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ELECTRONIC STRUCTURE OF COMPLEX CRYSTALLINE AND 
AMORPHOUS SEMICONDUCTORS 

John Joannopoulos 

Department of Physics, Inorganic Materials Research Division, 
Lawrence Berkeley Laboratory and University of California 

Berkeley, California 94720 

ABSTRACT 

A study of the electronic structure of some complex crystalline
1 

and amorphous phases of Group IV, binary and Group VI compounds is 

present with the emphasis on understanding the effects of long- and short-

range order and disorder. 

The effects of long;...range order are studied by comparisons of cal-

culations of change densities of .ZnS in the zinc blende and wurtzite 

structures using the empirical pseudopotential method (EPM).
2 

A scheme 

-+ 
for obtaining the charge density from only a few representative k 

vectors is presented. 

Effects ~f short-iange order and disorder are studied by an examin-

ation of the band structures, electronic densities of states, and optical 
( . 1 1 
properties of Ge and Si in the diamond, wurtzite, BC~B, and ST-12 

crystal structures using the EPM and simple tight binding models. ·A 

complete band structure, critical point analysis and group theoretical 

discussion of the wurtzite, BC-8 and ST-12 structures is presented. 

Dipole matrix elements P(E) and joint densities of states J(E) are 

calculated and examined in order to discern information about the effects 

of disorder on the optical properties. In addition a new method is 

introduced to obtain the density of states of an infinite system using 

only information about local topologies. 
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Effects of disorder on the density ·of states of bina.ry compounds 

are studied by taking GaAs as a prototype and constructing various GaAs 

structuresusing the atomic positions of the wurtzite, BC-8 and ST-12 

structures. The density of states of GaAs in these structures is 

calculated using the EPM and simple tight binding models. Two density 

of states models are presel).ted simulating the effects of disorder with 

and without like-atom bonds. In addition, charge densities are used in 

order to study the nature of like-atom bonds. 

Finally, a comparative study of the electronic densities of states 

of Se and Te in the trigonal and amorphous phases is presented. New 

EPM calculations on trigonal Se and Te are performed which are in 

11 . h h . . 1 41 '42 exce ent agreement w1t recent p otoem1ss1on resu ts. Charge 

densities are calculated for certain regions of energy which associate 

peaks in the densities of states with particular bouding characteristics. 

In addition, a new method for determining bonding charge by extracting 

short wavelength components from the charge density is introduced. The 

changes observed in the densities of states of amorphous Se and Te are 

examined and interpreted. 
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I. INTRODUCTION . ' 
We present a theoretical study of the electronic structure of various 

crystalline and amorphous semiconductors with emphasis on understanding 

the influences of long- and short-range order and disorder. We begin in 

Section II. with an examination of the effects of lor1g-range order on the 

electronic charge densities of ZnS in a zinc blende and an ideal wurtzite 

structure. A comparison of the charge densities reveals the presence of 

a net polarization in the ideal wurtzite structure. In addition, two 
-+ 

represen~ative k points are found whose total change density is in very 

good agreement with the charge density obtained by summing over many 

points in the irreducible part of the Brillouin zone. 

From here we ~roceed in the following ~ections to a study of 

short-range di.sorder (SRD) on the electronic and optical properties of 

·some complex crystalline and amorphous semiconductors. In Section III 

we present calculations of the band structures and electronic densities 

1 
of states of c;e and Si in the diamond, wurtzite, Si III (BC-8), and 

Ge III1 (ST-12) structures. This is a series of crystals which exist -in 

nature and are listed in order of increasing number and positional disorder 

of atoms in the primitive cells. From the increase complexity of the 
.. 

crystal structures we find that SRD is able to account well for the 

density of states of amorphous Ge and Si. These calculations also 

provide a method of explaining various features in the amorphous density 

of states and show what structural aspects of the amorphous state are 

responsible for these features. In addition, using a simple Hamiltonian, 

we introduce a new method to study explicitly the effects of. local 

topology on the density of states of an infinite system. Our results 
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show that the number and type of rings of bonds in the vicinity of 

and passing through a certain atom are intimately related to the position 

and number of peaks in the local density of states of this atom. In 

Section IV we calculate and examine the imaginary part of the dielectric 

function E
2 

as a function of energy for Ge and Si in the aformentioned 

crystal structures. In particular we have obtained the symmetries of 

wave functions alorig importan~ symmetry directions ahd identified the 

major contributions to the optical structure. In addition, a further study 

is made into the optical properties of amorphous Ge and Si which reveals 

that the amorphous E spectrum has the same form as an averaged matrix 
2 

element as a function of frequency. In Section IV we extend our methods. 

to study the amorphous binary compounds. ·Specifically, we investigate 

the effects of two types of disorder on the density. of states of III-V 

semiconductors. For the first type of disorder we consider a stoichiometric 

system with fourfold ·coordination, all bonds satisfied, variations in 

bond lengths.and angles, and only unlike-atom bonds. The second type of 

disorder includes the properties of the first with the addition.· of 

like-atom bonds. These two types of disorders are studied explicitly 

by taking GaAs as a prototype and making various GaAs structures using 

the atomic positions of the previously mentioned crystal structures. 

A comparison o.f the trends observed in the densities of states with the 

inclusion of different types of disorder reveals valuable information 

concerning the relationship ·of the structural nature of an amorphous 

system to its density of states. From our results we construct two density 

of states models for amorphous III-V compounds which simulate the effects 

of these two types of disorder respectively. 
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Finaliy, in Section VI we study the electronic structure of chain-

like elements, i.e., Se and Te. We have obtained electronic densities 

of states and charge distributions for the valence electrons in trigonal 

Se and Te and we have explored the relation between density of states 

structure and charge density. In particular structures in the photoemission 

spectra are identified with particular interchain and intrachain bonding 

states. These results are then used to interpret the changes observed 

in the experimental photoemission spectra of amorphous Se and Te. 

