Sé) potential is

(18)

where ké‘ngfhé T2Q<S6) fdrce constant, .We féund garlier_that.theré.arg
no Tlu--Tz'u couplipgipefms, This is‘oﬁly true.fo.the épprokima#ion that
Qﬁiy theblTlu excited electronic statg_is'involvedfin coupling to fhe
Alg ground staté. 'To inglgdg T2u’ Tlu coupling'would involve including
additioﬁal excited states_intq the matrix of the iinear'terms (1). We
rationalized earliér tﬁat.highef electronic states. are of considerabiy‘
less importance théﬁlthe'firsg electronic staté,.lTlu, insofar as
Tlu métibns are éoncerﬁéd . ‘
'The Tl bend (S ) potential is obtalned by 1nc1ud1ng all leadlng

Iterms coupled to the Tl (S4) motion, as defined in the other potentlals.

V 2 2

T1u bend Sax, 54y 4z u(sEreten), Eg & )‘—k(S it Say +S4z)

% 22 2. cZ IR o (19)

| : 2 .2 2.2 |

== (S S, +SY ) +——= (S5 +S7 4+ST) 4+ V. 4+ V. 47V -
. 4x T4 4 3

e, yoos aed 4 by e B The Ty stretch
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ThevTi_ bend potential (19) is effectlvely an eleven dimensional

’ potential due - to its coupling to the Eg”T2g

can reduce this to a three dimensional potential just in the T1 bend

(84) coordinateSwin the same manner as the dimensionalityvof the MX5

and T (stretch). We

and MX7 potentiels were reduced. This process involved taking the first
derivetive of the coupled potential with respect to the one of the
coupling coordinates and then solving for the coupling coordinate in-

terms of the distortion mode coordinates.

Applying this procedure to the Tl Eg coupling we have
8 Ve v, | = ¢ c% I - ,
1lu bend Eg _ ‘/? 2 2 . 2 2 -
=2 =¥ (s5_+8% =285 ) +k,8, =0
BS , ': -BSZa : 2. -A5§ 4x 3¥ 4z 27 2a
2 ) 2 | S B
a3 274 2 2,2 _
Spa = VT T Syt Sy, 28,0 (20)
' kyAe : ' -
Similarly, SéE becomes :
| | e o |
S, = - o o (sh - sh) B (1)
2 szeo v A

Substitution of Eqs. (20 21) back into V (15) gives the
g
average effect of the Eg mode on the T (S4) motion.»‘

24 g S
=3c,c ' : " '
L T2% 4 2 2\ a2 2. 2.2 L2 2
vEg(Tl_) — [(s wx Sy t54z) 3(S4xv§4y+ SuxSaz * Say 542

(22)
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For the Tlu(strefch)_—.Tlu(bend?‘we find

' 2c.c . ' S : .
-'s3x = 374 54_ ‘ . ' - (23a) -
o= k. Ae. X . /7
3770
- 2c L - : :
5, = —— s, : (23b)
v k,Ae s ' '
. 3% .
2e.c, _ S
5,, = —— 5, (23c)
o k.,Ae .
3770

The:efféct of the.Tlﬁ-stretch_on thé°T u bend is determined by

1
substituting Eqs. (23) back into VT1 strétCﬁ (16).
(T '2°§°2'1 ) 2 2
v, clubend) = =2 (s) 45, +S;) (24)
1lu stretch. - k3Ae y o
The Tlu(bend) - ng coupling gives.:
'—Zéics'
] = —= 5,68 (25a)
T 5xy X A€2 Thx 4y
570 .
: _ -2c2c5 , _ . '
'SSXZ B Z .séxs42 : T ‘ _ (25b) -
‘kAe , .
5770
. . -Zéics. . o
8. = - : : ’
Syz " o pc? S4yS4z (25¢)

'.5_ o

Substitution of Eqs. (25) into Vi (17) yields =
- ' o . - T2g :
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42 . |
-2c,c : -
o 45 2.2 2.2 .2 .2
Vp (T30 =7 (SSiy * SuShr T SiySus) (26)
2g ksAeo : ! ‘ ,

 Using the "effective" Coupling potentials (22,24,26) we can write

thevT1u potential (19) just in terms of the Tlﬁ(s4) coordinates.

2 - 22\
. o _ - C k - 2¢ 2 2
Vr ’(S4x’s4y’s4z) - PELI N B 3 S4x + S4y * 5S4y
1u Ae 2 2
: » o k3Ae
: 4 o/
'CZ 3°§°Z 2 2 2
‘ A o T z \Sax T Bay t 5y
Ae Kk, AE- . y z
9°§°2' 2c2°§  2 2 2.2 2 2
+ %~ 4 \SuxBay T SuxSuz T SuySus
k,Ae'  koAe yoooaxez Ay az)
2770 5770 -
(27)
The T1u potential (27) can be compactly.written as
.2 222 2 2.2
Vp, (840 = a8, ¥S 4y 84 DS ¥ Sy ¥Sy)
22 2 2 2.2, S o
- c(84x84y +8,.5., +_S4y54z)_ . | \ (28) .

Thé’ﬁarticuléf‘choice of sign for a, b; and c will become clear in later

éections. The paramefers a, b, and ¢ are defined by

c2 "’k 2c2c2 : : .

4 4 374 L .,
a4 = m— - _2 - 5 N ) (298.)
. Ae k,Ae v
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(29b) |

vvvvv b - Sr—— -
aed  koae”
) 2 e ] i
, 'v2c4c2 :9c2c4
| 485 7%, |
c= —- % (29C)
) » -AkSAeo kyAe

The first two terms in the Tlﬁ potential (28):have_spherical
symmetry, while the third term has octahedral symmetry. In spherical

coordinates (R, 0O, ¢) the T

lu»potential (28) is.
V, (R,08,0) = -aR’ + bR* - ok [sin*o( 220 1) 4 aine]  (30).
1u . o _ I . ,
where
Syx = R sind coso D s - (3la)
S4y =‘R‘sin6 s;p¢ o | _ o  ..(3lb)
»S4z'='g cos¢ | ' , | . -: - (31ce)

‘The thiré térm ih th§ poténtié1'(30), the>bcfahédral field terﬁ,i

' introduéeé'an angﬁlar depen&enée>to.the potentia1..'This angular'depéndence
causes éhe_poténtiélvto'héVé a minimum centered’on the faces of the |
voCtahedron; a saddle point ceﬁteredvon_thevedges, and‘a maximum at the '
corners.i A.simple'éxplanation of this'behavior.isvthat fhe_mixing of

s and'p.orbitalsvdn;thé.central Xe atoﬁ'(Fig. 2) caused by the Tlu

distortion gives a directional preference to the "lone'" pair of electrons
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(A:g).' Wheh.the lone pair "pops" out,ceﬁtered on a face of the
octahedron formed.by‘theifluorine ligands its reﬁulsive interaction
: Vith the ligands is mihimiZed, hence_the potential is a minimum (Fig. 3).
When the lone pair oops out directly in line with one of the fluorine N
atoms its:reoulsive interaction is 15£gést, hence the ootentiallis a
: makiﬁum. ‘When the lone oair?pops out centered on'an‘edge of the octahedran
it is closer torthe 1igands'than_ih the face centered situation and
farther than.ih the corner case; which makes the:potential a saddle point
here. | | |

We can view the potential (30) at these three typesvof locations on-

the octahedron.

.Vé =.-a R2'+ b‘R4 - 0.333 ¢ R4' ; - (32a)
V. =-aR*+bRrY-0.250 c &% (32b)
C2 .
v
V"v = -g kZ +.b R4 A R : ' (32¢)
Csv : - o ' ' ' o

This demonstrates thatvthe poteotiel (3)iis'softest in the Cay direction
(32a), steepest_in tlie'c4 direction (32b), and interﬁediate in the C2.
‘direction (32b) "~ In the limit that the angular barrier vanishes (c—O),
the potential becomes spherically symmetric and 1dentica1 in form to
that of a rotatinggvibrating diatomic molecule.v .

Thecform'of the“potentiel (28,30) which hascbeenfdiscusSed so far
is what‘we have called.the truncated form in previocs chapters. This

" is because this form (28,30) resulted from an expansion (10)



C3, (Potential min'imur_:n')
o

0

>

>

C.ZvA (Svaddle point)

_ Cq, Potential maximum)
XBL744-6127

Fig.g3. "Possible distortions‘caused_by directional preference of

. . the lone pair.
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-of the éxact-sélution (9). Due to the more cémplicétéd nature of the-
XeF6 potential than ;hése sﬁudied in garlier‘chapters it is desirable
‘ﬁd work with a simplified form (28,30);. HoweVer, és.in previous cases;
we must Qorry abou; the'ﬁalidity of trgﬁcaﬁiﬁg tBe'exact pqtential to
»just.foﬁrth ordef;: The questionlof validitf‘will be haﬁdled in.a‘later
section, although a reasonable épprdximation-té the exact solution is

presented below, -

' _1 L2 2120 1. 2
%h@ﬁw)-ixou-(1+m R) 1+ 3 kR

—VcR4[sin46( EEEZZQ -1) + sinZG]A

where 0, k, and ¢ aré'adjustable parameters, and'A'Eo is still the

1 1 ' : -
. Alg e Tlu electronic transition energy.-
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"B. Calculationé

The symmetry coordiﬁate556 (Fig. 1) for the'Tlu(Sé) mode and

those modes which couple to it are defined by

1 . o . ' ' ‘
S, = — (2Ar. + 2Ar; - OAx, - Ar, - Ar, - Ar,) (33a)
2a /ﬁ 5‘ 6 1 2 ‘3 4 - y
s. = L ar Ar, 4 Ar, 4+ 0 ) (33b)
P2 T 2 T1 T ARy T AR T AT, |
S, = +'(Ar, - Ar,) (33¢)
3x /2 2_ 47
S, = I (Ar, - Ary) (330)
3y /2- 1 3 v
s. = X (ar - Ar ) o | (33e)
3z ‘/2- ="5 _ 6 . . ’ )
R TP s | “Avy - -
S = = t(Aa12+Aa23+Aa25+Aa26 Aq14 Aa34 Bay ¢ éa45)_ _ | (33f)
S4y = -‘/—g (Aa12+Aa14+Aa15-j-Aal6—Aoc23—Aa35—Aa34—Aa36) - (33g)
542 = /g (AalS+Aq35+Aa25+A¢45eAa36—Aocl6—Aa26—Aa46) : ' (33h)
SSxy =3 (AAalz—Aa34+Aoc14+Aa23)_. (331)
. T TRV ’ | ' faas
Ssz =5 ( qus Aa46+Aq26+Aa45) o | | (333)
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| . i —, o _»  :
S, . = (-Aa AaleAq35+Aal

syz - 2 (Thoag (33k)

6)
where r is the Xe-F bond distance, Ari-is the change in bond length of
the i'th fluorine, and Auij is. -the change in”aﬁgle between fluorines

i and j. The numbéring scheme for the'fluorines is indicated on SZ(Alg)
in Fig., 1.

The mass (m4)_associated with the Tlﬁ(S4) distortion was deter—

11,56

mined by Wilson's high frequeﬁcy approximation. (See Appendix IV).

The low frequency motion ﬁas'taken as the T, bend and the high frequency

1u
motion as'the.T

1u stretch. No attempt was made to'detefmine the depen-

dence of the_mass-on either the magnitude of the distortion, or the

coﬁpling to other modes;_pérticularly ng. For XeF6 the effective

Tlu(s4) mass in m4‘='6.56 amu,
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c. Discu331on of the’ PreV1ous Exper1mental Work and Reflnement of the
~ Potential Function

The XeF6 discussion- section is divided 1nto six separate parts:

(l) Electron dlffractlon of XeF (2) Infrared.and,Raman spectra of"-

6,
XeF 6° (3 Ultrav1olet spectrum of XeF , (&) Thermodynamlcs of XeF6,
- (5) Electric field deflection of XeF6,.and (6)-comparison to other

theoretical approaches. Each of the first five subsections includes a

discussion of prev1ous experlmental work and its 1nterpretat10n in

terms of the Tl potent1a1 (30) ‘derived in this work.

1. Electron Diffraction

A compariSOn of the experimental radial distribution curve (20°C)57

with that of a hypothetical octahedral XeF configuration of the same

6 .
bond length is found in Fig. 4. Thefexperimehtal curve is characterized
by an Xe—F bond 1ength peak at 1.895 A, an adjacent F—F peak at 2.51 A,
and a ﬁlong" F-F peak at 3.76 A, If XeF6 Wereloctahedral the adjacent
F-F peak would occur at V2 TyoF (2.68 A) and the long‘F-F peak at
ZrXe—F (3.79 A), ‘Thetmost noticeable difference between the octahedral
configuration and the experimental ‘curve is the skewing of the experi-
ﬁental adjacent F—E peak considerably to the left of its octahedral
counterpart. | | |

‘ Hedberg57 a'ndlBartells,s’S‘9 have done extensive single structure
,calcgletions‘in en attempt tounderstand,the XeF6 radial distribution

curve. Through these calculations they have reached the same basic

conclusions, which are (1) a single CZV’

or Cvi or-CS-conflguration



~GET-

3.76,379

Fig. 4.

XBL744-6(28

Comparison of experimental radial distrubition curve for

XeF, (solid line) with a hypothetrical octahedral XeF,

configuration (dashed line).
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_can fit the experimehtaljdistribution reasonably well, () only a’

coupling of the T (bend) with the T, mode can adequately fit the _

2g.
Jshortened adjacentvF—F dlstribution, (3) the.single, static model
eelculatione require unusually large honhonded vibrational-amplitudes
to fit the experimental &ata. |
The eituation_in XeFé is similiarvfo that in IF7:antheF7. That

is,_the,electroh diffraction experiments only yields airect information
about the"ﬁeghitude of the distortion. Evidence for»pseudorotation
is indirectly‘pfovided, in‘hhe sense that several models'(CS, Clv’
CBV) give adequate fifs to the data, and.the nohbended amplitudes.are
' unushally large. lhe maximum information we mlght'hobe to extract
from the electron d1ffractioh work is (1) an estimate of where the:
vradial potential minimum is located (RO), (2) a quantitative description.
. of the T (bend)—T 2¢ coupling; | | |

To extract this information we chose ho'work with the hest static
1C3v model.57 The reason‘fof makingvthis‘choice is that the potential.-
mihimum.is'most 1ikely at'the C3v'cohfiguratioh, hence ehe Cay
structure_shouldlbe<Weighted heaviest of all possible structures.
Ey symmetfy a C3‘,structure can haﬁe tﬁovkinds ef bond.lehgths
. three types of adJacent F-F distances, and only one type of long F-F
- dlstance. The multlplicitles, and values for these distances are
llsted in Table 1. Notlce the large nonbonded vibratienal amplitudes

- (.1-.3 A). 1In TeF a normal 6ctahedral molecule, the nonbonded

59
6,
‘F-F- amplitude is approximately ~.06 A, The parameters ANG4 and

ANGS are angular variables which can be directly related to the

Tlu (bend)_and T

2¢ symmetry’cdordinates.



