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"" Abstract - This paper reports on the development and tests of a new iterative reconstruction 
algorithm for Emission Tomography based on Bayesian statistical concepts. It uses the entropy of 
the generated image as a "prior" distribution, it can be accelerated by the choice of an exponent and 
it converges uniformly to feasible images by the choice of one adjustable parameter. A feasible 
image has been defined as one that is consistent with the initial data, i.e., it is an image that, if it 
were a true radiation source in a patient, could have generated the initial data by the Poisson 
process that governs radioactive disintegration. The paper discusses the fundamental ideas of 
Bayesian reconstruction, the use of an entropy prior with an adjustable "contrast parameter", the 
use of likelihood with "data increment" parameters as conditional probability and the development 
of the new Fast Maximum a Posteriori with Entropy (FMAPE) algorithm by the successive 
substitution method. It is shown that both in the Maximum Likelihood Estimator (MLE) and 
FMAPE algorithms, the only correct choice of initial image for the iterative procedure in the 
absence of a priori knowledge about the image configuration is a uniform field. Results of 
reconstruction with mathematical phantoms and with real data from the Hoffman brain phantom are 
shown to converge to excellent images that do not exhibit the characteristic deterioration of MLE 
reconstructions at high number of iterations. 

Keywords: Bayesian reconstruction, entropy prior, emission tomography, feasible images 
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LBL-27074 

A fast Bayesian reconstruction algorithm for emission 
tomography with entropy prior converging to feasible images 

I. Introduction 

Jorge Nunez* and Jorge Llacer 
Engineering Division, Lawrence Berkeley Laboratory 

1 Cyclotron Road 
Berkeley, CA, 94720 

Recent work with the Maximum Likelihood Estimator (MLE) method of image 

reconstruction [1,2,3,4] has shown that it is possible to obtain visually excellent images from 

Emission Tomography (ET) data in a reliable manner by stopping the MLE iterative algorithm 

according to a stopping rule. That rule is based on testing whether the resulting image is "feasible" 

in a statistical sense. A feasible image has been defined as one that could have generated the 

original projection data by the statistical process that governs the measurement. Detailed 

definitions for feasibility have been given in [3,4,5] and the stopping rule has been described in 

detail in [1] for simulated data and in [3] for real data from a tomograph. 

We have postulated that feasible images are important because they are consistent with the 

data. In the case of MLE reconstructions, images obtained at iterations before the region of 

feasibility do not have all the detail that could be expected. Past the feasibility region, images 

become excessively noisy in the regions of high activity. In the feasibility region, reconstructed 

images are found to present a balance between sharpness and noise in the high activity regions that 

makes them good representations of the original radioisotope field and may compete favorably in 

diagnostic value with the best filtered backprojection images. 

*On leave from the Department of Physics, University of Barcelona, Spain 
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Upon further investigation, we have found in [5] a number of ways of obtaining feasible 

images, in all cases starting the iterative procedure from a uniform image field: 1) through the use 

of the stopping rule just indicated, 2) by continuing the MLE process past the stopping point by an 

undetermined number of iterations and post-filtering with a Gaussian kernel, and 3) by 

reconstructing with a Bayesian method with an entropy prior.[4] We failed to obtain feasible 

images with a Maximum Entropy reconstruction with constraints, using a simple noise model.[5] 

Feasible images from the same set of data are similar to each other in appearance, but they 

are not identicaL Those images obtained by iterating past the stopping rule and slight post-filtering 

(with kernels of 0.4 to 0.7 pixels std. deviation) have sharpness and noise behavior comparable to 

the images obtained at the stopping rule, but have a more accurate representation of the activity 

levels in narrow structures. The same favorable characteristics have been observed in our 

Bayesian reconstructions with entropy prior. Considering the fact that the latter reconstructions can 

be made to converge to a feasible image with excellent stability by the selection of only one 

adjustable parameter, we decided to pursue the improvement of the initial Bayesian algorithm of [ 4] 

to make it more reliable and faster. We also needed to better understand its convergence 

characteristics and the choice of the adjustable parameter. 

This paper describes the ideas leading to the Bayesian method with entropy prior for 

emission tomography, describes the development of the new, improved algorithm, discusses the 

process of speeding it up and maintenance of non-negativity, the selection of the only adjustable 

parameter that affects the resulting image, and presents the results of reconstructions with two 

mathematical phantoms and with real data from the Hoffman brain phantom, using the ECAT-111 

geometry of UCLA.[6] 
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II. Bayesian reconstruction with an entropy prior. 

A. Fundamental considerations. 

There are two fundamentally different ways to solve statistical problems: the classical and 

the Bayesian approaches. In the classical approach, a set of data generated in accordance with 

some unknown probability law will only use the given data, without making any assumption about 

the unknown law. In the Bayesian approach, the use of any reasonable prior knowledge about that 

law is permitted. When the data are complete and of good quality, the a priori knowledge may be 

useless, but when the data are noisy, sparse and/or incomplete, the a priori knowledge can carry as 

much weight as the data. Frieden discusses the two approaches in [7]. We shall review here the 

fundamental basis of Bayesian statistics in the context of image reconstruction. 

