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PREFACE 

The following is an excerpt from Werner Heisenberg's book Physics 

and Beyond which relates a conversation between Heisenberg and 

Niels Bohr . 

After we had been looking for possible experimental 

mistakes for some time~ I said to Niels: "Isn't it odd that~ 

throughout this discussion~ no one should have mentioned 

quantum theory? We behave as if the electrically charged 

particles were an object like an electrically charged oil 

droplet~ or like a pith ball in an old electroscope. We 

quite unthinkingly used the concepts of classical physics, 

as if we had never heard of the limitations of these concepts 

and of uncertainty relations. Isn't that bound to lead to 

errors?" 

"No~ certainly not," Neils replied. "After aU, it is 

almost the essence of an experiment that the observations 

can be described with the concepts of classical physics. That 

is the whole paradox of quantum theory. On the one hand_, 

we establish Laws that differ from those of cLassical physics;. 

on the other~ we apply .the concepts of classical physics 

quite unreservedly whenever we make observations~ or take 

measurements or photographs. And we have to do just that 

. because~ when all is said and done~ we are forced to use 

language if we are to communicate our results to other people. 

A measur>ing instrument is a measuring instr>ument only when 

the observations it yields enable us to arrive at 
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unequivocal conclusions about the phenomenon under• obse:r>vat·ion~ 

only when a strict causal connection can be assumed to exist. 

Yet when it comes to the theoretical description of an atomic 

phenomenon> we must make a distinction between the phenomenon 

and the observer or his apparatus. The demarcation line may 

be subject to choice> but on the observer's side of the split 

we are forced to use the language of classical physics> sirrrply 

because we have no other language in which to eXpress the 

results. We know that the concepts of this language are 

imprecise> that they have a limited area of application> but 

we have no other languag~ and> after all> it does help us 

to grasp the phenomenon at least indirectly. " 
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Michael David Fayer 

Inorganic Materials Research Division, Lawrence Berkeley Laboratory 
and Department of Chemistry; University of California, 

Berkeley, California 94720 

ABSTPACT 

Presented in this thesis are two distinct topics; the effects of 

coherent Frenkel-exciton migration and exciton detrapping on band-trap 

equilibria in solids and the coherent coupling of two excited state 

energy levels by an applied radiation field for a system which undergoes 

incoherent feeding and decay of population. Both of these topics will 

be discussed in terms of excited triplet states of molecular crystals, 

although the considerations presented are quite general. 

A model is developed which relates the dynamics of energy migration 

in crystals to the mechanisms by which thermal equilibrium between 

delocalized band states and localized trap states is achieved. Central 

to this model is the requirement that coherent energy migration must 

be the dominant mode of migration at low temperatures in order to achieve 

Boltzmann equilibrium between band and trap states within the lifetime 

of the excited electronic state. The relation between detrapping and 

the ability of a crystal to achieve thermal equilibrium within the 

excited-state lifetime is developed and applied to one-dimensional 

crystals. Experimental results on molecular crystals representing 

examples of one-dimensional exciton bands are presented. Specifically, 

the temperature dependence of phosphorescence from excited triplet trap 

states is interpreted in term~ of the above considerations. From these 

experiments, one can obtain both the sign of the intermolecular 
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interaction matrix element and the dispersion of the first excited triplet 

band in addition to an estimate of the coherence length associated with 

exciton migration in the Frenkel limit. 

A technique for measuring the decay of localized excited triplet 

states into delocalized band states of a solid utilizing the optical 

detection of electron spin coherence is described. Specifically, the use 

of'optically detected electron spin locking for measuring kinetic 

phenomena in the presence of fluctuating triplet spin sublevel populations 

is presented and illustrated. In addition, preliminary experimental 

data is reported which yields the temperature dependence of the phonon 

assisted promotion of a localized isotopic excited state to an energy·. 

equal to that associated with the energies of the host exciton band. A 

stochastic model for the detrapping is developed '"hich is based on an 

irreversible radiationless relaxation process of a phonon-trap intermediate 

into the density of delocalized band states. Explicit account is taken 

of trap-phonon interactions in the formation of the excited trap 

intermediate. 

Finally, coherent coupling of two excited triplet spin sublevels 

by an applied microwave field is treated with the effects due to · 

population entering and leaving the ensemble of excited triplet states 

included. The problem is set up in terms of the time dependent 

Schr~dinger equation and solved using the Laplace transform technique. 

The case in which the wavelength of the radiation field is large 

relative to the sample size is discussed .. This is the case which applies 

to microwave coupling of excited triplet spin sublevels. An interesting 

new effect is predicted, i.e., it is possible to maintain a coherent 
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component for extended periods of time, in fact, for times longer than 

the lifetimes of the excited states involved. This kinetic coherent 

component is continually replenished by the incoherent feeding process 

under certain experimental conditions. The extension of this treatment 

to th~ optical case is discussed and the possibility of producing long 

term superradiance is pointed out. 
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I. BOLTZMANN EQUILIBRIUM BETWEEN EXCITON STATES 
AND SINGLE TRAPS 

A. Introduction 

In the first three chapters, the relation between energy migration in 

solids and the populations of localized and delocalized states will be 

discussed in terms of a model which includes explicit features of the 

exciton band, the sign of the intermolecular interaction in the nearest 

neighbor approximation, the number of wave vector states comprising 

the band, and a mechanism for Frenke1
1 

exciton migration in solids 

including the effects of coherent and incoherent propagation. Although 

the theoretical and experimental details.which will be presented here. 

pertain to the triplet state of molecular solids, identical considerations 

are also applicable to singlet states and transport phenomena in non-

molecular solids. The model will be applied specifically to the. 

temperature dependence of the intensity of trap emission in molecula.r 

crystals although the approach is applicable to a wide variety of 

related problems. 

The necessity of considering the above features of exciton migration . 
in solids in a model which attempts to explain some straightforward 

observations on the temperature dependence of the intensity of the trap 

states can readily be seen by the paradoxes which are created if exci.ton 

dynamics are not treated properly. For illustrati9n consider the 

simplest case where it is tacitly assumed that the excited'states of 

the host are degenerate and that the different types of traps which may 

be due either to impurities or crystal lattice defects may be regarded 

as independent but describable by Boltzmann statistics. The problems 
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created by this oversimplified treatment can readily be seen. ·rn the 

absence of intermolecular interactions between an excited host molecule 

and its unexcited neighbors, an excitation is an isolated molecular 

state as opposed to a mobile crystal state, and hence it cannot migrate 

to a trap. The difficulty of this model is notso much in the .trivial 

assumption that the host states are degenerate (i.e., no intermolecular 

interactions) but in failing to provide the mechanism whereby therm~ 

equilibration between the host and trap states can be achieved which 

. . 2 
permits the use of Boltzmann statistics. This latter consideration 

requires that a distinction be made between coherent and incoherent 

migration insofar as the dynamics of achieving trap~exciton equilibration 

determinewhether or not Boltzmann statistics is a valid assumption. 

Intermolecular interactions break the degeneracy of the host excited 

states and produce a band of mobile exciton states with width 413, where 

t3 is the intermolecular interaction matrix element. These mobile 

excitons can migrate between traps in one limit (the low temperature 

limit) as coherent wave packets whose properties are determined by the 

wave vectors of the crystals or in another limit (high temperature limit) 

by a random walk diffusional process characterized by a hopping frequency 

proportional to the intermolecular interaction.
3 

If the migration is 

r~pid, ·equilibration of the excited state populations can be establish~d 

among t~e exciton and trap states within the lifetime of the excited 

electronic state. The populations of the various energy levels can then 

be determined using a Boltzmann statistical model. The width of the 

exciton band and the sign of the intermolecular interaction, the location 

of the exciton 1 energy levels relative to the trap depth, and the mode of 

v 
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exciton migration all determine whether or not the equilibrium condition 

can be established within the lifetime of the state and hence deterrriine 

the functional form of the temperature dependence of the trap emission. 

Indeed we shall demonstrate that the measurement of trap phosphorescence, 

which reflects the triplet trap population, provides a tool capable 

of investigating the mode of migration in triplet Frenkel excitons in 

addition to the magnitude and sign of intermolecular interaction S. 

Specifically in the following, the temperature dependence of trap 

phosphorescence will be discussed using a model which primarily treats 

the exciton band as one-dimensional although multidimensional bands are 

considered briefly. A method for determining the exciton band width 

and the sign of f) from the trap emission temperature dependence is presented. 

Systems composed of both single 'and multiple traps in equilibrium with an 

exciton band will be considered where the effect of coherent vs random 

walk exciton migration on the temperature dependence of the· trap emission 

intensity is central to the model. Next we will discuss isotropically 

mixed crystals where the effects of trapping result in both a Boltzmann 

equilibration and non-Boltzmann equilibration in different temperature 

regions. Solutions to the non-Boltzmann steady state between trap and 

band states also allow a measure of the coherence to be estimated. In 

addition, a model for the decay of localized states into delocalized 

band states based on radiationless relaxation is developed 

Finally, experimental results on "one-dimensional" molecular crystals will 

be presented and interpreted in terms of the above considerations. These 

include optically detected magnetic resonance experiments on trap states 

in which the electron spin coherence in the rotating frame is used to 

measure absolute detrapping rates. 
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B. Thermal Equilibria between Exciton States and Single Traps 

The formal features of one-dimensional Frenkel excitons in the 

absence of phonon exciton coupling are well tinderstood. 4 A finite linear 

array of n independent molecules in which one molecule of the chain is 

0 
in an excited electronic state will have an energy E ·corresponding 

to the "isolated" molecule excited state energy. The system, however, 

is n fold degenerate, since the excitation may be on any one of the n 

molecules in the linear array. If the molecules are allowed to 

interact through a nearest neighbor interaction S, the degeneracy is 

destroyed and a band of energies is .formed. In the nearest neighbo! 

approximation the energy dependence of the exciton band on the quantum 

number k which labels the levels is given by 

E(k) = E + 2!3 coska 
0 

(I.l) 

where a is the distance between translationally equivalent molecules 

along the axis of delocalization. The quantum number k can take on n 

values from zero to ±TI/a in the first Brillouin Zone giving a band width 

of 4S. 

The temperature dependence of the intensity. of trap emission in the 

temperature region where Boltzmann statistics is applicable can be 

understood in terms of the partition function, z, for the systems 

consisting of one excitation found in the trap energy. level or in one 

of the levels of the exciton band. We adopt as a model for "real" one-

dimensional crystals, a crystal composed to a set of independent exciton 

chains, each chain being separated by one or more impurities or trap 

sites. The gaussian distribution of chain lengths in a crystal is 
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sharply peaked, and therefore the average length is employed. This is 

a valid assumption for most bands provided the number of molecules in a 

chain exceeds "-'100. Each chain may be labeled by a set of molecuTar 

indicies which specify its location in the crystal and thus make it 

distinguishable from the other chains in t~e crystal. This, in addition 

to the fact that there are marty energy levels available to each 

excitation in the crystal, allows Boltzmann statistics to be employed 

in writing the partition function provided the trap and band states 

are in thermal equilibrium. Such a partition function has the form 

(n-1)(7T/an) 

z = ~ Ze-(~-2S(l~coska))/kT 
(I. 2) 

k=7T/an 

. ' 

The zero of energy is taken at the energy of the trap while the trap 

depth, ~. is taken to be the difference in energy between the trap level 

and the k = 0 level of the exciton bimd in the approximation that the 

. 5 
wave vector of the radiation field has zero momentum. This is the 

depth which can be measured spectroscopically from absorption or emission 

experiments at low temperatures. The first term in z is simply the 

Boltzmann factor for the trap level while the second term is associated 

with the nondegenerate k 0 level of the band. Appart from k = 0, k 

can take on values greater than zero to ±7T/a, and thus, all non k = 0 

states in the band are doubly degenerate. If there are (2n) states 
1.,; 

in the band plus the k 0 state, corresponding to (2n + 1) molecules in 

a linear chain, then the final term in the partition function is a 

summation over n doubly degenerate states where k takes on values 

7T/an, 27T/an, 31T/an ... n7T/an = 7T/a. The energy .dependence of the band 
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on quantum number k is given by Eq. (I.l), and the partition function 

has been written so that the k = 0 level has energy 6. 

In terms of the partition function, z, the probability that an 

excitation of the system is in the trap is simply 

P = 1/z trap 

The intensity of emission, I, from the trap is 

I trap 
Kr N 

trap trap 

(I. 3) 

(I. 4) 

where Kr is the radiative rate constant and N . is the number of 
trap trap 

trap states populated. If the total number of states excited in the 

system is N then 
total' 

and 

N = P N · 
trap trap total 

I trap 
Kr N P 

trap total trap 

(I. 5) 

= Kr N z-l 
trap total 

(I. 6) 

Since Kr is essentially temperature independent6 and the N 
1 

is 
trap . tota 

usually constant, the temperature dependence of the trap intensity is 

determined by the temperature dependence of the normalized trap probability, 

p 
trap 

-1 = z which includes explicit features of the band states. 

By varying 13 and the number of states in the band while keeping the 

trap depth !::. constant, the relationship between the "real" partition 

function and a partition function using the degenerate approximation for 

calculating the trap probability can be seen. Two cases arise depending 

upon the sign of B as illustrated in Fig. 1. If S is negative the 

exciton band spans an energy range from 6, ·the k 0 energy, to £::, + 4S, 

1/ 



-7-

Negative {3 
Exciton Band 

k =±.,/a~~~} 
---'----· 4 ~ 

,Positive {3 
Inverted Band 

k=O~~~ 
Exciton Band 

k=O~~~I 

k = ±TTI0---} 4~ 
ll 

Trap Depth 

Trap Level 

ll 
Trap Depth 

Trap Level 
XBL 737-904 

Fig. 1. Trap and exciton energy levels for both negative and positive 
signs of the intermolecular interaction, S. For negative a, 
the exciton band extends 4S to higher energy than the trap depth 6., 
and for positive a the band is inverted and extends 4a to lower 
energy than/:::... 
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.• 

the k = ±TI/a energy. On the other hand, if 6 is positive the band is 

inverted and it spans an energy range from ll to ll - 46. The approximation 

that all the states in the band are given the energy of the k = 0 state 

corresponds to the limiting case of'a band with zero band width. In 

cases where 6 is finite however, most states accumulate at the top and 

bottom of the band where the density of states function for one

dimensional systems
7 

is sharply peaked. One .might expect a significant 

effect on the trap emission due to the dispersion of the band, particularly 

when the band width to trap depth ratio, 4f3/ll, takes on reasonablevalues. 

Such is indeed the case. 

Recently 1,2,4,5-tetrachlorobenzene (TCB) and 1,4-dibromonapthalene 

have been shown to exhibit the properties of one-dimensional excitons. 
8 . 

Francis and Harris measured the band width of TCB by an optically 

detected magnetic resonance experirnent9 and found it to be 1.25 cni-l 

H h . d Wh" 10 i i oc strasser an 1teman n an sotopically mixed crystal experiment 

measured 
-1 

1,4-dibromonapthalene band width to be 29.6 em These two 

values will.be used as examples of narrow and broad triplet exciton 

bands respectively although it should be kept in mind that singlet bands 

can be one or more orders of magnitude greater in width. In Figs. 2a 

through 2e the trap probability, P ,·vs tenq)erature is plotted for 
trap 

several different negative values of 46 using the experimental value of 

-1 
ll (21.3 em ) determined for one of the intrinsic traps here after referred 

h X i H
2

-TCB. 11 . I h fi 1 . f 1 to as t e · -trap n n eac gure curves resu t1ng rom .severa 

different ratios of number of states in band to number of traps is plotted. 

Figure 2a is the degenerate case. Figu~e 2b uses the small value of B 

.! 
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Fig. 2. Calculated trap probabilities, which are proportional to trap 
intensities are shown as a function of temperature for various 
negative values of S. The numbers to the right of each set of 
curves give the number of exciton k states (number of molecules 
per chain) per trap state used to calculate the curve. The 
trap· depth A used is the tetrachlorobenzene trap depth, 21.3 cm-l 
(a) illustrates the limiting case of a band with zerO width, 
4a = 0. (b) uses the band width previously reported for 
tetrachlorobenzene. (c) and (d) are for intermediate band 
widths, and (e) is calculated using the reported 1,4-
dibromonaphalene band width. As the band width becomes more 
negative, the energy differences between the trap and states 
in the band become greater and the temperature dependence of 
the trap probability becomes more gradual. 
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{a) 

4/3=0cm-1 • 

(c) 

4 /3= -10 cm-1 

i 
I 

i 

(d) 

4{J=-20cm-1 

(e) 

4/3 = -29.8 cm-1 

1.6 2.2 2.8 3.4 4.0 
Temperature (°K) 

XBL 7210-5700 

Fig. 2 



-11-

taken to be the narrow band example. Figures 2c and 2d are calculated 

using _intermediate values, and Fig. 2e uses a value associated with a 

broader band. In Fig. 3, one line from each of the Fig. 2 drawings is 

shown so that the differences can be more clearly seen. The number of 

k states (i.e., the number of molecules in the chain) has been kept 

constant in Fig. 3. Figures 4a through 4e are similar plots, however 

a positive sign of l3 ·is considered. As illustrated in Fig. 1, as i3 

becomes more negative the energy differences between the trap and all 

the states in the band, eXcept the k = 0 state, become greater. For 

a given number of states the temperature dependence of the trap 

probability and therefore the change in emission is more gradual. As 

i3 takes on larger positive values, the energy differences between the 

states in the band and the trap become smaller. This causes the trap 

probability (and the trap intensity) to have a steeper temperature 

dependence •. Figure 4e is im example where 4S, the band width, is 

greater than 6., and hence the bottom of the band extends below the trap. 

When the trap and exciton states become degenerate it is' necessary to 

consider additional perturbations. In particular, arealistic treatment 

should include the localization of band states by the trap impurity·and 

the delocalization and energy shift of the trap state via interactions 

. h b d 12a w1t an states. Furthermore, when the number of impurity states 

_becomes significant relative to the number of band states aJ!l<llgamation 

must be considered in detail.lZb This would cause deviation from the 

zeroth order temperature dependence illustrated in Fig. 4e. In Fig. 5 

one curve from each of the Fig. 4 drawings is plottedso that the change 

in the temperature dependence with l3 can be more clearly seen. One notes 
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Fig.' 4. Calculated trap probabilities, which are proportional to trap 
intensities are shown as a function of temp~rature for various positive 
values of S. The number next to each curve gives the number of excitqn 
states per trap states. The 21.3 cm-1 tetrachlorobenzene trap depth 
1::. is used. The band width, 4S, used to calculate the curves is given 
in each section of the drawing. It should be noted that the scale 
changes in (d) and (e). As the band width 4S becomes increasingly 
more positive the energy differences between the trap and the levels 
of the barid become smaller resulting in a steeper temperature 
depende:nce of the trap probability. (e) is an example of the am~lgamation 
limit where the bottom of the band extends below the trap level. 



:c 
c 

..c 
e 

0.. 
CL 
c .= 

-14-

100 

400 

1600 
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that the temperature dependence of trap emission, in addition to being 

dependent on the trap depth and trap concentration, is significantly 

governed by the detailed s·tructure of the eicciton band. In the case of 

degenerate trap and band states in the absence of trap-band interactions, 

for example, a reversal in the temperature dependence results (cf. Fig. 4e). 

In other cases, each value of the chain length and band width generates a 

uriique temperature dependence in the trap phosphorescence. Indeed, this 

interrelationship between the band width, exciton chain length and trap 

depth can be exploited to give an experimental measure of these parameters 

in crystals representative of one-dimensional systems. The temperature 

dependence of trap emission can also be used t·o determine (via inference) 

whether or not the band and trap states are in Boltzmann equilibrium. 

An example of this is illustrated in Fig. 6, where the experimental 

temperature dependence of the int~nsity of the intrinsic H2-TCB X-trap 

is plotted as a function of temperature. The best calculated fit to 

the experimental data is also shown along with values of the parameters 

which are well outside of the limits of the accuracy of the results. 