-137-

In the C3v:geometry the Tlu (33 f-h) and ?Zg (33 i-k) symmetry

coordinatés.simplify to

=g =8, =/BraNGh (34a)
Se . = Ss. = Ss = 2r ANCS - (34b)

‘The  radial coordinate, R(31), becomes

2, 2 2 | .
R = \/s_4x.f‘s4yv+ Sy, = |2/6 r ANG4| , (35)

Using the experimental values for the C, model (Table 1) we

3v

find that S, = .502 A, S, = .482 A, and Ré, (radial minimum) =
X,¥,2 . Xy, X2,y2 )

_ ,870‘A. We can use this information to derive both the value of the

Tlu_TZg coﬁpling.parameter, and a relation among'the potential

parametersba,b,cﬁ(30). Using‘the'C3V'p0tential, VC (32a), we take
. ‘ SO _ 3y

‘the first derivative to define the Cs, potential minimum (Ro).

oV _
' C3V - : 3
e 2aR + 4 (b - .333¢)R™ =0 ‘ . (36)
‘R_v= 0 at- 'Qh configuration
"'Rz-‘-' el t:C " mindimum
o T 7(b-.3330) 2t “3v.
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Khowledge of the value of Ro(.87 A)-reqﬁiréS'that a, b, and ¢ are
related by

a = 20.80% (b-.333¢) | YY)

If two additionmal independeﬁt relations among a, b, and ¢ can be

found by analysis of other experimental data of XeF, the potential (30)

6
can be quantitatively defined. o .
In the theory section of this chapter we found T, (S,) and

v ng(ss)'wére couplédﬁ(ZS) in the following manner

55xy S cT2 S4x54y  ,(38a)
- 48
' o Sszﬁ 5T CT S4xs4z (38b)
_ S, = -C. 8,8 o (38¢)
5yIZ_ o ng by 42 .
where 2
2-c4'c5 .
Gy = — (39)
2g k. Ae
5770

The diffraétion work requires that CT be positiﬁesgvin'order v

. } _ 2g 3 .
to get the T1u - ng coupling which best fits the experimental radial

distribution. This implies'fhat the linear matrix element, Cg, MuSt
be positive. With values for S, (.502 A) and S, (.482 A), the

coupling comstant, C; , can be computed from Eq. (38) to be

2g

T

C = 1.91 (1/R).
2g o :
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This compares favorably with Bartell's analysis59 of the coupling

constant, in which the range of CT' was determined as
: zg -
1 (K) < CT2g§ 2 (X)‘

Because two»different bond lengths were refined for the C3v ‘

model we can extract the value of the Tlu (bend) - Tlu (stretch)

1u

can be written in the Cay form as

coupling constant. The T

S = V2 Ar
-7 3x

S Y2 Ar-
3y =

»S3é = V2 Ar

where Ar is'the.change in the Xe-F bond length. The form of the

Tzu(bene) - Tlu(stretch) coqpling is (23)

S = ( S
1lu
S = C S
3y T1u 4y
SBz = CT S4z
where o o . - .E;C3Cﬁ
Tlu vk Aeo

3

(SS) stretch éymmetry‘coordinates (33 c-~e)

(40a)

(40b)

(40c)

(41a)

(41b)

(41c)

- (42)
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is positive. This is
3v lu _

physically reasonable because it is in agréement with the intuitive

The experimeﬁtal_C model requires. that C

T
,;érgument_that bonds nearest the lone pair increase slightly to help
minimize repulsive interactions.' From Table 1, Ar is placed at

Ar = .046 A relative to the average r of 1.895 A, The

. Xe-F
" T, (stretch) coordinate, S , is determined to be S_ = ;06S-A,
1u : : >3 y - 3X,¥,2
which places Cp, at Cr =.,13. It is interesting to note that the
“lu. 1u : ‘ :

Tlu(b?nd) _,T gogpl;ng 1§_stronger than the Tlu(bend) - Tlu(stretch)‘

2g

coupling by an order of magnitude. This is in line with earlier speculation ‘

on the relative strengths_bf the various couplings, where it is

primarily the size of the caupling mode's force constant that

 determines the strength of the coupling. Obvibusly, k3,-the Ty

stretch fofce constant muét be larger than kS’ the ng'bend force
constaﬁt.
The pérameters-caltuiated so far have been based on the best

static C, model. It would be worthwhile to recalculate these parameters

3v

using the best static CS'or C4 model to see if similar results

CZV; v t

are obtained. We can eliminate the_C4§ model frog consideration as
it'seemé'incapéble‘of:fitting‘the exﬁerimental_data nearly‘as weli aé
the other symmetfies.: There is a bésic problem with the Coy and. C_ )
geometries,.in that their syﬁmetriés are sufficientiy‘ldw as to
permit.solmény»indépendently adjustable géometrid paraﬁeters thaf a
unique best. static model éannot be defined. Instead there are a
and C;_struétures which fit-the e#pe?imental data

vgrlety of'C2V

-equally:well. The net result is that we are forced to look elsewhere
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(spectroscopy, thermodynamics) to assess the acCuracy of the potential

parameters based on the best static C, structure.

3v
We haue approached the.discussiOn of the XeF6 diffraction"results

so far from .a static structure viewpoint.‘ We have explored, in |

'collaboration.w1th Professor Hedberg s group at Oregon State University,

.the possibllity of fitting a dynamic (1 e. pseudorotation) XeF6 model

to the experlmental diffraction results.v The experlmental radial distri-

bution curve of XeF, can be thought of as a weighted superposition

6
of radlal dlstrlbutlon curves corresponding to the 1nstantaneous
XeF6 structures which are swept out during the pseudorotatlon. This

can be expressed_mathematically a559

2T T oo '—VT. (R 0 ¢)/kT o o
f ff E | : fﬁ,6;¢(r) stinze drdods
27 pT oo eVT " (R,0,0) /kT
2 2 P
/ f f R°sin“0dRdOd

Where the observed radial distrlbution curve, F(r), is the superposition

F(r)

. of the instantaneous radial distributlon curves? R 6,¢(r)’ weighted

: by-the negativevexponential of the pseudorotation potential, |

iVT (R 0,9) (30). .Each instantanedus structure'represented'by fR 5 ¢(f) B
is restricted to have normal nonbonded vibrational amplitudes, in contrast
to the single static model approach where the refined nonbonded

amplitudes were enormous in order to adequateiy,fit the experimental

‘radial distribution curve. In the dymamic treatment the breadth of

the nonbonded portion of the radial distribution curve comes from the
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superposition of different distance distributions for different
geometries, and not from abnormally large nonbonded vibrational
. amplitudes. In principle, one could adjust the parameters of the

potential,*VT

(R,0,0), until the best'agreemeﬁt.between F(r) and
_ lu : o
the experimental radial distribution curve is obtained. In practice,
- due to prdgramming and computing 1imitatioﬁs, the superposition of

an-infinite number of structures is reduced to a finite sum over a

representative sampling of possible structures.

f

Z V(R ,8,,0,) kT
e .
i -

i

F(xr) =

There is some ambiguity in the selection of a limited number of finite
stﬁuctures.ffom‘an~infinité number of possibilities. We‘can use physical
insight to make this selection as meaningful as possible. There are

only four different types_df'symmetries,generated by our pseudorotational
3v* C2v* Cuv

at Fig. 3 we can $ee how the directional preference of the lone pair

model. These symmetries'are C and_CS. If we glance back
-of electfohs selects these'various‘geometries. CS geometries will

V décur whenever the lone pair is not oriented in any of the special

.directipns pictured in Fig. 3. If we let the lone pair "rattle"
slightly, about,éach of the special posittons (Fig. 3), it will sweep _

out;the-cS structures in the neighborhood of each special position.
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This corrésponds to slightly increasing the nonbonded vibrational

amplitudes for the structures defined by the special positions

2v

C3v’ and C4v geometries, and slightly increase the'nonbohded amplitudes

Tzi.é. C ’.C3v’ C4v)’ -We'gan-see that if Wé‘sum just over the C2v’_
‘,Of these strUctures,.we hévé abproximéted.the effectﬂof ipcluding
vtﬁe infinite ﬁumber'of Gs structures in the'supefposition. We must
be careful not to increase the nonbOndéd'vibfational amplitudes too
muéh.of we will have éssentially fegressed back to thé static mddel 
_apﬁroach. Itvshould'Be méntioned fﬁat Wé.have also considered approxima-
#ions ;6 F(r) wﬁich have included_CS structures intermeaiate between the.
lrigﬁly '§ymmetric Cév,»Csv and C4v_forms in evaiuating the-weighted sum,
Although‘thé work on tHe:dynamic model has>not ?et been COmpiéted '
several general features have emerge&.. These are (1) the‘dynamic
épproach does not‘uniQuely détérmine fhe poténtial fﬁnction, although
it doeg.limit thé reiative sizes of the potentiél parameters in order
_to‘guarantee diétortiéns'bf éhé proper magnitude, (2):étfuctures of
near Cdv and C4v sym@etr&ldovﬁot contribute significaﬁtly to. the radial .
distribution Cur?e, and (3) it seems ﬁhat théldynamic model, with
norma1 nonbonded.viﬁrational émplitudes for the instantaneous struttqres,
is.capable of an equivélent or{possibly better fit to the experimental
data than can be:obféined through the single stétig model approach.
‘While thé dynémic moaél approach in itself will ﬂot-lead to a unique

potential it can be used to test potentials refined by other means

(spectroscopic, thermodyhamic).
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2. Infrared and Raman spectra of XeF,
. _ 6

If XeF6 were octahedral, its .fifteen vibrational degrees of
freedom would belong to the spec1es Alg + Eg +,2T1u'+ ng + T2u'

,E , T, are Ramanlacfive, T, is infrared active, and
1g’ g’ "2g - , . ,
"T2u is inactive (Table 2). The infrared spectrum would show two

 bands, a T

The_spec1es A 1u

stretch, and a T, bend, while the Raman would show

lu 1u

three bahds, a polarized A 'stretch, a depolarized Eg stretch, and a

1g

dépolarized T2g Bend._ The experimental XeF, Raman and infrared

6

sfectra6of6l are reproduped in Figs. 5-9.. The'stfetching fegioﬁ in'the
infrared sfeétra (Fig. 5,6) indicate three, possibly four bands.. In
vthe.Raman,“the stretching‘régionn(fié..8,9) is'composedléf,at least
thfee, ﬁrobébly four-or‘mdre, bands. This alone defiqitely ruies out
anboctahéd?al structure_for_XeF6. It,is‘useful,:howeyer, to consider
-distortihg a MXG(Oh) structure and correlating:the ﬁéw set of fundamen-
tals with thésé of a hﬁpothétical.octahedral configurétidn (Fig.'lo).
It‘is-seen,that'the general effect of lowering the symmetry from Oh
isito incfease fhe ﬁﬁmbe:,Of fundameﬁtals.by éplitting the degenergte'
_”T and E typé bandg,L_In additibn,'tﬁé numbervof obéerved infrared
apd'Ramén traﬁSitiqns'iﬁcreéées,’wifh some absorptions now being
 coincident (Tabie 25.' Because of the_breédth of the éﬁsdrptionsA

in the rooﬁ témpefature Ramaﬁ_and infrared XeF

6

it is impossible to give a strong preference to any one of the four

spectra (Fig. 5;8)

possible geogg;ries (CBV’ sz, Cév’ Cs)’v'Th?s is indirect evidence

'supﬁorting the,indeterminancy of the XeF6 structure at moderate

temperatures (~ 300°K), which implies a free pseudorotation. However,
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Fig. 5. 1Infrared spectrum of gaseous XeF, at room temperature:

6 _
A, background; B, 10-cm cell, vapor pressure at -10°;
- €, 60-cm path cell, vapor preésure:at 10°. From the work

by Claassen, Goodman and Kim 20
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6
at ~7°K. From the work by Claassen, Goodman and Kim.

- Fig. 6. Matrix-isolation infrared spectrum of XeF in argon
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Fig. 7. Far—Infrared spectrum_of.XeF6 at room"

termperature. 'From the work by-Claassen by
61

Claassen, Kim and Pearson.
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Raman spectrum of XéF6'Vapor at one atmosphere pressure and

- 85°C. 6471 A° excitation. A, incident poiérization

- perpendicular; B, incident polarization parallel. From the

60
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'Fig;-9. Matriinsdlation’Raman spectrum of XeF6 in

argon at ~7°K, _From the work of Claassen,
Goodman  and Kim.6o-
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#f low tem@eratares (4-7°K) the Raman_aﬁd inffafed ;pectra sharpén
-cégsidérably‘(Fig; 6,9). 1In the low féﬁperatpre inffare& spectrum
‘r(fig. 6) one ‘can couﬁt four bands in thé stréfching région at 506 cm_l;
557 cm_l,b624»pm—l,v630‘cmfl,: The.band at 627 qm—l (Fig. 6) is reaily
composed of a.624'éﬁ—1 and 630 c:m_1 band, which is.cleayer.in othér
spectra;6o 'Thefiow_temperature Raman work (Fig; 9) élearly shows
tﬁree distinct absérptionsfat 628 cm_l; 555_cm—1, and 507 cm_l.‘
Fﬁrthermore; itvis'kn0wn'fromlthe room témpefatﬁre Raman»spectrum
(Fig. 85 that the.régioh>a50ve ~ 600_cm_; is strongly polarized thlé
the regioﬁ.belqﬁ_600 cm_llhas dépolarizéd components. .There‘ié.only‘

- one geometryvthat is coﬁsiétent witﬁ the low temperaturevdata, ¢3v'
This is'intuitively‘satisfying because.it suppérts the idea that the
potentiél-hasva C3v‘minimum; in whiéﬁ in may bevtrapped at low -

< t?mperé;ufe. CS canjbe ruled out beééﬁse'it,would display toé many

bands in BothvtheiRaman and infrared (Fig. 10, Table 2). Cyy and Cyy

would yieid too ﬁany Raman bands. The assignment of the C3v stretching

" modes in the low temperature spectra is, Ay (from L stretch)

630 cm_l,_Al(from A, stretch) = 624 cm_l, E(from_T

1g 1lu

énd»E-(Eg) = 506'cm-l._ The assignment of the t'w,o_Al stretches is based

on the strong pblarization in the Raman above 600 cmA-1 (Fig. 8).

stretch) = 557 cm

Furthérmore, it is reasonable that these two,Al_bAnds are'close, becaﬁse
1o 1ﬁ_(StretCh) absorptions for mnormal MX6,(Oh) molecules
- are very close for those with bond lengths cbmparable,to'XeF6 (~ 1.9 &),

the A, and T

1

4
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The E(Eg) modé is aSSigned to the more intense Raman band (506 cm—l)

because one would not expect the E(Tlu)vmotiqn to gain a great deal
distorﬁions

_ ' ‘ 3v‘ ,

of XeF6{f;The E(Tlu) mode is a split component of the parent T

I :

of inténsity in the Raman for small, or even moderate C
1y State
in the'bztahedral configuration, which is Raman inactive.