If we denote P(image I data) the conditional probability that the image be true given the data, 

Bayes' theorem gives the desired P(image I data) from the usually computable P(data I image) and 

from the probability of the image, P(image), with a normalization constant P(data). The P(image) 

is called "prior probability" because it is known (in some form) prior to obtaining the data and 

P(image I data) is called the "a posteriori" probability because it is what we hope to obtain after 

considering all facts. Bayes's theorem is: 

. P(data I image) P(image) 
P(1mage I data) = P(data) (1) 

In the image reconstruction problem, the object or its image, the projection of the object and 

the noise are assumed connected by a linear imaging equation: 

f a+n=p (2) 

where a represents the object to be computed, p is the given data or projections of the object, n is 

the noise inherent in the process of emission, detection or both, and f is the point spread function 
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assumed to be known. If we consider the object discretized in B pixels and we have obtained D 

data points in the projections, the discrete version of the imaging equation is: 

j = 1, ... ,D (3) 

in which ai and Pj are non-negative vectors (ai ~ 0, i=1, ... ,B; Pj ~ 0, j=1, ... ,D) and fji are the 

elements of a (D x B) matrix that satisfy the normalization condition 

i=1, ... ,B. (4) 

The application of Bayes' theorem to the image reconstruction problem gives: 

P(a I p) = P(p I a) P(a) I P(p). (5) 

The most probable image, given the data p, is obtained by maximizing P(a I p), or the product 

P(p I a) P(a), since P(p) is a constant. 

There have been a number of relatively recent applications of Bayesian reconstruction .to 

medical imaging. Without claiming completeness, we shall describe the kinds of prior information 

that several workers have used in the formulation of the problem. Geman and McClure [8,9] have 

applied Gibbs energy functions as prior distributions in Single Photon Emission Tomography 

(SPET). These functions penalize the solution if certain smoothness conditions are not met, except 

at edges. Levitan and Herman [10] have used a Gaussian multivariate prior probability centered 

around the values of a smoothed image obtained by a Filtered Backprojection (FPB) reconstruction 

method in the general problem of Emission Tomography (ET). Hart and Liang [11] have used a 
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prior distribution in the problem of improving Anger camera images that is based on some actual 

knowledge of what the source activity shape and activity should be. They warn, however, that the 

use of a wrong prior can result in erroneous results. Lange, Bahn and Little have proposed in [12] 

the use of a gamma function prior with mean values based on some independently known 

parameters. Johnson [13] has been studying the problem of applying Gibbs energy functions to 

ET reconstructions with refinements over the work indicated above by Geman and McClure. 

Fundamentally, those approaches make use of some "reasonable" a priori information in order to 

prevent the image deterioration that occurs when maximizing p(p I a) alone in an unconstrained 

reconstruction, as in the MLE method. More recently, Liang and co-workers [14,15,16] have 

proposed uniform and non-uniform probability distributions as prior information, leading to 

Bayesian functions to be maximized which are very closely related to the ones presented in this 

paper and to which we will refer further in the following sections. 

B. Entropy as a prior probability. 

The role of entropy in defining the prior probability function has been in discussion for 

three decades.[17,18] Frieden first used the Shannon form of entropy in the context of image 

reconstruction.[19] Several papers (see Skilling and Gull [20] and Jaynes [21]) have argued that 

maximizing the entropy as a prior is the only consistent method of selecting a single image from the 

many images which fit the data. In addition, Skilling and Gull [22] have shown that, if one accepts· 

three fundamental axioms, the prior P(a) has to be a measure of the entropy of the image. As 

discussed by Skilling and Bryan [31], the practical interest of using the entropy is that the resulting 

reconstruction "has minimum configurational information consistent with the data, so there must be 

evidence in the data for any structure which is seen.'; Also, the constraint of positivity of the 

solution is automatically invoked, since entropy is not defined for negative values. 

In this paper we use entropy to define the prior probability p(a). We first describe entropy 

in terms of multiplicity in the way proposed by Frieden in [19], called the random-grain model by 
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Andrews and Hunt [23], although we will not limit our interpretation of the entropy expression and 

of its adjustable parameters only to that model. 

Suppose that N is the total energy (usually the number of counts or photons) in the object. 

Suppose, in addition, that there is an elemental intensity increment L\a describing the finest known 

intensity jumps that are possible in the object. Then the values N/L\a and ajll\a, i=l, ... ,B are 

dimensionless numbers, with L\a having the units of radiance. Assuming a complete lack of prior 

information regarding the statistical makeup of the object, we make the simple but non-trivial 

assumption that the occurrence of one object unit L\a in a pixel does not affect the possible location 

of any other object unit. Thus, the object units are statistically independent within each pixel and 

from pixel to pixel. 

In that case, the number of ways that an object a can occur is given in [24] as 

(N/L\a) ! 
W (a) = _B__:__----''---

rr (a/L\a)! 

i=l 

(6) 

We take the prior probability P(a) of the object to be proportional to its multiplicity, as given by 

(6). Thus, we have 

P(a) oc W(a). (7) 

It is questionable whether the multiplicity based prior (7) is the correct one for image recon-

struction. In particular, the interpretation of L\a in terms of intensity jumps is open to question. The 

existing literature appears to reflect a controversy regarding this point. An alternative interpre-

tation, used by Gull and Skilling in [37],will be described in Section 3E. In that work, L\a is a 

Lagrange multiplier calculated to obtain a feasible reconstructed image. An example will be given 

that supports our preference for the latter interpretation. It should be pointed out that, in spite ~f the 
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large volume of literature justifying the choice of entropy as a prior distribution, the full proof of 

why it works is still an open problem. Trussell [38] has found an interesting relationship between 

the use of entropy as a prior in a Maximum a Posteriori (MAP) reconstruction and a simple 

Maximum Entropy reconstruction with constraints, for the Gaussian noise case. Hanson [39] has 

also found a strong similarity between the behavior of a MAP reconstruction with entropy prior 

and a MAP reconstruction with Gaussian prior. Those similarities may explain why entropy 

works as a prior distribution for, at least, some specific cases. 