Since the trap is intrinsic, the trap concentration was unknown; 

consequently, both 13 and the trap concentration were varied in order to 

obtain the calculated curve. 
-1 

The best values are 3.5±2 em for the 

band width 413 with B positive and a trap concentration of one part in 

90,000. If the trap concentration is known from an independent measurement, 

the uncertainty in the band width measured in this type of experiment 

can be greatly reduced. ~!though the H2-TCB band width measured by this 

8 -1 
method is somewhat larger than that reported (1. 25 ern ) from an independent 

method, the essential features of these results are in agreement with the 

~) ' 

. ( 
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The solid circles are the experimentally determined intensity 
vs temperature data for the 21.3 cm-1 trap in 1,2,4,5-
tetrachlorobenzene. The center solid line is the theoretically 
determined best fit of the data to the bandwidth, 4S, and the 
number of exciton k states which corresponds to the number of 
molecules in the average exciton chain. The two additional 
curves labeled 1.25 cm-1 and 6.0 cm-1 correspond to values 
well outside the standard deviation'of the data and are 
illustrated to demonstrate the uniqueness of the data in the 
variables 413 and the number of k states. The best value of the 
bandwidth is 3.5±2 cm-1 with S positive . 

• 
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interpretation of the earlier results. It is important to note that the 

8 
earlier experiments and the above experiment can only be fully understood 

and interpreted in terms of a model which is depend~nt upon coherent 

migration being the principal mode of exciton transport in the TCB crystal 

at low temperatures. The importance of coherent migration in the above 

results is discussed in detail in the next section. The discussion in this 

and following sections is primarily concerned with excited triplet states; 

however, it should be kept in mind that identical considerations also 

apply to singlets and transport properties in general. 

C. Exciton Group Velocities and Thermal Equilibrium 

In the Frenkel limit once a molecule is excited it cannot transfer 

its excitation to another molecule without an intermolecular interaction ' 

which destroys the degeneracy of the states. In a finite band, the 

velocity with which an excitation propagates in the crystal with a 

particular momentum in a coherent model is the group velocity, V (k), 
g 

which is given by the slope of the energy dispersion of the band 

oE(k) 
ok 

and is proportional to the change in exciton energy with k. For a 

(I. 7) 

non-degenerate band at temperatures above 0°K, the group velocity will 

be nonzero because .of the population of non k = 0 or ±TI/a wave vector 

states; the excitation will be able to migrate. The average velocity 

of this migration, and certain details of phonon-exciton scattering 

determines whether or not the system can reach thermal equilibrium. If 

during the lifetime of the excited state the excitations do not travel 

far enough to reach traps, the trap probability cannot be described by 
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Boltzmann statistics. On the other hand, if the excitations during their 

lifetime can travel on the average many times farther than the average 

distance between traps,. then all the excitations will be able to "sample" 

traps, the_system will be able to reach thermal equilibrium, and the 

trap probability will be determined by the partition function of the 

previous section. The importance of phonon-exciton scattering in the 

equilibration process cannot be underestimated, for it is what ultimately 

13 14 limits the mean free path of coherent propagation. ' If we assume 

that there is no memory between phonon-exciton scattering events and 

restrict the scattering to stochastic first o:rder Markoffian processes15 

one can assign a coherence time, T(k), to the wavepackets propagating 

at velocities V (k). The distance, R-(k), a coherent state propagates 
g 

between "random" scattering events is then given by 

$1, (k) = V (k) T (k) 
g 

and is thus equivalent to a mean free path. 

(I. 8) 

At intermediate temperatures where the principal limitation on T(k) 

is phonon-exciton scattering, Frenkel excitons initially in a state k 

(or a linear combination of k states) scatter to other k' states in a 

time short compared to the radiative or radiadonless lifetime, but_in 

a time long compared to the intermolecular interaction time (S-1). As 

a result the coherence time, T(k), is shortened, the mean free path ~ 

reduced and the ability to equilibrate trap and exciton states is 

attenuated. It is shown in work not contained in this thesis that 

scattering is principally to adjacent k states and hence the average 

group velocity is relatively unaffected until one approaches the high 
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temperature limit ~6 Diffusion or random walk is simply the limit where 

' -1 
the change ink occurs on a time scale short compared to S • These 

. 16 
features will be dealt with in far greater detail in a subsequent paper 

where a method for observing the dynamics of individual k states will 

be presented. In the present case however only manifestations of the 

average velocities (and/or 'T(k)'s) are easily measurable and therefore 

we restrict the discussion to these features. The importance of 

( V (T) ) is easily seen by comparison of coherent and incoherent migration. 
g 

Treating the exciton band as one-dimensional, the average group 

velocity at a given temperature, <v (T)>, is given by the normalized 
g 

sum over the velocities of the k states in the band with each velocity 

weigqted by the probability of fin~ing the system in that k state at 

a particular temperature, T, i.e., 

( V (T)) 
g 

.!_ (ClE(k)) = 
h ClK T 

2Sa 
tl 

L . (k ) -(213 coska/kT) k s~n a e 

r -(2S coska/kT) 
k e 

We will restrict the sunnnation in Eq. (I. 9) to positive wave vector 

states only so that < V (T) > is physically related to a scalar velocity 
g 

in one direction. In the limit that the number of k states becomes 

large, the summations in Eq. (1.9) converge to -integral form which 

can be evaluated using modified Bessel functions. The resulting 

expression for the average group velocity is given by 

\vhere z 

( V (T)) 
g 

(2Sa/h) (2kTfTI/3)_112 (r
112 

(z)/1
0 

(z)) 

(2p/kT) and I
0 

(z) and r
112 

(z) are given by 

(I. 9) 

(I. lOa) 
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'IT 

I
0 

(z) = (1/Tf) f exp (z cos6) d6 (I. lOb) 

0 

and 

ll/2 (z) 

'IT 

(1/2 z/TI) 1
/

2 J exp(±z cos6) sin6d6 (I.lOc) 

0 

where 6 = ka. In Table I, group velocities, calculated using Eq. (I. 9), 

.for a narrow, intermediate and broad triplet band are listed as a 

function of temperature. The average group velocity is not very 

sensitive to the number of states in the band when the number of states 

in the band is greater than 100. It can be seen from Table I, that 

-1 8 even for the narrow band width of 1.25 em which Francis and Harris 

have reported for TCB, at l°K an excitation traveling completely 

. 9 1 coherently will be able to sample 10 attice sites in ten milliseconds 

h . h i th d f h l'f . f h TCB ' 1· . ll w 1c s e or er o t e 1 et1me o t e tr1p et state. (The 

-1 
exciton will of course travel even further given the 3.5 em band 

reported here.) This is sufficient to enable a system with trap 

7 . 
concentrations as low as 1 part per 10 to come to thermal equilibrium. 

For the larger band widths, systems with even smaller trap concentrations 

will be able to equilibrate. ·Only very pure samples with nearly 

degenerate bands will be unable to come to thermal equilibrium when 

. the excitons migrate coherently. 

Attenuation of this long range migration occurswhen phonon-exciton 

scattering limits the coherence time and hence the coherence length. 

When this length becomes less than the average trap-to-trap separation, 

thermal equilibrium becomes progressively more difficult to achieve. 

Ih the high temperature limit, phonons destroy the translational symmetry 
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Table I. Average group velocities (em/sec) 
for a band of 25,000 k states as 
a function of temperature. 

OK Band Width 

1.25 -1 15 em -1 29.6 -1 em em 

1.0 2652 12747 18075 

1.6 2750 15996 22781 

2.2 2782 18592 26611 

2.8 2797 20762 29902 

3.4 2804 22601 32814 

4.0 2809 24161 35436 
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of the lattice and tend to scatter an excitation at each lattice site, 

and hence the group velocity is replaced by a diffusion rate as the 

excitation executes a random walk at every lattice site. In one-

dimensional diffusion, the exciton can move with equal probability to 

either of the two molecules adjacent to"it. The average time, T, it 

takes an exciton undergoing a randoin walk migration to take one step 

is on the order of17 

h 
4S 

Hence, the median distance traveled in em is given by 

< d > = 1/3 N
1

/ 
2 a 

(I.ll) 

(1.12) 

where N is the number of hops taken per unit time and a is the distance 

traveled in one hop, one lattice translation, in centimeters. In Table II, 

the median random walk distances are listed for the three band widths . ' 

used in Table I for a variety of times. The value of a used is 3.76A 

which is the translational spacing of molec~les albng the a direction in 

TCB. 18 Table III also gives the ratio of the distances traveled by an 

exciton moving in the coherent limit vs random walk migration for the 

three band widths at 2.8°K. 

It is seen that random walk migration is a factor of 104 to 10
6 

.· 

slower than coherent migration. ~fuile a H
2

-TCB exciton traveling 

' 9 completely coherently could sample approximately 10 lattice sites 

during its lifetime (10 ms), an exciton undergoing random walk migration 

on the average will only sample 103 to 104 lattice sites. The number 

of excitons able to migrate larger distance falls off very rapidly 
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Table II. Median distance traveled in a random 
walk process. 

Time Band Width 

1.25 -1 15 -1 
29.6 -1 em em em 

1 ms 7:6Xl0-~ em 2.7Xl0-4 em 3, 7Xl0-4 em 

10 ms 2,4Xl0-4 em 8 ,4Xl0-4 em l, 2Xl0-J em 

100 ms 7.6Xl0-4 em 2,7Xl0-J em 3.7Xl0-3 em . 
1 ms 2,4Xl0-J em 8. 4Xl0-J em 1.2Xl0-2 

em 
.. 

Table III. Ratio of the .coherent migration distance 
to the random walk distance at 2,8°K, 

Time Band Width 
-

1.25 -1 15 -1 -1 em em * 29.6 em * 
-· 

1 ms J,7Xl04 7 • 8XlQ4 7,8Xl04 

10 ms l,lX105 2,5Xl05 2,5XlQ5 

100 ms J,7Xl05 7,8Xl05 7.8XlQ5 

1 s l.!Xlo6 2.5Xl06 2.5XlQ6 

* -1 -1 Differences between the 15 em and 29.6 em 
ratios are less than 1% because of insufficient 
population in k states at the center of the band at 
this low temperature. 
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because one-dimensional raridom walk processes are describable by a Gaussian 

. . 19 
distribution of distances around some initial starting po1nt. In the 

case of H2-TCB only 3 excitons out of 1000 traveling completely by random 

walk migration would be able to ·cover a distance of sx1o4 lattice sites 

which is half the average distance between traps in these crystals. The 

conclusion to be drawn is that the observation that the temperature 

dependence of the H
2

-TCB trap intensity obeys Boltzmann statistics 

provides strong evidence that coherent migration is the principal mode 

of exciton transport at liquid helium temperatur~s.. Indeed the coherence 

time must be at least several orders of magnitude longer than the inter-

molecular exchange time. 

D. The Effects of Hultiple Bands 

1. Zero-Field Splitting of the Exciton Band and Trap States 

To this point, ·the triplet exciton band and trap have each been 

considered as consisting of a single magnetic sublevel. This is an 

accurate de~~ription for ~inglet states, but both the triplet exciton 

band and trap are split into three energy sublevels ·by the zero-field spin 

dipolar interaction of the unpaired triplet electron spins. 20 The 

intensity of trap emission, I for the three level system is given by trap' · · 

I 
trap 

Kr N + Kr N + Kr N 
x trap x trap y trap y trap z trap z trap 

where Kr is the radiative rate constant for the ith sublevel and 
i trap 

N . h 1 . f h .th bl 1 
i 

1s t e popu at1on o t e 1 su eve . 
trap · In the absence of a 

(I.l3) 

spin-lat.tice relaxation processes in the band states, the trap states, 

and between trap and band states, the population of a triplet sublevel 
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is independent of the populations of the other sublevels and hence the 

total population of a particular magnetic spin component is the sum 

of the populations in the particular spin sublevel of exciton band and 

.the trap~ Th~s, the trap population of the ith sublevel can be given by 

N. 
~ trap (1.14) 

h Z . th . . f . f th .th . bl 1 w ere . ~s · e part~t~on unct1.on or . e 1. sp1.n su eve . 
~ 

Under 

these conditions the total trap intensity can be written as 

I Kr N 
1 

(LlS) trap trap x total z X 
X 

+ Kr N 
1 + Kr N 

1 
y trap y total z z trap z total z 

y z 

In the absence of spin-orbit coupling the dispersion of each of the three 

triplet bands will be identical when the zero-field spin dipole interaction 

is much smaller than the band dispersion. Thus, the three spin sublevel 

partition functions, Z~, Z and Z are essentially the same and the trap 
~ y z . . 

intensity is given by 

I = (Kr N + Kr N + Kr N ) l 
trap x trap x total y trap y total z trap z total t 

(1.16) 

The net result is that the temperature dependence, as in the single spin 

sublevel case, is determined only by the change in Z with temperature. 

In general, however, spin-orbit coupling must occur in order to give 

allowed transition character from.the triplet excited state to the ground 

singlet manifold. 21 In most cases the spin eigenfunctions have different 

symmetry properties resulting in admixture of differer1t singlet states· 

into three individual spin sublevels. 22 The dispersion of the three 
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triplet spin sublevel bands can differ in such cases giving each sublevel 

a slightly different partition f~nction and therefore in principle a 

different intensity temperature dependence. However, the changes in the 

dispersions of the bands due to spin-orbit coupling ~re, iri almost all 

cases, so small that the temperature dependence of the intensity of trap 

phosphorescence is unaffected by these small energy differences .. In 

H
2

-TCB spin-orbit coupling produces only ·one part in 106 difference in 

the dispersion of the three spin sublevel bands. 8 

A more serious consideration for molecular systems in some temperature 

regions is the effect of spin lattice relaxation on the temperature 

dependence of trap emission. In the above discussions the steady state 

population in the band and trap, Ntotal' in a particular magnetic sublevel 

was assumed to be independent of temperature and independent of the 

populations of the other two sublevels. However, spin lattice relaxation 

couples the sublevels, allowing population to be transferred from one 

to another. 
23 Since this is in general highly temperature dependent, 

the total steady state population of a particular magnetic sublevel 

can change significantly with temperature. To account for these 

variations is in principle straightforward. The population of a trap, 

and therefore its intensity, at any one temperature is determined by· 

the partition function as before, but as the temperature changes, the 

change (via T
1

) in the total sublevel population as well as the change 

in the partition functionmust be determined. The change in the total 

sublevel populations can be determined by measuring the change in the 

.. 
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lifetimes of the three sublevels as a function of temperature, and 

h b . h t f. i 1 ·. 1 . 24 t ere y assess~ng t e amoun o sp n att~ce re axat~on. The trap 

probability is determined as before using the partition function, but 

now tt must be multiplied by the relative sublevel population for each 

temperature, i.e., 

1~rap =[ .?: K~ trapNi total (T)] ; 
~-x,y,z 

(1.17) 

Although the effects of spin lattice relaxation between the magnetic 

sublevels of the triplet band in one-dimensional bands can complicate 

the evaluation of the trap phosphorescence intensity, in most crystals 

this does not present any real difficulty. It is only when there is a 

significant temperature dependence to the effective spin lattice relaxation 

process over the temperature range of interest that difficulty arises. 

Usually, small two-dimensional exchange interactions between translationally 

inequivalent molecules in the unit cell result in an effective averaging 

of the spin sublevel populations in band states on a time short compared 

to the lifetime of the state. Thus, the exciton dynamics keep 

the individual spin-sublevels close to Boltzmann equilibria, and hence 

the temperature dependence of spin lattice relaxation is ineffective in 

causing large deviations in the individual spin sublevel populations 

over the range of teinperature of interest. This is the case at least 

for H2-TCB and n2~TCB between l-4°K. 
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2. Two and Three Dimensional Bands 

The above considerations can be readily ext~nded to systems in which 

a trap interacts with a multidimensional exciton band. For _one molecule 

per unit cell the most general form is given by the three-dimensional 

partition function z: 

z c: 1 + (I.l8) 

G(k) 
- (£1.-2f:S (1-cosk a)-2f3b (1-cosk. b)-2(3 (1-cosk c) /kT e a a ·o c c 

where ka' ~· and kc are tt~e wave vectors associated with the crys-

tallographic translational directions a, band~- and 6 ' sb and 13 ·are 
a c 

the nearest neighbor intermolecular interaction matrix elements along 

these- three axes. G(k) is a degeneracy factor which takes on the value 1 

when the valuesof all three k wave vectors are zero, 2 when any two k 

wave vectors are zero, 4 when only one k wave vector is zero,and finally, 

8 when all three k wave vectors are greater than zero. The partition 

function for the case in which the exciton band is .two-dimensional ~s 

obtained by.setting 13 equal to zero, and the one-dimensional partition . c 

function given in Eq. (I. 2) follows naturally from Eq. (I.l8) by 

setting sc an:d sb equal to zero. 

To si~plify the discussion, only the two-dimensional case l-Till be 

explicitly considered. For illustration Sb is set equal to 1/2 of Pa 

and the two-dimensional exciton band is limited to four hundred states 

corresponding to a square array of 400 molecules. An energy level 

diagram for the trap and exciton system is given in Fig. 7. As in the. 
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Fig. 7. Trap and exciton energy level diagrams for a one dimensional 

exciton band sb = 0 and a two dimensional band with sb = isa. 

The spectroscopically determinable trap depth is the difference 
in energy between the trap level and the ka = 0, kb = 0 level 
of the two dimensional exciton band. The trap depth can have 
one of the four possible values, 6.1 to 6.4 shown in the figure, 
depending upon the signs of Sa and Sb. If both Sa and Sb are 
negative, t-.1 will be observed. If Sa<O and Sb>O, t-.2 will be 
observed. If Sa>O and Sb<o, t-.3 will be observed, and if 
Sa and Sb are both pesitive, 6.4 will be the spectroscopically 
measured value of the trap depths. 
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one-dimensional case, the 0-0 absorption must obey the selection rule 

Ak = 0; thus, the 0-0 transition is associated with the k 
a 

= 0 k_ = 0 
~ -0 

level. Depending upon the signs of Sa and S0 , the ka = 0, ~· =. 0 exciton 

level can occur at four different energies relative to the trap energy. As 

indicated in Fig. 7, if Sa and Sb are both negative,.A1 will be the observed 

trap depth. If Sa is negative and 13b is positive, A2. will be the trap depth. 

If sa is positive and sb is negative, 63 will be the trap depth. If both 

Sa and Sb are positive, A4 will be the spectroscopically measured trap 

depth. 

For a given trap concentration, the average number of states in the 

exciton band is known, the trap depth, A, can be measured, and the 

temperature dependence of the trap intensity can be fit by varying the 

signs and magnitudes of 13a and 1\ in the_multidimensional partition 

function (Eq. (I .18)). For systems in \\'hich the number of states in 

the band is large, i.e., low trap concentration, the density of states 

in the band becomes so large that the partition function is not 

sensitive to sa and sb separately but depends only upon the total 

bandwidth, 41 S) + 41 13bl; thus, a measure of the bandwidth can be 

experimentally determined, even in multidimension~l crystals, but details 

of the band along specific crystallographic axes are lost. The above 

discussion has been restricted to systems containing trap levels of 

only one energy. Systems with two or more traps of different ~nergies 

present a different problem but provide additional and unique inform~tion 

on the exciton dynamics and will be considered in detail belo0. 
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II. EQUILIBRIUM BETWEEN EXCITON STATES AND 'MULTIPLE TRAPS 

A. Boltzmann Equilibrium 

The extension of the above treatment to systems in which there are 

two or more types of traps having different energies would be straight-

forward if it were not for the fact that the excitons and traps have 

finite lifetimes. If the. excited state lifetimes were long enough,-the 

system would come to thermal equilibrium and a statistical treatment 

would always be proper for any temperature or trap depth. However, 

given the finite lifetimes of the states involved, a statistical 

approach is only possible above a certain characteristic temperature, 

hereafter termed_ Tc, v7hich is determined by the trap. depths, the trap 

concentrations, and the exciton band width. 

The inability of the sx_stem to achieve thermal equilibrium below 

the characteristic temperature is due in part to the spacial separation 

of the traps of different energies and in part ~ue to different trap-

phonon interactions at the different trap sites in the lattice. This 

can be seen more clearly by considering the energy level diagram in 

Fig. 8 for a system consisting of an exciton band, a shallow trap, T , s-

and a deep trap, Td. The dashed arrows indicate the possible paths 

electronic excitation can travel in the system in the absence of direct 

long range energy exchange between traps. Basically, an excitation cannot 

be transferred to another trap site without firstbeing thermally promoted 

to the exciton band in which it can migrate to another trap site and-again 

be trapped. Equilibrium is only established through a continuous process 

of detrapping, migration and retrapping. If the process continues long 
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Energy level diagram for a system captaining an exciton band 
and traps of two different energies. Ts labels the shallow 
traps, and Td labels the deep traps. ~1 is the energy 
difference between Ts and Td, and ~2 is the energy difference 
between Td and the k = 0 level of the exciton band. The 
dashed arrows indicate the possible paths an excitation 
can travel in the system. 
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enough, the system reaches .its equilibrium population distribution in 

spite of the fact that the shallow and.deep traps exchange their population 

with the band states at different rates. Because the exciton and trap 

states have a finite lifetime, however, the rate of detrapping and 

retrapping for both traps must be large enough to compete with radiative 

and radiationless processes. This can only occur above some characteristic 

temperature T ~Jhere phonon-trap interactions are frequent enough to keep 
c 

the system in thermal equilibrium. 