We can get a rough idea of wherebthe C,. bending motions should

3v
occur in:the low temﬁératgre XeF6 spéctrum (Fig;jé) by éomparison
with normal hexafluorides pf similiar bond length. Because the
beﬁding frequences should be strongly correlated to bond length we
can.bound.XeF6(1.9 Aj'on'the high freéuéncy side by Iéfé(l.SQ‘A)and
- on t%e.léw'ffequency side by PuF, (1’97,A)' The T, (bend), Tég and

T2u frequenciéss4 for PuF, and TeF, are found in Table 2. Aésuming

6 6
a roughly linear correlation of frequency with bond length the "unperturbed"
- o - ) ) 3 o
XeFé(Oh) frequencies should occur at, Tlu(bend) = 289 em 7, ng‘— 280 cm T,
and T, = 189 cm 1. 1In Fig. 10, we find that the T, (bend) will split

into an Ay and E component in Cq, symmetry. Both components have.

infrared:activity (Table 2). The‘Ai component of the Tlu(bend)
represents the radial'(R)_motion in the Csvvpotential'(32b)‘while.the

E cqmponent4can be thought of as a low frequency "rattle," which is

essentially the pseudorotation mode. We'might‘eipeét the Al band

to be ccupléd_strongly to- the E rattle, since they~haﬁe'their origin

in the same parent T, mode. This would lead to an absorption with

1u _
several components on the high frequency side of the main transition.
This is exactly what is observed in the low temperature infrared spectra

(Fig. 6).for'the 302.cm—1'péak. The T 'fuhdamental yields an A and
. S : . 1

2g

symmetry, with both modes having infrared éctivity,.

E . i
. ‘compogent,}n C3V
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A single, sharp peak is observed at 252‘cm-l’(Fig. 6), which is

in tHe'generél'area 6f the predicted ng'type absorption (280'cm—1).

- . x
/

“Because the measurement did not extend beIOW'ZOO_cm—l;'it is possible
‘that the other compdnéht lies below 200 gm—l._ It is also possible -
that - the other component is buried somewhere in the 302 cm_1 band.

and E components of the T, mode will

. The problem of assigning the A 2

1’
be discussed ip more detail‘in a lafer part of'this'seétién. The T2u
band SPlits into an inactivg A2 mode and onrinfrafed acfive E fﬁndamental.
We would not expect to-seelthe E(TZu) mode in the low temperatufe
iﬁfrared because it érobably_ogcurs belqw 200 ém—l} This is partially
‘éohfirmed by.a_room'tempefature far infrared XeF6>s§ectrum (Fig._7).
AAlthough the exact iocation of the band is‘difficult>to pinpoint,it
pfobably lies in the range 150—200 cmfl. The widthvof‘ﬁhis band is
‘ﬁndoﬁbtédly relatéd»to»coupiing with the pseuddrofafion mode .

_Becauée Wébhéve a detailed theoretical deécription of the coupling
1u motion, it'is possible to extfact | |

of various modes to the T
quantitative information about various coupling terms by relating
them to theapbservgd spectfoscopic éplitting of the degenerate modes

(T,  stretch, Tég). The quantum mechanical Hamiltonian for the T

1u v ' 2g
potential (17), HT ., coupled to the Tlu(SA) motion has the form
: ‘ 9 ",2 : ) 2 e R
- n % 3 3 1 2 2 2
Hy == 5g 7 * 2 tS— t3 1(S.(SSxy t S5ee t SSyz)'
2g 775\ 38 9s 9S.. _ ,
S5Xy . 5%z S5yz :
' ‘ (43)
2
2¢c, ¢ : .
45 +5,8,8

+ Ae:z.‘ (§4x54y85xy‘ 4x" 4z 5x?'+ S4ys4285yz)‘,
o - : : T '
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‘where m_ is the mass associated with the T, motion. For a C3V geometry

5 _ , 2g

'we know that S, =S, =S5

4x = S4y = S4, Which allows (43) to be simplified to

%2 T a2 _ 2 . 2 . '
H, =—f? GNP PR +lk(¥ + g2 +sz)
-2m, (el - 2 2 2 5 5xy 5xz S5yz
2g “5. \9S LR VA .
5xy 5xz 5yz :
- i (44)
2 2
2c c_ s S
4 5 4
+ - (Se. +S.._ +8. )
As-z 5 5xz 5yz
0 :
The presence of thé linear S5 terﬁs'cauées the VTi poténtiai'minimum
. : _ , _ 2g .
to be displaced from 85 = 0 (25). If one expands about the potential
minimum (SSmin>
Usxz = Ssxz = Ssxy MmN _ (45b)
USyz = ’SSyz - YSSyzvmin (45¢)

the Hamiltonian, Hy,

- (44), is transformed to . .

2. o2 2\ L B |
_a? L) 3 1,2 .2 .2
He =9 i R T 7 kg WUy ¥ Ugy, + Usgy,) - (46)
28 M5 3U aus | - |
5%z S5yz .

where it is seen that in the transformed Hamiltonian (46), the

quadratic force constant, kg, is left unchanged; It should be‘p0inted
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" out that in this treatment of the ng - T1u coupling, the T, motion is con-

motion, so that the S, coordinates

_ lu
sidered to be much slower than the ng

‘are treated as constants. This is equivalent to the Born-Oppenheimer
" separation of nuclear and'electronic,motion.
One notices that the Hamiltonian (46) is separable into three

independent, equivalent parts, and as such cannot explain the lifting

2g

2 Gy structure. The type of coupling capable. of removing this

degeneraby'muSt'include cross terms in the SS coordinates. You will

remember that only'the 1eading térms coupling T

‘of the;triple degeneracy”of,the T mode as the molecule distorts to

2% to the Tlu(bend)
were considered in the VT' potential (17). This now necessitates
| - 26 S ‘ _
looking for higher order coupling terms in €1 ow (13) .  One might

‘expect the followingrterms (13) to be of use

' = - " . . .
Hng. T (AjA,B,By + AJAB.B, + AABIB) (47)
e o] . o

T Hamiltonian (46).

2g . 2g ,
" Translation of H%' from the A;B coordinates into the transformed ng
coordinates3 US’ yields

 where H% is considered as a perturbétion”bn the H

S

o 2c2'

AN
T, '

2% b,

(&} 2 .
e

Wit N

(U5ny5xz'+ pryUSyz +'U5ny5xz (48)

-35xyminu5xz +'85xzminU5xy SSxyminUSyz
N , 0w v
+ SSyzminU5xy + S5xyminU5xz SszminUSxy

* S5 yymin sxzmin ¥ Ssxymin®syzmin * Ssxymin®sxamin’
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_The perturbation, H"‘_(48), can be evaluated in the basis set defined

T.. .
. 2g - : :
by the solutions _to‘the.unperturbed'Haniiltonian,-HT (46). The -
. 2g ‘
- .solutions to HT  (46) are of the form
, 20 .
v=y_ow oy | (49)
pry n5yz' 5%z : '

where'll)n is just the familiar harmonic oscillator wave function.

/) v ,
v, =Ne TH (U, (50)
- Bxy . - 5xy . xy
'wn ’-wn- - are similarly defined. We will only consider terms in
5xz - S5yz i _ .
H' of form U.__ U. , etc. This is because they connect the three
ng 5xy 5xz - ' -

degenerate components of the first excited states (n=1) to each other, ‘
“and therefore will have a 1afger effect on these states than terms like

S U.  which connect states differiﬁg by one (An = *1) vibrational
5xymin 5xz - ) :
quanta. The terms of type.S.S.Xy .  85XZ can be ignored as they are
N - ST min min -
constants, and will only serve to redefine the zero of energy. We

.are now cohsidering the perturbation as

( (51)

USny5xz + U5ny5yz + USnySXZ)

. The determinant of-H'!  in the > basis is

T

ln , N , I
28 5xy sz', Syz



~ Joor> - ]or0) -~ Jwoo> - 000
|o01 ). Ve - a a 0
. . T
s . . : 2g
|010 ) a - ¥ -¢ a 0
- T,
Jwoy | a - a vV o-e 0
T .
_IOOO ) | | 0 0. - . -€
~where S
| 2c2 c§ si - ' -
a= - — ~ (001|u._U.. |010) etc. ' (53a)
A 3 5yz 5%z '
€
o]
' <.001 |v._U._ | 010 = —n | (53b)
o7 1 5xy 5%z v 2 0 v : : -
: o b m5VT : :

and Vg is the ﬁnpefturbed ng frequency. Equations (53a, 53b) define
_ 200 ' o ‘ '
the following relation between the linear matrix elements c4,-and,cs

@.
‘ o o - o 3
alVv m. 21 Ae T :
.c2..c2 - I l,TZg 5 7. o] (54) _
€4 %5 o _
5 5,
Once al, V; » Mg, and Aso ‘are determined then Eq. (54) will be

2g ,
quantitatively defined.
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‘'The solutions to the'polynomial resulting from the determinant

(52) are
| € =0 gfoﬁnd state - ' , ' R (55a)
o - .0 O | " o, S ,
€ = VT -a, VT' -a, VT +2a first excited states (55b) _

2g T 2g o 2g

The first excited state is split into a doublet (E) and a singlet
(Al), which was=e#pected on the basis of thé correlation diagram

(Fig. 10). The'assignment of.the split ng mode can beﬂmade'aé

(56)

where V; + 2a is lower than V; -a because "a" (535) is_negafive.
2g T T2g o S
There is still the ambiguity of whethér the 252 cm l‘peak'_(Fig. 6)

is the A, or E component. We can make a reasonable guess based on
the earlief prediction that,ng ~ 280 cm—l, where the PuF, and TeF,
Tég'frequencies'wefe>psed-as lower and ﬁpper bounds respectively.

S - o : - -1
Thus, Al-= 252 cm l-~':;md the E component is probably masked by the 302 cm ~
peak (Fig.‘6)u If we asSﬁmevthé E (ng)'is approximately E = 342 crn_1

1

‘than the splitting bet‘ween'Al and E is 3|a| = 90,cm—l,'dr la] = 30 em”

This places the»"unperturﬁed" ng frequency at V;_ = 312 cm—l.

2g - .
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The mass (ms)vassociated with_the ng motion can be determined

from itst—matrixlz element (GS) by
, m co | :
m =4_F - - (57)

where m, is the mass of fluerine atom. The’mees, m, equals 4.75 amu.

The electronic transition energy;,Aeo_(lAig > lTlﬁ)’ has not yet
been determined; however, for the purpose of calculéting CZ c§ (54),

we can use the value- Aeo = .87 (mdyn-A), whose ofigih_will be discussed

in the XeF6 ultraviolet spectrum sectien. We now'havezvalues for all
the parameters needed to define CZ cé. (54).
& 2 = 0351 mayn” (58)

The importance of deriving this relation between Cy and Ces is. that
once either quantity is determined, the value of the oﬁher is fixed

5

coupling constant, which was calculated from electron

by Eq. .(58). Knowiedge'of.c4 and c. gives us an independent check of .

the Tlu ;'TZg

diffraction data (39). This check is indepeﬁdeﬁt because the relation

between-c4; end.cs (58) was derived strictly from a spectroscopic. point
of view. o

The analy51s Of'the'Tlu(bend) - Tlu(stretch) interaction, Whlch

sPllts,the Qegeneracy.of tbe Tlu(stfetch)-in the ij configuratlon? 1s‘

quite similar to_thenanalysis just presented in detail for the Tlu_TZg

interaction. Because‘of the similarities only a sketchy outline is

lu “1lu

presented for the T, - T, case. .
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The terms'fesponsible'for'splitting‘the-T stretch are (13)

1u

2
8c, ¢’ S : _
B o= =24 (s s 4SS, 45,5 ) (59) -
1u Ae | vx v x 3z 3y 3z
This leads to the'following eigenvalues
e=0 gréund state - . : k - (60a)
) 0 o L . . _
€ .=V, -b, V -b, V + 2b - first excited states- (60b)
T 2T > T ‘ . §
Iu 1lu lu
where : 59 o _
: 8 c3 ¢, S, o : . o
b= (oo1[s,_ s, [010) etc. (61)
’ e 3 3x "3y o o .
.0 :

Because 'b" is positive the split T components are assigned

1u(étretch)

.as

A15(630'cm;1)
(62)

_E (557 cm D)

" This assignment is the'samélas our earlier guess which was based

mainly on the polafiZatioh.of the Raman bands. We find that b = 24.3 cm—1
= 581‘cm-1. We
1lu . ‘
3 and Cye

(o}

and . the ﬁnperturbedi;hﬁstretch) freguencyAiS VT

~can uéevK;'(6l)'to-define é relation between c
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g , Cg 62 = .0529 mdyn4_ I - (63)
Lo . As in thesz'g case, if either 63 ox ¢, ié fdund.the other is fixed
by (63). Kndwledgé‘df cy and ¢y would allow an‘independent-check

on. the Tlu(bend) - Tlu(stretgh) coupling constant, CT (42),

determined by the electron_diffradtibnvwork. 1U‘
. The Tlu(bend) 1inear’matrixvelement, c4, can4be estimated in the

é , . following manner. The sé¢ond derivative of»theﬁcsv.potentiai (32a)

| 'yieids |

= -2+ 12 (b - .333c) RZ = K ) (64)
. ) : o C3v .

! -where KC '_is the_ﬁurvatufe-at the radial minimum, R&. The second
_ derivative relationship can be combined with the first derivative
Eq. (36) to give

a = =5 o .(65ai

(65b)

In the XeF6 theory_section the paraméter "a" was defined as (29a)

B Cz K, }2_c3gc4z | | |

H . . a = Ah : ;v - ' . ‘ (66)
i . . ) o} ) k. Ae ‘
| v L _ 3o

-
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With Eqs. (63,65a,66) we can solve for <,

| c K, o
C2 = Ae. '3V + _ﬁ.+ 2(.0529) (67)
4 4 2 2
< k., Ae
_ 3: o
" The value Of'KC’ vean hetapproximated‘as_the force constant for the
. 3v '
radial motion.
K (5'9Xio'7)(v o )2 o (68)
= . _ . m, .
Gy - Ay (T pend)” "4
where for . _
- 1 o .
A (T b nd) = 302 cm m m, = 6.56 amu, -
K, 349 (mdy“)

" 3v

The parameter k4, can-be interpretted as the T (bend) force constant
for a hypothetical octahedral XeF6 molecule, in which there is no

mlxing of the s(A ) and p(T ) orbitals on the Xe atom due to the N

T, motion. Thls_corresponds to the limit that Ae ( A, 1T )
1lu ‘ T . ) lg 1u

becomes infinite. We can approximete _k_4 from the unperturbed Tlu bend

frequeney found by comparison of XeFé to PuF6 and TeFé. With

' -1 . ,
-:VT (be ) = 284 cm s k4 equalsA.314 (mdyn/A) The linear matrix

element, Cys is computed (67) to be

¢, = .50 mdyn | | o (69)
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With c, defined, c, (58) and c, (63) become

.374 mdyn

3.78 (mdyn/A),‘kS(ng) =272 mdyﬁ/A-_

the.Tlu(SB)_stretthwas approximateq as'tvn3 = m..

qonstants CT-_ (39);and CT

(42) are

2g 1u

2g

91 @

_c5 '= v(7Qa)
c; = 461 mdyn  (70Db).
We can now compute the Tl“-ngi Co (39), and;Tiu—Tlu, CTlu (42),
.coupling constants. These were
2 ,
. o 2c4 cg - -
c. = ’ - (39)
Ty k re 2 o
48 shE
2 c,C . -
374
c, == (42) -
Tlu : k3A€
For the unperturbed ng and Tiu stretch frequences at Vg = 312 cm_l;
R A S : 2g
v° : =’581'cmjl, the force constants are k3(Tlustretch)»=

The maSS_(m3) aséociated with -

The coupling

(71a)

 (71b)
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The C and C coupling constants calculated by electron

T T,
diffraction were placed at C, =1.9 (), C; = .13. Considering
‘ 2g : . - "1u '
the approximations used in the spectroscopic¢ determination of.CT
and C,  the agreement with the diffraction work is .quite good. The

1u - o '

larger discrepancy in the C case is not totally unexpected due to

T
o . - 2g
lack of knowledge about the missing component of the_splith2g band.