C. The likelihood. 

The conditional probability P(p I a) describes the noise in the projections and its possible 

object dependence. It is fully specified in the problem by the likelihood function. In ET, where the 

detectors count energetic quanta, the Poisson distribution defines the statistical characteristics of the 

data since radioactive disintegration obeys that statistical distribution. Following Frieden and Wells 

[25], we use the concept of "data increments" .1pj as the smallest received intensity increment 

needed to trigger one count in detector j. Frieden and Wells used a constant value .1p, independent 

of the detector. We have chosen to make the increments detector dependent because in ET there are 

y-ray absorption and detector gain corrections that are customarily applied to the data before 

reconstruction. These corrections are different for each detector pair or "tube" and correspond to 

the data increments .1pf suppose that the attenuation and gain correction factor for a particular 

detector pair in Positron Emission Tomography (PET) is 6.0, i.e., for every six emitted y-pairs in 

directions that could be detected by the detector ring from one pixel, only one, on the average, will 

result in one count in the detector system. The rest are absorbed or scattered by the medium on 

their way to the detector. The value of .1pj has to be set to 6.0 in this example. In all the work that 

follows, we define Pj as a fully corrected data set for absorption and detector normalization. 
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where 

The conditional probability is then: 

D 

P(p I a)= II exp ( -hj) 

j=1 

~j = ( r fji aj J/ .1pj' 
1=1 

(8) 

j = 1, ... ,D (9) 

is a modified projection. The data increments .1pj play an interesting role in (8) and (9). In ET, in 

general, when the data are corrected multiplicatively for absorption and detector gain variations, the 

Poisson nature of the data is destroyed. Dividing the Pj by .1pj in (8) restores the Poisson nature of 

the data during the reconstruction process. For consistency, .1pj must also appear in the modified 

projection (9). If the corrections are applied directly to the matrix elements ~i· all .1pj could be set. 

to unity. 

D. The Maximum A Posteriori Probability 

The Maximum a Posteriori (MAP) probability will be obtained, as indicated above, by 

maximizing the product P(a I p) = P(p I a) P(a), or equivalently, the logarithm of that probability. 

By using Stirling's approximation and with a constraint for the conservation of number of counts, 

we obtain, from (6) and (8) the Bayesian function to be maximized: 

B D 

BY = -L ("/8a) log( ":i/8a) + L [ -hj + (p/8Pj) log(hj)l 

i=1 j=1 

B 

- ll <2.: ~ -N) (10) 

i=1 
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where 11 is a Lagrange multiplier for conservation of counts. It is to be noted that the relative 

weights of the two terms of(lO) are regulated by parameter .1a, since we consider the values .1pj to 

be specified by the nature of the absorption and detector gain corrections. Expression (10) is 

equivalent to the uniform probability Bayesian function of Liang et al [16], except that the data 

increments .1pj have not been considered by those authors. When .1pj = 1 for all j, parameter .1a 

becomes the equivalent of the arbitrary adjustable parameters in [16]. 

III. The Successive Substitutions algorithm. 

A. General Recursive Relation. 

The non-linear nature of the reconstruction problem described by (10) suggests an iterative 

algorithm for the solution. An Expectation-Maximization (EM) algorithm based on the work of 

Dempster, Laird and Rubin [26] could be devised, as Shepp and Vardi did for their MLE solution 

in [27] and Liang et al have done in [16]. We have found, however, that the method of successive 

substitutions described by Hildebrand [28] and used by Meinel [29] for obtaining recursive 

formulas for a variety of linear and non-linear restoration problems affords us greater flexibility 

and results in rapidly converging algorithms for the tomographic image reconstruction problem. 

The technique is the following: given a series of equations in the unknowns a1 , ... , aB, · that 

can be written in the form 

i = 1, ... ,B (11) 

where F is some function, {am} is the complete set of variables a1 , ... , aB, and K is a normalization 

constant, then (11) can be transformed into a recursive relation by 

i = 1, ... B (12) 
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k+1 
where k denotes the iteration number. Each of the new values of ai is calculated from all the 

k k 
known B values of am from the previous iteration and the complete set{~} is updated at once. 

The constant K is obtained by requiring conservation of energy: if N is the total number of 

counts in the object, 

B B 
~ k+1 ~ k 
LJ~ =LJKF({~}) =N. (13) 

i=1 i=1 

The convergence of the iterative scheme defined by (12) is by no means assured for all 

problems that can be written in the form (11). Hildebrand discusses in [28] conditions for 

convergence for single or sets of two nonlinear equations, but indicates that for sets of three or 

more equations the results are not generalizable. Isaacson and Keller show in [30] that there are at 

least some conditions under which the reformulated general form of the solution 

k+1 k k 
ai = (1- a) ai +a K F({am}) i = 1, ... ,B (14) 

where a is an acceleration or relaxation constant, will converge for some choice of that parameter 

a. An analysis of the conditions for convergence involves comparisons of the partial derivatives 

of the right hand side of (11) with respect to the variables ai and, for the large size problems that 

we are dealing with, the analysis does not appear promising. As we shall show below, however, 

we have found the method to lead to converging solutions for the three phantoms studied, to some 

extent typical of ET image reconstructions. 

-12-



• w 

B. The preliminary solution. 

The maximization of (10) using the method of (14) has been reported earlier by Nunez and 

Llacer.[4] Since the new algorithm reported in this paper is based on the earlier solution, we shall 

derive the earlier version first. 

()BY 
In order to obtain the maximum of (10), we first set --= 0 for i=1, ... ,B, as follows 

d<Ij 

()BY 
--=- (1/~a) log(~/~a)- 1/~a + 

a a. 
1 

D 

j=1 

B 

fji (1/llpj) (p/ L fji ~~j) -1 

i=1 

Solving for ai from the first term, we obtain 

~ = K 0 exp ~a 

with the constant Ko given by 

D 
B 

fji (1/llpjl (pi I L fji ~~j) -1 

i=1 

Ko= ~a exp ( -1 -~a Jl). 