The calculational methods that we have used in all our work include 

2 the empirical psendopotential method and various tight binding models. 

These methods will be discussed in detail in the text and in the Appendices. 

'· 
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II. ELECTRONIC CHARGE DENSITIES FOR ZnS IN THE WURTZITE 
AND ZINC BLENDE STRUCTURES 

In this section, we wish to obtain and compare the electronic 

distributions of two different crystal structures of the same compound. 

Specifically, we have calculated the ele.ctronic charge density as a 

function of position in the unit cell for ZnS in the wurtzite and 

zinc blende structures. These two crystal structures are shown in 

Fig. 1, with the wurtzite structure aligned so that the c axis is in 

the direction and the zinc blende structure is aligned with its (111) 

direction in the z direction. The difference between the two structures 

occurs first at third nearest n.eighbors and a detailed discussion of 

the wurtzite structure is given in Appendix C along \lith the structural 

parameters used. 

The charge density was obtained individually for each valence and 

conduction band and for the sum of the valence bands from a band structure· 

calculation using the empirical pseudopotential method
2 

(EPM). This 

method is discussed in Appendix A but briefly it involves solving a 

secular equation for the pseudopotential Hamiltonian which has the form 

2 2 + 
X= -(h /2m) V + V(r) (1) 

To take advantage of the crystal symmetry, the weak crystalline 

+ + 
pseudopotential V(r) is expanded in the reciprocal lattice {G} 

+ 
V(r) = (2) 

+ 
where S(G) is a structure factor and contains information about the 

+ 
position of the atoms in the primitive cell and the V(jGj) are called 
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form factors and are the fourier compone-q.ts of tpe atomic pseudopotentials. 

Because of S (ch one only needs a small number of V(j Gj) in order to 

specify the crystalline pseudopotential. The EPM is particularly useful 

in studying different crystal structures of the same compound since if 

one has a good set of form factors for a given crystal structure one only 

needs to perform a suitable interpolation to obtain the form factors for 

-+ 
any other crystal structure defined by S(G). This was done first by 

Bergstresser and Cohen3 for ZnS in the wurtzite structure and it is these 

factors that we have used in our study. 

In order to obtain good convergence in the wave functions it was 

necessary to diagonalize a 9QX9Q matrix for zinc blende and a 135Xl35 

matrix for wurtzite. Eighty additional plane waves were brought in 

.. 4 
through the use of a perturbation technique developed by Lowdin. 

We now have in principle all the information necessary to obtain 

the charge density. 
-+ . 

Since the wave functions ¢ -+k(r) are known as a 
n, 

function of band index we can postulate a "band" charge density: 

-+ 
p (r) 

n 

-+ 
p (r) 

n 
= e * -+ a. (G 

n 

-+-+ -+-+ 
r,k) a. (G,k) 

n 

The total charge density is then given by 

.n 

where the sum in Eq. (5) is over the valence bands. 

(3) 

(4) 

(5) 
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The expression in Eq. (4) is a general result; however, ·the procedure 

involved in evaluating this expression depends on the symmetry properties 

of the crystal studied. The zinc blende charge density calculation 

was carried out exactly as in Ref. 5. The wurtzite charge density 

calculation will now be described briefly. 

The Brillouin Zorte (BZ) for the hexagonal structure and its irreducible 

'-+ 
part are well known. Although the energies E (k) are exactly the same 

. n 

at related points in the BZ, the wave functions in general are not. Our 

procedure was to calculate the ~ -+k in 1/34 of the zone at 84 points 
n, 

and obtain the rest of the ~ -+k by rotations of Tr/3, inversions and n, 

mirror reflections in k space. The method used to find how the ~ -+ n,k 

transform is discussed in Appendix B. 

A. Results 

Since we are dealing with pseudowavefunctions which should not be 

valid near the c·ore it is important to say something quantitative about 

the size of the Zn and S cores. The electronic configuration of the Zn 

. . • 2 2 6 2 6 10 2 2 6 
and S cores is ls 2s 2p 3s 3p 3d and ls 2s 2p respectively. Using 

the wave functions obtained by Herman and Skillman6 we found that: 

(i) Ninty per cent of all the Zn core electrons are within a radius 

of 12% of the nearest neighbor distance. In particular this radius 

contains 86% of the 3d shell, 93% of the 3p and 3s shells and approximately 

100% of the rest. 

(ii) Ninty per cent of all the S core electrons are within a radius 

of 0.16 of the nearest neighbor distance. In particular this radius 

contains approximately 88% of the 2p and 2s shells and approximately 

100% of the ls shell. 

-· 

" 
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We are confident that for such small cores the wave functions are 

quite adequate. 

1. Cubic 

In the cubic case, chains of bonds that lie in a plane only occur 

in a zigzag pattern. If one sights along the direction of any bond one 

sees the same synimetrical distribution or environment of atoms. Thus 

the effects of this environment through long range electrostatic interactions 

will be along the direction of the bonds and the short range tetrahedral · 

symmetry will be preserved. 