For the reader's convenience the low temperature assignment’
BV»structure’iS‘summarized in Table 4.
The symmétry specieé in parenthesis indicates the origin of the C3v

of the XeFé spectrum based on a C

component from a hypofhetical octahedral structure. . The E(Tlu bend)
bend 1is not included in Table 4 because it corresponds to the low
frequency, pseudototatiOn'modé. In Table 5, we have collected most

of the pérameters derived in this séction.‘

3. Ultraﬁiolet Spectrum of XeFt
A\
The purﬁose of discussing the ultraviolet'spethum of XeF6 is
to determine which of the observed trénsitions.cdrreéponds to the one
‘of interest, Aeo(lAlg -> lTlu).. Béfore»iooking at the observed
spectrum we should gain a qualitative unde;standing of7what to expect.

As a starting point we can study the molecular orbital diagram for

o . . : . , %
'XeF6‘(Fig. 2). The lowest electronic transition is from the Alg
orbital, which has partial 5s (Xe) character, to the Tlu orbital,

“which is mostly 1Qca1ized'on xenon's 5p orbitals., It is therefore
natural to view this transition as a s*p type transition for the

purpose of deciding‘what kinds of states will arise. As a function
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_of the<spin4orbit interaction; the states, in'ordér‘of energy, with
- the ground state at the bottom, are62

s

Weak Spin-Orbit - : "Strong Spin-Orbit - (72)
1., : - g 1,
Ty EREE
3 — 1
: 2 _ 2u’’u
3. 3 3
™™ F _1.).1 T1u
3p A
0 1lu
L ol 1 e

where the symmetry of the atomic state is indicated under the Oh

point grqup.' In the weak spin-orbit case the states are approximately
a separable product of a spatial and spin part, hence the indication of:

the spin state is retaihed in'the‘labeling'of'the state under the 0h

pbint group: In thé sfrong spin-orbit case the sPin'andvspace ‘
functions are scrambled together aﬁd éctua11y-form a direct pfoduct
state ﬁnder,the-fuii fotation gro;p,(Dj)._ quevéf, ﬁo facilitaté,
compariéon to tﬁé_Weak spiﬁ—orbit éase the‘these stétés_were decompoéed iﬁto_
their oétahedfal_(Oh) representatidns. |

Fifst; &e‘éaﬁ.considér the allowed élecfronic transitions in the.
wéak sﬁin—drbiﬁfcasé; In the Oh point group the dipole moment-opérator.
i§ contéined-completeiy in the'T1u fepreéentation. This_meané,.only

1g Spatial part can have

transitions'froﬁ'an A

Spatlal part to a Tlu
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_iﬁtensity. Becaese the sﬁinof the Alg érouea.state is einglet, lAlg;_
there is the additional requirement that the excited étate also have
xe>singlet spin ie order for the traneifion td.have intensity. . In the -
‘weak spiﬁ-orbit-case we see (72) that oﬁly one transitibn is allowed,

/lAlééi 1Tlu, end‘the-obserVed spectrum would.show only one band>at a
releﬁiﬁely low energy. The "effect of increa51ng the spln—orbit effect
1s to give some intens1ty to: ‘the SO(A ) > P (T )»transition,.thus
prodgc1ng an additiqnal absorptlon.at lower energy tﬁan tﬁe lPl(Tlu)_
band. If'should:be ﬁentionedvthat if the molecule undergoes a lerge
amplltude motion er a permanent distortlon from O ‘lSo(Alg)'+ .

3

e b

Pz(Tzu,Eu) transition w1ll_gain some (very little) intensity. We can derive

an expreésionvto quantitatively determine'themrelativelstrength of: the- spin-

o . . ‘ . : . e 2 . . . 1
~orbit interaction. The spin-orbit interaction will mix the Tia and -
3Tlu basis states of the weak spin orbit case to produce the states

'C.)_? (1-t )1/2 B T, X-* tlgTiu - o - (73a)

A= -e M )+ -t )1/2 l Y (73)

T - o 3 v L 1 o : .
where :lAe? ¢orresponds to Pl(Tlu) end IC f to ,Pl(Tlu)’ andAt is
- a coefficien;_which'indicates'the extent of mixing of lTlu with 3Tlu';
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' The ratio - of the observed spectral intensity of [A) to |O) is

determined by the ratio of the square of their ‘TlT

} ‘com .
T;, ! components

2 o
. _ ot | ‘
Riariler = 12 o (74)

_ The experimentai ultraviolet60'XeF6'spectrdm (Fig. 11) shows two’

absorptions,one at 2300 A (.87 mdyn-&) and one at 3500 A (.57 mdyn-A). .
The 2300 A peak is the Alg'+»Tlu (lpl) transition, which is what we
have called Aeo and is sometimes called the C band. The 3500° A paak‘

‘is the Aig_4 Tlﬁ (3?i)ltransition, éalled the A band.' From ﬁhe.

.relatiVebintensities.(area under the cufves) we. calculate R at' R = ;1,
which places t at t = .3. This indicates that spin-orbit coupling

is not-negligible, h0weﬁer the lPl(Tlu) state ié mostly lTlu(~ 76%);
| | e (I3
1u gtates ( Pl’ Pl)

be included in détermining the interaction with the ground eleétronic stéte;

“In principle, spiﬁ—drbit effects require that ‘both T

Alg,Via the T, ‘distortion. To do this would complicate the problem
drastically as one would have a 7X7.determinanf to diagonalize in

2

resolving the ground state vibrational potential. Because the upper -

'Tiu state;.lPl, contains most of the o\

component, it is a reasonable
approximation'to'only include it in determining the ground state vibrational

1u

potential, which is,thé.approach takén here.

Toyozawa and I_no'ue63 have demonstrated that the structure of the

3

2g

: 1 .
) ' S
IC{ ba?dA< b7 A
- matrix element. Because the_lTlu excitéd state is sPatially degenerate

Tlu) can be related to'c5(2d), the linear T

it can undergo a Jahn-Teller distortion in the vibrational modes defined
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by T1u T1u ng,+ A1g + Eg + Tlg'v For reasonsAwhich will not be

discussed hbre; only the T, mode will lead to an_observable splitting

2g
-0f the triply degenerate (Tlu) potential surface. This splitting will

produce three humps in_the'lA1g -+ 3T1u band. The symmetrical splitting

(AE) of these:sidenpeaks (humps) relative to thé-central peak ié given

2 ,
2.c5 : 1
AE = (.91) C—R;— kT)- f : _ (75)
_ 5 ' . :

by the formula

._ﬁhere k' is Boltzman's constant and T is temperature. For XeF6
AE = .107 mdyn-& (S,OOOVCm;;), kS = ,272 (mdyn/A), and T=298°C..

The linear T, matrix element,

has the value
28 _ ,

C5,

cs = .66 mdyn ' - (76)

i

This is somewhat 1afger than c5 calculated from vibrational spectroscopic

data in the previous section where c5‘='.374 mdyn. However, it is

encouraging that the two values are reasonably close considering the
differences in approaches. There is considerable uncertainty in the

value of Cs just derived because, (1) the components of the C band
are very broad making;a'determination'of fhé exact splitting difficult,
. . : :

and (2) the thedretical formula (75) for the splitting was derived

assuming vertical eléctronic_tfansitioﬁs from the 'lAlg > ground
molecule:undergoing harmonic oscillations

6

about an octahedral equilibrium geometry to the IlTlu ) excited.

electronic state of an MX

electronic state - XeF6 does not have an octahedral equilibrium-

geometry in the ground eleCtroniq stéte,
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Toyozawa and Ihoue63 also derived ‘theoretical expreésions for

both ¢, and Cys the Eg linear matrix element, in terms of molecular

5
_constants (see their Eqs.’5.6,-5.7).1 Although. their configuration

»cdbrdinates,xga, do not correspond exactly to the symmetry coordinates

used in this chaptef; a comparison of their equations for ¢y and_c5

allows one to estimate the relative size of these parameters.
. <ol < s 1o | | v S
| ’c5| < ]czl 1.5 lcsl : . v (77)

The range for Iczl, in terms of |c5|, is a reflection of the difference
in coordinate systems.

There is an independent way in which we can estimate_cz. "It is'

from the X-ray diffraction work on solid XéF6 at - 80°C'.64 In the
_exists in two different environments, (1) .a hexameric '

6

arréngementv¢f'6 XeF6 molecules, (2) a tetrameric arrangement of 4 XeF6

solid, XeF

moleculeé. We will confine our remarks to thé tetrameric type XeF,
molecules because they are cbhsiderably less_distorted than the

hexameric XeF ,.relativé td;the gas bhase XeF6'molecule. In the

6
Atetraméric arfangement»each XeF6 assumes - an épproximately C4v symmetry,
with one of the axiélﬂfluorineé disﬁlacéd-cohsiderably3fr6m its gas

phase distanée (1.9 A) to72;23‘5 iﬁrthe solid. This is dﬁe mainly to the
:lone'pair,df electfonSFSitting undé:neéth a fluorine atom in the,C4§ form,
and part1y td.the attractionvof the_displaced fluorine to an incompletely

shielded xenon nucleus on an adjacent XeF, molecule in the tetramer. The

6

poténtial of each of the equivalent XeF6 molecules in the tetramer

can be idealized as
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v =V A R (78)
XeF6vsqlid T1u (gas)

where V' is the potential due to the other three XeF6-m01ecu1es in the

tetramef; and V. - (30) is the potential derived in the XeF

T tbeory

6

_ lu . . _ '
“section for a gas phase XeF, molecule. We found that in the gas phase,
the C3V configuration was a potential minimum and the C4vvstructure

a potential maximum. The nature of V! must be such as to reverse

this behavior because in the solid, XeF assumes a C4v structure.

6

Because' the XeF mdleculeé have no'net'charge,the leading term in

6

V' must be a dipolé*dipolevinteraétioh between XeF, molecules in the

6

molecule in the

6

moleculés only through

tetramer. This implies that each individual XeF

tetramer is coupled_to the -other three.XeF6

terms ihVolving.a'Tlu symmétry coordinate. This is clear, because only

T1u distrotions can'generéte»a dipole moment . in XeF6 (Fig. 1). The

effects of this external coupling to the.T

lu

pdtential minimum to C4 ‘and ‘also to change the magnitude of the radial

motion are to alter the
v
(R) minimum, Because the external éoUpling (V') does not explicity

vihvolve'the Eg symmetry coordinates (SZ) any geometfical changes in
. o s

the XeFé'(Cav) molecule due to an'Eg displacément.can still be treatéd
through.the Tlu(bénd)'— Eg coupling term derived previously'(ZO,Zl).

Thelmolecular parameters of a tetrameric-XeF6 molecule are

v axis in the "2" direction,

u bend (S4z) coupled to the

indicated in Table 6. If we choose the C
 we:¢an see.4ualitatively that only the T1
vilu,St?étch'(SBZ) and Eg gogrdlnater(sza) will account for the gegmetry
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(C4V) and the distribution of bond lengths. .The effect of the Eg(SZa)
' coordinate is to equally shorten the.four basal fluorines, and lengthen

-the apical fluorines. The Tlu(stretch) lengthens the Xe_Fapical bond

directly under the lone pair and shortens the opposite Xe—Fapical bond. -

~The net effect of the combin‘ed‘Eg and'Tlu(stretch) is tb significantly

vléngthen the apical Xe-F bond on top of the lone pair and leave the

*

other.apiéal Xe-F reiatively unchahged. The'Tlu(bend),_SAZ} gives the
ﬁoiecule the required-c4v symmetry.

o ‘ ‘ L
The FapiCal-'Xe“_ Fbasal bond angle of 77.2° corresponds to

Ao = 12.8° in terms of the § coordinate (335). 'The value S@z is

bz
= A \ -1 ip c . ) 1
S42 1.16 A, The relationship betwee_n{S42 and S2a (Eg) %s g;ven

by Eq. (20)
. , 2 ,.2 _
3 %% 25, B _
2a 2. 2
» 2 7o
where S4x’ S4y = 0 for C4v geometry, and k,, the Eg force constant,
is placed at kz = 2,86 (mdyn/A) for Vg = 506 cm_l.v The Eg mass (mz)
was assumed equal to 19 amu. In the C4v form the change in basal bond
length is'Ar‘= - .04 A‘where this is_relativé to the gas phase bond
length of 1.9 A, This puts tbe.szalc00rdinate (33a) at S2a = ,092 &.

With'previou31y determined ¢, (.5 mdyn) and Aso(.87 mdyn-A), we can
solve Eq.'(7a)_for'c2. ‘ S o ' : v .
c, = .242 mdyn - (80)

where - this is slightly lower than our expected range for cz'(77).
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We are now in a position to estimate the pérametersvb,.and c

“via Eqs. (29b, 29c). These are

o ) | zciz; g 24 o |
- b= 2 - 2 © (29b)
} ' Ae k. Ae '
L (o] 2 o
: 4% 7% %
L S Ckghe T kyhe T
.The value'of”tbe paféméter "a" is fiked'exéctly'by relation (65a).
The estimafedfranges for'b, and ¢ are
05 <b< .09 @Y B (81a)
o<e<.a &m0 (8w
v A7 : :

. The 1argér rangé-forﬂc is a'réflection of the much greater un-

‘and ¢, as compared to the relatively

2 5

accurate_determination-of ¢4 (66,67). A rigorous lower bound for

certainty in the values of c

' ﬁb" can be caléulafed from“Eq. (65b)!tby-setting c=0. ‘This yields
. ’ b= .0576_mdyn/A3, ﬁhich.ig in good,agreement with the predicted
"p" range;.fAn uﬁpef;boupd for ¢ can be found using Eq.i(65b) and
sefting b =:.69. This yiéids c = ;lﬁmdyn/A3, wﬁiéh'agrees nicely
| with>the_"g" rangeieétablished-by (29¢). In summary, we'have_accomplished

_tWO'majof things in this section, (1) a relatively accurate value of the
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.lAlg > 1Tlu‘transition'energy,' Aed (.87 mdyn-A), (2) an initial

estimation of the ranges of the potential parameters b and. c.

-

T4, Thermodynamics of XeF

6
' The heat capacity of XeF6 has been measured by_Schreiner65 and
-co—workérs from 5 +'350°K,.'They derived a value of the standard

entropy,\So, of XeF6 at 335°K which was S335 ok = 96.22 (cal/deg).