-)l = 0 . (15) 

(16) 

(17) 

Equation (16) is of type (12) and we can, therefore, apply (14) to obtain a recursive 

relation. The result is then 
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D 

k+1 k 
~ = (1 - a) ai + a Ko exp .1a 

B 

fji (118pj) (pj I L fji ~) -I 

i=1 

(18) 

The normalization constant Ko can be computed from (13) at the end of each iteration and is 

equivalent to determining the Lagrange multiplier Jl of (10), as seen from relation (17). 

The use of the algorithm of (18) has yielded excellent reconstructions for mathematical and 

real (Hoffman) brain phantoms. Moreover, those reconstructions were feasible if the initial choice 

of .1a was obtained from our knowledge of the number of activity levels that existed in the object 

source. Nevertheless, the presence of the exponential in (18) requires the use of only a small 

fraction of the computed correction at each iteration, in order to maintain convergence. The fraction 

is controlled by parameter a. In addition, in the case of large number of counts in the data, the 

magnitude of the exponents that have to be dealt with cannot be handled even in double precision 

floating point arithmetic. For those reasons, we decided to explore other possibilities afforded by 

the successive substitution method. 

C. The new FMAPE recursive relation. 

We shall now derive the new algorithm, which we call FMAPE, for Fast Maximum A 

Posteriori with Entropy. We start by setting the partial derivatives of BY with respect to ai's equal 

to zero, as in (15). Then, instead of solving for ai from the first term which would lead to an 

exponential solution, we first separate the constant terms to one side of the equation, then multiply 

by .1a, then add a constant C to both sides of the equation, raise both sides to the power n and 

finally multiply both sides by~· After some standard algebraic manipulations, the result is 
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0 ~ 

n 
ai { 1 + ~a 11 - log(~a) + C} = 

a· 1 
~a 

D 
" ,•. 

B 

fji (lf,~pj) (Pj I L fji a;_) -1 

i=1 

n 

(19) 

All the terms on th~ left hand side except ~ are constants that can be replaced by a single constant 

K1-1 The result is then an equation of type (12) that leads to the recursive relation 

k 
-log(~)+ C 

n 

i = 1, ... ,B 

(20) 

with K 1 calculated at each iteration to conserve the number of counts. Equation (20) is the main 

result of this paper. Obtaining K 1 is now equivalent to calculating the Lagrange multiplier 11 from 

n 
K 1 = 1 I { 1 + ~a 11 - log(~a) + C} (21) 

This algorithm does not involve exponentials and our experience shows that, for values 1 ~ n~ 3, 

we obtain convergence by using the simple formulation of (12) which does not require the use of 

the parameter a. There are two arbitrary constants, n and C, whose meaning will be discussed 

below. 
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It is interesting to note that the FMAPE solution contains the MLE as a special case in the 

limit when ~a -7oo. This can be seen by taking the limit 

B 

;~ L (a;/&!) log( a;f&t) ~ 0 

i=1 

(22) 

in ( 10). What is left is the likelihood function to be maximized for the MLE solution, along with a 

requirement for conservation of number of counts. On the other hand, when ~a is very small, the 

first summation of (10) becomes dominant and the reconstruction will become independent of the 

projection data, yielding flat images. Thus, the FMAPE includes solutions that range from uniform 

grey images to the very noisy MLE images at convergence, controllable by the value of the 

parameter ~a. 

The term -1 in the square bracket part of (20) can be removed by a modification of the 

definition of K1 in (21), with minor effects on the acceptable range of C and on the speed of 

convergence. The same could. be done in (16), except that, in that case, the size of the exponents 

needed for the calculations can grow excessively for good accuracy. 

D. Speed of convergence and positivity. 

Both (18) and (20) solve the same problem of maximizing the Bayesian expression (10), 

although they have a different form. The constants n and C introduced in deriving (20) are 

arbitrary and the effect of changing their values will only affect the calculated values of K after each 

iteration (see (21)). The point of convergence of (20) is, then, solely dependent on ~a, as was the 

case in the solutions by (18) reported in [4]. Constants nand C serve specific functions, though. 

Constant n will clearly affect the rate of convergence. One can expect a range of values of 

n over which the iterative process is stable. We have empirically observed that for the first of the 
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data sets to be discussed below and for n > 1, the convergence rate improves by a factor of 

approximately n with respect to the rate for n = 1 and that the algorithm is stable upton::::: 3. For n 

> 3, the instability can be corrected by introducing the constant a in the context of the formulation 

of (14), although no net gain in convergence speed appears to exist in the more complex 

procedure. 

Constant C is introduced to insure the positivity of the solution. The presence of the two 
k 

negative terms (-1 and -log(~)) in the right hand side of (20) makes the positivity of the solution 

not automatically guaranteed, unless an appropriate constant is introduced. Positivity is not only 

desired in the solution, but it is necessary in order to compute the log terms in (20). As indicated 

above, different choices of C will not affect. the convergence point. In practice, we find that 

changing C can affect the speed of convergence substantially. Increasing C by a factor of 2 over 

the approximate smallest value necessary to maintain non-negativity results in slowing down 

convergence by approximately that same factor. The use of C =~a has usually resulted in adequate 

convergence speed and non-negativity of the pixels. The choice oftoo small a value of C results in 

a computer run time error when trying to find the logarithm of a negative number. 

E. The parameter ~a. 

The parameter ~a has been described in Section II-B in terms of the number of counts in 

the finest known intensity jumps that are possible in the object. From the theory of Frieden, it 

should be set to the maximum common divisor of the number of counts in the pixels of the image 

source. This knowledge is available in reconstruction experiments with phantoms, but will not 

generally be available in real medical measurements. The Frieden interpretation of ~a poses an 

additional problem, however: Consider a phantom with regions of 25% and 100% radioisotope 

activity levels. The finest intensity jump is 25% and ~a should be set to that fraction of the number 

of counts that are detected from the pixels in the 100% region. Next, consider the addition of a 

small lesion with 17% activity in the phantom, for example. Although the small perturbation 
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small lesion with 17% activity in the phantom, for example. Although the small perturbation 

cannot be expected to change the conditions of convergence, the theory prescribes that ~a should 

now become 1% of maximum. Such a drastic change in ~a affects the reconstruction severely and, 

in our experience, is not desirable. 