In the equilibrium temperature region, the temperature dependence 

of the trap intensities can be determined from the probabilities PT 
d. 

and Pt 
s 

that an excitation will be in deep trap, Td' or shallow trap, 

r , respectively. 
s 

Taking the exciton band to be one-dimensional in the 

nearest neighbor approximation, the-partition function, z, for the system 

is giv~n by 

(n-1)71' /na 
-6/kT -l:.zlkT 

z = 1 + c1e + c2e + L: 
k=TI/na 

· -[62~iS(l-coska)]/kT 2G e 
2 

(ILl) 

The zero of energy is taken as the en·ergy of the deep . trap. As shown in 

Fig. 8, t:.
1 

is the en~rgy difference between the deep and shallow traps, 

and 6 2 is the energy difference between the deep trap and the k = 0 level 

of the exciton band. The k = 0 level may be at the top or bottom of the 

band (as discussed previously) depending upon the sign of B. The concen-

tration of the traps and excitons are normalized to a unit concentration 

of the deep trap. The first term in z is due to the deep trap. The 

second term is the Boltzmann factor for the shallow. trap, multiplied Ly 

c
1

, the number of shallow traps relative to a single deep trap. The third 

_.i.' 
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term is the Boltzmann factor for the non-degenerate k = 0 level of the 

exciton band times G2 , the number of exciton chains relative to a single 

deep trap. The final sununation is over the remainder of the exciton 

k states, which are doubly degenerate, giving rise to the factor of 

two. The total number of host molecule states relative to one deep 

trap is Gl(2n) where there are 2n states per exciton and G2 exciton 

chains per. deep trap. The trap probabilities p and p (which are 
Td T 

s 
proportional to the trap intensities) are 

PT (T) 
1 

Z(T) d 
(II. 2) 

and 

G1e 
-6./kT 

PT (T) Z(T) s 
(II.J) 

respectively. Calculated plots of PT and PT vs temperature for systems 
d s 

which contain 99.2% host exciton states, 0.8% shallow traps, and 

-3 . 
1.6Xl0 % deep traps are illustrated in Fig. 9. The trap depths, 61 

-1 -1 ~ 
and 6

2 
are 10 em and 20 em , respectively. These values are typical 

of a single and doubly protonated traps in deutero crystals. The curves 

-1 -1 
are for a range of band widths, 4S, between +8 em and -8 em Several 

features of the trap phosphorescence intensity in multiple trap systems 

are particularly noteworthy. First, as 4S becomes more positive the 

energy levels in the band become loser to the trap levels. This results 

in a loss of trap probability and theref6re a loss of trap intensity~ 

Although both traps are affected, the change in the deep and shallovJ 

trap probability are entirely different. The decrease in the deep 

trap phosphorescence with increasing temperature results from the 
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partitioning of the excitation into the higher energy shallow trap and 

exciton states. When-the number of molecules in an exciton chain 

(the number of k states in the band) greatly exceeds the number of shallow 

traps, the form of the deep trap. temperature dependence becomes 

indistinguishable from the single trap problem considered earlie!· The 

temperature dependence of the shallow trap is not as simple. Physically, 

as the temperature increases from a value where only the deep trap is 

emitting (PT = 1.0; PT 
d s 

0.0) the initial loss in ~d results in the 

onset of T emission. How rapidly T increases with increasing 
s s 

tempera-

ture, however, is determined by the partitioning of energy from the 

shallow trap into the band states. If many exciton states are near in 

energy to the shallow trap, the shallow trap will never acquire a 

significant intensity because of the ability of the exciton states to 

partition the energy, i;e., large value of the band partition fu!lction. 

This occurs when the shallow trap depth (6
2 

- 61 in Fig. 8) is small 

and/or the exciton band has a large number of k states at energies near 

the shallow trap (positive 13). On the other hand, when the shallmv trap 

depth becomes larger and/or the exciton band has a smaller positive 

dispersion of negative dispersion, the shallow trap emission will 

continue to increase in intensity at the·expense of the deep trap 

probability until a point when the Boltzmann factor starts to significantly 

, populate the exciton states. At this point the shallow trap will lose 

intensity with increasing temperature because of partitioning to the band. 

An important point of the temperature variation of both the deep and. 

shallow traps is that for every,curve associated with the deep trap 

there is a unique shallow trap curve for a specific value of the band 
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dispersion, number of k states and number of shallow traps. Moreover, 

the detailed shape of the temperature dependence curve. for the shallow 

traps is determined by the partition function. A variation in Td and 

T trap emission as a function of concentration is illustrated.in Fig. 10. 
s 

The value of the band dispersion and trap depth have been fixed at values 

. -1 -1 -1 
4~ = 4 em , 61 = 10 em , and 6 2 = 20 em As is expected, when the 

shallow trap concentration increases relative to the band states the 

intensity peaks at higher temperatures. The values plotted in Fig. 10 

are representative of mixed crystals where the band states are the pure 

deutero (D2) molecule (2 deuteriums/molecule), the shallow trap is a 

molecule with one D and one H and the deep trap is a molecule with two 

protons substituted for the two deuteriums of the host. The concentration 

values listed for cases A through D correspond to statistical mixtures 

of the various species based upon the total deuterium concentration of 

the crystals. 

The practical use of such an approach to obtain information about 

the band is straightforward. If.a sample is prepared with two traps of 

known concentration, where 6
1 

and 6
2 

can be measured spectroscopically 

the the band dispersion and the sign of S can be determined from 

the temperature ·dependence of the two trap intensities. Figure 11 

I 

illustrates this for deutero-proto mixed crystals of TCB. Figure lla 

is the temperature dependence of H2-TCB(Td) and HD-TCB(Ts) trap 

phosphorescence in a n
2

-TCB crystal in the temperature range 1.3°K ~o 

3.8°K. Details of tl1e preparation and characterization of the traps 

are given in Section li-E (Experimental). The data illustrate t\vo 
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Fig. 11. (a) displays the intensity vs temperature experimental data. The 
deep trap 1'd is H2-TCB, the shallow trap Ts is DH-TCB, and the host, 
molecules which comprise the exciton chains are n2-TCB. The shallow and 
deep trap depths are·respectively 12.8 cm-1 and 23.5 cm-1 . Region.I 
is the non-Boltzmann temperature region, c.nd Region II is the ter.1perature 
region in which the system is in thermal eqailibrium. The shaded section 
indicates the transition region. (b) sho\-7S the experimenta'l data in · 
addition to curves calculated for various exciton bandwidths, 4S, using 
the experimental trap depths and·trap concentrations. It can be seen 
that in the Boltzmann equilibrium Region II, both,the shallow trap data 
and the deep trap data fall on ths 12 cm-1 shallow and deep trap 
calculated curves. 
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distinct temperature regions, one below and one above a characteristic 

temperature T. These are labeled I and II, respectively, and·correspond 
c 

to regions where Boltzmann statistics are appropriate .(II) because the 

trap and band state are in thermal equilibria and where Boltzmann statistics 

are inappropriate (I) because the finite lifetime of the excited states 

are short relative to the time necessary to equilibrate both the deep 

and shallow traps with the exciton band states. 

Using the experimental values for ~l' ~2 • Ts and Td' an excellent 

fit for both the deep and shallow trap temperature dependence in region 

II is simultaneously obtained for the lowest triplet band in n2-TCB. A 

-1 
total band width of 12±2 em and a positive intermolecular exchange 

interaction for D
2

-TCB from these experiments (cf. Fig. 11) is to be 

-1 
compared to a total band width of 3.5 em and a positive intermolecular 

exchange interaction for the same band in H2-TCB (cf. Fig. 6). The 

relationship between isotope effect, the Born-Oppenheimer approximation 

and the band dispersion in these crystals will be discussed in a later 

bl . . 25 pu 1.cat1on. 

In the remainder of this chapter we will discuss the non-Boltzmann 

region (I) and formulate a general approach to exciton dynamics in this 

region which is amenable to experimentation. This region is characterized 

by insufficient phonon-trap interaction to provide thermal equilibrium 

between trap and band states. We will.defer detailed interpretation· 

of TCB in this region until later, but we will demonstrate proof that 

TCB in this region is not in thermal equilibrium but characterized by 

considerations o~ the next section. 
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B. Non-Boltzmann Distributions Between Exciton and Trap States 

Below a characteristic temperature, the system does not come to 

thermal equilibrium within the lifetimes of the states because the 

phonon interaction with the trap states doe~ not equilibrate the 

trap and band states at a fast enough rate. The problem must therefore 

be treated in terms of a set of coupled rate equations for the processes 

which are occurring. Differential equations describing the time 

variation of the states illustrated in Fig. 12 are given in Eqs. (II. 4) 

through (II-7). 

dd[ E] = K IS C I S l J + Kd [ Td] + K [ T ] - Kd . [ E J - K . [ E] - K [ E] 
t o so s 1 s1 E 

-(II. 4) 

d[Td) 
Kdi[E] - Kdo[Td] - Kd[Td] = dt (II.S) 

d[T ] 
- s = K . [E] - K [T ] - K [1 ] 

dt S1 so s s s (II. 6) 

d(S
1

] p [So] K 1 [S 1] _ KISC[Sl] 
dt s 

JII.7) 

[E] is the exciton population; [s1 ] is the population of the first 

0 excited singlet band, and [S ] is the ground state concentration; 

[Td] and [Ts] are the deep and shallow trap populations; Pis the_r.;ite 

constant for the production of excited singlet excitons, and K 1 is 
1 

s 
the rate constant for the relaxation of singlets to the ground state' 

manifold, S0
, while KISC is the intersystem crossing rate constant. 

~, Kd and Ks are the total rate constants for relaxation_to the ground 

state from the exciton bands, deep traps and shallow traps, respectively; 

I 

i 
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Fig. 12. Energy level diagram for an exciton and two-trap system showing 
rate constants used in the non-Boltzmann temperature region. 
K8 , KE, Kd and Ksl are the total rate constants for relaxation 
to the ground state, 5°, for the shallow trap 1'8 , the exciton 
b!nd E~ the deep trap 1'd, and the fir~t excited singlet state 
S , respectively. P is the rate constant for the production 
of excited singlet states and KISC is the intersy1stem crossf~g 
rate constant. K5 i and Kdi are the rate constants for 

.excitations flo\.,ring into the shallc~,, 2~d deep traps, respective!~·, 
and 1C

50 
and I:do are the rate consts.~1ts for excitation flowin.:; cu:: 

of the shallow and deep traps, respectively. 



-46-

they include radiative and radiationless processes. K . and Kd. are the 
S1 1 

trapping rate constants for excitons entering the shallow and deep traps 

respectively, and K and Kd are the detrapping rate constants of the 
so 0 

shallow and deep traps into the exciton bands. Implicit in the kinetic 

equations is the assumption that the excited state concentrations are low 

enough to insure that bimolecular annihilation and other non-linear 

effects may be neglected. The ground state concentration, [S0
], is taken 

as a constant. If the lifetimes of the excited states are short, then 

[ S
0

] will be the concentration of host molecules in the crystal. If the 

lifetimes of the exciton and trap states are long but are approximately 

the same, [S
0

] will remain constant with changing temperature since 

transferring population between excited states of the same lifetime 

will not result in changing [S
0
]. However, if the lifetimes are long 

and differ greatly, then I S0
] can change with temperature but will still 

be constant at any one temperature •. Hence, Eqs. (II.4) ·through (II. 7) · 

can be solved for (TsJ and (Td] by assuming steady state. The results are: 

p J = 
s 

A K . (Kd + Kd ) 
S1 0 · (II. 8) 

(Kd + Kd
0

)(Ks + K - C K .) - B Kd.(K + K ) so S1 1 s so 

and 

A Kd. (K + K ) 
1 s so 

(II. 9) (Kd + Kd
0
) (Ks + K - C K . ) - B Kd-. (K + K ) so S1 1 s so 

where 

.A (II.lO) 
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B 
Kdo 

(~ + Kdi + Ksi) 
(II.ll) 

K 
so 

(~ + Kdi + K .) 
S1 

c (II .12) 

1. Non-Boltzmann Low Temperature Limit 

At some.temperature well below the characteristic temperature T , 
c 

Kso and Kdo will become insignificant because of the lack of phonons to 

equilibrate the trap and band states at a rate comparable to the lifetime. 

Setting these two constants equal to zero in Eqs. (II.8) and (II.9) yields 

a low temperature limit for Td and Ts given by 

(II.l3a) 

[T ] = A K .K -l 
s S1 s 

(li.13b) 

-1 -1 
where the constants Kd and Ks are the deep and shallow trap lifetimes. 

~. and K ., the rate constants for excitons flowing into the traps, can 
u1 S1 

be identified in the coherent model with the average group velocity of 

the excitons, <v >,weighted by distance between traps, i.e., 
~ 

Kdi <v g} dd 
-1 

= 

<v ) 
-1 

K = d 
si g s 

(Il.l4a). 

(II.l4b) 

The average exciton group velocity at a particular temperature is f,iven 

by Eq. (1.9), and dd and d are the average distances between the deep" . s 

and shallow trap sites, respectively. It should be noted, however; that 
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the relationship between Kdi' Ksi and< Vg) need not be restricted solely 

to coherent migration. The effects of phonon-exciton or impurity-

exciton scattering on the average group velocities could be. incorporated 

into Kd. and K . in cases intermediate between pure coherent migration 
1. Sl. 

and random walk migration when the explicit k dependence of these 

processes are delineated. In the limit that all coherence is lost via 

these interactions, the average group velocity approaches a temperature in-

dependent velocity given by the random walk parameters T and (d) of 

Eqs. (1.11) and (1.12), respectively, i.e., 

( V ) -+ ( d)/T (II.l4c) 
g 

Furthermore, ·the attenuated velocities in 'the intermediate and high 
\ 

temperature limits could be substituted into the above equations 

(Eqs. (IV.l4a) and (II.l4b)) and a kinetic description of energy mi~ration 

' in these limits would be given by substituting tl).e appropriate velocity 

in the following equations. The trapping rate constants Kd. and K . 
1 · Sl 

are the inverse of the average time it takes an exciton to reach a 

trap, and hence in the temperature region under consideration, the rate 

of finding the trap is inversely·proportiortal to the number .of trapping 

sites available. The concentration of populated deep and shallow traps 

is then simply given by 

[T ) 
s 

[Tj 
u 

A ( V ) 
g 

A 

-1 -1 
K d 

s s 
(IL 15a) 

(Il.lSb) 
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s 

A 

( v ) 
g 
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-1 
K 

s 
N 

s 
(II .16a) 

(II.l6b) 

where Nd and Ns are the deep and shallow trap site concentrations. When 

the rate of trapping is large relative to the decay of the exciton through 

other channels (Kdi + Ksi >> KE)' the steady state trap concentrations 

become independent of the average group velocity associated with exciton 

migration and hence independent of temperature: 

[S ] 
0 

(II.l7a) 

and 

(II.l7b) 

and the ratio of the steady state concentrations is simply proportional 

to their respective total concentrations: 
) 

[T J 
s 

(Td] = (II.l8) 

On the other hand, when the exciton decay competes with or is greater 

than the rate of trapping (K_ >> K. + Kd.), the steady state trap --E s1 1 
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concentrations are proportional to the temperature dependent av.erage 

group velocity of exciton wave packets and are given by 

[ p KISC[S ] J -1 
(T J 0 < v } K N 

s 
(K sl + KISC) kE g 

(II.l9a) 
s s 

and 

~ PKISC[S ] J K-1 (Td] 0sl + Krsc) '), 

<v > Nd g d (II .19b) 

The ratio of concentrations, however, still remains velocity and therefore 

temperature independent and is also given by Eq. (11.18). 

Since the intensity of emission from the traps is proportional to 

number of trap sites, the invariance of the ratio over a finite temperature 

range provides an experimental test of this limit. In addition, since 

the temperature dependences of [Ts] and [Td] result from a change in the 

average group velocity, the trap emission provides a tool capable of 

investigating the average velocity distribution in the exciton band and 

hence the coherence even at the very lowest temperatures. 

2. Non-Boltzmann Intermediate Temperatures 

As the temperature is increased toward T , the rate constants for 
c 

energy transferring from traps to exciton bands are expected to increase. 

However, if the depths of the traps T and Td below the ·bottom of the s . 

band are significantly different relative to kT, then excitations will be 

able to therrnalize from the shallow trap T into the band at temperatures 
. s 

too low for excitations to thermalize from Td. The net result is that 

Kso will become significant at temperatures where Kdo is still negligible. 

~ 
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Setting Kdo equal to zero in Eqs. (11.8) and (II.9), the concentration of 

traps is given by 

AK. 
[1" ] 

s 
Sl. 

(II. 20a) 

A Kd. (K + K ) 
l. s so (II. 20b) 

The dependence of these equations on < V } can be seen by substituting· 
' g ' 

Eqs. (II.14a) and (II.l4b) for Kdi and Ksi' In this region the temperature 

dependence of 1s and 1d results from both the temperature dependence of 

<v } and the shallow detrapping rate constant, K • Specifically, when 
g so 

the radiative and radiationless decay of the exciton states to the ground 

state is slow relative to trapping, KE << Kd. + K ., the group velocity 
l. . Sl. 

dependence contained in Kdi and Ksi vanishes and 1s and 1d are given by 

(II. 2la) 

and 

(II. 2lb) 
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respectively. Hence, the only temperatu~e dependence of Ts and Td is 

contained in K so 
In the other limit, when trapping is slow relative 

to the radiative and radiationless decay ofthe exciton states, 

K_ >> Kd. + K ., the shallow trap population reflects the average 
-~ ~ s~ 

group velocity of the excitons via its trapping rate from the band 

(K . ) ; i.e., 
s~ 

(T J 
s ( 

Ksi ) 
K + K 

s so 
(II. 22a) 

The increase in the concentration of T via the increase in the exciton 
s 

( V ) may be offset by the increased detrapping rate K with temperature. 
g so 

By constrast, the deep trap concentration is given by 

(II. 22b) 

and its temperature dependence results only from the increase in the 

group velocity of the exciton states with temperature. Finally, the 

temperature dependence of the ratio of the trap populations is only 

functionally related to K 
so This can be seen by combining Eqs. (II.2la) 

and (II.2lb) in one case the Eqs. (II.22a) and (II.22b) in another. In 

both cases, the ratio is: 

{T J N 
s s 

{Td] = Nd 
(II.23) 

This is valid for both conditions, K » K + K and K_ « K + K . 
-~ di si -~ di si 

The important point of the above equations is that the steady state 

. ~ 

.. ' 
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concentration of the shallow and deep traps and thus the emission 

intensity depends implicitly upon both the group velocities in the 

band and the rate of detrapping of the shallow trap, K 
so 

Both of these 

quantities are measurable and provide, in principle, detailed information 

on the dynamics of trap-exciton interactions. 

Qualitatively, the above processes can be physically viewed as 

follows. At very low temp-eratures both K and Kd are zero, and the so - (') 

populations (Ts] and [Td] (except for changes caused by variations in 

<- V )) remain constant with increasing temperature: Since the shallow 
g . 

trap is closer in energy to the band than the deep trap, as the temperature 

is increased Kso becomes nonzero before Kdo' and some of the shallow 

trap's population is thermalized into the exciton band. This additional 

exciton population migrates in the band at an average group velocity 

determined by the temperature and band dispersion and is retrapped in 

deep traps. Contrary to what would have been expected for a thermal 

equilibrium, the deep trap gains population and intensity at the expense 

of the shallow trap. The importance of the deep trap concentration in 

relation to the magnit~de of Kso cannot be underestimated if a 

phenomenological understanding of the complexities and variations of 

impurity effec~s in crystals are to be properly understood. 