We found the charge density of ZnS in the zinc blende structure to 

be very similar to that of ZnSe obtained by Walter and Cohen. 5 Because of 

this similarity we show in Fig. 2 only a contour plot of the total charge 

density. There is only one type of plane of interest and that is the 

(llO) plane or the plane formed by the dotted lines in Fig. lb. The 

·charge density is. evaluated on a grid of over 1500 points. In Fig. 3 

we show a contour plot of the total crystalline pseudopotential, obtained 

from Eq. (6), in the same plane as the charge density. The potential 

was evaluated on a grid of over 3500 points and the zero of potential 

was chosen arbitrarily such that the average crystalline potential is 

zero. The tetrahedral symmetry in Fig~. 2 and 3 is evident. The amount 

of charge around the S atom within a radius of 3/4 the nearest neighbor 

distance is approximately 7.3 e, and only 2% of this charge is in the 

core region. 
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2. Hexagonal 

In the wurtzite structure we have four atoms in the unit cell so 

that we have eight valence bands. We found that the charge density 

of bands 1 and 2 are almost identical so that in Figs. 4 through 7 

we show .contour plots of the charge density for bands 1 through 8. In 

Fig~ 7 we also show a plot for the hypothetical situation where the 

conduction band is full of electrons. The plane in these figures is 

the (110) plane or plane I in Fig. la. The charge densities were 

evaluated on a grid of more than 4000 points. We notice that bands 1 

and 2 are very s-like whereas the rest of the bands have pronounced 

p-like character. In particular bands 6 and 8 are almost pure p -like 
xy 

and p -like respectively. We also notice that the character of the 
z 

conduction band is almost free electron-like although there still is 

some localization around the S atoms. In Fig. 8 we show a plot of the 

total charge density in plane I. In this plane, the atoms form square 

wave-like chains of bonds which carinot be found in zinc blende. The 

zigzag pa~terns in the cubic case, however, can be found in the (101) 

plane or plane II in Fig. la. A contour plot of the total charge 

density in this plane is shown in Fig. 9. In Figs. 10 and 11 we also 

show contour plots of the total charge d~nsity in planes III and IV.· 

These planes help provide a three-dimensional view of the charge density. 
! 

Comparing Figs. 8 and 9 we notice immediately an as~etry in the electron 

distribution. Although the ionic cores are in a perfect tetrahedral 

arrangement the charge density is not. There seems to be a difference 

between bonds in the z directions and bonds in the other three corresponding 

tetrahedral directions. Firstly, the maximmn charge density occurs only 
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for bonds in the z direction and secondly, the charge density is pushed 

slightly out of the bond for those bonds which are not in the z direction. 

This asymmetry is actually a direct manifestation of the potential. This 

is clear in Fig. 12 in which we show contour plots of the crystalline 

pseudopotential in plane I. 

Actually these results are not surprising. In the zinc blende structure 

the environment of each bond is the same for all bonds. ·In the wurtzite 

structure, however, this is not·the case. If one sights along a bond in 

the z direction all the atoms which affect it are placed symmetrically, 

in planes perpendicular to the z direction. The net effect of these 

atoms is then directed along the bond. If one now sights along any other 

bond not in the z direction one finds an asymmetrical distribution of 

atoms. The net effect of this type of environment is not directed 

along the bond, but actually directed slightly out of the bond. To show 

this in a simple way consider the. following model. We assume we can 

construct a ZnS crystal out of two types of constituents: (1) positively 

charged Zn cores with a charge of 2e and (2) S cores currounded by a 

perf~ct tetrahedral distribution of electrons as in Fig. 2 of the cubic 

charge density. The net charge on this second part being -2e . We are 

thus taking implicitly into account the short range interactions and we 

shall be interested in the effect of long-range electrostatic interactions 

on the bond electrons of type (2) constituents. If we now arrange 

these constituents in a zinc blende structure and calculate the net 

electric field acting on these electrons we find of course that the 

field is directed along the bond preserving the tetrahedral symmetry. 

However, if we construct a wurtzite crystal out of these constituents 
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and calculate the net electric field on the electrons in the diagonal 

bonds we find that the field is directed primarily along the borid 

direction appart from a small z component which has the effect of 

pushing electrons out of the bond in the positive z direction. This 

is exactly what we find in our. charge densities. 

This asynnnetrical distribution of charge in ":i..deal" wurtzite 

will.produce a polarization. We can calculate the dipole moment p p~r 

primitive cell analytically using the fourier expansion of the charge 

density. We find: 

-19 p - 10 esu em (6) 

This is only about 50 times smaller than a usual ferroelectric-like 

BaTi0
3

• Although we do not expect our value for p to be accurate we do 

believe that there will be a resultant polarization. This polarization 

will then change the electronic and core positions so that the crystal 

reaches a lower energy state ·and the polarization is minimized. This 

tempts one to ·suggest that the non-ideal c/a ratio. found in real crystals 

results from changes in the crystal structure to reduce p. 

B. Representative k'Vectors for the Total Charge Density 

. -+ 
The idea here is to find a few k points whose charge density will 

give a good approximation to the total charge density. Baldereschi7 

-+ 
first proposed this and obtained one representative k point which gave 

an approximate total charge density for compounds in an fcc lattice. 

8 
Chadi and Cohen, using wave functions expanded in terms of Wannier 

-+ 
functions, obtained three representative k points at whose weighted sum 

of charge densities gives better agreement than the Baldereschi point. 

., 

iii 
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In this section we wish to present a simple.method of obtaining 

the same conditions for the k points without using any wave functions. 

A -+ 
Let P(r) be defined in the following way: 

A -+ -+ 
P(k,r) 

-+ -+ 
l:P(Tk,r) (7) 
T 

-+-+ ' -+ 
where P(k,r) is the charge density of the point k and {T} represents 

A -+ 
the set of point operations for the lattice. Now Pk(r) is-a periodic 

-+ 
function of k, so that we can expand it in the following way: 

A 

ik•1 A -+ -+ 
t: P<1,-;) P(k,r) = e (8) 

1 
A A 

A 
A -+ -+ -+ -+ A 1-+ A 1-+ Now since P(k,r) P(Tk,r), p ( 'r) = P(T ,r). Therefore, 

A -+ -+ 
p (k,r) (9) 

(10) 

A 
A -+ 

where P(O,r) is the total charge density in question. Thus, if we could 

find a k0 that makes all the ~(k,1) equal to zero for 1 # 0 then 

~ ~ -+ 
P(k

0
,r) would be exactly equal to the total charge density. We have 

-+-+ -+ 
found that P(k,r) is a slowly varying function of k so that we expect the 

P(!,;) to decrease in magnitude as 111 increases. The object then is 

to find a k
0 

which will make as many of the ~(k0 J) for small ill equal 

to zero as possible. The Baldereschi point gives ~ equal to zero for 

the first two 111 shells. 
. -+ 

In this calculation we obtained two k points 

for an hcp lattice which give ~ equal to zero for the first ten shells 

except· for the fifth shell. The total charge density we obtained using 
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the average .charge density of these points, agrees very well with this 

calculation. .. 
The points are given by: 

(/3 /3 1) 
kl = 4, a·, 4 (11) 

(/3 -/3 1) 
k2 = 8' 8' 4 (12) 

and the components are with respect to the primitive reciprocal lattice 

-+--+ + "" vectors A, B and C hexagonal with A•B = 0.5. 