The Frieden interpretation of ~a follows from the acceptance of the expression for 

multiplicity (6) as the correct one for entropy in the case of image reconstruction. As indicated 

above and a survey of the literature amply shows, this acceptance appears difficult to justify fully. 

An alternative interpretation of the meaning of the adjustable parameters appears in Gull and 

Skilling [37], leading to a different criterion for the choice of their values: In the first term of (10), 

~a appears first in the denominator of the linear factor and second in the denominator of the 

logarithmic factor. The first ~a acts as a weight that determines the relative influence on the 

solution of the entropy term with respect to the likelihood term. The second ~a changes the 

position of the maximum of entropy in the B dimensional space containing the ai.[38] Thus, if we 

give the first ~a its new interpretation, we have to define a new nomenclature for the second one, 

~a', and consider it also an adjustable parameter. Gull and Skilling call this value the "default level" 

and, for the case with additional prior information on the image, it may be a variable. For the 

medical tomography case with no additional prior information, we should set ~a' = constant. If we 

now go back to the development of the FMAPE algorithm of (20), starting from equation (10), we 

observe that ~a· becomes part of the constant K 1 which is recalculated at the end of each iteration 

for the conservation of counts. Its choice is, therefore, immaterial and we shall not concern 

ourselves with it any longer in this paper. The independence of the solution from ~a' was also 

noted by Gull and Skilling.[37] 

According to the second interpretation of ~a, its value will be chosen so that the resulting 

reconstruction converges to feasible images. It will be shown below, however, that the Frieden 

interpretation can give a good initial estimate of the value of ~a. and in some cases, that estimate 
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leads directly to feasible images. The procedure that gives best results when dealing with a new 

class of images is to start with a value of ~a which is too low and increase it just until the iterative 

procedure converges to feasible images. Within a class of images, relatively small variations in the 

data do not affect the optimum value of ~a. In order to impose the effect of the prior smoothly, 

Liang et al, in [16], use a value of their adjustable parameter that is a function of the iteration 

number and of four other constants. We have used a fixed value of ~a with good results. 

F. The choice of the initial image. 

It has been proven by Shepp and V ardi in [27] that MLE reconstructions converge towards 

a unique solution. Therefore, the solution at convergence is independent of the initial guess used to 

initiate the reconstruction process. However, when the MLE is stopped before reaching 

convergence at the point of feasibility, the resulting image does depend on the starting point. We 

have described in [5] how the choice of a four quadrant "checkerboard" initial image results in 

feasible reconstructions in which the boundary lines between quadrants are still visible. Iterating 

towards convergence makes the lines disappear, but, at that point, the reconstructions have suffered 

strong deterioration. 

In this section we shall show that, for the MLE and FMAPE iterative methods, a flat field 

is the only image to be used as the initial guess consistent with having no a priori information 

about what the image looks like. If we have an a priori estimate, that estimate can be used as a 

starting point, but it will clearly influence the MLE solution at the feasibility point and that of the 

FMAPE before full convergence. Thus, selecting an unlikely initial distribution, like a 

checkerboard pattern, is interesting as an experiment, but must not be used unless we know that the 

reconstructed image should have that pattern. Experimental results with the FMAPE method 

confirm the idea that using an entropy prior results in reconstructions in which no structures will be 

observed that are not supported by the data. In particular, even the choice of the checkerboard 

initial image results in an unflawed reconstruction at convergence in which the boundary lines have 
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disappeared. Thus, the FMAPE behaves like the MLE at convergence, but without the noise 

deterioration of the latter. We do not have a mathematical proof of uniqueness of the FMAPE 

solution at this time. 

In order to understand the role of the initial guess in MLE and FMAPE reconstructions, we 

bring into the discussion the concept of cross-entropy. Frieden has given a discussion of the 

concept in [32]. When some a priori knowledge exists of what an image contains, that knowedge 

can be introduced in the formulation of a Bayesian reconstruction algorithm by means of the cross

entropy, defined as 

B 

L~ ~ 
H'= &! log--

~aQi 

i=l 

(23) 

where Qi represent our a priori image pixel information. This information would be, typically, the 

expected mean of the pixel values. In the absence of any other data, the maximization of the cross-

entropy results in the solution 

(24) 

i.e., the solution is proportional to our prior knowledge. When the cross-entropy of (23) is 

introduced into the Bayesian formulation of the reconstruction problem instead of the entropy of 

(6) and (7), the function to be maximized becomes 
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BY ~ -I (aj&l) log( ":i/&1 Qi) +L [ -hj + <Pji\Pj) log(hj)l 

i=1 j=1 

B 

- Jl ( L ~ ~ N). 

i=1 . 

(25) 

This function generalizes BY in (10) and is equivalent to the case of non-uniform prior in [16]. 