C. Other Considerations 

To this point, the effects of possible differences in exciton and 

trap radiative and radiationless lifetimes on the temperature dependence 

of trap emission in the equilibrium temperature region have not been 

discussed. If Ntot is the total triplet excited state population, then 



-,.54-

1 
IT ~ Ntot Z(T) , where Ntot is assumed to be temperature independent. 

If the total lifetime of the exciton and trap states are equal then the 

transfer of population between the band and trap does not alter the 

value of N • However, if they a.re not equal, N will be temperature tot tot 
1 

dependent, and IT ~ Ntot (T) Z (T) . Hence, both N and z are functions tot 

of temperature. 

Ntot{T) can be determined from a· system of differential equations 

assuming steady state. In terms of the parameters in Fig. 12, assuming 

the ground state concentration, [S
0
], remains constant, 

dN 
tot 
dt 

= KISCIS1] - K XN - K_(l - X) N = 0 
T tot ~E tot 

(II. 24) 

(II.25) 

X is the percentage of population found in the trap. X= 1/Z(T), and 

(1 - X) is the percentage of population found in the band at a given 

temperature. At steady state Ntot(T) is found to be 

Ntot(T) 
1 

(If. 26) 

where· the only temperature dependent parameter on the right side of the 

equation is X· The ratio of the values of N t(T) at two temperatures 
to 

is 

;, . Ntot (t2) 

Ntot (Tl) 
(II.27) 

I 

I 
I 

"' I 
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Eq. (II. 27) can be used to obtain N (T) relative to the value of 
tot 

N (T
1

) which may be used to normalize the total population for all 
tot 

other temperatures. Thus, it is not necessary to know the actual value 

of Ntot(T). A similar procedure can be used in the case of more than 

one trap or for corrections in N due to spin-lattice relaxation 
tot 

effects discussed above. 

Another point which needs to be mentioned is that it has been tacitly 

assumed that intersystem crossing takes place from the singlet·exciton band 

to the triplet exciton band and that exciton migration and trapping takes 

place from the triplet band. However, in some cases after exciting 

initially into the singlet exciton band, migration and trapping take 

place before intersystem crossing occurs producing triplet traps. If 

the triplet traps are in equilibrium with the band; the trap intensity 

as a function of temperature will reflect the parameters of the triplet 

system. However, if the time for a trap· to transfer its excitation'· 

to the band is long compared to its lifetime for decay to the ground 

state, the triplet trap's population will be determined by the singlet 

trap's population. In this case, the problem must be considered in terms 

of the band width and trap depth of the singlet exciton and trap 

system giving careful consideration to the question of equilibrium. In 

studying triplet systems, if these complications arise, they can be 

eliminated to a large extent by suitably filtering the excitation 

light so that only the first triplet excited state·is produced. 
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D. Qualitative Features of TCB in the Non..:Boltzmann Region 

The intensity vs temperature data for the two traps in deuterated 

n
2

-TCB crystals in the temperature region before Boltzmann equilibration 

(I) is illustrated in Fig, lla. The predicted behavior for a system 

of this type is indeed observed, The shallow trap intensity decreases 

and the deep trap intensity increases as the temperature increases. 

-1 
The shallow trap HD-TCB and the deep . trap H2-TCB are 12.8 .em and 

. -1 . . 
23.5 em below the n2-TCB triplet band (k = 0), respectively. Because 

the Boltzmann factor is small in the temperature region of interest, 

there is a significant difference in the detrapping rates Kso and Kdo' 

Apart from the phenomenological observation that; the temperature 

dependence of the two traps qualitatively behave in the proper fashion 

in Region I, several independent experimental observations conclusively 

demonstrate that Kso >> Kdo for this system. In Fig. 13 the zero fie~d 
. . 26 . . 

optically detected magnetic resonance (ODMR) spectra. for the two 

traps found in the deuterated TCB are illustrated. These spectra are 

obtained by monitoring the optical emission to the electronic origin 

27 
from the two traps separately as a microwave field is swept in frequency. 

The upper spectrum is the optically detected electron zero field 

D- lEI transition of the deep trap, H2-TCB. The peak labeled A 

corresponds to electron spin only transitions while the peaks labeled 

B and B' are the simultaneous electron spin plus 35
c1 and 

37
c1 nuclear 

' 28 29 quadrupole transitions, respectively. ' The B and B' peaks are separated 

from the center line by the characteristic 35c1 and 
37

c1 excited state 

nuclear quadrupole frequencies. The C peaks correspond to simultaneous 

electron spin 35c1 and 37c1 double nuclear quadrupole transitions.
29 
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Fig. 13. The optically detected magnetic resonance spectra for the 
deep trap (upper spectrum) and the shallow trap (lower 
spectrum) found in deuterated tetrachlorobenzene in the 
non-Boltzmann temperature Region I. The A peaks are electron 
only transitions. The B and B' peaks are Cl35 and cl37 electron 
spin plus nuclear quadrupole spin transitiQns, respectively. The 
C peaks are electron spin plus Cl35 and c137 double nuclear 
quad~upole spin transitions. The large peaks in the deep trap 
spectrum have been truncated to facilitate display. In .the 
deep trap spectrum between peaks B' and C on the low frequency 
side is a peak going in the opposite direction from the rest 
of the deep trap spectrum and in the same direction and at 
the same frequency as the shallow trap electron spin only 
transition. 
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These transitions are split from the electron spin only transition A 

35 37 . 
peak by the difference in the Cl and Cl quadrupole frequencies. On 

the low frequency side of the deep trap spect~um between peaks B' and C 

is ·a peak going in the opposite direction from the rest of the spectrum 
'\, 

at exactly the frequency associated with the shallow trap D- lEI transition. 

This will be referred to as the T peak. The major peaks A and B of 

th~ deep trap spectrum have been truncated to facilitate display. The 

lower spectrum in Fig. 14 is the D- lEI transition of the shallow trap, 

DH-TCB. Only one peak is observed even at moderately high microwave 

powers at temperatures above 1.3°K. This peak corresponds to the fully 

allowed electron spin only transition. The change_in the light intensity 

in the shallow trap spectrum is opposite the direction of the change 

in the light in the deep trap spectrum except for the T peak. These 

results can be understood as follows. 

The spin alignment of the shallow trap is changed by the application 

of the microwave field at the transition frequency, 3.5600 GHz. This 

change in spin alignment is at least partially carried into the exciton 

band by shallow trap detrapping processes. The net result is that the 

exciton band acquires an altered spin alignment which is carried into 

the deep traps by the trapping process Kdi' This results in a change 

in the deep trap light intensity in the same direction and at the same 

microwave frequency as the shallow trap transition. This is the observed 

T peak in the deep trap spectrum. Similar effects are observed in 

H2-TCB when the exciton band spin alignment is altered by a microwave 
' 

fi ld d h . i . i . d 30 e an t e trap em~ss on s rnon~tore • The significant point here 
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is that there is no corresponding T pe~k in the shallow trap spectrum 

even though ·the deep trap transition is more than an order of magnitude 

stronger. This implies that the shallow trap excitations are detrapping, 

migrating and retrapping in deep trap sites, but that deep trap excitations 
, 

are not transferring population to the shallow trap sites to any signif-

icant extent. 

A second important observation can be made from the ODMR spectra. 

Because the electron spin and the nuclear quadrupole eigenstates are 

coupled by the electron-nuclear hyperfine interaction, only the pure 

electron transition will be observed in the absence of the hyperfine 

interaction. If the lifetime of a state is short compared to the 

inverse frequency associated with the hyperfine interaction, then the 

triplet state electrons will not be influenced by hyperfine interaction 

and the coupling of the electron eigenstates to the nuclear eigenstates 

. 35 
will vanish, and the quadrupole peaks (B(Cl ) and B'(Cl37)) will be 

absent from the ODMR.. In TCB and similar compounds "the hyperfine 

29 30 interaction is on the order of 1 MHz. ' The fact that quadrupole· 

transitions are not observed in the shallow trap ODMR spectrum sets. 

an upper limit of less than 1 ~sec for the time an excitation remains 

trapped in the shallow trap at 1.3°K. On the other hand, the fact that 

strong quadrupole peaks are observed in the deep trap ODMR spectrum 

implies that excitations remain in the deep traps for times much longer 

than 1 ~sec. When the temperature is lowered to about 1.2°K to 

decrease Kso' weak quadrupole satellites on the shallow trap spectra 

appear at high microwave power indicating that the detrapping rate 

constant K is in fact becoming smaller. Thus, the ODMR data in 
so 

addition to the temperature dependence of the trap emission data 
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established that in the temperature Region I immediately before Boltzmann 

equilibration occurs the shallow trap is detrapping rapidly while the 

deep trap is detrapping slowly relative to their lifetimes, i.e., 

K >> Kd •. so 0 

E. Experimental 

1,2,4,5-tetrachlorobenzene (TCB) was purchased from Aldrich Chemical 

Company, recrystallized from ethanol and vacuum sublimed to remove 

residual solvent. The recrystallized TCB was vacuum sublimed into a 

zone refining tube, repeatedly outgassed, and sealed under vacuum in a 
\ . ( 

The sample was then zone refined for 600 passes at 10 mm diameter tube.· 

a rate of 1 em/hr. Only the center third of the zone refined material 

was used. 

Deuterated TCB was prepared as follows. 31 n2o and so3 were reacted 

to form n2so4 . n2so4 and H2-TCB were then heated for 12 hr in a sealed 

tube at 150°C. The cold reaction mixture was poured onto cracked ice 

and the exchange product was filtered off, washed with water and used 

as the starting material for the next exchange. Five successive exchanges 

were performed in this manner. The final product was washed thoroughly 

with water, recrystallized from ethanol, vacuum sublimed, and zone •' 

refined for 300 passes. Two separate batches were prepared in this 

manner. 

The percentage deuterium in each sample was determined in the 

following manner. An accurately weighed sample from each batch of the 

deuterated TCB was dissolved in a known amount of cs 2 . Known amounts of 

dioxane, c
4

H
8
o

2
, were added until the concentration of protons from the 

two species in the cs
2 

solution were approximately equal. Proton NMR 
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spectra were then taken and integrated using a Varian model T60 NMR 

spectrometer. The sp.ectra were also integrated mechanically by taking 

the area under the spectral peaks. Comparison of these areas allowed 

the computation of the percent 9f deuteration of the TCB. As a check 
', 

on' this procedure a second standard was used. A weighed sample of 

deuterated TCB was &issolved in a known volume of deuterated benzene 

(95.5%D). The deuterated benzene served as an internal standard in the 

analysis of the proton NMR spectra. Both of these procedures were 

repeated 6 times and gave the same result, although the standard 

deviation was smaller when using the dioxane 'standard. The deutera~ed 

TCB samples contained 97 .. 5±0.1% deuterium. 

Since the deuteration procedure is limited by the percent deuteration 

of the n2so4 , the deuterated TCB consisted of 3 species, Hz-TCB, DH-':TCB, 

and D2-TCB. Assuming that the substitution reaction proceeds with the 

same probability for exchange of either a hydrogen or deuterium atom· 

with the :tin~, the percentage of the three species found in the sample 

can be determined by their statistical probabilities. A sample which· 

contains 97.5% deuterium is composed of 95.06% n2-TCB, 4.88% DH-T~B 

and 0.06% H
2
-TCB. 

Quantities of both TCB and deuterated TCB were vacuum sublimed into 

individual crystal growing tubes and outgassed. Single crystals were 
·' 

then grown using the Bridgeman technique. The large single crystals. 

were cleaved, and small transparent pieces were used as experimental·. 
, . 

·samples. The samples were placed in a liquid helium dewar which was.· 

cooled slowly to 77°K over a period of 30 min after which 

liquid He was added. The temperature was monitored by an NRC Equipment 

. ! 
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Corporation Alphatron vacuum gauge type 530. The temperature can be 

read to O.Ol°K; however, a small systematic error in temperature 

measurement may occur if the crystal is not in complete thermal 

equilibrium with the liquid helium bath. The temperature was varied 

between 4. 2°K and 1. 35°K by changing the rate of pumping on the liquid 

helium. 

The samples were illuminated by a 100 watt PEK high pressure mercury 

arc lamp through a 280oA interference filter. Excitation takes place 

into the singlet manifold and after intersystem crossing the first excited 

triplet state is populated. Phosphorescent emission from the triplet 

state is detected at right angles to the exciting light using a 3/4 meter 

Jarrell Ash Czerny-Turner scanning spectrometer with a cooled EMI 6256 

photomultiplier tube. The spectrometer is also fitted with a camera 

which was used for absorption spectra to determine the exciton origin 
. \ 

and trap depths._ The phosphorescent emission spectrum of the H2-TCB 

samples consists of two electronic and vibronic origins, one from the 

-1 
eXciton band, 3748.2A, and the other from a trap, 21.3 em lower in 

energy. A detailed analysis of the phosphorescence spectrum has already 

11 32 ' 
b~en reported. ' Although the exact nature of this trap is unknown 

doping of impurities into the TCB crystals does not enhance the intensity 

9 of this trap, but rather produces aQother trap of lower energy. The 

trap is thought to be associated with a crystal lattice defect. At 

4.2°K, the n
2

-TCB spectrum consists of three origins, one from each of 

the three species found in the deuterated TCB crystaL The n2-TCB triplet 

exciton emission origin is at 374sA. The mono-deuterated trap, DH-TCB, 

is 12.8 cm-l lower in energy, and the diproto trap, H
2

-TCB, is 23.5 cm-l 
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lower in energy than the exciton origin. 

Optically detected magnetic resonance (ODMR) spectra of the trap in 

the TCB crystals and of the traps in the deuterated TCB crystals gave 

characteristic tetrachlorobenzene spectra. The details of the TCB 

11 trap's ODMR spectra and of the experimel}tal set-up are reported elsewhere. 

The results of the trap intensity VS temperature measurement are 

shown in Fig. 6 for the H2-TCB and in Fig. 11 for the n2-TCB traps .. The 

figures are typical of several sets of data taken on separately prepared 

TCB single crystals and on single crystals prepared from each of the 

two batches of deuterated TCB. 

Finally, all computer calculations illustrated in th.e figures and 

tables were performed on a CDC 7600. 
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III. DECAY OF LOCALIZED STATES INTO DELOCALIZED 
BAND STATES 

A. Introduction 

In an attempt to more fully understand the long range transfer 

of triplet excitation energy bet~een localized states via exciton band1 

intermadiates, an experimental approach has been developed and employed 

which allows the first step in the indirect transfer process, the phonon 

assisted promotion of a localized excitation to a delocalized band 

state, to be isolated and studied. The technique which will be presented 

33-35 here involves the optical detection of the loss of electron spin 

coherence33 of the localized excitation when the state is spin locked36 

in the rotating frame. In addition, the first experimental data on the 

temperature dependence of the rate of phonon assisted promotion of localized 

excitations to band states is reported. Finally, a model which includes 

the exciton band dispersion and density of states, phonon-localized 

excitation interactions (including single phonon~ Raman, and multiple 

phonon processes), and the interaction of a localized state with the 

exciton band is presented and used to describe the promotion process 

and the radiationless decay of the phonon activated intermediate into 

the exciton band. 

The importance of this initial step in the indirect transfer process 

cannot be underestimated, for it is one of the essential features which 

determines whether or not thermal equilibrium between delocalized band 

states and localized states can be achieved within the lifetime of 

the excited states and hence determines whether Boltzmann statistics 
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1 ' d lid 1 37 F h h k' i app y to exc~te so s at ow temperatures. · urt ermore, t e ~net cs 

of the macroscopic transport of electronic excitation energy in solids 

also depend in detail upon an understanding of this ·step, as well as 

upon the nature of the exciton propagation (coherent vs incoherent) in 
I ~ 

the band.8~9,11,13,14 

B. Discussion 

The use of electron spin coherence to study kinetic phenomena 

associated with excited triplet states can be understood by viewingtwo 

·of the excited' triplet state spin sublevels in a reference frame rotating 

at the Larmor frequency (the interaction representation). The laboratory 

frame population of one of the two spin sublevels can be represented 

as a pseudomagnetization along the positive z-axis of the rotating 

frame and the laboratory frame population of the other spin sublevel 

is related to a pseudomagnetization along the negative z-axis of the 

rotating frame. It has been shown that when the time-dependent density 

matrix describing the dynamics of the electron spin ensemble is displayed 

through the electric-dipole transition moment operator responsible for 

phosphorescence, the projection of the magnetization onto the z-axis. 

in the rotating frame is usually the only observable associated with a 

. . 33 39 
change in the intensity of phosphorescent em~ssion. ' 

Optically det!ected electron spin coherence can be used in the 

measurement of the rate of promotion of a localized state to a delocalized 

hand state by determining the contribution of the promotion process : 

~o ~he loss of electron spin coherence when the spin ensemble is locked 
I 

in the rotating frame, The loss of the spin locked pseudomagnetization, 

. . I 
M!, as a function of time, t, can be given by the following equation 

·~ 
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-K.r t 

M e lP 
0 

(III.l) 

where K1 is the average of the rate constants for decay to the ground 
T 

state of the two spin .sublevels involved, K lPm (Ref. 40) is the rate 

constant for longitudinal spin relaxation along the spin locking field, 

p 
and K is the rate constant for the phonon assisted promotion of localized 

states to delocalized states. 
p 

(K corresponds to either Kso or Kdo of 

Chapter II.) The rate constant for the total decay of spin coherence, 

l<.r , is the sum of these rate constants. 
lP 

Specifically by applying a TI/2 microwave pulse to one of the three 

zero field transitions associated with an ensemble of localized triplet 

states, twoof the spin sublevel populations become saturated in the 

laboratory frame but are still evolving coherently in time. The 

pseudomagnetiz,ation in the rotating frame is simply tilted 90° into. 

36 the x-y plane. Spin locking by phase shifting the applied microwave 

field 90° immediately after the TI/2 pulse prevents the spin coherence 

from being lost for a time corresponding to TlP' TIP can be measured by 

turning off the spin locking field and immediately restoring the 

pseudomagnetization to the z-axis by a final TI/2 pulse having the same 

phase as the initial pulse and measuring the resulting change in the 

phosphorescence intensity as a function of the spin locked time. 

The uniqueness of spin locking to the measurement of kinetic 

phenomena is that once the triplet spin states have been locked in the 

x-y plane, any additional population entering the ensemble of localized 

states at later times via incoherent processes such as intersystem 
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crossing or trapping of delocalized band states, enters along the + 

or - z-axis of the rotating frame because of the random phases of the 

entering spins relative to the spin locked ensemble. Consequently, 

this additional population is driven by the microwave field in a plane 

perpendicular to the x-y plane during the spin lock period. The net 

effect is thai::: this incoming population results in an incoherent disk 

of spins in a plane perpendicular to the x-y plane and has no net 

psetidomagnetization along the z-axis. When the final TI/2 pulse is 

applied, this disk is tipped into the x-y plane and still has no net 

-
projection along the rotating frame z-axis. The result in the laboratory 

frame is that any population entering the localized state after the 

initial TI/2 pulse is incoherently and equally distributed between the 
. 

two spin sublevels. Hence, when the final TI/2 pulse is applied to 

observe the spin locked population, there will be no change in the 

phosphorescence intensity due to the non-spin locked population. Thus, 

population feeding into the ensemble of localized states can be eliminated 

from consideration, and only those processes which remove population ' 

from the ensemble may be isolated and studied. These features are 

illustrated diagramatically in Fig. 14 and explained in the figure c~ption. 

G. . Experimental 

The.basic experimental design for optically detected magnetic 

' . resonance (ODMR) is similar to that described previously.
28 

, I 
Microwave 

pulses of the appropriate phase were obtained as follows. The micro~ave 

output of a Hewlett Packard Model 8690B sweep oscillator "jas amplified 

by a 1 watt microwave traveling wave amplifier.. The output of this 

amplifier was then divided into two separate parallel channels by use of 
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Fig. 14. (A) A diagrammatical representation of the rotating frame 
pseudomagnetization·for a system in which intersystem 
crossing occurs only to one level; (a) pseudomagnetization 
before the application of microwaves; (b) after initial 
TI/2 pulse applied along the rotating frame x-axis; (b') 
the field is shifted 90° to the y-axis spin locking the 
initial pseudomagnetization. The partial disk indicates 

.incoming population being driven in a plane perpendicular 
to the spin locked population; (c) a component of pseudo
magnetization developing along the negative y-axis due to 
longitudinal relaxation along the spin locking field is 
indicated by the double headed arrow. The disk represents 
entering population after several hundred nanoseconds 
incoherently distributed and precessing about the spin 
locking field; (d) after. the application of the final rr /2 
pulse along the x direction, the remaining spin lock 
population is restored to the z-axis. 