Weinstock and co-worke_rs66 calculated S; for various static

298°K -
g - Their results for a c structure, which because
of its 1ow_symmetry-Shou1d have the'ﬁighest entropy of all static

geometries of XeF

' structures, was S° = 87. 72 (cal/deg). 'The inability of a static

7298°K
~structure to approach the experlmental entropy indlcates that there is
either a very low frequency vibration, or even a pseudorotational
_motion'occurring;' Thermodynamically,~the situation in XeF6 parallels.-"
that ofrcy.clopentan'e’,.35’.3.6 wnsre a frsc pseudorotational nodel for
cyclopentana reproducéd-the_experimental heat capacity dnite well,
If we can sonenow.cxtractvthe entropy'associated just with the .
pseudorotationaifmoda in XefG, then.itdshould bs possible to use this -
information to fnrtherbrcfine'the notcntial parameters:b, and c. This
can be-accomplished by assigning ail thé vibrational modes, except
the T (bend), then calculatlng the standard entropy by statlstical

mechanlcs67 and subtracting the result from the experlmental entropy.

The différence will then be the entropy of  the Tlu(bend) motion,
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Before presentinggthis calculation, it'isvuorthwhile to discuss,
in,general, the problem of determining,thermodynamic functions for
lmolecules having'multiminimum vibrations. Pitzer68‘hasﬁconsidered
this problem in.detail for molecules nith'a'double mininum vibration
(NH3);‘ The difficulty in calculating the entropy of‘a'NHs— 1ike
'molecule.istinsdecidingvwhat the rotational syﬁmetry number (o) should
be. If we view the molecule as executing a.double minimun vibration,
then all of its levels in.the inversion‘node are doubly degenerate.
However, in'adopting_this‘point of view we must regard the potential
’surface as'Déh, not Cé , and accordingly the symmetry number will be
that for a planar (on the average) D,, molecule, 0 = 6, An alternate y

3h

treatment would be to view NH3'as a static Cqy structure. This would

- necessitate lowering the degeneracy of the 1nversion levels to one,
and 1owering the symmetry number to o = 3,vfor a C3V molecule. In

going from the D3h to the C3 viewpoint we have lost R 1n 2 vibrational
entropy and gained R ln 2 rotational entropy, for a net change of zero
Thus, regardless of the location of theupotential minimum (D h* °F C )
the entropy can always be‘calculated by considering the more symmetrical
structure.t v | |

Although the'situation'in XeF6 is- more compllcated than in NH3
due to the three dimensional nature of the XeF6 1nvers1on mode,
the thermodynamic analysiS'ls quite s1milar.. Table 7 lists the relevant

thermodynamic quantities for various assumed XeF . geometries. To

6
illustrate the use of Table 7 we will consider XeF6 to be permanently

distorted 1nto‘a C structure. There are eight equivalent C3v

3v '
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structures. This will lead to an eight-fold degeneracy of the "inversion"
levels, 8(C3v). <If'we view the molecule as pseudorotating among these
‘,éight structures then we must regard the potential surface as 0 , not

CBV’ which requires a symmetry number of 0 = 24. Alternatively, we

can consider the molecule in only one of the»CBQ potential wells
‘which leads to a vibratiénal'degeneracy,of one for the pseudorotation -
mode aﬁaja symmetry number of 0=3, Thus in transferring from an Oh"

to C viewpoint we loose R 1n 8 vibrational entropy:and gain R 1n 8

3v

rotatlonal entropy, for a net change of zero, -If ‘we, in turn, assume

XeF, to have any of the remaining symmetrles (C C4v’ CS) the same

6

conclusion regarding the entropy calculation will be reached. One case

which was not included'in Table 7 is that of.a'free peeudprotationt

In this case‘it'is clear that_the-potential must be treated from an
‘Oh_point of view since all geometries are equally aecessible. ~The

basic result of this discussion is that for any possible conformation .

6
symmetrlcal structure (O )

of XeF the-entropy'can alWays be calculated assuming the most

- The a351gnment of the v1brat10na1 modes, except for the T1 (bend),
assuming an Oh structure for XeF6 is found 1n Table 8., These

eassignments‘are based_on the room temperature XeF6 1nfrered and Ramau
speetra (Fige.'5,7,8). ;There_is a moderate shifting of the stretching
jfrequencies to lower energy in.going'frem thevlowrtemperature to-the
~room temperature suectra (Figs. 5-9). 'Freduency shifts. of thie.si;e
are»cOmﬁoulf observed'in going.frou metrix iSolation_spectre to gas

»phase_spectra.69 The range of possible frequencies for the ng'end
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T, modes reflects the large uncertainty of their exact location. The

2u
calculated standard entropy of the'Tlﬁ (bend) motionw(S;x=) at 335°K
S o ' - - T1u . :
1s ' o
11.24 € 83 < 15.05 cal/deg ~ - (82a)
: 1u ' -
Sp, » = 14.67 cal/deg - T (82p)
u - » _ : : o .

-}

where the large range of S is a reflection of the large uncertainty

T
. : i 1u : . .
of the ng'and Tzuiassignments. Thevvalue-S; -4 (82b) corresponds to
_ ' - S R
the asSignment_Tég = 284 cm ; and T2u'= 189 cm'll(Table 8).
Now that the experimental‘enfrdpy associated with the T. motion

Ju

is known, we can compére it with calculated_entropiés based on the
Tlﬁ potehtial (30). This comparison shodld hélp_to'nafrow thé[ranges
of the potential parametefS‘b, and ¢ established.by electron;diffréctiqn

and spécﬁrdscopic consideratidns, Because the entropy associated with

the Tlurmotion is rélatively 1Arge (~ 14 cal/deg) we can use a classical
apprcximation'toithe"partitioh fUnction.with_which'to calculate the
entropy. ‘The.ﬂsual test for the validity of the classical approximation

is that the spacings of adjacent eneréy levels,Bexsm21l compared to kT.

Bartell has shbwnsg‘thét ifzbne coﬁsiders XeF

, ‘ td<undergo a completely

6 - -
free pseuddrotation;;thé effective pséudorotation "B" value is

B=25 cﬁ-l. For XeF, at 335°K’(~ 240_cm—1) the classical'appfoximation67

_ 6
is reasonable because B(SAcm-l) <L KT (240'cm-1); In terms of the

Tlu pbtentialv(30)‘tﬁe partition function, QT ; is
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' / ' : - : (83)
: 3/2  pom T '

(ZWm kT) 4

-"QTl _ _ f f f —(-aR bR -cR f(9,¢))/I'<T st:Lnedeedd)
la h

rwhere‘f(6,¢) is an abbreviation for the octahedral field term in the -

potential_{BO). The entropy (S°T ) was‘calculated by67
. B : ) lu- o
o 31n Q . ,
0 T1u oo A A
ST = -RT 37} " + R-1n QT S ) (84)
1u \ v,N lu '
,ﬁhere R 1s the molar gas constant
The partltion function Q (83), and the related quantlty,
lu
(BanTv~/8T) (84), were evaluated by numerical 1ntegration for
lu - .
vatiousvvalues_of'the'potential parameters a, b, and ¢. 1In addition;
the'root mean aouare‘displacement <R2 1/2, was also computed.

-

e pamopm e o ' | |
— f | / _[ rZeT (AR R CI_‘-f(e"m/kT R%s1n8dRd8As  (85) -

<‘R2') = .

Q : .
Ty

The results are tabulated in Table 9. In order to properly evaluate the
results in'Table 9 let us briefly review'what-parameters; relevant to the

entropy calculatlon are known with reasonable accuracy These are "a” and

) for the
C

3v S
bend) is the wibrational

Ro. The constant "a" is related to the force constant (K

AT C3v/4 (65a). A (T .

motion assoc1ated w1th the radial coordinate R, of the potential

bend) vibration by a=K

function (30) Wenfound-in the spectroscopy-section that the Al
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iu bend) was reasonably assigned to'thé;302 émfl'peak in the matrix

isolation infrared spectrum. This placed "a" at a = .0873 (mdyn/A).

«

Méét likely ﬁhére will be a shift in fredﬁéncy for this mode in going
from the matfix to tﬁé gas'phasé, however the magnitudé and direction
of the shift are”difficult'td pfedigf. With this problem in m;nd, it
is probably fgas@nable to aésume a maximum t 50 cm-1 uncertainty in

" the locatiqh.of the Al (Tiu.bend) band, which corresponds to a *.15%

ﬁncértaihty in the value of "a". The parameter Ro is the magnitude
of the radial distortion, which was calculated from the béét static

€, model of the electron diffraction work. .The value fof Ro(.87 A)

“3v
2 )1/2

is prdbably'an upper bound to (R . This is because the radial

potential minimum.cqntracts slightly in_going from the C, radial

3v

minimum to the C, radial minimum, and contracts even more in passing

2v
from the sz radial'minimuﬁvfo,the'Cév radial minimum (32a, 32b, 32c¢).
In our model_c31Cu1ations,;wé cén Safeiy disfegérd the,potential

2,1/2 '

parameters corresponding to ¢ greater than .9 A, The lower

2,1/2

bound to (R is more difficult to establish. We will discuss
this in'mofe detéil éqmewhat latter in this section in relation to
angularibarriers.

_ The potential paiameteté b, and c for the first eleven entries

in Table 9 obey‘the féquirement

b o= —N 4 333¢ .. (86)
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which was discussed in the spectroécopyisection (65). The general
effect ofvincfeasing-b'aﬁd ¢ according to Eq. (86) is to steepen

. the potential walls beyond R, and to incfease the angular barriers.

ThlS is reflected in the lower entropy and smaller (Rz )1/2 for the

first eleven»entries In order to-sample entrdpies-on the upper end

of the experimental range for S° (15.05 cal/deg) we haﬁe to considerably
- 1u

soften the potential in the radial (R) dlrection.~ This is demonstrated
for the remaining entries in Table 9. "It is seen»that one has to

go well beyond the anticipated * 15% range for "a" just to reach

13 cal/deg. This is an indication that the‘aCtual ng'and T2u

frequencies occur closer to the lower range indicated in Table 8,

~ which would shorten the experimentalvs;.v

range to:approximately
1lu o ‘ '

11.24 < S ; < 12.5 (cal/deg)
lu
There is one additional crlterion which the potential parameters,

particularly c, must follow. ThlS is that the angular'potential

minimum at the CS-'conflguratlon is less than approximately 200 cm

(room temperature). If the angular barrier was much hlgher than 200 cm -1

6

sharp .spectral features. There are actually three angular barriers,

XeF, should appear as a tigid‘C3V molecule, which would give‘relatively :

a C3v vC2v batrler,,a sz'. C4vbbarr1er, and a 03V C4v barrier.

In»order,of increasing energy (lowest . at bottom) these barriers are
—_— C4v S | - 1 (87)
2v

3v
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~ The 200 cmfl restriction ap?lies to the C3v © C2V barrier. In terms
of the potenfial function, the larger the parameter‘c, the larger the
,angular'barriers will:be.r For the set of potential parameters (a=.0873,

b=.0743, ¢=.05). (Table 9)'theicalculated anguiar barriers are

-1 S - i
360 cm : ' o
— Cév o (88)
1’20‘cm"l ‘é
C 2v
0 em ™t o
3v

-which is consistent with tne requirement_thatvCS o sz < 200 cm—l;

If we double the value of ¢ to c=. 1 (entry 11, Table 9) the Cy © C,_
. barrier will approxlmately double to’ 240 .cm l.lwhich isltoo

1arge. “The upper allowed value of ¢ by this. reasoning is

é»= 08 (mdyn)

We can estimate the radial barrier rhe'barrier to the octahedral
configuration from the free pseudorotatlon potentlal (a— 0873,
b~ 0576 c—O) (Table 9) The radial barrler is 1, 650 cm 1.

The basic-result of thlS section was to_refine the potential

parameters to the following ranges

.0873.33§5-t 15%, - ) - (89a)

ns<b<on-4% IR ot (89b)
o A ) : |
o<e< % mdyn o o ~(89c)

A3
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5. Electric Field Deflecétion of XeF,
B . . v

70

The result of the electric field deflection experiment on XeF

'waS'negative, that is XeF6 did not focus. There are two possible

interpretations,of'thisvbehavior. The first, is that the dipole

moment’in”XeF is vanishingly small. The lower limit ofAdetectability

6
in these eiﬁériments;is_;03 D for a static structure. It is unlikely
that the'sum-of_therindiViduai’XeAF boﬁd momenfs'and thé 1one.pair
'moment ﬁduld have suchxa low value. The sécohd, and more reasonab1e
proposition, is,thaf'the éffect of péeudorofation is to drastically
reduce the effecti§e interaction'6f thg dipole-moment with the
inhomogeneous'electric field. This is fUrfher.indication that XéF6
undergoes a nof—tob—hihdered pseudofotaﬁioﬁ. The phenoméﬁdn of electric

field deflection will be discussed fully in the next chapter.

. 6. Comparison to other Theoretical Approaches’
Therévhave been-two.different'theoretical treatments of XeF6
" previously explored, (1) an électrdnic-isomer mpde1,7l (2) a crystal—

62

.

vfiéld model.

_ThékbaSié confention of Goodman':s71 electrbnic.isomér model is the
existencé'of sevefai,“thefmally accessible‘éxcited.electronic states;v
These.exéited“stateévaie coﬁsideréd to arise from egcitation'into the
T* molecular orbital. Wé héve discussed the ultfaviolet spectruﬁ

1lu

of XeF, in an earlier section and found the lowest lying T

6
‘State (3P1) to be‘approgimately 28,000 cm—l above the ground lAlg

1u egcited

electronic state. AThis'eSSéntiélly.negates.the electronic isomers

approach, of which we ﬁill’say no more. -
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A more firs£ Principles type approach was undertaken by Wang62
6°

yshrrounded by six point chargeé, F(-1). The Hamiltonian for this

in his _‘.(:rystal—fi'éld ‘mo'c'lxel‘f'or .XeF He assumed a .Xe(-.+-6) ion was
IISYSfem cénsistédﬂdf ﬁhé nonfelativistié Hamiltonian féf-the Xe(f6)
.ion plus a Spin—orbif ferm; a nuclear repﬂlsidﬁ tefmvfor the six fluorine
Vligands,.énd a crysfaiineld‘term ekpressing the interacﬁion of the |
-valence-Xé(+6),eiecfrons wifh-the fluorinévligands as a function of
' ligand-gebmetry.:.The grounaistate vibrafiqnéi‘pptentiai was defined‘
'bf‘diagonalization of.the Hamiltoniéﬁ in'a.RdSsell—Saﬁnders basis on
the Xe(+6) ion for différént ligand;géometrieS; ‘There are four electronic
.baraméters assoéiated witﬁ:this mddel; (1) thé energy difference between
the xenon 5s and Sb o:bitélé; (2) thé épin—ofbit coﬁpliﬁg éonstant
for the genon 5p»6rﬁitals (3)>two Slatérécdﬁdon electron repuision
paramétérs.- Values fdfvtheée parametérs wéfe 6btainéd from entirely
empirical cbnsiderétions. | | |

The'basic resu1ts of thié model, for théi; assumed bést sefvof
parameters, are.(i)vavradiéi'distdrtibﬁ‘(Ro) of‘approximatély
, R;'= .9:A; (2) g_rgdial ba}rigr of 1860 cm'l,_aﬁd (3) the following
.gnéulér Bérfiéﬁé‘~' ._ - |

1

160 cm”
o C4v
40 cm_l” .C‘
_ C 2v
. ‘_1 v
Qem o
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These results compafé nicely to this work, which are, (1) a
radial distortion of R, = .87 A, (2) a radial barrier of_approximately

1650 cmfl, and (3) the following angular barriers

360 cm-lm C
120 em™ ¢
: ' 2v
O'crn_1 Ci'
' 3v

where if shéﬁld be recalléd.that thé exact sizes of the angular barriers
were not calculable.ihAﬁhis work'bepauée tﬁe parameter "c'" could only
:be'defined:wiﬁhin4é certain range. The angular barriefs qﬁoted.above
cbrrespond réughly to the midpoint of the allowed range for e

(.05 mdyn/A). | |

Wang's crystal—fiéld‘model and the appfoacﬁ téken in this work

have»Basicaliy the same érigip, although aftér>the firstvstep onf
aﬁproaches takén.different routes. in both treatments the first step
is:to diagéﬁalize a sqitable Hamilt§nianvin an appropriate eléctronic
.basis set. ;Wang carfies pﬁt the‘diagoﬁalizatién hﬁméricaily

by using quanfitativély dgfingd:elegtrdnig wave functions, whilé we'carri
out the:diégoﬁﬁlization anélytically to obtain é generai form for the
potential,'éndvthen_ﬁse expefimental data toAfefine the parameters 6f"
.tﬁe potential.' In priﬁciple, Bbth éﬁpréacﬁes“should.yield almosf
iden;icai fesu1té if the diagonalization'is eiact, and thé various

electronic parameters used in the numerical approéch have the correct .