9 Recently, Chadi and Cohen have developed a systematic way of 

generating larger and larger sets of special k points. This is very useful 

since a one or two point scheme is inadequate for calculating the 

-+ 
individ~al Pn(r) although it works very well in obtaining the total charge 

density. 
' 9 

On the other hand, the Chadi and Cohen ten (for zinc blende) 

or twelve (for wurtzite) point scheme is excellent for the total charge 

. -+ 
density and works very well for the Pn(r). 
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III. ELECTRONIC DENSITIES OF STATES OF COMPLEX CRYSTALLINE AND 
AMORPHOUS PHASES OF Ge and Si 

The electronic densities of states of amorphous Ge and Si as 
\ 

10 11 
obtained from ultraviolet (UPS) and X-ray (XPS) photoemission 

spectroscopy exhibit some very interesting features when compared 

with the corresponding ones of their crystalline phases. For example, 

one finds experimentally the retention of a "gap" in the amorphous 

phase. This has been shown theoretically for some special models by 

12 . 13 Weaire and Thorpe and McG1ll and Klima. However, the conduction 

band density of states seems to have none of the .structure found in the 

crystalline phase (see Fig. 2la). Furthermore, the form of the valence 

band density of states in the amorphous phase consists of a smoothed, 

blue shifted, peak at the top of the valence band and a seemingly large. 

broad peak at the bottom of the valence band12 •13 (see Fig. 23). This 

is in contrast to the three strong peaks found in the valence bands 

of the crystalline phase. 

Amorphous samples can be prepared in a variety of ways with a 

range of bulk density from 25% less to approximately the same as the 

bulk density of the crystalline case. There also exists a lot of 

speculation as to the structural nature of the amorphous phase. On 

this point there have been primarily two main schools of thought. First 

that the amorphous structure is made up of small domains of perfect 

crystals separated by disordered boundaries, which is called the "micro

crystallite model". For example, Rudee and Howie14 found that their 

amorphous films gave consistent diffraction ring patterns with a 

microcrystallite model if their amorphous sample were made up of "wurtzitei• 
' 
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microcrystals. Another approach is that the amorphous phase can 

exist in a completely disordered structure while each atom retains 

an imperfect tetrahedral arrangement of nearest neighbors. In this 

case, if all the bonds are satisfied, the model is called a "random 

network model". 10 
Spicer and co-workers seem to be able to prepare their 

amorphous samples in an "ideal" manner such that they have a negligible 

presence of microvoids and dangling bonds and have the same nearest 

neighbor distance and approximately the same bulk density as that of 

the crystalline case. It is this type of sample that we will have in 

mind when we discuss and compare our results with the "amorphous phase". 

It is clearly a formidable task to perform a realistic calculation 

on a structure with long range disorder.· However, we could ask the 

following question. How much disorder is necessary to achieve the 

distinctive features evident in the amorphous data? To explore the 

possible' answers to this question, we have calculated the band structure 

. . . 1 
and density of states for Ge and Si in the diamond, "wurtzite", Si III, 

and Ge nr1 structures using the EPM2 and the tight-binding model used 

1 b W . 12 recent y y ea1re. From the pseudopotential band structure we have 

also calculated the optical properties of these structures. The diamond 

structure is face-centered cubic with two atoms per primitive cell 

(FC-2), wurtzite is hexagonal 2H with four atoms per primitive cell 

(2H-4), Si III is body-centered cubic with eight atoms per primitive 

cell (BC-8), and Ge III is simple-tetragonal with twelve atoms per 

primitive cell (ST-12). The Si III and Ge III structures are complicated, 
I 

dense, metastable crystalline phases which are recovered from high pressure 

experiments and persist at normal pressures. When Ge occurs in the Si III 
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structure it is called Ge rv. 15 Because of this rather unfortunate 

terminology we shall use the notation described above in parentheses 

for the specification of these various structures . 

FC-2, 2H-4, BC--8 and ST-12 provide us with a series of structures 

that become more and more locally disordered. What we imply by local 

disorder is that we have a crystal (long range order) ~nd yet the atoms 

in the primitive cell of our crystal are in a·"disordered" tetrahedral-

like arrangement. The FC-2, 2H-4 and BC-8 structures are all similar in 

that they have sixfold rings of bonds and one type of atomic environment.'· 

The ST-12 structure, however, is very novel in that it has fivefold 

rings of bonds and two types o_f atomic environment. The electronic 

.properties of these structures should then provide us with some interesting 

tests for the microcrystallite and random network models and· should provide 

us with an idea of how much disorder is necessary to reproduce the 

importan~ features of the experimental amorphous data. 