(B) An illustration of the spin sublevel population change in 
the laboratory frame under the application of the spin 
locking pulse sequence. (a) All population in the middle 
spin sublevel; (b) microwaves coupled the middle and bottom 
sublevel for a time which produces a TI/2 pulse. The sublevel 
populations are equalized; (b') the system is spin locked. 
The coherent population is equally distributed·between the 
two spin sublevels but incoherent population beings to 
enter; (c) the coherent population decreases and the 
incoherent population becomes equally distributed; (d) the 
final TI/2 pulse increases the bottom sublevel population. 
No changes occur due to the incoherent population. 

(C) A representation of the microwave pulse sequence. 

(D) Illustration of the change in the phosphorescence intensity 
as observed in an actual experiment due to the spin locking 
pulse sequence. The change in intensity labelled ~I is 
caused by the application of the final TI/2 pulse and is 
proportional to the spin locked pseudomagnetization remaining 
at timeT. 
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OPTICALLY DETECTED SPIN LOCKING IN THE PRESENCE OF FLUCTUATING SPIN SUBLEVEL POPULATIONS 

(The Relationship between the Laboratory Frome and .the Interaction Repre_sentotion) 
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Anaren Corp. 90° hybrid coupler, Each channel contained a 10 em General 

Radio adj~stable sliding coaxial line, a Narda variable attenuator, 20 db 

isolators, an4 two Hewlett Packard 33124A PIN diodes in series which 

were used to produce microwave pulses of the desired duration. The pin 

diodes were driven by National Semiconductor DH0035CG current drivers 

which were controlled by TTL logic circuits designed and constructed 

in this laboratory. The two channels were then combined by an Anaren 

180° hybrid coupler, and the resultant microwave pulse sequence was 

passed through a Hewlett Packard 8430A band pass filter to remove low 

frequency switching transients. Finally, the microwave pulses were 

amplified by a 20 watt TWT amplifier whose output was directed into a 

50~ coaxial cable and terminated into a slow wave helix which contained 

the sample. Phase adjustments were made by observing the response 

of a crystal diode detector to the incident power from the individual 

signals when separate channels were switched on and to the resultant 

signal whem two channels were opened concurrently and added together. 

The spin lock experiment was performed on two systems, h
2
-1,2,4,5-

tetrachlorobenzene (h2-TCB) in d2-1,2,4,5-tetrachlorobenzene 

37 . . . 11 14 
(d

2
-TCB) and h

2
-1,2,4,5-tetrachlorobenzene 1.n h

14
,...durene, ' which 

. . 3 . 
are examples of a "shallow" localized 7T7r* state and a "deep" localizec!, 

3 
7r7T* state, respectively. The preparation and characterization of the samples 

aie as described earlier (Section II-g). 
-1 

h
2

-TCB is 23.5 ern below the k = 0 

state of the d
2

-TCB triplet exciton 

42 the k = 0 state of the h
14

-durene 

37 -1 band and h
2

-TCB is 1456 em below 

triplet exciton band. The D-E and 

the 2E transitions were used for these systems respectively. The 
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transition frequencies for h
2

-TCB in d
2

-TCB and h
2
-TCB in h

14
-durene 

are 3.578 GHz and 1.746 GHz. The samples were suspended in a liquid 

helium cryostat in contact with the liquid helium bath. Temperatures 

below 4.2°K were reached by pumping on the heliUm, and the bath 

temperature was obtained from measurements of the vapor pressure of 

helium gas in the ·cryostat. In the,experiment, the sample was continuously 

illuminated by a PEK 100 watt Hg-Xe lamp whose light was filtered by 

a Schott 310oA interference filter. The intensity of phosphorescence 

from the electronic origin of each sample was monitored while the spin 

locking microwave pulse sequence was applied. The change in phosphor-

escence intensity was time averaged with a Varian Model C-1024 CAT.·· 

D. Results 

Figure 14 illustrates in a purely schematic fashion the relationship 

of the phosphorescence intensity to state of the electron spin ensemble 

in the laboratory frame and in the interaction representation. Experimental 

data for the h 2-1,2,4,5-tetrachlorobenzene 't -+ T transition in a z y 

d2-1,2,4,5-tetrachlorbenzene host are presented in Fig. 15. An example 

of the change in phosphorescence intensity, 61 (cf Fig. 14), induced by 

the final TI/2 pulse as a function of the spin lock time T at 1.8°K is 

presented in the lower portion of Fig. 15. The signal to noise of the 

data illustrated is representative of 600 time averaged accumulations 

at a rate of 5 per second. 
J 

A semilog plot of 61 vs the spin lock time 

T reveals an exponential decay with a TlP of 4.95 msec at 1.8°K. This 

is illustrated in the upper portion of Fig. 15. \-.Then the same experiment 

•• 
is repeated with h2-tcB doped into h14-durene (1% m/m), TlP is found to 

'I 
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T
1
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2
-1,2,4,5 TETRACHLOROBENZENE IN d 2 -1,2,4,5 TETRACHLDROBENZENE 

~=23.5 cm-1, 'tx-'ty TRANSITION (3.5780 GHz) . 
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XBL 7310-5438 

Fig. 15. The lower portion gives typical experimental measurements 
of the change in the phosphorescence intensity due to the 
final TI/2 probe pulse at various times. A semilogarithrnic 
plot of these ~I values is plotted against time in the upper 
part of the figure. The decay is exponential. 
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be significantly longer (T(l/e) = 24 ms). Moreover, when the 

temperature dependence of h2-TCB in h14-durene was investigated, TlP 

was found to be invariant within experimential error throughout the 

range from 4.2°K to 1.5°K. This is illustrated in the lower portion 

of Fig. 16 in which l<.r is plotted against 1/T. On the other hand, 
lP 

for h2-TCB in d2-TCB, the data revealed a dramatic temperature depend'ence. 

Tlp varied more than an order of magnitude in the limited range from 

1.4°K to 2.l°K. Due to the unavailability of fast transient averaging 

equipment, the results of these preliminary experiments could not be 

extended to higher temperatures. 
p -

A semilog plot of K for h2-TCB in 

p 
d2-TCB vs 1/T is given in the upper portion of Fig. 16. K was obtained 

T . 
by subtracting KL and K lPm measured in the durene host from ~ 

lP 
measured in d

2
-TCB. KP, the phonon assisted promotion rate constant, 

(which corresponds to Kd of Chapter II) is seen to be a rapidly changing 
0 

non-exponential function of temperature. 

E. Model for the De~ay of Localized States into 
Delocalized Band States 

In view of the central role the detrapping rate plays in achieving 

Boltzmann equilibrium, a concrete model for the detrapping process whose 

details can be verified and tested experimentally is desirable. In this 

context we develop a.model in this section that describes the decay of 

the localized state into the delocalized exciton band43 •44 in 

a general .way but includes in a well defined manner important 

considerations such as the phonon dispersions and populations, the 

exciton dispersion, and phonon-trap interactions. We will only consider 

phonon single-trap interactions where the decay of the trap into the 
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THE DECAY OF LOCALIZED STATES INTO DELOCALIZED BAND STATES 

Tetrachlorobenzene in 
d2 -I, 2, 4, 5 Tetrachlorobenzene 

D. =23.5 cm-1 

"*100 
c 
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u 
Q) -0 
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! i 

h2 -I, 2, 4, 5 Tetrachlorobenzene in h14 - Durene 

D.= 1456 cm-1 
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Fig. 16. The lower portion is a semilogarithmic plot of the rate constant 
for the loss of spin locked population·vs 1/T for the 
hz-1,2,4,5-tetrachlorobenzene in h14'-durence system. This is 
and example of a deep localized state (!::. ~1450 cm-1) and the rate 
constant is temperature independent. The upper portion is a 
plot of the rate constant for the loss of the localized state. 
spin locked population due only to the promotion to delocaliz~d 
band sta~es for h2-TCB in dz-TCB (!::. = 23.5 cm-1). A model for 
the observed temperature dependence is presented in the text. 
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band conserves the total momentum and energy of the overall process. 

Further we shal,l assume that the initial interaction of a phonon and 

trap results in an intermediate state that is degenerate with some k 
• 

state in the band. The decay of the intermediate localized state into 

the delocalized band states is taken to be a radiationless relaxation 

process 45 and is displayed in the form of a Golden Rule rate. 46 The 

·assumptions implicit in ~his model are that the creation of the inter-

47 mediate state is a stochastic process and that the decay of the 

intermediate trap state into the band states is irreversible in the 

48' 
sense that recurrence is negligible because of the high density of 

exciton states in the band and the finite lifetime of k states in the 

band into which the intermediate has evolved. This is schematically 

illustrated in Fig. 17. 

In this model the probabili~y per unit time of a trap, <Tj, interacting 

with a phonon, P(£), of energy£ and detrapping into a specific band 

state, <kj, having momentum hk via an intermediate state, Ti' is given by 

< n(£)> is the number of phonon states with energy £;. 

l<-r.P(£)!JfTPI-r
1 

P(E- Ei)>j
2 

is the probability of creating an 

intermediate T. which can be identified with j-r. P(£- E.)>. Both 
~ ~ ~ 

direct and Raman 49 trap-phonon interactions are included by £ = E1 

(III. 2) 

and£> E., respectively. Obviously the initial phonons P(£) must have 
~ 
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Fig. 17. ·schematic representation of the detrapping process. 
P(e:) is a phonon of energy e: interacting with a 
trapped excitation 1" to produce an excited trap 
state 't"i equienergetic wit~ the 1th exciton band state. 
The excitation then decays into the ith band state •. , 
E1 is the energy difference between the trap 1" and the 
band state. The energy of the phonon P(e:) must obey 
e: ;;a. Ei • 

·"l 
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energies greater than or equal to E. unless multiphonon processes are included. 
~ 

If the multiple phonon processes are important, then the matrix elements 

in Eqs. (111.2) and (111.4) are modified to include the interaction of 

the localized state with the additional phonons. For the two phonon cases, 

one must include the two phonons, P(E) and P(E'). <n(E))T is replaced 

with <n(E))T <n(E'))T ·and a summation over all pairs of initial and 

final phonons which conserve the energy of the overall process must be 

performed in Eq. (III. 4). Extenstion to higher order processes is 

straighforward. The radiationless decay of the intermediate t into the 
i 

exciton manifold whose k states are at energies E. above the trap is 
1 

2 . 
given by I< 'ri P(E - E1 ) jJCTEjk P(E - Ei)) I P(Ei) where P(Ei) is the 

exciton density of states function evaluated at E.. We will assume 
1 

that the final phonon, P(E- E.), is not bound to or does not interact 
~ 

with the final exciton k state. With this al>sumption the intermediate 

trap....;exciton coupling Hamiltonian, JCTE' does not depend upon coordinates 

of the phonon wave vectors and hence only coordinates of the trap and 

band state need be considered. Although there are many mechanisms 

(i.e. , many forms of JCTE) which could describe the coup·ling of the 

intermediate trap to the band, in the absence of experimental data it 

is not clear at this point what the most appropriate choice would be. 

The coupling matrix elements must certainly, however, reflect the 

exchange between the trap and band of both electronic energy and the 

local distortion that is adiabatically propagated with the excited state 

in the Frenkel limit. 

... ! 



-79-

The average number of phonons at energy£ at temperature T, 

<n(£) >T, is given by the Planck distribution function, SO,'Sl 

1 
<n(£))T.;::; / 

e£ kT - 1 

in which the phonon energies E are given explicitly by the phonon 

(III. 3) 

dispersion of the crystal. The total detrapping probability per unit 

time which is the detrapping rate constant K or Kd is found by 
so 0 

summing over all phonons of energy E;;;;. Ei and then sui!Uiling over all' 

intermediate states Ti which have energies Ei greater than or equal 

to the energy difference between the bottom of the band and the trap, 

i.e., 

(III. 4) 

When considering the temperature region in which Kp is just becoming 

nonzero Ei >> kT, the Planck distribution function can be approximated 

by: 

1 -E/kT --:---- ~ e 
eE/kT _ l 

(IlLS) 

Further, since the one-dimensional exciton density of states function 

P(E.) is sharply peaked at k = 0 and k = ±TI/a, we anticipate that 
1 

intermediate states, T., with energies equal to the energies of the top 
, 1 I 

and bottom of the band might be expected to play the dominant role in· 

h b b 1 If d . . 1 . 1 14 . t e transition pro a i ity. etrapp1ng occurs se ect1ve y to one 

k state, say k 0, 52 then the band width to temperature ratio would 
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be relatively unimportant. 53 On the other hand, in the absence of a k 

dependent trap-exciton coupling, if the band width is significant 

relative to kT, the populations of phonons with energies capable of 

producing intermediate states at the top of the band will be small compared 

to the number of phonons available to produce intermediate states at 

the bottom of the band. In this limit, the expression for Kp can be 

approximated by- considering only one intermediate state at the bottom 

of the band (which will be k = 0 or k = ±TI/a depending upon the sign of 

S) • In either of these limits, the expression for K becomes 
so 

L:' 
E=E. 

1 

(E) 
-E/kT 

e = CP(E.) e 
1 

-E. /kT 
1 (III. 6) 

where E. is the energy of the intermediate state T. which coincides with 1 . 1 . . 

the maximum density of states of the band in one case or to the particular 

k state (k = 0) in the band in the other. All the non-temperature 

dependent terms except the density of states function have been collected 

into the constant C with the assumption that phonon-trap.interaction 

is constant over a rartge of phonon energies E close td E .. 
1 

In either of the two above limits the t~mperature dependence of the 

detrapping rate would appear as an activated process with an Arrhenius-

like activation energy E .. In reality, however, there is no activation, 
1 

and E. simply reflects the phonon distribution. Moreover, when the 
1 . 

density of k states at the energy of the intermediate trap state differ, 

as would be the case in different mixed crystals with exciton chains : 

o
1
f varying lengths, the absolute value of the de trapping rate K and so 

Kd would change via P(E.) (Eq. (III.6); however, the apparent activation 
0 . 1 . - . 
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energy, E., would stay constant except for small changes resulting from 
1. 

differences in the band dispersions for different' finite chain lengths. 

·An experimental investigation into the validity of this model is being 

pursued using some of .the optically detected magnetic resonance techniques 

described in the previous section. 

F. Conclusions 

(1) The fact that the TlP for h2-TCB in h14-durene is long and 

p 
temperature independent makes it reasonable to conclude that K , the 

phonon assisted promotion rate constant, for this system is zero and 
T 

that ~ is just the sum of K1 and K lPm This is not surprising in 
lP 

view of the large (1456 cm-1 ) 15 energy difference between the localized 

3 h2-TCB TilT* state and the durene triplet band. From an independent 
I 

measur~ment of the L and L sublevel decay rate 
y z 

-1 
constants (K = 27~8 sec 

y 

k 26.3 Sec.-1)11,54 h" 1 f = in t 1.s system, a va ue o z 
-1 L 

27.1 sec forK , the 

rate constant for decay to the ground state from the spin lock state 

is obtained. Thus, the spin lattice relaxation time in the rotating 

frame can be determined from Eq. (III .1) and Fig. 16. TlP = (KTlPrri)~l 67 ms 

. 
and appears to be temperature independent over the limited range investigated. 

3 . 
(2) In the discussion in Chapter II of the h2-TCB TITI* state in the 

d
2

-TCB host it has been shown that in the temperature region 1.38°K.to 

2.1°K, the phonon assisted promotion of the h2-TCB state to the d2-TCB 

exciton band is becoming appreciable, although a quantitative measur~ment 

of the rate was not determined. 37 This was established from the explicit 
'. 

temperature dependence of the h2-TCB and hd-TCB phosphorescence in a 

d
2

-TCB crystal and the relationship of this dependence to the Boltzmann 

thermal equ.ilibrium between exciton states and multiple trap states in 
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this system. From these investigations, we have established that in the 

temperature region 1.3°K to 1. 9°K the localized states are not in thermal 

. equilibrium with the d
2

-TCB band states but that· there is promotion to 

the band and that the phonon assisted promotion rate for h2-TCB to the 

d
2
-TCB band must be rapidly increasing with temperature to account for 

Boltzmann equilibrium between the localized and delocalized states above 

L TlPm 
~z.4"K. Making the assumption that K and K are approximately the 

p 
same for h2-TCB in the two hosts (h14-durene and d2-TCB), K can be 

determined as a function of temperature. This is illustrated by the 

semilog plot of the data in the upper portion of Fig. 16. Since KP 

L TlPm 
is large relative to K and K , changes in these latter two rate 

constants due to the d2-TCB host will not significantly affect the 

magnitude of Kp determined at each tempeEature and will certainly not 

alter the steep temperature dependence of the promotion rate constant. 

A significant feature of the temperature dependent promotion rate is 

that it is clearly non-exponential. 

The.relation of these preliminary experimental results to the model 

outlined above has been examined. For the temperatures over .which the 

experiments were performed, it is .·expected that only the acoustic 

phonon branches will have apprecialble population. Unfortunately, experi-

mental acoustic phonon dispersions are unavailable for this system, and 

. . . 55 56 
only a limited amount of data is available on other molecular crystals. ' 

We expect, however, on the basis of the neutron scattering results in 

56 55 d8-napthalene and anthracene, that the acoustic branch'is essentially 

-1 linear up to -10 em hence, the optic branch and the nonlinear region 

of the acoustic branch do not significantly change their populations 

between 1.4 and 2.1°K. 
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It can be seen from Eqs, (III.2) and (III.4) that the phonon 

assisted rate of promotion is governed in first order by the phonon 

distribution function. For temperatures where KT is much less than !:::., 

the energy difference between the localized state and the exciton band; 

one expects an exponentially increasing rate constant with temperature 

whEm only single phonon processes are considered and when only the 

linear regions of the acoustic branch are populated. Moreover, when 

KT << !:::., the functional relationship between the rate constant and 

temperature (exponential vs non-exponential in the range relevant to 

the experimental data) is relatively insensitive to the exciton banq 

dispersion, and theory predicts an exponential behavior if one assumes 

that the coupling of the localized state to the phonons is equally 

probable for all phonon wave vectors q, (i.e.,< ~·P(£)1H piTi•P(£- Ei)> 

is q independent). 

The observation of a non-exponential behavior and the steep temperature 

dependence in this limited temperature range suggests that some or all 

of the following consideration are important. (a) Multiphonon processes* 

dominate the promotion process; (b) d2-TCB has an acoustic phonon 

dispersion that becomes ·significantly nonlinear at very low energies 

c-s cm-1) or (c) the coupling of the phonons to the localized states are 

strongly q dependent. 

* If there is a phase transition a soft phonon mode will be produced which 
.will facilitate multi-phonon processes. This possibility is currently 
being experimentally investigated. 
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Further experimental data and a detailed comparison of the data to 

the above model should establish the relative importance of the above 

considerations. 

· (c) Although these experiments have demonstrated the temperature 

dependence of the phonon assisted promotion of localized states to the 

exciton band, we do not yet ·know quantitatively what fraction of the 

promoted intermediates decays radiationlessly into the exciton band~ 

nor do we know whether or not there is a strong k dependence to the 

process other than the obvious effect of a large exciton density of 

37,57 states at the top and bottom of the triplet band in these systems .. 

In addition to the decay of a localized state into a mobil exciton 

state, a second possible mechanism for the loss 'of spin coherence is 

the creation of a localized bound phonon-exciton state. This bound 

state can evolve into a mobile state in which case it may be viewed 

merely as a short-lived intermediate, or it can relax back into the 

ensemble of non-phonon excited localized states after a time period 

long enough for it to have lost phase coherence with the spin locked 

ensemble. The principal factor determining whether electron spin phase 

coherence is lost, if a bound phonon-exciton intermediate relaxes back 
I 

into its original lattice site, is the life time of the intermediate. 