‘value for XeF6...
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The“excéllent agreement between these’ two approaches is strong

evidence fér a slightlj hindered pseudorotétional_motibn'in XeF6.
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Table 1: ' Structural parameters for the

best static C

 configuration
3v. 18 _

Parameter Multiplicity R. A) '.Aﬁplitude'(A)

¥ Xe-F 3 '. v 1.941 _" | 0.036
'~ adjacent

7 6 2408 0108

'-adjécent  R 3

re 2.535 0.208

adjaCent-

PR 3. 3.106 0.302

Tong

- 3357 0.070

In addition
- ANG4 = 5.348°

©OANGS 2 7.260°




_187-

MO

 -Table 2. Infrared and Raman acfiVitiésffor the fundaméntals

of~_a‘MX6 molecule of varyingugeohetry-.

y. . Tlu(Ir)' T, (N4

Alg(gp) _' B (Rdb) T (de

g 2g

Al(Ir,Rp) .E(Ir,de) _ AZ(NA)

MAER) B (Rg)  B(Rg)  EGLR)

vv' '""" ;
A (Ir,Rp) A (;;,de)

infraréd'activé_'y _ : - NA = not'active
Raman active
polarized

depolarized
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-Table 3. Ilu(Bend), ng andlizu Bendlng Frequenc1es_for TeF6.

-1, 1 s |

_ Tlu(Bend)(cm,,) ng(cm ) - T2u(cm )
| TeF, 323 | 314 197
PuF, 206 211 173
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Table 4. Assignment of low temperature XeF,

spectrum based on a C3V geometry

Mode o - Frequencyv(cm_l)'
Al(Tlu stretch) N 630
Al(Alg). “—_ B . '624
E (’I‘lu sFretch) | o 557
E(E 7 506

ey
Al(Tlu_bend)' - 302

e . _ a
E(ng) o (343)
AT 252
ATy T (150-200)°

2 7 2u ' '
E(T, ) . (150-200)°
2u : ) /

~a. This is a guess (see main text).
'  b. Based ohjrdom temperatdré far infrared

data (Fig..7).




-190-

Table 5. Derived parameters for XeF,

Parameter Description Value
-y Tlu(stretch) mass 19»(amg)
g ng mass 4.75‘(amu)
o, . Ti#(bend) pseudorotation mass 6.56 (amu)
Ko . Force constant for radial.(Al); 0.349 (mdyn/A°)
3v motion in C3
- 73w ‘
k4  Force constant for "anérturbed" 0.314 kmdyn/A°)
T1u frequengy :
o - Co "y q1r. -1
VTlu(bend). Unpgrturbed T1u bend frequency 284 (em ™)
o X . e . _ ! E ) X _
VTlu(stretc_:h) Unp_erturbed_Tlu stretch frequency 581 (em l)
3' Tlu‘stretch'force coﬁstant 3.78 (mdyn/A°®)
vo Unperturbed:T- freQuency 2312 (cm—l)
T2 v 2g _ . ,
k5 T2g~fprcé,cénstant 0.272.(mdyn/49)
Aaé  lAi > lT u’electronic transition 0.87 (mdyn/A°)
I © energy. :
c3 Tlﬁ stretch linear matrix element 0.461 (mdyn)
c, T;, bend linear matrix element 0.500 (mdyn)
és. ng_linéar matrix element " 0.374 (mdyn)
c T, -T coupliﬁg constant, spectro- 0,14
T lu "1lu. . L2 T _
lu scopic determination
C T eT 'coupling constéﬁt, spectro? 0.91 (1/A°)
T2 Tlu: "2 - . . . : . . )
_ g ‘scopic determination L
CT Electron diffraction deterﬁination 0.13
© Tlu R o
Cr Electron>diffraction determination 1.9 (1/A°)
12 D - ‘
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 Table 6. Molecular parameters for

a tetrameric XeF6(C4V)
molecule,

Parameter Value
T , ' o
“Xe-F ., . : 2.23A
: apical N .
T 7 AD
Xe-F ., : 1.84A°
apical . o
TRe-F, . 1 é6A°
e basal -

77.2°

XF . .-Xe-F,
Fapi‘cal ne Fbasal
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;.Table.7; Thermodynamic parameters for vérious XeF6 geqmetfies.

Y C3v ‘C2v_ Cov | Cs

O (symmetry number) - 24 B 3 | 2 14 |1

Equivalent Structures | 1 8 | 12 6 ‘24
'Degeneracy-qﬁ - .»  8(C, ), 12(c, )

Inversion Mode - . . S 3 S 2y I 1t 1
R . 6(C4v),v24(Cs)
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" Table 8. Room temperature assignment of .

XeF, modes assuming an octahedral geometry

Mode  Frequency (cm_l).
Tlu (stretch) s 580
A ' 588
E D . . 513
g .
T o 2842 (200-300)°
28 | - -
o 189% (150-200)"
T 2u - : o

a. - estimate based on TeFé_and PuF6

b. Possible range of values
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Table 9. Calculated entrdpy of the Tlﬁ potential function

1u C

A i»(’“‘“—?) (M0 2 (£ (2 @)
_ - A 1u :
0.087$.xf;b;0556 0.00 ~ 11.82 0.878
0.0873 C0.0610 0.01 1.7 0.869
0.0873  0.0643 . 0.02  11.70 | »b.sez
0.0873 0;0656» 0.03 .62 0.836
0.0873.  0.0720 0.06 1.4  0.850
0.0873 0.0743 .Af.,o.os 1146 0.846
0.0873 | 0.0776. - 0.06 11.38 O o.84l
o.0873 0.0810 0.07 11i36 " .0.838

© 0.0873 v'0.0843_ ©0.08  11.24 'j : 07834

0.0873 . 0.0876 0.09 1114 . 0.832

0.0873  0.0910  0.10 11.07 0.829
'o.§88, . 0.0306  0.00 131 \1.205.
0.088  0.0306  0.015  12.97  1.286
0.088 0.0366_ o003 1214 1.42

0.081  0.03 ©0.00 - 13.06 © 1.168
0.0432 © 0.02 0.00  13.21 1.054
0.027  0.01 0.0 11 1.18

0.108  0.04 . 0.00  12.78 " 1.167
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VII, ELECTRIC FIELD DEFLECTION OF MOLECULES WITH
LARGE AMPLITUDE MOTIONS

A. Introduction to Electric Field Deflection

In this chapter,we Qili'consider the behevior of.mcieculee in
.inhomogeneous'electric fields. As’ an introchtioh to this aree we
will discussche behaviqr.cf a petmaneht dipole in an inhomogenous
electric_field. A scheﬁaticudiagraﬁ of a typical experimental
arrangethent72 is found invFig. 1, where a molecule with dipole
v momeht‘; is ejected"ftom,the source (oven)linto the inhomogeneous
electric.fie1d>E. The eiectric field E is assumed tovhave radial
rsymmetry_ahout the'axis'dtawn‘(dashed line).. gWebchose the dipole
moment aligned parallel to the electric field; and we.also aseume that

the molecule is not rotatlng The potential of interaction of the

dlpole w1th the f1eld is

W= -n-E W

‘Because the electric field'is inhomogeneoue_(its gradient is non zero)
~the molecule will experience a force, f, given by
F o= - —— V[g| ' 2
3|E| | | |
-For the allgnment of the dipole plctured the molecule will experlence
a force directed into the center of the apparatus. In;tlally»the

molecule will belaccelerated downwards, then when it reaches its
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Source

i A S L L AL S (Y B S5V S L [ S G S N SR S S LY S S A L A Y At

Detector

XBL 744- 6124

'Fig. 1. Schematic diagram of apparatus used .

in electric field focusing experiments,
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mirror imége'positioﬁ_on the bottom Héif 1t will be accelerated:upward
until it reaches its‘initiai positibn; whereupon the cycle will
,repeat.itself. .Céﬁcufrently the.moleéuie ié'tfaﬁslating across the
apparatus towards the detector (massvsbectrometefj. If the ovscillation
aﬁout the symﬁetry'axis of the.fieid‘occurs‘at just the right freqUency
“the moiecule can.actﬁallyAenter the detector'as:is pictured in Fig. 1.
This iS'Called refocusing; or sometimes just focusing. If we pick
thevaligﬁmépf of the dipole opposite to that pictured it would always
'experience g force'directed away from the_cgntef of tﬁe.épparatus,

.and obviously it could not focué. It should be étreééed\fhat simplf
aligning. the dipple parallel to the electric field, E,‘&ill not insure -
focusiﬁg;v fhe velocity of fhe molecﬁle has to be related to the'frequenéy'
‘of oscillation sﬁcH that the molecuie:is c;ossihg the ceﬁter of the
Aépparatus‘at the’precisevinstant it reaches the &étector, In ppinciplé'
there are an infinite'ﬁumber of veioéities for which é given dipole
"can focus. ‘The exacﬁ vaiue‘of.these yelpcities.is 6f course deéendentv
on the eiectric field.étréngth Iglb and the magnitude of the dipole
rmpment; Iﬁll | o |

We‘één now.élldw.the ﬁdleéulevfp-rOtate and see what effect‘tﬁis

will ﬂavé,on.its~fOCusing préperties;l-The bésic Complication'introdﬁéed
by allowing the molecule fo.fopate isfthat‘its intefaction with the

' field (1) must be averaged over the'fotational state of the molecule.

o= R e BEN©
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. The quaﬁtity CtnR) feﬁresénts'a particular function of the rotational
quantum numbers, N of the rbtational.state oVer.which Eq. (1) was.
.:éveraged. The sfgcific form of C(ﬁR) will depéﬁd on the symmetry_

of the mOIECule‘—‘symmetric top, spherical top, etc. The subscriﬁt

V.of oﬁe on Wi‘3) is to.indicéte that this is known .as a first order Stark

effect. Théffbrde_the rdtating dipole will experience is -

> N > .j ‘ S ”
F= C(np) [u| V[E] | (&)
' ' v : ' 70
The electric field can be represented as .
E=(=)rf - G

where V:is the vo;tage_applied to the apparétus, R is.thevradius of
the apﬁaratﬁs, r is the radia1 cbordinate, and ? is‘tﬁe’uﬁit radial
veqfor. Substifution of_E(S)‘into Eq.'(4)fgives.
Fo= oo il 5y F ()

When C(nR) isvneéétiVe’the molécule wiil.experiénce'a fdrce‘directed
into the center of the'épparatus, hence it can focus. For C(nR)
positi#e ﬁhe mdleéﬁlé.w111 not focus. From Eq. (6) we see that for
a first order Stark effeét, W1(3),,it is the rotatioﬁal state, C(nR),
~ which complétely determines a'moleéulefs potential for focusing.

Weiéan add yet’ another complicétion to this syétem by allowing
the moiécuie to have a ﬁonstatic dipoie moﬁen£.  Specifically, we |

mean a molecule undergoing relatively unhindered, large amplitude
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’motionsfcarrying it through a varietyvof gemmetries, and simultaneously
changinghthe oriEntation_of the diooie momentvrelative to a molecule
.Vfixed reference-freme. We.must now avetege the interaction of the dipole
with the field (1) over both ‘the rotatlonal motion and the internal motion.
The effect .of this averaging process will be to yield a second order

As we will see

stark effect,’ W., instead of a first order effect, W

2° 1°
later, this is due to the symmetry.of the internal motion. The second

order stark effect will have'the‘fofm“

L > 20 %2 |
2 AE, ' o )

ﬁhere ﬁéff.is the.effectiﬁe dfpole moment associatedeith the intemnal .
motion,‘C(nR;nI) ie_a fuhction of the-fotationel, n#, and internal,

no, quantom numbets; and AEI‘is ao energy eifference between the energy
levels of the intefnel motioh. The fofce.thet,the moieCule will |
experiehce isA |

\IC'(ﬁR,nI‘H I_ﬁeff’lz (-1;% )% ¢ r (8

AEI

"~ From the force Eq. (8) we: f1nd that for AE > 0 the molecule‘can
focus, while molecules w1th AE < 0 cannot focus. The<most interesting
featurefof the second-order Stark effect (7) is that a moiecule's

. potentiai‘for focusihg:is'determined'solely-by its internel quantum
‘state, in’ contrast to the flrst order Stark effect (3) where the
:totatlonal state was the declding factor., Equation (8) can be viewed

compactly as
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f-:__Krr : ' ' (9)

where K is defined as

- lotng, nI)l I“effl '.K”%:)z'

R
AEIY

(10)

'The form of Eq;‘(9) shows that a molecule with a second order Stark

effect (7) behaves as a harmonic osc111ator73 w1th force constant K (10).
Fér a tytical électric fiéld deflection‘a'p'paratuls]0 the radius,

tR,_is R = 3vcm the'averége”field, 'E;vel’ at ﬁaXimﬁm.vbitage (35 KV)

EEEEYQ}EE),’and the length of the apparatus (source -

is |E | = 180 (
to detector)iis approximately:ZO.cm.‘ If1we;inject a‘mqlecule with
Igeffl = lb,_AEIT; 1.cm—1, and mass equal to 20 amu (this hypothetital
molecule is s;milatvto NH3):into tﬁe apparétus at T = 3005K, with
_+E| = Iﬁavl then we can ettimate itsiperiod of'OScillation énd its time
of'flight. fhe moét-probable velotity of the molecﬁle is calcﬁiatedv-
by _ o . _ _

mv? = kT - o (1)

o] =

vFQr'I =.300°K;thé most protable véiocity is v = 104 cm/sec, whicﬁ>
,gives éﬁ average timé of'flight from source to detectqr of,10—3 sec.
fhe apprﬁxiﬁate»pefiod oftoscillation ﬁhich’ié determined by the
_force constant K(10), is lO (sec/cycle) This molecule is seen to
_be'a.strong focuser,because its period of-oscillation ié‘comparable to'
‘ ) 1s much |

»the‘average time of flight.'»If on the other hand, (u ff

T 6y
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"smallér, or AEl'much léfgef;'br bdtﬁgvﬁhénvthé éeridd of oscillation

would be gréatly’redUCéd‘and only tﬁose moleéules with a velocity

v;substantialiy léss than v(11l) could focus (a‘veryvfew'moleculeé).