The maximization of (25) by the successive substitutions method, assuming all .1pj to be 

identical, for simplicity, and with the definition of p = .1a/.1p, yields the recursive formula 

D 
B 

f.·p·/ ~f .. a~ 
Jl J ~ Jl-1 

i = 1, ... ,B. (26) 

i=1 
j=1 

Consider next the MLE method. If we maximize the likelihood (8) by the successive 

substitutions method we obtain 

B 

f··p·/ ~f.. a~ 
Jl J ~ Jl-1 

i = 1, ... ,B. (27) 

i=1 

This solution to the MLE problem is computationally different from the algorithm of Shepp and 

Vardi of [27], which was based on the EM algorithm ofDemptster et al [26], but it solves the same 
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same problem. We observe that the only difference between (26) and (27) is that ai replaces Qi in 

front of the exponential. Thus, solving the MLE problem consists in a succession of Bayesian 

reconstruction steps with cross-entropy prior in which the result of the previous iteration is used as 

the prior Qi values for the next iteration. Consider now the first iteration of an MLE 
0 

reconstruction: Choosing ai for an MLE reconstruction is equivalent to defining the a priori 

knowledge about the image to be reconstructed. If we have no information of what the image is, 
0 

we have to choose ai =constant to correspond to that lack of knowledge. Evidently, if we do 

have some knowledge about the image source and we want the resulting reconstruction to reflect it 
0 

during the reconstruction process, in particular at the feasibility point, ai should be set to pixel 

values that reflect that knowledge. At convergence, the MLE will be insensitive to the initial 

starting point because of the uniqueness of the solution, but when using a stopping criterion before 
0 

convergence, the resulting image will depend on the choice of~ , which should therefore be set to 

a constant in the absence of prior information. 

0 
In order to analyze the role of ai in the FMAPE case, let us consider the iterative form of 

the preliminary solution given in (18). For the case of a = 1 and all .1pj being identical, (18) 

becomes 

D 

k+1 
~ =K2 exp p 

B 

f .. p·/ ~f .. a~ 
Jl J £.J Jl -1. 

i=1 

i = 1, ... ,B (28) 

which is identical to (26) if Qi = constant for all i. This result is obvious, of course, if we look at 

the origin of both equations, i.e., comparing (10) with (25). The implication is that the use of the 

Bayesian reconstruction method of (18), or its equivalent FMAPE of (20), corresponds to having 
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0 
no a priori knowledge about the image that we are reconstructing. For consistency, the values ai 

that appear in the right hand side of (18), (20) or (28) for the calculation of the first iteration, have 

to be a constant. We have consistently used the average number of counts per. pixel as the initial 

guess for all our reconstructions. 

G. Image post-filtering. 

While investigating diverse methods of obtaining feasible images from MLE 

reconstructions in [5], we found that carrying out the iterative process past the point of feasiblity, 

when the images begin to deteriorate, can still result in feasible images if the noisy images are 

filtered with a Gaussian kernel of some appropriate width. In addition to being feasible, the post-

filtered images present an excellent appearance and, in fact, they are some of the best images that 

we have obtained, judged visually. Snyder et al have shown in [34] that post-filtering of an image 

generated by the MLE method at convergence is ~quivalent to reconstructing by the use of a sieve 

and a resolution kernel of the same size and equal to the post-filtering kernel. Although we apply 

post-filtering to MLE images before full convergence, or to FMAPE images, our post-filtering 

operations are consistent with the idea expressed by Snyder et al that we do not want to see 

structures in the reconstructed image that could not have been observed by the finite size detectors. 

We have applied post-filtering to some of the images that will be shown in this paper with excellent 

visual results. In all cases when this is done, the size of the Gaussian filter kernel is indicated. 

IV. Reconstruction results and discussion. 

A. Mathematical brain phantom. 

Figure 1 shows the source image for a phantom that mimics,,in some manner, the complex 

structures of a brain. The darker sections inside the phantom have 25% relative activity, while the 

bright sections correspond to 100%. The image shown is the result of allocating 1 million (1M) 
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counts in a random manner to the different object structures. The projection data were obtained by 

taking each count in each pixel of the source image and placing it randomly in a projection angle 

and bin in accordance to the set of probabilities defmed by a matrix ~i. The matrix was obtained by 

the prescription of Shepp and Vardi given in [27], applied to the geometry of the ECAT-III 

tomograph of UCLA, as described in [6], and was also used subsequently in the reconstruction. 

The detector geometry used for the reconstruction was one single ring of 512 Bismuth Germanate 

detectors with a detector center-to-center distance of 6.05 mm. The reconstructions are for a 128 x 

128 pixel array and a pixel size of 2.01667 mm on the side. 

The progress of the reconstruction was monitored by observing the x2 I D statistic, 

described in [3] as a weak causality test. The function 

D 

l 
2 

(p/ L\p·- h'·) 
1 

J J 

x21D= D 
(29) 

h'· 
J 

j=1 

should yield a value very close to 1.0 for a feasible reconstruction with Poisson distributed data. 

As discussed in [31] by Skilling and Bryan, the upper limit for x2 at 99% confidence level should 

be set at D + 3.29 n
112

. A lower limit for a "two tailed" test can then be set at the symmetric point 

about D. In all the tests that we will report in this paper, D has included all the projection data with 

Pj > 0. In the case ofthe mathematical brain phantom, D had a valueD= 17347, so that the 

acceptance range for feasibility is 0.975 < x2 I D < 1.025. In all the cases with computer generated 

phantoms we have found the application of test (29) to be equivalent to applying the more 

demanding hypothesis test of Veklerov and Llacer (VL) reported in [1]. 
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Figure 2 compares the values of the x2/ D stati.stic as a function of iteration number for an 

MLE reconstruction (curve a), and for the FMAPE reconstructions with parameter .1a = 10, 25, 50 

and 100 (curves b, c, d and e, respectively). The region of feasibility is entered by the MLE 

reconstruction at approximately iteration 28, in agreement with previous work with the VL test 

reported in [1,2,5]. Reconstructions with .1a = 10 and 25 result in images that have not developed 

their full contrast at convergence. A value of .1a = 50 yields a .feasible image and the choice of 

.1a = 100 converges to a non-feasible image, characterized by excessive noise in the regions of 

high activity. All the reconstructions were carried out with n = 1, i.e., not accelerated. In this 

particular case, the optimum choice of .1a = 50 could have been obtained from the Frieden 

interpretation of that parameter: the pixels with highest intensity in the source image have 

approximately 200 counts and the smallest activity jumps are 25%, so that a value of .1a = 50 

would be indicated. This method of estimating .1a is, however, not reliable. 