A detailed discussion of the structure of these polymorphs and 

their parameters is given in Appendic C. The bulk densities of 

Ge ST-12 (Si ST-12) and Ge BC-8 (Si BC.,.8) differ by about 1%. However, 

they are both about 10% greater than those of Ge FC-2 (Si FC-2) and 

certain types of amorphous Ge (Si).
10 

Therefore, a comparison of the 

differences between the density of states of Ge FC-2 (Si FC-2) and 

Ge BC-8 (Si BC-8) ean be attributed primarily to structural and symmetry 

differences. Hence, comparispns of the polymorphs provide a method of 

filtering out the effects of greater density, which should not be very 

important as long as the bond lengths do not change appreciably. 
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It would be appropriate at this time to mention that we were able to 

build a crystal with the same symmetry and number of atoms in the primitive 

cell as Ge ST-12 but with the same nearest neighbor distance and bulk 

density as amorphous Ge. The method consisted of finding three independent 

bond lengths b
1

, b2 and b
3 

which were functions of ·a, x
1

, x
2

, x
3 

x
4 

and 

2 
V such that c = V/a . Once the density was fixed through V we minimized 

the function 

by a method of steepest decent. Although we obtained the correct bond 

lengths .R.i, bulk density and a good radial distribution function, we obtained 

some bond angles that were 40% bigger than the ideal tetrahedral angle. 

These large deviations in our modified crystal produced large d~viations 

in the Hamiltonian matrix elements and we found that we obtained a 

semimeta1. This is in 'large contrast to the fa~t that we found quite 

a· s:i:zeable gap for Ge ST-12. This will be of interest later when we 

discuss what different structural aspects affect the size of the gap. 

Since no experimental data are available at this time for the 

polymorphes we have studied, the form factors we have obtained might have 

to be adjusted slightly to give better agreement with experiment. In 

Table I and ·Table II we list the unnormalized form factors for Ge and 
\ 

Si and the corresponding reciprocal lattice vectors for the 2H-4, BC-8 

and ST-12 crystal structures. For the 2H-4 structure we used 50-60 plane 

waves as a basis set along with another 140 plane wav~s through a 

•• 4 . -+ 
perturbation scheme developed by Lowdin. We calculated E(k) in 1/24 

'"' 

.. 
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of the BZ at 275 grid points. For the BC-8 structure we 

used approximately 60-65 plane.wave.s as a basis with about 160 additional 

plane waves through perturbation theory. We diagonalized our 

Hamiltonian in 1/48 of the BZ at 240 grid points. Finally, for ST-12 we 

used about 70 plane waves as a basis set along with approximately 270 

more plane waves through the Lowdin scheme. The eigenvalues were 

obtained in 1/16 of the BZ at 251 grid points. For all these 

structures we obtain a convergence of ~.1 eV for almost all the states 

in valence barid and for the states in the conduction band in the vicinity 

of the gap. 

In our tight binding calculation we took the model used recently by 

12 
Weaire and Thorpe. The Bloch wave functions for each band have the 

form: 

-+ 
Wk,n (r) (13) 

-+ 
where the~ (r) form a basis set of order M of tight binding Bloch. -l<,m 

states given by 

-+ 
~-+ (r) --k,m 

-+-+ 
1 ik•R -+ -+ 

= - 2: e ¢ (r - R 
IN-+ 

R 

-+ 
"[ 

i 

where m = i, t; N is the number of primitive cells 

localized orthonormal states which can be taken as 

and the cp are 
m 

(sp 3) hybridized 

directed orbitals (four of each atom). The position of the ith atom 

-+ -+ . 

(14) 

in the primitive cell is given by Ti' and Pt designates the direction 

and center of mass pos:!,tion of the tth directed orbital of the ith atom. 

. -+ 
Furthermore, fori I i', t' =twill imply -Pt 
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is equal to a bond length. Thus states ¢i, 0 and~. 0 are orbitals from , )(., - ]. ')(., 

different atoms which lie in the same bond and¢. 0 and~- 01 represent 
J.,)(., J.,)(., 

different orbitals defined with respect to the same atom. 

·rn this model there are only two important nonzero matrix elements 

given by: 

(15) 

The parameters v
1 

and v
2 

for the FC-2 structure were obtained by fitting 

them to the valence band density-of states of Ge FC-2 using the EPM. 

The values obtained were V 1 = -2.22 and v2 = -6.20 and were taken to be 

the same for the BC-8 and ST-12 structures. The Weaire model of course 

assumes all the bond lengths are equal and a perfect tetrahedral 

arrangement for the atoms. The most prominent features of this model 

are a flat band at the top of the valence band containing two states 

per atom, a rather inadequate conduction band due to the limited number 

of basis functions and an energy gap which is the same for all structures 

with even membered rings of bonds. An extension of this model to 

include all interactions between nearest neighbors works very well and 

is discussed in Appendix D. 

Once the band structure is known the density of states can be 

obtained using the following expression: 

-+ 
N(E) ~ L: L:o(E 

a k n 
E (k)) 

n (16) 

where N is the number of atoms in the primitive cell, N is the number 
a 

of primitive cells and N(E) is normalized to the number of states per 
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atom. ·The method used to evaluate the integral in Eq. (16) is due to 

. 16 
Gilat and Raubenheimer. The energy derivatives ·required by this 

-+-+ 
method were obtai11ed using k•p perturbation theory. 

A. Results 

The band structures of Ge and Si in the 2H-4, BC-8 and ST-12 structures 

are shown in Figs. 14 through 19. In Fig. i3 we show the Brillouin zones 

17 for these structures and the symmetry and notation used by Leuhrman. 

Certain symmetry directions in the 2H-4 structure can be compared with 

analogous ones in the FC-2 structure through an alignment of the Brillouin 

18 
zones. One finds the fL direction (FC-2) maps into the fAf direction 

(2H-4) so that the indirect gap at L for Ge FC-2 becomes a direct gap at 

f in Ge 2H-4 and is equal to 0.55 eV. Although the fX direction (FC-2) 

is not associated with any symmetry direction in 2H-4, the X point is 

found to lie 2/3 along the U axis from M to L (2H-4). Si, however, which 

has an indirect gap at X in the FC-2 structure has an indirect gap at M 

in the 2H-4 structure equal ·to 0.85 eV. 

In the BC-8 structure we find direct gaps for Si and Ge and they both 

occur at H. For Ge we obtain a zero gap whereas for Si we obtain 0.43 eV. 