Generally speaking it:is fhe ratio of Iﬂefflz ‘to AEI"which will.
AQetérmine whether or not a given molecule, in'é'giVen state, is'.a

.’Strong orﬁweakquCuser. |

C

B, Stark Effect for MX, Molecules Undergoihg a Double
- Miniflum Vibration

The wavefunction for the”inveréion notion in MX, molecules is

3
characterized by twovguantum numbe'rs,74
o n=0,1,2 ... -
winversion-; [m,p ) oy o o o (12)
p=1*1

where "n" denotes the level and "p" its parity @). The dipole moment
_ associated with the iﬁversion coordinaté; SZ(AE) (see Chap. 1, Fig. 2),

can be expressed as

o= ek (13)
wvhere c 1is a constént.which takes geometric (bond length, bond angles)’
 and electronic (paftial charge) factors into account and K is the

- molecule fixed a#is-defined?by the three fold rotation axis through

the central'(M)'étom. The dipole—field interaction (1) becomes

W = -5, [E] cost o o
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wﬁére B is the angle be;wéén the mbleéﬁle fixed K axis.énd the space

fixed unit radial-végtor,';; which for simplicity'we will consider as

;thé 2 axis, becéuse tﬁe experiment esséntially takes piace in é‘single
plaﬁe;l ihevpresence of the linear coordinate;‘Sz, iﬂ the'inteféction
‘term (i4) precludes ény first order Stafk effecf due to the parity (%)

"of thé iﬁversion'wavefunctions (12); Thisvrequires thé.use of’s;cond
.order perturbatioﬁ theory to évaluate W(lﬁ); .The rotatibnal wévefﬁﬁctions
which we will use fhfoﬁghout this chaptér-are'the symmetric toﬁ wave-

functions.74_ TheSe'are characterized by

wrbtation = IJKM . 3 4 (15)
where J is tHe total angular'momentum quantum number, K is the component
of J élong'the molecular symmetry ékis, and M is thefcomponent,of J
:alohg.a_SPace fixed5éxis; in this case the'field_direction, E(Z).

\

" To second order, the interaction term W(l4) is
. 4 Y

. |§|2 . EE:

|IrMap ) # |I'K'M'n'p' )

( JKMnp [ S, cosB|JI'R'M'n'p' )(J’K'M'n'p'lgSé'cosBlJKan)

(E (16)

JKM - EJ'K'M') + (Enp - En'p|)



“where 'EJKM'iS the energy of the IJKM ) rotational state and Enp is
" the vibrational energy of the |np ) inversion state. The relevant matrix

_elements are
(mp[sy[a'p') #0 p'#Hp - (17a)
(JKM[cosB|I'K'M' ) # 0 J'=J, J*1  K'sK M'sy (17b)

If we restfict our attentioq'to the foéﬁsing‘propertiés of the groﬁnd
étate.inVefsion 1ev¢lg'in MX3(C3V)~m61ecu1es then we can effectivély
ignore'therconfribution of higher vibrational levels (dzl)‘in the
denominatorldf'the Stérk expressiop (16); This is because the n=1
in#ersion levels oCcur.in the range‘of 800-1000 cm—l abee the n=0 -

‘levels for the NH, series, while the ground state doublet splitting

3
has ‘a maximum value of only .66 cm“l in‘NH3. If we were dealing with
a low inversion barrier it is poséible that higher vibrational levels

would cbntribute to_W2(16) and accordingly, must be included. W2(16)

simplifies to

> ¢ JKM| cosB|T"KM ) ¢ I'KM| cosB | JKM ? (18)

220 e g2
= - > .
Wy =[BT s, o 17 & = T v r @ - e
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where we have picked 10— ) as thebreference vibrationél sfate. vChooéing

A |0+ ) as‘fhe reference state wéuld;just_éhange:the sign of the vibrational

ﬁéhérgy diffgrencé in.the.dénbminator (18). We can identify'the term,
gzl(O—I:SZ lb + )Iz, és the effective dipole moment squared, uiff'
Eqﬁation:(18) bgéomes‘

W2.= Heff

2 32 T (IRM| cosB|I'RM ) (J'RM| cosB|IRM )
: L (EJ - EJ‘) + (E_-E +)
. ’ o . (o]

(19)

There are two different limiting situations to this expression

for the Stark effect, Wé(l9); These are
E_-E, >>E -E, - (200

E -E, >» E_-E_, . © (20b)

" In the MH3 series (NH3, PH3, AsHs, SbHé) thefrdtafional3constaﬁt, B,
ié on the ofder of B = 10‘cm;l,.and the ground state inversion

'splitting‘(E.; - E +)iﬁasva maximum_§a1u¢ Of‘w7 cm-l'for NH3. ' Thus
3omolec3}es.thevsecond limiting‘éése (20b) .is seen. to gpﬁiy.
We will see 1ater:thafjfor the MX

for the MH
7 molééules and XeF6 the first limit

(20a) applies because the rotational constants are much smaller due
to larger moments of inertia, and the pseudorotational spacings are

larger than the ground stéte MH, inversion doublets.- We will consider

-3

system,

bqth limits for the MX3



'If we assume the first limit (ZOa) to apply then Eq. (19)

simplifies approximately to

e [E]
W, = _E_e_fﬁ_E_ > (JKMIcosBIJ KM Y (J! KMlcosB]JKM) (21)
' - 4 I , .
. |

If we sum.over a éomplete,»lJ'K'M ) basis, and use the identiﬁy

E: Jawmm yearmM| = 1 - (22)
~ sum over : T » :
all states

' then'qu'(ZZ) becomes

2 |22 L2
Woge |EI” € IKM|cos™B| M )

2~ " E _ - E )
o -0 ‘
-The error in W (23) ‘caused by neglectlng the EJ 1 term is

‘»approx;mately

' - (24)

: uz ]EIQ . . _ . :
sw, =S . _2JB ¢|¢ KM | cosB| J+1, KM ) |%-|< IRM| cosB|I-1,kM ) |2

2 E - E + E _ - E,_+ :

' ) o o o B )

'where 6W2,must be small compared to W2(23) because our initial assumption

was:eSSentiallyKZJBf<< E _—E, . (20a).
' . o o o
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If the second limiting situation (20b) is applicable, the Stark
éffect,,w2 (19), becomes

0 o Leff
2 .. E -~ ot

B2 9 w22 2
IE[ :I(JKM JcosSIJKM ) | . Mope IEI M©J

- (25)

o}

-

JZ(J+1)2;(E0_—E§+)v

where the J=J' rotational state is the major contribution to W2(19)

" in this limit. The error in'WZ(ZS) from neglectiﬁg’J'=Ji1 is

eff || ' ’E 2 ‘ 2
A 53 (¢ JR1] cosB|I-1,kM Y |© - [(IKM|cosB[I+1, KM [T)  (26)
where 6W2-shoﬁld be mﬁéh_smaller than'W2(25):because_our initial
assumption was 2JB >> E _-E + (20b) .

: , o o S o o
Both limiting Stark effects, W2(23,25), have been. written in

terms of the 'inversion state which can'focus, |0-). If the molecule
were in the lower ground state inversion dOublet;‘|O+ ) , the denominator

of W2(23,25) would be negétive, thus this state cannot focus (8).

'ReF7) Molecules

C. Stark Effect in MX7 (IF7,
In the MX7 hhaptef we found the IF 'and ReF7 could be considered

as. undergoing a free pseudorotation, which was analogous to a rotating-

7

Vibrating‘diatoﬁic molecﬁlenrestricted to rotate in a plane. The wave

functions for this type of motion'arezg-
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RELY |

\_yps.eud'orotation' = Rn(pox = lr}’m )
) = o0, 13 2,' 27
m =3 O’ il’ i2, o . .

there'the factor of two on the angular function arises from the boundary

'condipion,' P(o) = w(ﬁ),fiﬁ five membered rings.36 The energy of the
pseudorotational mode is
2

 'Enm: = '(n-+ %) hyp:+ m°By o ;. R (28)

where vp is ' the ffequehcy of the radial motion (p) and B, 1s the

¢

effective rotational constant associated with the pseudorotation.

In the'MX7 molecules the.dipole momentjliés in the plane of the

hypothetical-five.memberéd ring formed by a-planér afrangement of the
»equatorial.fluorines. - The origin of the dipole moment is the coupling
‘of the axlal bend (). to the puckéring motion (Eg)48.0nx7 chapter,

Eqs. (12,13)). The dipole moment will have the form
5 2 A A _‘ : . ‘ -
@ = cp[cos4di + sinkdj ] - o _ (29)

where the pz dependence and the 4¢ depéndence’of'the dipole on the

v-pseudbrotatipnal phééevangle are both determined by the E1 - E;‘
48 '

:coupling, and f, g‘are'molecﬁle,fiked axes in the equatorial plane.

The dipole-field interaction will look like
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W o= _clElpz [cosé¢'sin8uéosY.— sin4¢ sinB siny]l: - (30)
where B, and v arerEuler'angles,7$ relating the molecule fixed axes to
the space fixed 2 axis (E). -

Because of the 4¢ dependence of W(BO) there will be both a first
and a second order Stark'effect.’ The'origin of the first order effect -,

is that the terms, cos4$ and sink¢$, connect the degenerate wavefunctions

+ . ' o '
e 12¢ to each other. The remaining states (m # *2) can be treated by

“second order perturbation theory.

The rotationai-éonstants for IF. and ReF. are in the neighborhood

7 7
of B= .6 cm—l,52 while'the-effeétive'pseudorotational constant, B¢3

48,49

is approximately B¢'* 5 cm'-'1 in both molecules. This indicates

that'IFj‘and RéF7 can be treated under the limiting situation in

‘:Eq. (20a),‘because B

p >> B, The second order Stark effect will have the:

"form

%2 ¢ oxw] siQZB[JKM‘)

T mF E2 ey
B¢ (Sm f2) ) o S
_This demonstrates thaf the ﬁseudorotétional:ground state, m=0,-will
Anot‘focﬁs_(wz_is negative)_while-all the.remaining stateé are focuéable !
(W2 is positive),_" |
The derivatioﬁfof thg_fifst,ordér Stark efféct for the deggnerate

;m; 2 stateé.is rather complicatedvbecause the angular terms |

(sinB; césY, sin?,.éosY) conﬁéct many of the,(near) degeneraﬁe M,K

levels for a given'value of J. While we will not solve this problem
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here we,éan comment- on ‘the nature of the expected Stark effect. That
is, we saw earlier (3), that for a'fifst order Stark effect some states
' ~will focus ‘and some will not, depending on the specific set of rotational

quantum- numbers.

Y

'D. Stark Effect in XeF6 (Free Pseudofotation Limit)

If we consider XeF, to undergo a free pseudorotation thenvits

6

béhavior'will be analogous to a rotating-vibrating diatomic molecule.
The-wavéfunctions for the free pseudorotation a_ré74

o

(co’se)elm¢ [nfm ¥

preUdorotatioﬁ_= R, (R, B v '
m =0, *1, £2 ,,,
2= 1lnf, [m| +1 ...
n=20,1, 2 ... |
The energy levels are -
Enz =  (n f E)th,f B6,¢ £(2+1) | - (33)
 'where vR'is the frequency of the radial motion, R, and Be'¢ is the
. . . o ’ ’

'effectivé”pséudordtational constant.
In terms of the spherical coordinate system defined in the XeF

chapter we can write the dipole moment as

ﬁ ‘= cR(sine'cos¢§ + sin® sin¢§ + COSeﬁ) ' - (34)
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where 1,3, k afe.molecule fixed axes, which correspond'to the'S4x,
VS4y‘and S4. directlons respectively (XeF Chap., F1g 1). The

;dipole-fleld 1nteract10n has the form

- RN : o : _
- W= clElR (sinB cosd sinf cosY - 81n0 sind sinfl - coud couft)

(35)

| . 59

where B, y are Euler angles?s For XeF 6¢ ,5.cm—l, - and the
rotationalfconstaﬁt is similar to the MX7 case, which means XeF6 can

also be handled in the limit B¢ >> B (20a). The second ordefvStark'

effect fdf'XeFé is |

eff IEI y | ;2 \ m . .m+1 2 | ﬁ m-1, |2
= (KM sin“BlIRM Y {[€ 27 |sin6 |87 T ) |7 + [(27]sing]27 T ) [“}
’ e’¢ ,Q,'=,Q,ii . . . : . :
| (36)

+ (IRt cos?B| TR0 3 {[¢ 2™ cos8| 2™ ) |21 /(R (4L - 2'(L141))

where this: expression for W2(36) is consideréblY‘moreicomplicated than

those for MX7(31):and MX3(23).- The -reason for.this is}that the dipole
moment'is'nét reétrictedvtd.any paxticﬁlar’direction or plane with
vréspect'to thé.mdieéule fixéd frame,‘Which.iS'why both absinZB, and
.a c0528 téfm are prééent;in Eq. (36). The ground pseudorotationalv

state, 2=0, does nqt-f'oc'us_(W2 is negative). The disposition of the

higher sfafeé is difficult.fo ascertain fromvK.'(36) without explicitly

_évaluatihg it for each specific set of | JKMgm ) quantum numbers;
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however it is probably safe to say that some, if not all, of the higher

states (£>0) are focusable.

E. Stark Effect in XeF, (Low Anpular Barrier Limit)

In the XeF6 chapter it was concluded that XeF6 was undergoing
eifher a free pseudorotation or a élightly hindered pseudorotation

(low angular barriér). We have’just considered the focusing properties

of a free pseudorotation, and will now investigate the effect of

adding a small angular barrier corresponding to a C3§ potential
minimum. There isvanother limiting_case~oné could study, which is-thé  '

high,angﬁlar barrier 1imit. bThis~wou1d'yield a rigid C structure

3w
with a first order Stark effect, where one would expect to observe
appreeiable focusing.70

We will assume the angular'barrier'is small eﬁough’so that the

'.uinversionﬁ:multipléﬁ spacings-are still large compared to the overall

rotational.spacings. In effect, we are.working with the limiting
case in Eq. (20a). The first step in this problem is to calculate the -

spacings-bf the_lowér Vinvérsion" multiplets. This was done by taking

‘appropriate>linear combinations (representations of Oh) of ground .

state harmonic oscillator-functions'(wn, n=1-8) located in each of

»fhe_eight ij potentialvminima'and evaluating the .Hamiltonian (H)

corresponding to a slighty hindered_pseudorotationvin'this basis set.