In this system we expect a difference in the D-E transition frequency 

of the exciton band and the localized trap state to be about 60 MHz; 

hence phase coherence in these experiments59 will be lost in the 

promotion-relaxation process if the excite.d intermediate has a life 

-8 time of greater than "'10 sec. Earlier experiments have demonstrated 

3 the redistribution of the h2-TCB TITI* state energy to other (hd-TCB) 

i 
-! 
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6 8 
locali~ed states via the d2-TCB band ' states implying that the production 

of mobile excitons must account for a significant part of the measured 

values of KP. Furthermore, a 10-8 sec lifetime for 'a vibrationally 

excited (phonon-excited) intermediate seems very long in view of data 

available for phonon relaxation rates in solids. 60 To date there is no 

experimental evidence to demonstrate the existence of bound phonon-

exciton states which relax back to the same lattice site. However, if 

they exist, they will contribute in part to KP. Additional experiments 

are currently being pursued in this laboratory to determine the extent 

of these contributions to the magnitude of Kp. 

G. Summary of Chapters I, II and III 

(1) We have attempted to explain in a general way the mechanism 

by which thermal equilibrium between.localized trap states and delocalized 

band states in solids is achieved. The essential features of the 

statistical model which satisfactorially accounts for many experimental 

observations ar~ that. at low temperatures, exciton migrat~on must 

propagate coherently as a wave packet rather than by a random walk 

process in order to thermally equilibrate the exciton and trap states 

within the lifetime of the excited electronic state. A proper description 

of the process or processes related to the equilibrium populations of 

trap and band states must include the density of k states, the 

number of k states comprising the band relative to the number of 

localized trap states, the detrapping rates which are dependent upon·: 

phonon dispersions, the trap depth, the sign and magnitude of the 

intermolecular interaction which gives rise to the band dispersion and 

exciton-phonon scattering. 
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(2) The application of this model to crystals representative of 

one-dimensional bands allows one to extract from the temperature 

dependen:t!trap emission the magnitude of the band dispersion, the sign 

of the intermolecular interaction matrix element and an estirilate of the 

coherence length and average group velocity of the.exciton wave packets. 

(3) In a crystal characterized by two or more trap states at 

different energies, below a certain tempeEature, a "bottleneck" in the 

Boltzmann distribution between band and trap states results because 

of the inability of the phonons to detrap the deeper traps at a 

sufficient rate relative to the radiative and radiationless lifetime 

of the state. We have solved the coupled differential equation and 

interpreted the various rate processes in terms of the coherent model. 

(4) We have derived a general theory for detrapping which treats 

the detrapping rate constant as a stochastic radiationless relaxation 

process in which the trap state once thermally activated decays 

irreversibly into the density of exciton states. 

(5). Finally, we have pl.'esented a series of experiments on one-

dimensional molecular crystals designed to test the model. Specifically, 

we have shown how electron spin coherence and optically detected 

magnetic resonance in localized states can be used to obtain specific 

informationregarding the dynamics of detrapping and the relationship 

of detrapping to Boltzmann equilibration between trap and band states. 
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IV. COHERENT COUPLING WITH FEEDING AND DECAY 

A. Introduction 

Perturbation of a two level quantum mechanical system by the 

application of a coherent radiation field has been extensively treated 

experimentally and theoretically for proton nuclear magnetic resonance. 61 

In the NMR case, a proton is always found in one of its two spin states 

or in a superposition of the two states and, therefore, the system may 

be treated rigourously in terms of these two energy levels. However, 

when considering coherent radiation applied to the excited states of· 

an atom or molecule, such as the coherent microwave perturbation of 

two magnetic sublevels of an excited triplet state or coherent optical 

coupling of two excited electronic states in a system such as a four 

level laser, species will not necessarily be in either of the two states 

or in a superposition of the two states coupled by the radiation field. 

Many of the molecules will either be in their ground state or in so~e 

excited state other than orie of the two being coherently coupled. 

To maintain an excited state population, molecules must be 

continually promoted from their ground states. Also molecules in th~ 

excited states are continually relaxing to the ground state. The problem 

is to consider the coherent coupling of a system composed of two excited 

states in which there is continual feeding of population into the system 

and continual decay of population out of the system. A simple example 

of a physical effect due to feeding and decay is that the total excited 

state population of the two level system will chaage upon the application 

of the radiation field if the excited state life times of the two states 

differ. This implies that the trace of the density matrix for the two 
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level system is not constant in time (although the trace of the density 

matrix for the ground state plus all excited states will of course be 

constant). 

The effects of feeding and decay play a more important role in 

the two level system than merely modifying the 'total population. It 

will be seen that the feeding and decay processes in many instances 

significantly effect coherent phenomena induced into the two level 

system by the radiation field. In some cases these processes will be a 

mechanism for tbe loss of coherence while in certain special situations 

it will be shown that incoherent feeding by continually replenishing 

the coherent state will actually allow coherence to be maintained in 

the two level system for an extended period of time, in fact, for a 

period longer than the life times of the excited states. 

In the following sections, first the problem of a two level system 

~ith decay will be solved by using the time dependent Schrodinger 

equation. The solutions for the time dependence of the amplitudes of 

the wavefunctions will be cast into the geometrical representation due 

62 to Feynman et al. . which allows coherent and incoherent phenomena to be 

readily distinguished and followed in time. Then feeding will be added 

to the problem and an analytic solution will be obtained which still 

permits a geometrical representation. The formulation which is presented 

allows the effect of any perturbation, such as a sequence of high power 

pulses or a low power cw spectrum, to be calculated. The problem if?' 

initially considered for the case in which the wave length of the 

radiation field is large relative to the sample size. Several example 

problems are solved, with special attention being payed to the role of 
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the feeding process in maintaining a kinetic coherent state of the system. 

Finally, the treatment is briefly discussed for the case of optical 

excitations in which the wavelength of the radiation field is small 

relative to the sampl~ size. In this case, feeding still results in. 

long term kinetic coherence and it is predicted that this kinetic 

coherent optical state will exhibit long term superradiance. 

B. Mathematical Development 

Consider the problem of a radiation field coherently coupling a 

two level system in which population is continually being fed into the 

levels and population is continually decaying from the levels. The 

solution to the two level coherent coupling problem in the absence of 

63 feeding and decay is well known. .This solution is rigorous when 

applied to the NMR problem, but when considering coherent coupling in 

systems composed of excited state levels, which have finite life times 

and obtain their populations via incoherent feeding, an accurate 

description must include the feeding and decay processes. 

In this section the problem will be solved for the case in which 

the wavelength of the radiation field is large relative to the dimensions 

3 . . 
of the crystal, i.e., Vol. << A , where Vol. is the volume of the sample 

and A is the wavelength of the applied field. Thus the phase of the 
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perturbing field is constant over the sample. This condition applies 

to the case of coherent microwave coupling of two of the magnetic spin 

sublevels of an excited molecular triplet state (cf Chapters II and III). 

Since we are primarily interested in the triplet state problem in this 

thesis, ,the transition will be taken to be magnetic dipole and triplet 

66 state operators and matrix elements will be employed. The only loss 

of generality is in the form of the operators; the rest of the 

treatment is identical for magnetic and electric dipol~ transitions. 

(Electric dipole transitions are briefly discussed in Section IV-B-4). 

We wish to perform a model calculation for the following idealized· 

situation. The two spin levels labeled jy> and lx> which are perturbed 

by the coherent radiation field are also coupled to an infinite bath 

of spins. Population is transfened from the bath to the y and x levels 

with constant rates F and F respectively. The populations found in 
y X 

the y and x levels decay back into the bath with rate constants k and 
y 

k: respectively. In the absence of an applied field coupling y and x, 
X . 

there is no direct transfer of population between y and x, i.e., there 

is no T1 process between y and x. 

To this point, the above idealized situation corresponds clos~ly 

to the physical situation found in the microwave perturbation of a 

molecular triplet state at low temperatures (-4°K). Population is 

transferred to the "y and x spin sublevels from ex.cited singlet states' 

via intersystem crossing. Since, in general the ground state population 

of the sample is not depleted by the incoherent excitation light, the. 

singlet, state populations and, therefore, the feeding rates, F and F , 
y X 

are constant. The decay rate cons·tants, k · and k , correspond to the 
y X 
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rate constants for decay to the ground state from the two triplet spin 

sublevels. These rate constants include both radiative and non-

radiative processes. The assumption that T
1 

processes between x and y 

. 24 
are absent is valid for molecular triplet states below 4°K, where the 

small amountof thermal energy available combined with the weak coupling 

of a molecular triplet state to the lattice results in a negligable 

amount of spin lattice relaxation. 

We will impose one further condition which is not justified physically. 

Homogeneous dephasing of the coherent components induced by the radiation 

field into the ensemble of systems composed of pairs of levels, y and x, 

will be neglected, i.e., homogeneous T2 processes are neglected. 

(Dephasing resulting from an inhomogeneous line is discussed at the 

end of Section IV-B.) Omitting T2 processes simplifies the mathematics 

but does not alter the qualitative results which are obtained. This will 

78 
be shown to be true in a paper to be published subsequently in which 

the following treatment is extended to in.clude T
2 

and T1 processes. 

Furthermore, the exclusion of T2 processes is justified for another 

reason. Since the main thrust of this chapter is to develop the idea 

of a long term coherent state maintained in the ensemble of two level, 

systems by the radiation field and since this long term coherent state 

is derived from a component aligned along the static field in the 

rotating frame; under high power conditions T2 processes do not occur. 

That is the coherent state is "spin locked". 36 This applies to the 

optical case (cf Section IV-C-4) in addition to the triplet state 

magnet resonance case discussed here. This point is discussed in more 

detail below (cf Section IV-C-3) and will be demonstrated to be a valid 
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description elsewhere. 78 

The difference in energy between the two levels y and x, is hw . 
0 

For completeness and to establish the notation which will be used 

throughout this chapter the equation of motion for the time dependent 

\ 
coefficients of the stationary state eigenfunctions jy> and lx> is obtained 

in the absence of the feeding and decay processes. The effect of decay 

to the bath is then added to the equation of motion and a solution is 

obtained using the Laplace transform technique. Finally, the system is 

divided into appropriate subensembles which allows the feeding from the 

bath to be included rigorously'and an analytic solution obtained. 

1. Equation of Motion in the Absence of Feeding and Decay 

Consider the two states jy> and lx> with energy seperation hw 
0 

which are connected by a radiation field of frequency w, The radiation 

f ld b d . d d b... 64 . b ie may e expresse as a t1.me- epen ent pertur at1.on g1.ven y 

·(IV .1) 

Making the rotating field approximation, 64 i.e., resolving the cosine 

term into two counter rotating circular components and ignoring the off 

resonance one, the perturbation may be rewritten 

V(t) 
hwl -icr

3
wt/2 i03Wt/2 

= - -
2

- e a
2
e (IV.2) 

i 
I 
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65 
where the Oi are the usual Pauli spin matricies, and w1 is proportional 

to the amplitude of the applied field. The matrix elements of V(t) 

may be either real or imaginary. Here they are taken to be imaginary 

66 which corresponds to the triplet state problem. For systems where .• 

V(t) would give real matrix elements, o2 should be replaced by o
1 

and 

the sign of the expression for V(t) should be changed in Eq. (IV.2). 

Except for these modifications the development is identical. The 

total Hamiltonian is 

JC = 'JfJ + V(t) 

The state of the system at any time t, is given by the wavefunction 

(IV. 3) 

1/J(t) = yl/J0 + xl/J0 (IV.4) y X 

where y and x are time dependent coefficients. Transforming to a 

new wavefunction with the unitary operator 

iWH t/hw · 
-1 - 0 0 

U = e ·(IV.5) 
., i 

yields 

· (IV.6) 

Expressing 1/J(t) as U~(t) and substituting into the time dependent 

Schrodinget equation for 1/J(t) gives 

( 
iC.OO ' ih - ~ U~(t) + U~(t'l = 

(IV. 7) 

-iWtO) iW.~O) 

2 2 o
2
e 
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-1 Multiplying on the left by U , collecting terms, and defining 

~w = w - W results in the Schrodipger equation 
0 

• (h~w hwl ) * ih'i'(t) = -
2
- c

3 
- -

2
- o

2 
'i'(t) = H 'i'(t) (IV. 8) 

67 where the * indicates a frame rotating at frequency w. Any state of 

the system is given by the rotating frame wavefunction 

* * where y and x are the rotating frame time dependent coefficients. The 

problem from this point on will be treated in the rotating frame and 

therefore the double dagger notation will be dropped. 

Substitution of Eq. (IV.9) into Eq. (IV.8) yields 

then projecting out the y coefficient 

. :hw 
... -

1
< ylo lx> x 2 . . 2 

collecting terms and doing the same operation for the x coefficient 

(IV .10) 

(IV.ll) 

gives the equations of motion for the y and x probability amplitudes·. 
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• illw wl 
y = --2- y +-x 

2 (IV.l2a) 

i/1W wl 
X = -2-x - 2Y (IV.l2b). 

2. Solution of the Equation of Motion with Decay 

Loss of population from the two excited state levels is included 

68 in the problem by the addition of decay terms to the equations of 

motion of the probability amplitudes, i.e., 

y = (- i~W - ; ) y + W; X 

X = (i~W - :X) X - W; y 

(IV.l3a)' 

(IV.l3b) 

It should be noted that in the absence of an applied radiation field, 

the equations of motion for the applitudes of the states '¥0 and qtO . y X 

become independent and solution of the differential equations results 

in the probability of the states decaying with their life times 1/k · . y 

and 1/k respectively. 
X 

. . 
The equations of motion including decay are solved using the Laplace 

transform69 method. First the variables are reduced to dimensionless· 

quantities by using the following definitions. 

"[ = 
w

1
t 

2 
(IV.l4a) 

6 
h.w 

-
wl 

(IV~l4b) 

k 
K - J.. 

y wl 
(IV.l4c) 

k 
K X -

wl X 
(IV.l4d) 

\ 
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In terms of these definitions the differential equations are rewritten 

as 

~ = -(K + iO) y +X 
d't y 

dx -- = -(K - io) x - y dT X 

Taking the Laplace transforms yields 

0 
SY - y = - (K + io) Y +X 

y 

SX - x0 = - (K + io) X - Y 
X 

(IV .15a) 

(IV.l5b) 

(IV .i6a) 

(IV.l6b) 

0 0 
where y and x are the initial values of the time dependent coefficients. 

These equations have. solutions 

y = 
S 

2 + (K + K ) S + K K + i o (K - K ) + o
2 + 1 

_x y yx x y 

0 
- y 

X = ------------------~---------------------------
82 + (K + K ) S + K K + io(K - K ) +" o

2 + 1 
X y yx X y 

We need the following standard inverse Laplace transforms 

£ -1 ----::---..:..s __ __ 

s
2 + bs + c 

£""'1 ___ 1 __ _ 

s 2 + bs + c 

b -bt/2 A A 

= - eA sin(Wt) + e-bt/2 cos(Wt) 
2W 

-bt/2 
e - .------

A 

2W 

A 

sin(Wt) 

{IV.l7a) 

(IV.l7b) 

(IV.l8) 

(IV.l9) 

I 

.} 
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where 

b (K + K) 
X y (IV.20a) 

c = K K + io(K - K ) + o2 + 1 y X X y 
(IV. 20b) 

and 

w 
(K 

X (IV-20c) 

Replacing the dimensionless quantities with their counterparts 

(cf Eq. (IV.l4a;-d) and defining the following quantities . 
k + k 

kA 
X y 

- 2 (IV.2la) 

k k 

~= 
X y 

2 (IV.2lb) 

(IV~2lc) 

we obtain the inverse Laplace transforms 

-kAt/2 ( yo~ ow 0 

"~) 
- + - iy /J.w Wt X 1 

y e · y0 cos -+ sin 2 -w 
(IV.22a) 

-k t/2 ( - xo~ + 0 - ix
0 /J.w 

A o Wt Y wl 
Wt) X= e X COS 2- - siri 2 

w 
(IV. 22b) 

The solutions given in Eqs. (IV.22a) and (IV.22b) are valid 

·provided w ::/: 0, which corresponds to the under damped ·and over damped 

cases. However, if /J.W = 0 and w1 = ~' then w = 0, and the critically 

damped case occurs. The solutions are obtained by substituting the. 

critically damped conditions into the Laplace transforms, Eqs. (IV.l7a) 

and IV.l7b), collecting terms, and taking the inverse Laplace transform. 
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'. 

These are given by 

Yen 
w t J + _1_ xo. 

2 . .· (IV.22c) 

(IV.22d) 

where the subscript CD indicates that these are the critically damped 

solutions only. Since these solutions only occur for one particular 

set of experimental conditions, they will not be discussed in the 

following sections, although they may be treated in a manner analogous 

to the more general underdamped and overdamped cases. 

Equations (IV.22a) and (IV.22b) give the time dependence of the 

probability amplitudes of the states IJP and '¥0 which are coupled by a y X 

coherent radiation field and whose populations.are irreversibly 

decaying with·rate constants k and k respectively. Since we are 
y X 

dealing with coherent coupling, the Equation of motion for a single 

species is the same as that for N identical species. The effects due 

to inhomogenious broadening, will be discussed later. The'time t = 0 

• o o o o* coefficients y and x are, therefore, normalized such that y y 

o o* 
and x x give the t = 0 populations of the y and x levels, i.e., 

o o* No (IV.23a) y y 
y 

o o* No (IV.23b) XX ;::: 

X 

The total initial population of the two level system is N° 

.. 
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Now that the time dependence of the amplitudes of the wavefunctions 

has been determined, it is possible to take appropriate combinations of 

these amplitudes and form a geometrical representation
62 

of the state 

of the two level systems which allows physical observables ,to be 

readily calculated. The quantities of .interest are 

ry = YY* (IV.24a) 

r = xx* 
X 

(IV.2'4b) 

rl = yx* + xy* (IV.24c) 

r2 = i{yx* - xy*) (IV.24d) 

r and r are the time dependent populations of the y and x levels. 
y X 

r
1 

and r
2 

are the out of phase and in phase coherent components introduced 

into the ensemble of identical two level systems by the radiation field. 

They correspond to the out of phase and in phase components of the 

• • . NMR . 70 transverse magnit1zat1on 1n an exper1ment. 

interest are 

r = r - r 3 y X 

N = ry + rx 

Other quantities of 

(IV. 25a) 

(IV. 25b) 

where r
3 

is the time dependent difference in the populations of the y 

and x levels and N is the time dependent total population found in the 

ensemble of two level systems. r
1

, r 2 and r
3 

together are the components 

2 2 1/2 
of the Feynman r-vector. The total coherent component is (r1 + r 2) , . 

It should be .Pointed out that r and r are the diagonal elements of .. the 
y X 

density matrix and that (r1 + ir2) and (r
1 

+ ir2)* are the off diagonal 

elements of the.density matrix and therefore determination of these 
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quantities is sufficient to completely characterize the system. 

Calculation of the quantities in Eqs. (IV.24a-d) from Eqs. (IV.22a~b) 

is straight-forward but exceedingly lengthy .. The general form is 

(Acosat + Bsinat + CcoshSt + DsinhSt) 

where g is y, x, 1 or 2 ar1d 

tii = a + iS 

a = I [(w~ + aw2 

s = I ~wi + aw
2 ~ ~/ 

1/2 

+ 4LlW2~] + 
. 2 

(IV. 26) 

(IV.27a) 

(IV. 27b) 

(IV.27c) 

The coefficients A, B, C and D for each expression r are tabulated in 
g 

Table IV. To determine the time dependence of a component r , simply 
g . 

determine the coefficients A, B, C and D by inserting the particular 

set of experimental conditions into the tabulated forms. Once the 

coefficients are evaluated, they are inserted into Eq. (IV.26) and r is 
g 

determined. Several example calculations will be presented after 

feeding of population into the ensemble of excited two level-systems is 

discussed in the next section. 