It is interesting that in the Weaire tight binding 8C-8 band structure we 

find the bottom of the conduction band also occurs at H. 

In tjle ST~l2 structure we find a direct gap for Ge 0.7 of the way 

from r to M . The magnitude of the gap :is 1. 47 eV. For Si we obtain 
z 

an indirect gap with the top of the valence band 0.4 of the way from 

r to M and the bottom of the conduction band about 0.75 of the way between 
z 

f and Z . The Si gap is equal to 1.6 eV. It should be mentioned, however, 
X 

that since the valence band is rather flat along many symmetry directions 
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and the conduction band has many dips at very nearly the same energy, 

the actual experimental gap could be direct or indirect and could lie 

in a variety of places. It is interesting, nevertheless that we find 

using the :Weaire tight binding model that the ST-12 gap lies at M . 
z 

What is striking in this calculation is that the Ge and Si ST-12 gaps 

are about 50% larger than those of all the other structures. This is 

probably due to the influence of the large numbers of five and sevenfold 

rings in the ST-12 structure which would prevent the presence of low-

lying, antibonding s-like states in the conduction band. 12 Weaire et al. 

have suggested this might happen in structures with odd-numbered rings, 

but the degree wo which it happens is shown in Fig. 20. Here we show the 

results of our calculation on an "ideal" ST-12 and BC-8 structure using 

the Weaire model. At the top of the valence band we have the p-like 

delta function peak containing· two states per atom, while the rest of 

the valence band is s-like·and 'also contains two states per atom. We 

notice in Fig. 20(b) that we now have a "valence gap" and a "conduction 

gap". The "conduction gap" for ST-12 is considerably larger than that 

of BC-8 and FC-2 (dotted line). In fact, we find a 200% increase in 

the gap if we include an ad hoc .Z.O eV broadening of the delta function 

peak at the top of the valence band. In this model the "valence" and 

"conduction" gaps are intimately related. This is because the conduction 

·and valence band eigenvalues (except for the pure p-like states) are 

associated through the same analytic transformation (aside from a sign) 

to the eigenvalues of a one-state Hamiltonian. 19 The coefficient of a 

one-state wave function is then equal to the sum of the coefficients of 

the corresponding four states in the old Hamiltonian which is just the 

., 
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s coefficient of these four states. Thus, the omission of antibonding 

states in the one-state Hamiltonian will reflect itself in the omission 

of s-like states from the top of the valence band and bottom of the 

conduction band. 

In the EPM case we do not expect such 'large effects since we obtain 

a much more realistic band structure. Nevertheless, the low energy 

conduction band states are rather localized and so we still expect the 

influence of odd-membered rings to be important. In fact, we can even 

observe a "valence gap" in Figs. 18 and 19 for Ge ST-12 and Si ST-12. 

In Ge ST~l2 the s-like and p-like states area almost separated while in 

Si ST-12 there is just a little mixing around -4.4 eV. 

In Figs. 2la, b and c and we show plots of the density of states for 

Ge in the FC-2, 2H-4, BC-8 and ST-12 structures. Similar results for Si 

are shown in Fig. 22. Superimposed on the Ge (Si) FC-2 density of states 

is a sketch of the amorphous density of states ·obtained by Donovan and 

·. 10 Spicer (Pierce and Spicer). The sharp peaks are primarily due to 

20 Bragg gaps and would be smoothed out in a structure with no periodicity. 

Keeping this in mind we can make some interesting comparisons among 

these structures and we can examine the trends in going from.FC-2 to .• 
2H-4, to BC-8, to ST-12, to amorphous. 

First we notice that the conduction band becomes more and more 

smoothed out as we go from FC-2 to ST-12. These lack of large structure 

also seems to be evident in the amorphous phase. Next we notice that 

the two large peaks at the bottom of the valence band in FC-2 seem to gain 

more structure as we go to 2H-4 and BC-8. Nevertheless, these peaks 

still retain most of their individual identity. In the S~-12 structure, 
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however, there is a thorough mixing of the two peaks. This is similar 

to the suggestion by Thorpe et a1.
21 

for the amorphous case. Experimentally 

.. 22 
Wiech. and Zopf did find a seemingly large broad peak at the bottom of 

the valence band for amorphous Si using a soft X-ray spectroscopy. 

11 Recently, this has been confirmed by Ley et al. for amorphous Si and 

Ge using X-ray photoelectronic spectroscopy. These results are shown 

in Fig. 23. The fact that states are introduced in the valley between 

the two lower valence band peaks in Figs. 2la and 22a for the amorphous and 

ST~l2 phases, in such a way as to obtain a large hump where the valley 

used to be, can be primarily attributed to the presence of odd numbered 

rings of bonds. This is suggested by the following simple argument. 

The FC-2 structure can: be considered to be made up of six membered rings 

in the "chair" configuration. That is, we can pick a set of rings which 

can be brought together to make an FC-2 structure and we will assume 

for the moment that they do not loose their identity. Let us now isolate 

' 
one of these rings and place one localized orbital at each of the atomic 

sites. We are thinking in terms of the one-state Hamiltonian mentioned 

earlier. The symmetry of this ring is n
3

d and if we assume that these 

localized states transform into one another under DJd' they then form 

a basis for the six dimensional representation r 6 = A1 + E1 + E2 + B1 . 

Thus, we.have six states consisting of two single states of symmetry 

A1 and B1 , and two doubly degenerate states of symmet.ry E
1 

and E2 . If 

we now assume only nearest neighbor interactions X
1 

we obtain 

us now isolate N rings at infinity. The density of states for this 

system is just an N-fold degenerate single ring density of states. As 
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we bring these rings closer together, to make an FC-2 or 2H-4 structure, 

the rings will interact and the states are going to spread. Since we 

are considering only nearest neighbor interactions we so not expect any 

dr.astic or significant differences when the inter-ring interaction 

becomes equal to the intra-ring interaction. For example, we can bring 

two rings together in such a way as to make a total of five rings. 