Figure 3 shows the effect on the x2fD statistic of accelerating the reconstructions by 

changing the value of n. Curves a, band c correspond to n=1, 2 and 3, respectively. In all cases 

.1a was set to 50. 

Figure 4a shows the MLE reconstruction results near the entrance of the feasibility region, 

at iteration 30. Figures 4b and 4c show the FMAPE results at convergence with .1a = 10 and 50, 

respectively, both for n =1 (not accelerated). Figure 4d shows the results with n=3, indistinguish

able from Fig. 4c, and Fig. 4e shows the results of post-filtering the image of Fig. 4d with a 

Gaussian kernel of cr = 0.6 pixels. The resulting image is still feasible. 

Several profiles of pixel values for feasible images have been examined in detail. The 

effects of accelerating the reconstruction by the choice of parameter n results in images that do not 

differ by more than 1% at convergence. Also, stopping the iterative procedure in the FMAPE as 

soon as the feasible region is entered results in a few per cent differences in pixel values with 
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respect to full convergence. No significant features are lost in the process. A comparison between 

MLE at stopping point and FMAPE at convergence shows some differences in intensities, with the 
I 

FMAPE showing generally slightly higher contrast. 

B. Mathematical liver and heart phantom. 

Figure 5 shows a computer simulated phantom that has some relationship to a human liver 

and heart section. Snyder et al have used a similar phantom for their studies of properties of the 

MLE and regularization of the reconstruction process with sieves in [33,34]. The relative activity 

levels are shown in Fig. 5. There is a background of 1% and a small region of 5% activity near the 

large liver section which we expected would be hard to reconstruct accurately. 

The reconstruction experiments have been carried out with a source image containing a total 

of 1 million counts. We have found that the region 30 ~ .1a ~50 is the one of interest for the goal 

of obtaining feasible reconstructions, values not obtainable by the Frieden interpretation of .1a. The 

values of the x2 I D statistic for reconstructions with .1a = 40, n = 3, C =50 are shown in Fig. 6. 

Figure 7, curves a, b and c, show profiles including the small region of 5% activity for the source 

image and the reconstructions at iterations 10 and 20, respectively. In spite of the proximity of the 

small 5% region to the high activity region, it has been reconstructed reasonably well, with an 

average activity of approximately 3.1 %. Better reconstructed activity level in that 5% region was 

achieved with a "weighted" MLE method discussed in [35]. 

C. Hoffman brain phantom with real ECAT-111 data. 

Figure 8 shows an FMAPE reconstruction of the Hoffman brain phantom for a data set 

with 30 million counts. With the high number of counts, that reconstruction is virtually identical to 

a filtered backprojection result with the Shepp-Logan filter with a frequency cutoff near its 

maximum, selected to show high sharpness and acceptably low overall noise. Figure 8 is shown 

as a possible standard that reconstructions from a data set of 1 million counts should try to 
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approach. The ratio of activities in the hot vs. cold regions was set to approximately 4.5 : 1. The 

data were obtained from one ring of the UCLA ECAT-lll tomograph, as described in [6]. For the 

1 million count data set, the maximum number of counts in one pixel, obtained from other 

reconstructions, is approximately 3000 counts. If we consider the number of levels to be 

approximately 5, a value of ~a= 600 could be used as an initial setting. We found, in fact, that this 

value is adequate for obtaining feasible images. 

For this case with real data, two different kinds of corrections have to be applied to the data 

set before reconstruction: 

1. - Random coincidences have to be subtracted. During the ECATJIT measurement, one 

delayed coincidence gate is opened every time that a coincidence event is detected by the logic 

circuits. The latter events are called "prompt" coincidences. The prompt data contain true 

coincidences plus randoms, while the delayed coincidences contain a sampling of the random 

coincidences with the same mean values as a function of position as those of the prompt 

measurement. Standard practice consists in subtracting the delayed from the prompt data, resulting 

in a first order correction for random coincidences. Only the noise due to the differences between 

the prompt and delayed samplings remains in the data to be reconstructed. Since the prompt data 

are known to be Poisson distributed (in the absence of pile-up problems in the instrumentation 

electronics) and the delayed data are also Poisson distributed, but the difference is not, we have 

carried out the reconstructions of one set of 1 million counts by two methods: 

a. Reconstruct the prompt and the delayed data separately and subtract the resulting images, 

b. Subtract first and reconstruct the difference data. 

For the data set from the Hoffman brain phantom, with only approximately 6.5% of random 

coincidences, the images resulting from the two methods of correction are indistinguishable from 
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each other. To the extent of this test, then, the FMAPE appears to be robust to non-Poisson 

projection data. The results that will be shown here are for case b. 

2. y-ray absorption and detector gain corrections have to be applied to the data. The product 

of the absorption factors along the detector coincidence paths and the relative gain of the detector 

pairs will be taken as the values .1pj described in Section ll.C. 

The use of the x2 I D statistic or the VL test of [ 1] for feasibility fails with real data from a 

tomograph. Llacer and Veklerov ascertained in [3] that the problem lies with the lack of accuracy 

with which the matrix fji is known. They proposed a more relaxed test which has one adjustable 

parameter, c., that corresponds to the uncertainty with which the matrix elements ~i are known. The 

test, once c. has been determined empirically, signals the entering of the feasibility region 

unequivocally, although it is insensitive to going too far in the MLE iterative procedure. For the 

feasibility tests to be reported in this paper, we have used a value of c. = 6.5% which was found in 

[3] to signal the entering of MLE reconstruction into the feasibility region for the Hoffman brain 

phantom with 1 million counts. 