3. Inclusion of Entering Population into the Geometrical Representation 

In this section we will obtain the time dependence of the r-vector 

· equations discussed in the previous section for the case in which 

\\ th~re is population feeding into the ensemble of excited two level 
'I 
1\ 

\\systems. The problem is made tractable by partitior1ing all the 

I 
\ 



Component 

YY* 
r 

y 

xx* 

r 
X 

(yx* + xy*) 

rl 

(yx* - xy*) 

r 
2 

-k t 
A 

Table IV. General form. 

r = e 2 2 (Acosat + Bsinat + Ccosh~t + Dsinh~t) 
g 2(a + 13 ) 

k + k 
k = X y 

A 2 ~ ... 
1/2 

a + il3 a [wi + (6w + i~) 2 ] 

A 

(a2 + ~2 - ~ - ~w2) r; 

2 0 0 
-(wl) rx - (~wl) rl 

+ (w16w) r~ 

(a
2 + ~2 - ~ - Aw

2
) r: 

-(w2) 
1 

0 
r -

y 
0 

(~wl) rl 

0 _ (w
1

t:.w) r
2 

B 

2(~a - l:.w~) r; 
0 + (w

1
a) r

1 

0 
+ (wl~) r2 

0 
-2(~a - t:.wl3) rx 

0 _ (w
1
a) r

1 

0 + (wll3) r2 

(a
2 

+ a2 
+ ~ + 6w

2 + wi) r~ I -2(6wa + ~13) r~ 
0 0 

+ (2~w1 ) ry + (2~w1 )rx 
0 

- (2w1a) ry 

0 + (2w1a) rx 

(a
2 

+ a2 
+ ~ + Aw

2 
- wi) r~ I 2(Aun + ~13) r~ 

+ (2w1t:.w) r; - (2w1t:.w) r~ 0 + (2w113) ry 

0 
+ (2w1 13) r:x 

c 

(a2 
+ a2 

+ ~ + Aw
2

) r; 

2 0 0 
+ (wl) rx + (~wl) rl 

- (wlbW) r~ 

(a
2 

+ 132 + k~ + Aw
2
) r~ 

+ (w~) r; + (~w1 ) r~ 
0 + (w1~w) r
2 

D 

2 (Aun + ~~) r; 
+ (w1S) r~ 

0 _ (w
1
a) r

2 

-2(6wa + k
0

13) r~ 

0 
- (wlf3) rl 

0 _ (w
1
a) r

2 

(a2 + a2 - k2 - Aw2 - w2) r 0 j2(k a - 6wl3) r 0 

-~ 1 1 . -~ 2 

0 0 
- (2w1~) ry - (2w1~) rx 

0 
- (w113) ry 

. 0 
+ (wll3) rx 

2 2 2 2 2 o I Q o (a + 13 - I<D - t:.w + w1) r 2 -2(~a - Aw~) r 1 

••.• 0 0 - (2w1uw) ry + (2w1t:.w) rx 
0 _ (2w

1
a) rx 

.0 
- (2w1()) rx 

I 
~ 
0 
~ 
I 
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molecules in a sample into carefully chosen independent subensembles. 

Qualitatively the·procedure is as follows. At some instant of time t 0, 

some of the molecules in the sample are in the two excited state levels 

under consideration while a large number of molecules are in other 

states. Those molecules in the two level system form one subensemble. 

This subensemble, which iS excited at t = 0, will follow the .equations of 

the previous section. During a small interval of. time after t = 0, other 

molecules will become excited. These newly excited molecules form another 

subensemble. The behavior of this subensemble also follows the treatment 

of the previous section, however, it is necessary to keep track of the 

phase relationship between the t = 0 subensemble and this newly created 

ensemble. At some later time, more population will be fed into the 

two excited levels under consideration. This population forms another 

subensemble. Thus, the procedure is to follow the behavior of each of 

these subensembles and to determine the properties of the total ensemble 

of excited two level systems by summing the properties of the individual 

subensembles. The significant point is that each subensemble interacts 

independently with the radiation field and, therefore, the basic problem 

amounts to keeping track of the behavior of the various pieces relative 

to each other. It should be pointed out that the t = 0 subensemble may 

be empty if t = 0 is chosen before the incoherent source which produces 

excited states is turned on. Also, if the excitation light is turned 

off at t = 0, the treatment in Section IV-B-3 is exact since population 

will not be fed into the two level system. In the following discussion 

the number of excited molecules is taken to be small relative to the 

total number of molecules in the system. This implies that the feeding 
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rates F and F are independent of the state of coherent coupling of 
y X 

the ensemble of excited two level systems. F and F are therefore 
y X 

constants for a given rate of incoherent pumping. The case where F 
y 

and F are not constants may be treated.in a manner which is analogous 
X 

to the following. 

To include the effects of feeding into the ensemble of excited 

two level systems which are coupled by a coherent radiation field, we 

must partition the entire system into subensembles by the following 

method. 

1. Divide the sample into excited and unexcited subensembles 

at any time t. Obviously feeding can only occur to the unexcited 

subensemble. 

2. Further subdivide the unexcited subensemble into two classes: 

"' Those molecules whose y levels become populated in a small y 

increment of time at. 

"' Those molecules whose levels become populated during the X X 

same time. There still exist a large number of molecules 

which are unexcited. 

The y and x classes are treated as follows. 
II . 

The y class follows the 

equations given in Table IV of the previous section with the initial 

conditions 

0 0 0 
0 (IV.28a) rl r2 r 

X 

0 
F at (IV.28b) r = 

y y 
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where F is a constant feeding rate. 
y 

The x class.also follows the equations in Table IV but with initial 

conditions 

0 0 0 
0 rl = r2 = r = 

y 
(IV.29a) 

0 
F 6t r = 

X .x (IV.29b) 

In general, we begin with a certain excited population in the ensemble of 

two level systems under consideration which may have nonzero values for 

any component r . This population evolves in time in the manner given 
g 

by Table IV for each small increment of time Ot. FurthermorE!, any 

additional population which is fed in will have the ,initial rg values 

given above. for the y and x classes. Let f 0 (t) be the function describing 
g 

the time behavior of the component r with initial value r 0
, and let 

. g- g 

f~(t) be the specialized function for the population entering the y 

level. An expression for the behavior of all subensembles can be built 

in ~ncrements of 6t. 

t ,.... 0 

t = 6t 

t = 2~t 

t = m6t 

0 
rg = r

8 

r = f0 (6t) + F 6tfy(o) 
g g . y g 

r = f 0 (20t) + F 6tfy(6t) + F 6tfy(o) 
g g y g y g 

(IV.30a) 

(IV. 30b) 

(IV.30c) 

(IV.30d) 

At time t = 0, r is equal to its t = 0 value r 0
• At t = 6t, the t = 0 

g g 

population has evolved in time according to the equations of Table IV, 
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i.e., f 0 (<5t). In addition population F Ot has been fed into the y level 
g y 

and contributes F Otfy(o) to the value of r . (For the moment we are 
y g g 

ignoring possible feeding into the x level.) At t = 20t, the t = 0 

population has evolved in a manner described by f 0 (2ot). The population 
g 

which entered during t = ot has evolved according to fY(ot) and the . g 

population which has just entered contributes F Otfy(o) tor . For 
y g g 

any time t =mot we have the value of r given by Eq. (IV.30d). 
g 

It is 

important to keep in mind .that the function f 0 (t) is normalized to the 
g 

total number of states in the system at time t = 0, while the function 

f~(t) represents the time evolution of a single state with the total 

number of states being explicitly written as F <St. 
y 

Changing dulllilly variables in Eq. (IV.30d) such that n = m- R-, the 

equation may be written 

m=l 
f~ (t) + Fyot L f~ (not) 

n=O 

letting Ot + 0 and m + oo the sum becomes an integral 

Since fy (t) 
g 

r = g 

has the 

-k T 
A e 

t 
f

0 
(t) + F J fy (T) dT 

g y g 

0 

form 

(A cosO'.t + B sinO'.t + C coshl3t + D sinhl3t) y y y y 

(IV .:h) 

(IV.32) 

identical to Eq. (IV.26) of Section IV-B-2 C except that the subscript y 

has been added to the coefficients which are given in Table IV to keep 
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track of the special initial conditions for they class, i.e., 

Eqs. (IV.28) and (IV.29), we only needed the following integrals 

t -k 't 

0A + 

-k t 
I f A cosCXTd'L 1 A (asinat - k cosat]) (IV.33a) e = 

k2 + a2 
e . A 

0 A 

t -k 1" 

(a-
-k t 

+ acosat]) II =f A sinCX'td't 1 A 
[kAsinCXt (IV.33b) e = e 

k2 + a2 
0 A 

.t -k "( ( . -k t 
[SsinhSt + kAcoshSt~ III f A coshS'td'L 1 

. kA -e A (IV. 33c) = e = 
k2 s2 

0 A 

.,-kA'L 1 ( -kAt ~· 
e sinhS'Ld't = --- · S- e [kAsinh6t + 6coshSt] (IV .33d) 

k2 s2 
A 

To include the effect of popu~ation feeding into the x level an 
. X . 

identical procedure is followed using the ~unction fg(t). Combining the 

above results gives the most general form for any c.omponent r g. 

r = [ e -kAt (Acosat + BsinCXt + Ccosh6t + Dsinh6t)J 
g .· 2(a2 + 62) 

(IV.34) 

+ [ F x 2 (A I + B II + C III + _DxiV)l 
2 (CX2 + 6 ) X X X J 

The first bracketed expression is due to the t = 0 excited subensemble. The 

second bracketed expression is due to the y class and the third bracketed 

expression is due to the x class subensemble. The coefficients A, B, 

·• 
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C and D are obtained from Table IV for a given set of experimental 

conditions. The subscripts y and x on these coefficients indicate the 

initial conditions given in Eqs. (IV.28a) and (IV.29a) are used when 

determining the values of the coefficients from Table IV. (Note that 

for determining A , B , C and D , y y y y 

has been taken into the integrals. 

ry
0 

is set equal to one since F eSt y· 

Similarly r
0 

is set equal to one 
X 

when determining A , B , C and D .) I, II, III and IV are defined 
X X X X 

above in Eqs. (IV.33a-b) and the other parameters are defined earlier. 

Equation (IV.34) is the general equation which permits the effect 

of the application of a coherent radiation field to a two level system 

with feeding and decay to- be determined. The coherent pertrubation does 

not have to be continuous. ·The general equation will allow the effect 

of any pulse sequence to be calculated in the following manner. At the 

end of the first pulse, the components r are determined. These are. 
g 

then used as initial conditions in the determination of the effect of the 

next pulse. A period between pulses in which no power is applied is 

considered to be a pulse with w1 = 0. The general equation, Eq. (IV.34), 

is used to determine the r components at the end of this zero power pulse. g 

These r components are then the initial values for the calculation of g .. 

the effect of the next pulse. In this way, the results of the application 

of any pulse sequence ma~ be examined. 

The general equation is valid for a single homogeneous line. To 

treat inhomogeneous lines, Eq. (IV.34) is used to determine the effect 

of the coherent radiation field on each isochromat in the inhomogeneous 

line. rg can be calculated for each component of the inhomogeneous line 
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and the results added. Thus, an inhomogeneous line may be readily 

treated using the above formulatio'n. 

T2 and T1 processes have not been included in the above mathematical 

development, however, these processes will be added using the general 

.~ 71 . 72 
treatment due to Redfield and the many other workers in the field 

78 
of coherent coupling in two level systems in a subsequent paper. The 

purpose of this treatment is to develop a mathematical formulation for 

and to illustrate the effects of feeding and decay in a coherently 

coupled two level system. Some of these effects, which appear as if 

they are conventional T
2 

and T
1 

processes, are more graphically demonstrated 

using the above hypothetical model in which T2 and T1 processes are 

absent. In the following section the above.formulation will be applied 

to several concrete examples. 

C. Physical Applications 

In this section, the mathematical formulation developed above will 

be applied to several examples of physical significance. The examples 

will illustrate the manner in which a problem is treated, in addition 

to demonstrating significant features which are introduced into a. 

·coherently coupled two level system by tht! feeding and decay processes. 

73 . 
The problems examined are; the transient nutation, · the high and 

low power CW spectrum, and the production of long term kinetic coherence. 

The role played by feeding and decay will be emphasized in each of 

these. Conventional T1 and T2 processes have been omitted so 

.-
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that the contributions from feeding and decay may be clearly 

examined. 

1. Transient Nutation 

. 73 . 
First consider a transient nutation 1n the·absence of feeding and 

decay. For the two level system in which the x and y levels have initial 

populations r 0 and r
0 

respectively, the initial population difference 
X y 

0 0 0 . 
is r 3 = ry - rx. These two levels are then coupled by a coherent 

radiation field applied at the transition frequency. We wish to determine 

the time evolution of the population difference, r
3 

=:: ry - r . 
X 

For a 

sample composed of identical two level systems which do not experience 

T1 or T2 relaxation processes and for a homogeneous applied field cif 

amplitude w1 , the time evolution is simply given by 

(IV.35) 

The population difference oscillates.indefipitely between values of 

0 0 
r 3 and -r3 with a period of znw1 • 

To treat the above problem, but to include the effects of 

population feeding into and decaying from the two levels, the general 

equation (Eq. (IV.34)) of Section IV-B-3 is employed. It is first 

necessary to define the values of the parameters which apply to the 

· transient nutation. Since the radiation field of amplitude w1 is applied 

on resonance, 

6.w = 0 (Iy.36) 

and therefore, from Eqs. (IV.21) and (IV.27) 
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As mentioned in Section IV-B-2 there are three possible solutions 

depending upon the relative magnitudes of~ and w
1

. We will only 

solve the problem analytically for the under damped case, i.e., w
1 

> ~· 

In the under damped case a. :# 0 and a = 0. However in the over damped 

case a. = 0 and 13 :# 0. Separate solutions must be obtained for these 

two cases. For the underdamped case, taking 

(IV~37) 

the following values of a. and t3 are determined from Eqs. (IV.27b-c) 

(IV. 38a) 

t3 = 0 (IV. 38b) 

Since a. = w for the case under consideration, we define the parameter, 

w , i.e., or - . 

(IV. 39) 

where the subscript, or, stands for on resonance. "The other necessary 

parameters are the zero time subensemble initial populations of the x 

andy levels, i.e., r
0 

and r
0 

respectively, and r
0

1 = r
0

2 = 0. 
. X y 

Remembering the special initial conditions for the y subensemble 

0 0 0 0 r.x = rl = r2 = (IV.39a) 

0 
1 r = y (IV.39b) 

and for the x .subensemble 

0 0 0 
0 r rl r2 y 

(IV.40a) 

0 
1 r = (IV.40b) 

X> 

j 
• I 

I 
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the coefficients (A, A , A , B, B , B , C, C , C , D, D , D ) in the y X y X y X y X 

general equation can be determined from Table IV. The coefficients 

for r and r which are the components of interest are given in Table V. y X 

The coefficients for the over d.amped case in which ct = 0 and 

S = (wi ~ ~) 1/ 2 
for other components, or for other sets of experimental 

conditions can be determined in an analogous manner. 

Using the coefficients listed in Table V, the time evolution of 

r and r is obtained from'the general equation (Eq. (IV.34)). Subtracting 
X y 

r from r and collecting terms yields the time evolution of r 3 . 
X y 

.sinw t) 
or (IV.41) 

(F + F ) k + X y -!) 

w (k
2 + w2 > or A or 

The first term in square brackets is due to the zero time subensembie, 

while the other terms are due to population fed into the x and y levels 

after t = 0. Rearranging this expression we obtain, 

(IV.42) 

(

r
0 .+ r

0
) k + X y -!) 

-w 
. ' or . · 

(F - F ) W 
x y or 

w2
1 

+ k k 
X y 

(F + F ) k_ k ) . ~ F k - F k x Y --u A· sin(W t) + Y x x Y • 

(w2 + k k ) w or w2
1 

+ k k 
1 x y or x y 
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ry 
A = 

B = 

c = 

D = 

r 
X 

A -

B = 

c = 

D = 
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Table V. On resonance transient nutation 
under damped case. 

Time Sub ensemble " Subensemb1e 
. A 

Subensemble y X 

- 2 ~) 0 2 0 -2 -~ -W2 (w - r - W1rx A = w A = or y y or X 1 

- 0 
B 2~w 0 2~W r = B = or y y or X 

w2 o + w2 o c 2 c w2 
lr lrx = wl = 
. y Y, X 1 

0 D = 0 D = 0 y X 

. 

cw2 ~) w2 o -W2 -2 k2 0 
A A - r.x - = = w -or lry y 1 X or D 

-2~w r 
0 

B 0 B -2~w = = or x y X or 

2 0 + w2 o c w2 c w2 Wlrx = = lry y 1 X 1 

o· D = 0 D = 0 y X 
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There are several interesting features to note in Eqs. (IV.41) 

and (IV. 42) . 
0 0 . 

First, if r and r are zero, i.e., there is no excited 
X . y 

state population in the ensemble of two level systems under consideration 

at time t = 0, the contribution to r
3 

from the zero time subensemble 

vanishes. There is, however, still an oscillatory behavior in r
3 

which 

occurs due to population being incoherently fed into the system 

provided that either k * k or F ~ F (cf Eq. (iV.41)). Second, it 
X y X y 

can be seen from Eq. (IV.42) that all of the oscillatory terms are 
-k t 

multiplied by the decay exponential e A and therefore even in the absence 

of other relaxation processes the oscillatory behavior of r
3 

is 

damped. At long times r 3 goes to a steady state constant value given 

by the last term in Eq. (IV.42). Third, given the proper values, the 

parameters in Eq. (IV.42) will make the term multiplied by sin{W t) or 

finite. This results in a phase shift in the oscillations relative to 

those given by the simple transient nutation of Eq. (IV.35). Finally, 

unlike Eq. (IV •. 35) , the oscillations in Eq. 

f ··but h f ( 2 requency w
1

, rat er at requency w
1 

-

(IV.42) 

~)1/2. 

do not occur at 

For the under damped 

case which we are considering here, in most situations the deviation 

from w1 will not be significant. However, if kA is large, then .~ can 

2 take on values approaching w
1

. For kA large, the total oscillatory 

behavior will be damped out rapidly, but those oscillations which do 

occur will be at a frequency significantly different from w1 . (If 

~ > w1 , the over damped case occurs, and the expression for r 3 is in 

tenns of sinh and cosh. In this case of course no oscillatory behavior 

occurs.) 
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To this point we have been considering perfect experimental 

conditions. If the applied coherent radiation field is inhomogeneous 

in amplitude over the size of the sample, the oscillatory terms may 

be damped out at a rate considerably faster than exp(-kAt). At times 

long relative to.the inhomogeneous field damping but short enough to 

keep exp(-kAt) finite, the time evolution of the total population in 

the ensemble of two level systems, N = r + r , is given by the 
X y 

following equation. 

N = 0 0 
[ (r + r ) kA - (F + F ) ] y X y X 

-k t 
A 

e 

. 2 

t
F k + F k + wkl (F + F )J 
yx xy A y x 

+ . 
(Jjl2 + k k 

X y 

(IV.43) 

The total population evolves exponentially in time with a rate constant 

given by the average of the life times of the two levels involved.. It 

.. reaches a new steady state value given by the last· term in square 

brackets in Eq. (IV.43). This should be compared to the steady state 

population in the absence of the applied radiation field, i.e., 
F F 

N=~+_y 
k k 

X y 

2. The CW Spectrum 

Another important physicalexample is the CW spectrum. Here again 

we will solve the problem in the absence of conventional T1 and T2 processes. 

The solution is obtained from the general equation (Eq. (IV.34)) by taking 

the terms which survive when t ~ 00 , 

of the y and x feeding subensembles. 