However, the energy spectrum for this system consists of just a 

splitting of each energy level of the two single ring system by about 

IJCII. This is what we expected and thus the N-ring system should have 

a density of states which consists of two big humps and some type of 

valley in between. This density of states .is then analogous to the 

two peaks at the bottom of the valence band in Figs. 2la and 22a. 

Consider now the same analysis with a five membered ring which we 

111ay take to have symmetry n5 • Assuming again that the localized states 

transform into each other under n5 , they span a five dimensional 

representation f 5 = A1 + E1 + E2 . Thus we have five states consisting 

of a single state of symmetry A1 and two double degenerate states of 

symmetry E1 and E2 • We then obtain E(A1) = -2IJC1 1, E(E1 ) = -2 cos 2; IJC1 1 

. 47T I I and E(E2) = -2 cos -s JC1 • The states of symmetry E1 and E2 lie 

intermediate in energy to those of the sixfold rings with symmetry E
1

, 

E2 and.B1 o Thus fivefold rings will introduce states in the valley 

between the two density of states peaks at the bottom of the valence 

band. In fact the eigenvalues of any ring of order N are given by: 

I I 2n7T 
En = -2 ~ cos N n = 0, 1, o o • , N - 1 (17) 
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Therefore, sevenfold rings will also introduce states in the valley. 

Thus five and sevenfold rings will help to produce a one hump type of 

structure with a peak where the valley used to be. These results are 

19 
consistent with those obtained by Weaire and Thorpe for "Husumi cacti" 

made up of five and sixfold rings. In Section III-B we will use a 

different approach which will lead us to the same conclusions. 

The valence band density of states edges of Ge and Si in the FC-2, 

2H-4 and BC-8 structures (Figs. 21 and 22) are all similar in that they 

gradual slopes. On the other hand, Ge and Si in the ST-12 and amorphous 

phases have very sharp edges. Along with this is the fact that there 

is a very noticeable shift of the hump at the top of the valence band 

to higher energies in the amorphous and ST-12 structures. We believe that 

the reason for this is an increase in the coulomb repulsion energy and 

kinetic energy because of variations .in the bond angle in the amorphous 

and ST-12 phases. This can be shown by the following argument. Consider 

a system with a perfect tetrahedral arrangement of atoms like Ge FC-2 

for example. The states in the large hump at the top of the valence 

band loc·alize the electrons primarily in the bond whereas the states 

in the two large peaks at the bottom of the valence band localize the 

electrons primarily on the atoms. It is the electrons in the bonds 

which are more se.nsitive to changes in bond angle. Now the states at 

the high energy side in the hump have a larger kinetic energy than the 

states at the lower energy side in this hump. This reflects itself 

in the fact that the former states are very localized in the bonds 

whereas the latter states are more spread out in the bonds. Let us 

now consider an amorphous system and let us naively assume that we have 
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just as many larger bond angles· as smaller bond angles. Since the 

interaction between the bonds is not linear we will have an increase in 

the energy of each electronic state. However, the states at the lower 

energy side in the large hump will have a larger overlap and a larger 

increase in energy than the states near the gap. This will produce an 

increase in the number of states near the gap and a steepening of the band 

edge. A simple calculation shows that the increase in the energy involved 

is of the same order as that observed in the amorphous case (Fig. 2la). 

In the pseudopotential calculation for ST-12 coulomb effects are not 

taken explicitly into account and the shifting of the peak is mainly due 

to an increase in the kinetic energy. We may argue in the same manner 

as above since variations in bond angles will produce a larger decrease 

iri the effective volume occupied by the electrons at the lower energy 

side of the hump than the electrons in states near the gap which are 

more localized in the bonds. This will result in an increase in the 

kinetic energy and we should obtain the same effect as in the amorphous 

case. This is evident in Fig. 2ld. Although the BC-8 structure has 

much smaller deviations in bond angles than ST-12 we can still notice 

an introduction of states near the gap when we compare BC-8 with 2H-4. 

Finally, we would like to make some comparisons between our results 

for the BC-8 .and ST-12 structures using the EPM and .the Weaire model. 

If we compare ST-12 (Weaire) with Ge ST-12 (EPM) we notice a very good 

matching of gross structure. The delta function at -2 eV represents 

the large hump at the top of the valence band. The two strong peaks 
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near -4 eV and -6 eV are obtained in both cases and reveal a characteristic 

property of the structure. In Si ST-12 the peak at -4 eV has merged 

with the forward hump. In the BC-8 structure the comparisons are not as 

good. However, we still get a characteristic dip near -8 eV for both 

cases. The peak near -6 eV seems also to be well reproduced. 

In summary, we have shown that long range disorder is not necessary 

to reproduce the essential features of the amorphous data; By studying 

a series of structures that became more and more locally disordered we 

were able to draw some interesting conclusions as to what properties of 

the amorphous structure are important. We have found that deviations in 

bond angles will produce an enhancement of the states near the gap and 

what seems like a shift of the hump in the density of states at the top 

of the valence band to higher energies. The presence of local disorder 

also seems to smear out the strong structure in the region near the 

bottom of the conduction band. The presence of five and seven membered 

rings will enhance the number of states in the valley between the two 

low energy density of states peaks at the bottom of the valence band. 

The odd-numbered rings also have an effect in producing a "valence gap" 

and perhaps it is this feature that helps to retain the dip in the 

amorphous density of states shown in Fig. 23. Finally, the odd-membered 

rings seem to have an effect on the size of the intrinsic energy gap. 

We found this to be a very large influence on the gap in the Weaire model. 

Now one may argue that this is of no realistic consequence since the 

conduction band in the Weaire model is inadequate and insufficient. 