Figure 9 shows values for the hypothesis test function H for the reconstructions of the 

Hoffman brain phantom, as a function of iteration number. The threshold for acceptance of an 

image as feasible is shown as a straight line. The reconstruction parameters were .1a = 600, n = 2 

and C = 450. Figure 1 Oa shows the reconstruction results of the FMAPE procedure at iteration 30. 

Figure lOb shows the results at it. 50 where our approximate feasibility criterion is fulfilled. An 

image with higher contrast is shown in Fig. lOc, at 100 it. Continuation of the iterative procedure 

with the FMAPE and the indicated parameters results in some deterioration of the image, indicating 

that the value of .1a = 600 may be too high for optimum reconstruction. Figure lOd shows the 
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results at iteration 300 and Fig. lOe shows the results of post-filtering the results of lOd with a 

Gaussian kernel of cr = 0.6 pixels. The latter appears'visually to be the better image of the set. 

V. Conclusions 

From the results reported with three phantoms, it appears that the FMAPE reconstruction 

procedure yields images that are similar to, but somewhat different from the MLE reconstructions 

at the stopping point. The differences observed are, however, small and not immediately 

characterizable. An analysis of the re·sulting images in terms of bias and variances of many 

instances of the same source image may provide for understanding those differences. 

The FMAPE has one characteristic that makes it more appealing than the standard MLE 

process: it converges to visually good images with excellent stability and, moreover, the resulting 

images can be made feasible by choice of one contrast parameter. The FMAPE can be accelerated· 

by factors of up to three with respect to the unaccelerated form (n = 1), but a number of ~ethods 

for acceleration of the MLE have already been found, including an equivalent form of (27) that we 

have investigated, in which the exponential function disappears and an accelerating exponent is 

introduced, as in the development of the FMAPE. We find the process of reconstruction from real 

data from the Hoffman brain phantom slower in converging than in the case of computer generated 

data, as seen by comparing Fig. 2 for ..:1a =50 with Fig. 9. This may be due to the nature of the 

calculated matrix elements fji used in the reconstruction, which are less accurate a represen-tation of 

the true transition matrix elements of the tomograph than in the computer simulation case. It will be 

interesting to explore the use of a Monte Carlo calculated matrix that represents the ECAT-111 
f 

tomograph more closely, as was done in [36]. 

A possible drawback of the FMAPE is the somewhat lengthened computation procedure 

by having to calculate one logarithm and one power for each pixel in each iteration. The additional 
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A possible drawback of the FMAPE is the somewhat lengthened computation procedure 

by having to calculate one logarithm and one power for each pixel in each iteration. The additional 

length of time is not particularly significant when compared to the time needed for a projection and 

backprojection in each iteration. 

Both the FMAPE and the MLE images stopped at feasibility, or past feasibility with post

filtering, have very low backgrounds and low noise in the low activity areas when compared to 

filtered backprojection (FBP) images. They exhibit contrast and sharpness at least as good as FBP 

images with filters and bandwidths which have been selected for a good compromise between 

sharpness and overall noise. Ascert~ning the diagnostic usefulness of the images obtained from 

MLE and FMAPE awaits, however, the results of a thorough Receiver Operating Characteristics 

(ROC) study with real data and observers (see, for example, [40]). We feel that the development 

of the present Bayesian method of solution and the acquired understanding of the MLE method and 

their relationship to feasible images makes an ROC study a natural next step in the search for 

improved reconstruction methods for emission tomography. 
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VIII. Figure Captions. 

1. - Mathematical brain phantom. Image contains 1 million counts and originated the projection 
data source used in the reconstructions by assigning each count in each pixel to a projection 
bin by a statistical process. A matrix of transition probabilities for the ECAT-III 
tomograph of UCLA was used for the latter process. 

2. - Comparison of the X 2fD statistic as a function of iteration number for an MLE 

reconstruction of the mathematical brain phantom (curve a), and for the FMAPE 
reconstruction with ~a= 10, 25,50 and 100 (curves b, c, d and e, respectively). The 
acceleration parameter n was set to unity, i.e., the reconstruction was not accelerated. 

3. - Comparison of the X 2fD statistic for the mathematical brain phantom as a function of 

iteration number when the reconstruction is accelerated by changing n from 1 to 3. In all 
cases ~a = 50. 

4. - Results of reconstructing the mathematical brain phantom. a) MLE at iteration 30. b) and 
c) FMAPE at convergence (it. 50) with ~a= 10 and 50, respectively. d) FMAPE 
accelerated reconstruction at convergence (it. 15) with n = 3, ~a= 50. e) accelerated image 
after post-filtering with a Gaussian kernel of a= 0.6 pixels. 

5. - Perspective view of a "liver and heart" mathematical phantom showing the relative activities 
in the different regions. 

6. - x2 I D values for the "liver and heart" phantom reconstruction, ~a = 40, n = 3, C = 50. 

7. - Profiles through the 5% activity region of the "liver and heart" phantom for a) the source 
image of Fig. 5, b) FMAPE at it. 10, c) FMAPE at it. 20. Reconstruction parameters as 
indicated in Fig. 6. Activity level is in arbitrary units. 

8. - Reconstruction of a 30 million count data set for the Hoffman brain phantom, with real data 
from the ECAT-III tomograph of UCLA. 

9. - Values of the hypothesis test function H during the reconstruction of the Hoffman brain 
phantom data set with 1 million counts. ~a = 600, n = 2 and C = 450. 

10. - Results of reconstructing the Hoffman brain phantom with the FMAPE algorithm, a) at 
iteration 30, b) at it. 50, c) at it. 100, d) at it. 300, e) at iteration 300 after post-filtering with 
a Gaussian kernel of a= 0.6 pixels. 
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