’

The resulting spécings are

-
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IAZu .
I 16b - 3¢ + 164,
|7, ) —— - A
&l I - 16b-16d - (37)
)
| 16b + 32¢ + 16d
lAlg ) —
b= <¢ l ,wadJacent (38a)
¢= l llpadjacent ) (38b)
d =_<wn|H|d.)9PPO.S'ite . (38¢)

The 1aféest matrix elemeﬁt‘shouid be:"ﬁ"v(38a) siﬁcé‘this is the
.overlap of 1ocaliégd oscillators ih‘adjacént Csv'minima of‘the'néa;est
type (see’dfawing»above)f Then;.f0r simplicity, the spacingS'qf the
levels (37).are épprbximéfely'equal,;.AE ~_16b;

The expression for the Stark effect differs from state bo state

in this limit. The resulting expressions are -

3 et |E[2 A, o Iy 0 1 (39a)
2,080 "7 - 16|b]
2 .22
Hoee |E]
, . 'eff 2
W BRI+ S {<JKM|sin 8 cos’y| KM )](T l X |a, )]
2’1T1u--) 16[b] Mg’ (39b)

X

o o 2. ” 2
- ((JKM| sin”B sin leKm_> + <JKM|co§ B|IxM >)[<T1u£|Y|T2g¥y.>] }
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similar -expresshons for,lTlu Y, T, )

lu
y'. A
! W2 72 o
W, =v—§££—————-'(JKMISinzleKM Y KT | x |1, >|2 (39¢)
Z,IT ) _ _ S N 2g ! 1 :
2g. 16]b| : | Xy uy
"Xy T S ‘ e :
‘similar expreésions for, ITééxz AR J?ZSYZA?
Wy = 0
2,|8, 0 T ° | Lo (9D

from>thésé rgsults we see that the vib;ational ground state, 1A1g ),
doés_not,fbcps; and the IAZQ') state does not focﬁs, while the Ing)
'.étgtes éan focué. It is'not obviéus:what.the focusing properties of
:the ITlu ) statesbaré.,.Ong-might spéculafe tﬁét‘some IJRM ) states
will lead to_fOCusing:ofuthe lTlﬁ~) states will other lJKﬂ ) stétes

will exhibit defocusing.

" F. Comparison of .Theory to Experiment

Calculation ;f”ébéolute focusing inténsifies-ié'a complicated
_problembwhiCh intetreiateé fhe moleculér velocity distribution to thé
di#tribuﬁion of‘intefnalaand rotational,stafes.7qv Whilé we ﬁill not
attempt to do thié here it.is.still ﬁoséible to get-é~gbod idea of the
reiativé foéﬁSiﬂg pbwervof'a-given:mdlecuiarvspécies'siﬁplyvby

evabuating its Stark effeét»(wz)} A ‘large Stark effect means the

eiﬁectivevforce constant, K (10), for theldécillétory motion is largé.
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- We saw earlier fhat fof K sufficiently.large} ﬁolecules with'a velocity
‘near v(mostvprobablé), Whicﬁ includéé must of the molecules, had a
 f§ood chance of foéusing. When K was small, oniy those molecules on the
low end of'the'velocity distribution,; which includes very few molecﬁies,
were-chusable. Simély byvcomparing "k" for different'mqleculeé one-
can arr;ﬁéé thQSe molecuie; iﬁ-order of focusing_ability. This can be
' furthertsiﬁplified to a_Coﬁparison‘of‘tﬁe-factor in K(10) whiqh varies

most from molecule to molecule, which is

.

Where R-is the ratio of the effective dipole moment squared to the
separation of internal (pseudorotational) levels. For the molecules

studied here the "R" factors are

| L o |

R, T OE eff"E : B (41a)
3 - T+ ~ o

' o o o - o o

S 112 _ _ |

R, T wm (41b)

By 6 , : : :

2 :
R - . : - Teff _
'_XeF6 (free pseudorotation) - .8Be 6 (41c)

u2

eff (41d)

4RXeF6'(low aﬁgﬁlar barrier) =’.16]b]
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these molecules.

the low angular barrier limit of XeF

' system of interest. In XeF
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In’order'to quantitatively evaluate R one needs values for ﬁeff and

AEI. - The effective ﬁseudofotationalfconStanté for IF7;_ReF7, and XeF6

‘have been estimated by Bartell in the eléctron diffraction studies of

4 ’49’59' The value of the doublet splitting in the

NH3 ground vibrational state is known.' We have perfbrmed,énergy leyél'

"calculations in a three dimensionaivharmonic oscillator basis for

6 and have found the separatioﬁ
of the lowér‘multiplet levels to be épproximafély |16b] =~ 1 cﬁul.'
Determination of “éff for IF_, ReF

and XeF, is somewhat of a problem.

7 6

The approach taken here was to estimate the partial negative charge on

the fluofiﬁes, which in turn fixes the partial positive charge on the

central atom. Then one can use structural information provided by the

électron,diffraction étﬁdiés to determine the'effective dipole in the.

6

there was an additional problem, in that
the lone pair contributes a significant moment due to its directional

preference (partial "p" chafacter). Interestingly, the loﬁq pair

moment is in the opbosite»direCtion to the ''geometric' moment

caused by_fhe parfial chargés.A Wevﬁéve calculatéd the total XeF6
dipole’momént to be neff Nv.i D, Where.the uncertaintY'of thevcalculation
ieads‘tq a prdbabié range of.dvg ueff <.b3>D." | |

‘The values éfgthe effécﬁive'dipolei(ueff)5 AEI;-and.R for the
molecules_cénsidered here:are.fdund'in'Table i; ‘The results demonstrate
thafvthe o#def of*fdcusing aEiiity; frdm highest.to iowest, is

NH3 >> ReF

>

observed 2270

. >vXeF6.'.This same'drdeting is expefimeﬁtally
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There is one édditional experimental,observation which can be

understood:iﬁ terms of the models presented here. TFor ReF, and to

7
}é lessef degree, IF7, a very strong temperature‘dependence was_found?
with the focusing_infensity increasing dramatically as the temperature

. was deéfeesed;ss We saw that all the-pseudorotational states ef IF,
’and ReF;; Qith the exception of the groend‘étate,'were potentielly
focusable. 'In eddition tﬁere.ﬁas a 1/m2'(31) debendence to the Stark
effect, where m was the'pseudorotatiqhal»quantum number. As the
'tempefatﬁre_is incfeaeed;;higﬁer m levels will gain appreciaﬁle
population, aﬁ&.beeause.1/m2 is a-rapidly deCreaeing function ef m,
 the highef m etates Qill show:a repidly decreasing focusing ebility.

' The reverse proeess;vof'eOurée, willtiead te.repepulation of the lower
m levels where the focusing is stronéeét,v | |

Although XeF,  did hot_focus in the region around room temperature,

it might show focusing at lower temperatures because its R value in

the low angular barrier regime is similar to that of IF., which

shows focusing at 7'150°K. The main problem. in the low temperafure"
focusingvexPeriﬁents is_to get a significanf number. of molecules in

 the gas phase (XeF boils at 347°K).

6

“Falconer and co—wofker$7o have derived an expression for the

" Stark effect in XeF through an anaiogy tb»the one dimensional inﬁersiqh

6
of'MX3(C3V) molecules. They reasoned . that although the "inversion"

motion in‘XeF6 isfdeseribed by a triply degenerate coordinate system

one'couldfview‘the=inversion along one of the degenerate coordinates

and then the problem'becdmee.formelly_analogous'to the inversion of
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’MXS(C3V) molecules. Their derived Stark coefficient (wvhat we -have

called the "R" factor here) is

R S

_where uhishthe'effectivebdipole momient and A is thehseparation of
”inyersion.levels.‘ This expression_is,formally iaentical to the ones we
derived. for XeF - (41c,414), however the. meaning of A €42) is quite -
dlfferent from our parameters, 0,6 "(41c) and "b" (41d). By restrictingv
N XeF6 to invert in only one dimension it must tunnel through the central
‘barrier in‘order-to reach an equivalent configuration. ,Therefore'A
:must he the usual doublet separation between inversion.levels. "For

a particle with-a relatively largevmass‘tunnelling through even a moderate
‘barrier the ﬂouhlet separation in the lower 1evels'will be negligible.

This v}ill'lead to a very large R factor (42) unless the effective dipole
moment»is almost'zero.v Thhs-Falconer and co-workers concluded that for XeF6
the central barrier must be quite 1ow in’order to mahe'A relatively large
_and'thus ﬁake R(42) relatively small for reasonable values of LU They
argued that the possibility'of ﬂﬁ" being almost zero was very unlikely. .

6

dimension the molecule has no choice but to tunnel through the central

By'restricting the "inversion" in XeF to occur in only one

barrler.viHowever, by allow1ng the motion to take place in the full
three dimensiona it can.reach the'other‘side'of the central barrier by
.pseudorotating»around it.:,The effect of the pseudorotational motion
’is to allow the presence of a high central barrier while still
permitting a large energy separation between "inversion" states. Our

conclusion-for XeF6 is that the pseudorotation is either completely
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free or siightly'hindered, because if the‘anguiar‘barriers were quite
1arée then tﬁe'pseudorotationél "inversion" muitipleté would be very
.mémall, 1eadinérto a ver& iarée R(4ld)(féctor;3 : |

Falconer.and co—workers?g derived the follbwigg expfession for
‘the upperliimit for léck of»oﬁservatiqﬁ of réfoéusing'in symmetric
:top msiécﬁles with éne'dimehsional inversion .- | |
5

< 1 ———
(cmfl) /2

_u
—t - (83)
, Al{Z

Due to the similarity in the form of the Stark effect amdng one, two,

and three dimensional "inversion moﬁioné'we,can generalize (43) to

M < o — DB

' (44)
_'AE%/Z' (e y1/2

‘where 'AEI is the doublet separation in the one dimensional inversion
and is related to the ﬁseudordtationai constant in the two and three
dimensional cases.  We can use Eq. (44)_ahd prévious(knoﬁiedgé about

7

the value of “u"-corresponds to a lower limit for the actual dipoie-'

AEI (Table 1)_to-pfedict_é:limiting_valué for "u". For IF and ReF7

moment because these molecules focﬁs; while for Xer'"u" is anvupper

6
Tt is pleasing that the predicted dipdle:moments (ueff) are properly

 limit bééause:XéF does'not.focus, ‘The results can be found in Table 2.

»boﬂnd.by the.limifing dipdle momentS (ﬁ1imifing) from Eq. (44) (Table 2).

' We see that for XeF :the uppér limit for the dipole moment is .4D

6

(low angular barrier’case)_in‘agreement with our earlier prediction
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<
e S 30,

It is interésting that fdr-IF7, which focuses weékly; the predicted’

 dipo1e (ueff =_.7b) is det slightly larger than the lower limit (.63D)

which still pérmits focuéing,_while for ReF,, which focuses considerably

7
stronger than IF,, the predicted dipole (ueff.='1;5D) is much larger

.than the lower limit (.59D).

In éonclusion, we have derived expressions for the Stark effect

in several molecules exhibiting large amplitude internal motions, and

" have demonstrated semi-quantitatively that these expressions account

for the observed focusing behavior of the molecules. We have completely
ignored the coupling of rotational and Yibrational motion which will
undoubtedly be sigﬁificant for large amplitude motions. However, this

additional complication is notvrequired to explain the 6rigin of the

focusing effects.
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Table 1. Relative focusing strengths of various moleéules with large

‘vamplitude'internal motions.

R

: uéff(D)  AEI(ém_l) (normalized
_ to RNHB)_
NH Pk = .7l 1s 7 1
3 B, = . .
(o} o
ReF, By = 4o en T 1.5 | 35.2 .02
IF, B =5, @l | .7 | 4 | .03
XeF' | By =5.ew | .1 | 40 | .000078
(free i : : :
pseudorotation) '
XeF 166 = 1. @t | .1 1 0031
6 , _ |
(low - :
angular barrier)|
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4
Table 2. Limiting Dipole Mbmenté Baéed'on Equationv(44)..
ey @ w @
s I limiting *° Teff
N 7 .084 1
o ’ (lower limit) ' :
ReF, 35.2 .59 1.5
(lower limit)
. 40 .63 .7
. " (lower limit)
|  XeF, 40 .63 1
(free pseudorotation). ' - (upper limit) Con
© XeF 1 -’ 1
" (low angular barrier) (upper limit)
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‘High Frequency-App;oximatioh in Calculating the

- APPENDIX 1.

=2

23— .

Mass for the Inversion Motion in‘MXsig

The G-matrix element for the s?mmetrical stretch (Al) is

: Gl1

where m , my, are the masses of atoms x, and M respectively, and o

- 1s defined in Fig. 4l

(A) is

G22=2<

The cross term is

= L
==

_

1+2cosa>

1+ coso

(=

+‘(1f2 cosd)

My

X

3v

1 * 2(le§osa)

™

19

mM sinq,

The high fréquency,approximation becomes

Gy = €

22

G

2
12

11

Thé'inversion mass can now be defined as

- __2(1 + 2cos0) (1 - cosd)'

)

) Molecules

-

- (1)

The G—matrix'element for the symmetric bend

(2)

(3)

(%)

(5)
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_APPENDIX 2

High Frequency Approx1mat10n in Calculating the Mass for
‘the Exchange Motlon in MX, (D ) ‘Molecules v

The . relavant G-matrix elements are defined in the following matrix

. 1 331 3
5 m : 2 'mM 2
.1 3 1 3
% Ty g ) -2
. gL 3.1 L 3.2
7 Ty 2 my 2 My

‘where m, and'mx are the masses of atoms M and x respectively. The

. high frequency approximatioh becomes

)

*



o (2)
8.1, 3 3p. 1y gl
_ S my oW, oy
3por 3L 4 |
2 oy 2 - mM ' o _ '
N | 3.t 3.1, 1 f\_
_’ -2 : 2 m
o 3f2 .1 o ™y 4 Ty Ty
G = st—=+——1 - ; — - 2
77 2 my o 7 S . .
vEox 3.1 1\ (9 . 1 3 3 /-.;L>
—_— i 4 S — s — 4 — - 3
2 my m 2 my m 2 M
This event’ually' simplifies to '
' ' 27
s e
o _ 3 .3 1 . 9 M x - .
777w, Y7 m Ta PN B | L ®
: m X
X
The _r'eduéed‘ mass for thé exchange motidn is therefore
m, = (€97t - O

~5zz-
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APPENDIX 3

Wave Functions of a Two Dimensional
Isotropic Harmonic Oscillator

It is well known that solutions of the quadratic potential
vV = -ap2

can be expressed as
. +1imd
| W‘ = RnK(p) e

where the following conditions apply to-m, n, K

n,my, K = 0, 1, 2,...

The relation (3b) can be eXpressed in tabular form as

: 'Dengenefagyv | = ) m K
1 0 0 0
2 1 1 1
2 2 0
B

: 2 0 i
3 3 0

4 :
. 3 1 2

(D)

(2)

(3a)

(3b)

e
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' 'APPENDIX 4

High Frequency Approximation in Calculating the Tlu(s4) Mass

The relevant G-matrix is

S ' s

3. | >4
s, 2 .1 | 4
. mXe Ty ; mXe »
N SR | NG
s, 4 R |
' Y mXe-. "Xe

,where mX is the mass of the xenon - (Xe) atom and ny is the mass of a

fluorlne atom (F) . The hlgh frequency approximation becomes

- 16 :
Cyy = 8 sz _ o p—— mF S | L, (@)
. mXe mF mXe F+mXe o

The reduced mass (m4) for_theleu(S4) diétortion_éoordinéte is -
m, = (G44) e o (3

which for XeF has the value ﬁ4 = 6.56 amu.
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