These are the time-independent terms 

Any component r is given by 
g 
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g 
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+ F X X 

(

A kA + B a 

x k2 + a2 
A 

(IV. 44) 

The coefficients (A through D ) are given in Table IV and the other y X 

parameters are defined above. Using Eq. (IV.44)., the r and r y X 

components are obtained after extensive algebra. 

r y 

r 
X 

(IV.45a) 

: (IV.45b) 

Note that for w1· = 0, r and r go to their steady sta~e values, i.e~, 
F . F y X 

ry = ~ and rx = kx 
y X 

To compute the CW spectrum, we only need r 3 

Defining 

yields 

r 0

3 
- (F k - F k )/k k . y X X y X y 

r - r 
y x' 

(IV. 46) 

(IV.47a) 
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(IV. 47b) 2 2 IJ.w wl 
l+-2-+kk 

kA x y 

This expression can be cast into a familiar. form by making the additional 

definitions, 

T2k 
1 -

kA 
(IV.48a) 

Tlk -~ k k 
(lV. 48b) 

X y 

The subscript k is to distinguish the parameters defined in Eqs. (IV.48a-b) 

form the conventional T1 and T2 . In terms of Tlk and TZk' the expression 

for r 3 becomes 

(IV.49) 

where T
1

kT2kwi is the "saturation term" 74 whic~ appears to broaden the 

line at high powers (large w
1
). At low power, the line shape is given by 

(IV. 50) 

74 Equation (IV.50) gives the normal Lonentz line shape. In a two level 

system without feeding and decay, T1 processes maintain the population 

difference which is a necessary condition for a CW spectrum. However, 

in the systems under consideration, a combination of feeding and decay 

~~~~:·~::; 1~' 
processes maintain the necessary population difference. In the special 

.·,z;;(,;_ o 
case of equal feeding and decay.;c,r 

3 
=. 0 and the CW spectrum vanishes. 

.. 



-117-

3. Kinetic Coherence 

Using Eq. (IV.44) of the last section, the CW r
1 

and r 2 components 

of the ensemble of excited state two level systems can be obtained. 

w 
_! (F k -. F k ) 
kA X y y x 

w~ + vy(l + ~
2

) 
A 

(IV. Sla) 

w1~w .. (F k - F k ) 
k2 X y y X 

•A (IV. Slb) 

These components represent the long lived coherent state maintained in 

the ensemble by the radiation field. This type of effect is also 

64 manifest in conventional magnetic resonance systems, however it is very 

small, due to the inability of T1 processes competing with 

the applied radiation field. to maintain a sizeable population difference. 

It is important to remember that the radiation field is applied along 

the r
2 

axis (Eq. (IV.2) and therefore the r
2 

component is in phase 

with the applied field and the r
1 

component is out of phase. 

The maximum values of r 1 and r
2 

can be readily calculated under 

various conditions of feeding, decay and power. First consider r 1 •. : .. 

From Eq. (IV.Sla) it can be seen that r
1 

has a maximum value on-

resonance (~W = 0), and so we consider the expression 
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wl 
(F k - F k ) 

kA X y y .X 

rl = w2 + k k 
1 y X 

(IV.52) 

This expression vanishes for both low and high power, and therefore it 

must have a maximum in between. Taking the derivative of Eq. (IV.52) 

with respect to w
1 

and equating the results to zero, indicates that 

r
1 

has a maximum when. 

k k 
X y 

Thus the maximum value of r
1 

is given by 

= 
(F k - F k )(k k )l/Z 

xy yx xy 
k k (k + k ) 

X y X y 

=. 

-ro(k k )1/2 
3 X y . 
(k + k ) 

X y 

(IV.53) 

(IV.54) 

Now consider r
2

. First r
2 

is maximized with respect to 6w by taking 

the partial derivative of Eq. (IV. 5lb) ·With respect to 6w and equating 

the resulting expression to zero. This gives the value of 6w for which 

r 2 , also is maximum. 

(IV.55) 

r
2 

has a maximum value when the applied radiation field is 6wmax off 

resonance. Substituting this expression into Eq. (IV.Slb) for r
2 

yields,· 

.. 
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(F k - F k.) (, wi) xy yx w 1+--
k k 1 k k 

(IV. 56) 

r
2 

has no maximum with respect to' power, but it does approach a asymtotic 

value for large values of w1 , i.e., wi/kxky >> 1. With this condition, 

max 
r

2 
is obtained. 

(F k - F k )l/Z 
= _.=;X:.,...tY_,..,.-~Yc.....::X~-- = 

k k (k + k ) 
X y X y 

(k + k ) 
X y 

· . max max o o 
If kx = ky' then both r 1 and r 2 are equal to r 3 /2, where r 3 is 

(IV. 57) 

determined by the feeding and decay rates (cf Eq. (IV.47a) .. r~ can he 

quite large if the incoh~r~nt source used to produce the excited states 

is intense and if there is a large difference in the feeding or decay 

rates of the two levels. This will result in large coherent 

components being maintained in the ensemble of excited state systems. 

Qualitatively, the production of long term coherence can be 

viewed as follows. For the r
1 

component the maximum value occurs on 

resonance, so we will consider the on resonance case. Initially, there 

is some population difference, r~. ,When the levels are coupled coherently 

by tunning on the radiation field, the r~ vector will precess around ,the 

r
2 

axis in the r
1

, r
3 

plane. Since there is continual decay to the 

0 ground state, the r
3 

vector decreases in length as it executes a transient 

nutation about the r
2 

axis. When it is along the r 1 direction it ha's 

some magnitude. By the time it reaches the -r1 direction it has 

decreased in size. As discussed in Section IV-B-3, the population being 
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fed into the system behaves similarly to the initial population except 

for phase differences. Population fed into the system at some time t 

also precesses about the r 2 direction, and the vector created at time t 

also decreases in length as it goes around the circle. When the system 

has reached steady state, there is a continuous set of vectors precessing 

about the r
2 

direction. If there were no decay from the system, this 

set of vectors would form a disc in the r 1 , r
3 

plane and there.would 

be no net r 1 component. However, owing to decay, each vector shrinks 

as it precesses and therefore the vectors on one side of the "disc" 

are always shorter than those on the other side. Taking the projection 

of these vectors onto the r 1 axis results in a larger component along 

the possitive r 1 axis then along negative r 1 axis giving rise to a net 

r 1 component. 

max In the expression for r 1 , conventional T2 processes have not 

been considered. As population which enters the system along the r 3 

axis' precesses about the applied field, a r
1 

component develops. This 

in~lane component will be reduced by T
2 

and, therefore, the magnitude 

of the coherent component developed along the r 1 axis will be restricted. 

However, this does not present a problem for the production of long 

term kinetic coherence along the r
2 

axis. This point is discussed below. 

- The production of long term coherence along the r 2 axis has a 

somewhat. different mechanism than the r 1 case. The iong term r 2 coherent 

component occurs when the radiation field is applied off resonance. The 

0 initial r
3 

vector precesses around the effective field which is in 

the r
2

, r
3 

plane due to the off resonance condition. The motion of 

4 i 

. ., 
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the vector describes a cone around the .effective field. Owing either to 

field inhomogeneity or sample inhomogeneity the r~ vector will fan out 

around the conical path producing a thin cone of vectors precessing 

around the effective field. (This is not central to the argument for 

even with a homogeneous field and sample, the feeding process itself 

will cause this fan of vectors.) This cone of vectors has a net 

projection along the effective field direction which can be resolved 

into an r 
3 

component and an r 2 comp'onent. This r 
2 

component is the 

coherent component produced by the initial r~ population in the system. 

This component will decay due to relaxation of the excited states to the 

ground state. However, as this initial population decays, additional 

population is fed into the system which forms an identical cone with 

a colinear r
2 

component. Thus as the r
2 

vector due to the first cone 

decays, it is replaced by the r 2 vector from the next cone. Through· 

continual feeding, the cone and therefore the coherent r 2 vector is 

constantly replenished. 

The result is that a coherent state is maintained in the excited 

ensemble for times longer than the life times of the.excited states .. 

In fact, it will remain as long as the radiation field remains· 

coherent and population continues to be fed into the system by incoherent 

pumping. The magnitude of the r 2 component is controlled both by the 

effective field angle (i.e., tanS= ~wfw1 ) which determines the amount 

of the vector aligned along th~ effective field which is projected 

onto the r
2 

axis, and by the incoherent pumping rate which determines· 

the amount of population in the cone and therefore the size of the 
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vector aligned along the effective field. The advantage of the r 2 component 

over the r 1 component in an attempt to produce long term coherence is 

that the vector which gives rise to the r2 component is aligne~ along 

h ff. i . f • ld d h f • i II • 1 k d 11 36 • h tee ect ve 1.e an t ere ore 1.t s sp1.n oc e , 1..e., t e 

r 2 component does not suffer the dephasing processes which tend to 

reduce the r
1 

component because r 2 is derived from a vector which is 

aligned along the rotating frame stati~ field. 

4. The Optical Case: Long Term Superradiance 

To this point, coherent coupling in two level systems with feeding 

and decay has only been discussed for the case in which the wavelength 

of the radiation field is large relative to the size of the sample. 

This condition implies that the phase of the radiation field is constant 

over the size of the sample, and, therefore, each molecule is considered 

to have an identical time dependent Hamiltonian. 

In this section it is demonstrated that the development of the 

previous sections applies to the case in which the wavelength of the 

radiation field is small relative to the size of the sample. Under 

this condition, the time dependent Hamiltonian which describes the 

coherent perturbation, contains a spatially dependent phase factor, 

and therefore each molecule experiences a perturbation Hamiltonian· .· 

given by 

j 
V(t) = 

where j labels a particular molecule, w1 

(iV. 58) 

-+ -+ 
~·E1 where E1 is the 

amplitude of the applied field, w is the frequency of the applied 

-+ 
field and k is the wave vector of the applied field. 

-+ 
r. describes the 

J 

.... ·: 
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location of the jth molecule. As dj.scussed in reference to Eqs. (IV.l) 

through (IV.3), we make the rotating field approximation, and write 

the total Hamiltonian as 

hw 
0 ·--2 

-+ -+ 
hw -icr (wt-k•r ) 

0 + 1 3 j 3 -2- e 

Here, the matrix elements of the perturbation have been taken to be 

(IV. 59) 

real, corresponding to optical transitions. In a fashion identical to 

that described in Eqs. (IV.4) through (IV.8), we transform into a frame 

rotating at frequency w, i.e., the Schrodinger equation becomes 

,(IV.60) 

where the :f: indicates the rotating frame and lfl(t) is given by Eq. (IV:9). 

In analogy to the rotating frame transformation, we will now 

-+ 
transform into a k frame. We construct the unitary operator 

(IV. 61) 

with 

~ (t) (IV.62) 

Substituting 

(IV. 63) 

into Eq. (IV. 60) .and taking the indicated derivative yields 

(IV. 64) 
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-1 
Multiplyin~ both sides of Eq. •(IV.64) by Tkj and substituting the 

definition of Tk~ given in Eq. (IV.61) gives 

( 
~io3k•;, h~w io

3
k•;, 

= e J--Oe J 
2 3 

(IV.65) 

-+ -+ -+ -+ -+ -+ 
hw -iO k•t 10 k•r -iO k•r 

+ ___ 1 e 3 j e 3 j 0 3 j 
2 le 

-+ -+) 10 k•r 
e 3 j <P ( t) 

and therefore 

(IV.66) 

where x: is the Hamiltonian in the double transformed frame and cj>(t) is 

given by 

<P (t) (IV.67) 

* * where yk and xk are the rotating frame, k frame time dependent coefficients. 

Equation (IV.66) has two significant features. First, it 

-+ 
is identical for each molecule. In the k frame, the r. dependence has 

J 

vanished. Second, Eq. (IV.66). is just the equation of motion which 

was solved in Section IV-2-B (except for the real matrix elements of the 

perturbation which do not affect the solution. Compare Eqs. (IV.8) and 

(IV.66)). These two facts-imply that the results obtained in the previous 

sections fq;- the large wavelength case can be carried ovet completely 

to the short wavelenJ~th optical case when it is treated in the k frame. 

In the eatlier sections we employed a rotating frame to simplify the 

solution. To determine the observables in the laboratory frame, an 

inverse·transformation must be preformed to take us from the rotating 
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frame to the lab frame; Thus the coherent,component r
2 

calculated to 

be stationary in the rotating frame of frequency w (cf Section IV-C-3), 

will precess at frequency W in the lab frame. In this section we have 

.•. used a rotating frame and a k frame. To determine the observables in 

the lab frame, we must make two inverse tranformations to return to 

the lab frame. 

In the last section, it was demonstrated that a long term in-phase 

coherent component could be maintained in an ensemble of excited two 

level systems with feeding and decay by off resonance coherent coupling 

of the two levels. This result also applies to the optical case where 

the two levels would be capable of undergoing optical transitions and 

would obtain their population via incoherent feeding. Coherent optical 

radiation applied off resonance will maintain a coherent component 

in the ensemble. This coherent component is a precessing macroscopic 

electric dipole, and as in other methods for producing a coherent optical 

h h h h . 75 hi h . bl .11 state sue as t e p oton ec o exper1ment, t s co erent ensem e w1 

exhibit superradiance, 76 i.e., enhanced spontaneous emission, which 

• 77 was first discussed by Dicke. In the photon echo and other current · 

experiments; it is impossible to maintain the coherent state, and 

therefore the superradiance is short lived. However, the theory presented 

above embodies an experimental technique capable of producing long term 

superradiance through the maintenance of the kinetic coherent state.·. 

It will be demonstrated in detail elsewhere 78 that superradiant,, 

emission in this type of experiment will have the usual directional 

properties. That is, for an infinite sample size, coherent light will 

-+ 
only be emitted in the k direction, and that for a finite sample size, 
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coherent light will be emitted with an angular distribution given by 

-+ 
a zeroth order spherical Bessel function centered about the k direction. 

However, this emission will not occur at the natural transition frequency 

of.the two levels w , but rather at the frequency of the applied field w. 
' ' 0 

. .;.· 

This is.because the· coherent component precesses in.the lab frame at the 

frequency of the rotating frame, i.e., the frequency of the applied 

field. The emitted radiation is spontaneous emission, but not spontaneous 

emission at the natural wavelength of the transition. It is in effect 

"off resonance" spontaneous emission. 

Another point which should be made is that by varying either b.w or 

wl, the angle of the effective field be changed and therefore an ensemble ' may 

be maintained and studied which has a particular cooperation number. 77 may 

The cooperation number, which is related to the magnitude of the coherent 

component, determines the extent to which normal spontaneous emission is 

- 79 amplified. 

Finally, it is important to mention the possibility that the 

prbguction of long term superradiance can lead to a useful device if 

the many experimental obstacles can be over come. Since the intenstiy 

of coherent light emitted by the long term kinetic coherent state 

is determined by the rate of incoherent pumping and the life times of 

\the states in addition to the amplitude of the applied coherent radiation 

field, in principal a carefully chosen system could exhibit gain, and 

therefore act as coherent light amplifier. This amplifier .is tunable 

over the spectral region in which gain occurs. Further, if a system is 

found which exhibits gain, the amplified emission could be fed. back in 

phase,into the superradiant amplifier and the applied coherent field 
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removed. If the gain is great enough to overcome the loses in the feed-

back cavity, the superradiant amplifier will go into a self-sustaining 

continuous mode emitting coherent light at the wavelength of initial 

applied field. 

D. Summary of Chapter IV 

1. The problem of coherent coupling in two level systems 

in which population is continually being fed into the systems and 

population is continually decaying from the systems is considered. The 

problem is solved analytically and cast into a geometrical representation 

which allows coherent and incoherent phenomena to be readily distinguished. 

2. A general equation is obtained which allows the effect of coherent 

perturbation to be calculated for any set of experimental conditions. 

Feeding and decay play a central role in this equation and therefore' in 

determining the effects of the perturbation on the ensemble of two level 

systems. 

3. ~everal sample calculations are performed to illustrate the use 

of the mathematical formulation and to illustrate the role played by 

feeding and decay. In particular it is demonstrated that a long term 

coherent component, which may be quite larg~ can be maintained in 

an ensemble of excited two level systems and that this component is ·· 

effectively "spin locked" even for systems involving optical transitions. 
\ 

4. Finally, it is shown that this long term kinetic coherent 

state in optical systems will give rise to long term superradiant · 

emission and that it may be possible to use this effect to produce a 

new type of coherent light amplifying device. 
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APPENDIX. COMPUTER PROGRAMS 

1. Program TRAPS 

·~· Program TRAPS calculates the probability of· f:i.nding an excitation 

of a system, composed of a low energy trap state and a one domensional 

exciton band, in the trap (cf Chapter I). One data card with format 

(3Fl0. 4) must be read for each calculation. The data card contains 

in the first 10 spaces, Beta, the value of the nearest neighbor 

interaction matrix element which is 1/4 of the bandwidth in ergs. The 

sign of BETA must also be included. Positive BETA implies K = 0 is. at the 

top of the exciton band and negitive Beta indicates K = 0 is at the bottom 

of the band. In the second 10 spaces is DEPTH, the difference in 

energy between the K - 0 level of the exciton band and the trap level, 

in ergs. In the third 10 spaces is AN, 1/2 the number of K states in 

the band. The last card listed in the program print out is an example 

of ·a data card. If more than one set of data is to be run, merely 

stack the data cards. The program will automatically terminate after 

running the last set of data. 

As the program is written now, the trap probability is calculated 

at 4.3°K and at every 0.3°K down to 1.0°K. The starting temperature· 

can be changed by changing the card T = 4.3 to the desired starting 

temperature. The increment of t~mperature change can be controlled 

by altering the card T = T - 0.3 ·.to the desired increment. The lowest 

temperature may be changed by changing the card. If (T.GT. 0.99) GO, TO 

110 to slightly below the desired final t~mperature. 
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2. Program DEEP2 

Program DEEP2 calculates the probabilities of finding an 

excitation in either a deep trap or a shallow trap in a system 

composed of a deep trap, a shallow trap,.and a one dimensional· 

exciton band (cf Chapter II). The first data card with format (2Fl0.4) 

reads in B and G. B determines how many different values of Beta will 

be read in for each set of parameters Gl, G2 and AN. G tells how many 

different sets of Gl, G2 and AN will be read in. The second data card 

with format (2Fl0.4) contains in the first 10 spaces DEPTHl, the 

difference in energy between the deep trap and the shallow trap in 

ergs, and in the second 10 spaces DEPTH 2, the difference in energy 

between the deep trap and the K = 0 level of the exciton band in ergs. 

The third data card with format (3Fl0.4) contains in the first 10 

spaces Gl, the number of shallow traps relative to one deep trap; in 

the second 10 spaces G2, the number of exciton chains relative to one 

deep trap; and AN, 1/2 the number of K states in the average length 

exciton chain (cf Chapter II). The fourth data card with format (1Fl0.4) 

contains BET~ the value of the nearest neighbor interaction matrix 

element which is 1/4 of thebandwidth, in ergs. If several calculations, 

with different values of BETA but with the same values of Gl, G2 and 

AN are desired, simply stack a series of individual BETA cards. The 

number of BETA cards must be specified by B on data card 1. If several 

different sets of Gl, G2 and AN are desired, each new data card of this 

type is placed after the last BETA card of the previous data set. Another 

set of BETA cards are then placed after each Gl, G2 and AN card. The 

number of Gl, G2 and AN cards must be specified by G on the first 
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data card. An example of data cards is given in the last four lines of 

the program printout. 'The temperature range is controlled in a manner 

identical tci that described in the section on Program TRAPS. 
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3. Program GVELO 

Program GVELO calculates the average group velocity id one direction 

·of an ensemble of one dimensional excitons (cf Chapter I). Each data 

card with format (Fl0.4) contains BETA, the nearest neighbor interaction 

matrix element which is 1/4 of the bandwidth, in ergs. The parameter A 

must be set equal to the lattice spacing in centimeters along the one 

dimensional axis. The parameter AN is set equal to 1/2 the number 

of molecules in the average length exciton chain. If it is desired to 

make the calculation using the same value of BETA but different values 

of AN, the parameter STOP is set for the largest value of AN desired 

with the condition that AN will be doubled each time until AN is greater 

than STOP. If only one value of AN is desired for each BETA, set STOP 

equal to the same number which AN is set equal to. The program will 

automatically terminate after the last BETA data card is used. The 

group velocities are printed in centimeters. Control of the temperature 

range is given in the section on Program TRAPS. 
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4. Program TWODI 

Program TWODI calculates the probability of an excitation being 

found in a low energy trap level in a system composed of a trap level and 

a two dimensional exciton band (cf Chapter I). The data card with 

forniat·(3Fl0.4) contains in the first 10 spaces BA, the value of the 

nearest neighbor interaction matrix element along one of the two 

dimensional axes in ergs. In the second 10 spaces is BB, the value of 

the nearest neighbor interaction matrix element along the other axis, 

in ergs. In the third 10 spaces is DEPTH, the difference in energy 

between the trap level and the K = 0 level of the exciton band. On this 

data card it is very important to specify the signs of BA and BB. AM 

is set equal to 1/2 the number of K states along the BA axis and AN·· 

specifies 1/2 the number of K states along the BB axis. If it is desired • 

to calculate the trap probability for only one set of AM, AN for each 

value of BETA then set STOP equal to the value assigned to AM. If 

STOP is set greater than AM, AN and AM will be doupled after each 

calculation until AM becomes greater than STOP. When AM becomes greater 

than STOP a new value of BETA is read in from the data cards. The 

program will terminate automatically when the BETA data cards are 

exhausted. Control of the temperature range of the calculation is 

described in the section on Program TRAPS. The last card in the 

program printo'ut is an example of a data card . 

... ,, 
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