Nevertheless, in the EPM calculation we find that the states near the 

gap at the bottom of the conduction band are s-like and are rather 
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localized. In this sense the predictions of the Weaire mode~ may 

still be valid for these states. However, we are not implying that 

the presence of fivefold rings will produce an increase in the energy 

gap. As we found in our modified crystal the gap depends very critically 

on the Hamiltonian matrix elements. Furthermore, the amorphous phase 

- . 
is less dense and, hence, has probably fewer five-membered rings than 

the ST-12 case. Therefore, this fact along with variations in the 

Hamiltonian matrix elements could produce a gap in the amorphous phase 

which is very nearly the same as that of FC-2. 

We also believe tnat a microcrystallite model with 2H-4 micro-

crystallites is not substantiated by our calculations. This is clearly_ 

the case in the optical prop-erties even if we average the e:
2 

(w) function 

since the peak lies higher in energy than the amorphous hump. This is 

also the case in the density of states for 2H-4 since an averaging 

does not reproduce in any way the amorphous features. One might 

suggest an amorphous structure made up of ST-12 microcrystallites 

and argue that small regions of microvoid structure could make up for 

bulk density differences. However, the radial distribution function 

for these structures would be quite different. The next nearest 

neighbors in the Ge ST-12 structure at 3.45A and 3.64A would be hard to 

lose. 

The random network model seems like a reasonable model for the 

amorphous 'state. It's major problem is, of course, that of non-'-uniqueness. 

It is clearly obvious that one could make a random network model and 

obtain a zero gap. Thus, effects of stability must be very important 
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in determining the particular types of random network structure that 

can exist in a metastable state. The fact that amorphous samples are 

always prepared with very nearly the same gap clearly reflects this. 

B. Method to Study Densities of States Using Local Configurations 

In this part we shall be mainly concerned with effects of topology 

and in particular the effects of topology on the "s-like" states of Ge 

and Si. As we have seen the four-state Weaire Hamiltonian provides a 

good description of these states and has eigenvalues which are related 

by an analytic transformation to the eigenvalues E of a much simpler 

one-state Hamiltonian with only nearest neighbor interactions V. Using 

this one-state Hamiltonian for simplicity, we have developed a new, 

simple nie.thod of calculating the local density of states of an atom 

iri terms pf the local environment of that atom. The .system of atoms 

we consider consists of an infinite connected network of atoms with 

tetrahedral like coordination. The proceedure used to calculate the 

local density of states is as follows. We pick a particular atom as 

a reference point and a small cluster of atoms surrounding and including 

this atom is removed frpm the system. The cluster is chosen such that 

every atom in the cluster belongs to a ring passing through the reference 

or central atom. The Bethe lattice is now introduced as a boundary 

condition to. assure that all bonds are satisfied and simufates the effect 

of the rest·of the system. The local Green function for the central atom 

of this cluster-Bethe system can now be obtained exactly. 

The Bethe lattice was chosen as a boundary condition since it 

provides a soluble method of treating an infinite system of atoms without 



-29-

' being restricted to periodicity; In addition, it provides a total 

density of states which is smooth and featureless. Consequently any 

structure obtained in the_ local density of states is very closely 

related to the local configuration of atom. In the diamond structure 

we choose a cluster of (1 + 28) atoms which contains 12 sixfold rings 

passing through the central atom; each of the 28 non-central atoms is 

in at least one of the 12 rings. There are five inequivalent classes 

of atoms: the central atom, 4 nearest-neighbors and an infinite number 

outside the cluster in the Bethe lattice. The diagonal element <olglo> 

of the Green function is in this model given by 

.where 

(19) 

and 

(20) 

These equations are obtained by solving a set of (4X4) linear 

equations, in the unknown ( ilglo>; C1. given by Eq. (20) is the contribution 

from the Bethe lattice. 

The local density of states obtained from Eq. (18) is given in 

Fig. 24a. Superimposed we show the density of states of the Bethe lattice 

and the diamond structure. In Fig. 24b we show similar results•obtained 

by suing the four-state Hamiltonian. It is easily seen from these figures 

that the local environment of the atoms gives the main contribution to 

the density of states. In particular the association .of structure in 

the local density of states with the ring statistics of the cluster is shown 
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in Figs. 24c through e. Here we have constructed five clusters which are 

made up of six rings of only one type (i.e., fivefold, sixfold, sevenfold 

and eightfold rings respectively. Each pair of bonds of the central 

atom is part of a ring. In Fig. 24c we have plotted the local density of 

states for these ring-cluster-Bethe systems corresponding to the 

Hamiltonian (Eq. (1)). In Fig. 24d we show the equivalent calculations for 

the four-state sp3 Hamiltonian. The structure in these densities of states 

can be easily identified with the eigenvalues of isolated rings as shown 

in Fig. 24e. The agreement is excellent and indicates that the ring-like 

nature of the local environment is paramount in determining the type of 

structure found in the density states. A close examination of Fig. 24c 

shows that the strength of peaks is larger the smaller the ring. This 

indicates the importance of the small rings in a cluster. 

We have also applied our method to examine the total density of 

states of the BC-8 and ST-12 structures which have proven to·be very 

important in the study of the structural aspects of amorphous Ge .and Si. 

In the BC-8 structure weonly have one type of atom and consequently, as 

in diamond, the local and total densities of states are equiyalent. 

We have chosen a cluster in the same manner as described previously: 

it contains 26 atoms. The results for the BC-8-Bethe system are shown 

in Figs. 25aand b along with the crystalline BC-8 spectrum. Again, the 

agreement between the BC~8 and BC-8-Bethe spectra is good, indicating 

the importance of a local configuration. A comparison of Figs. 25a and b 

with Figs. 24c and d reveals the sixfold ring character of the BC-8 

structure, which is caused by the nine sixfold rings passing through 

each atom. 
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The ST-12 structure is quite interesting since it provides us 

with a system which exhibits five, six, seven and eightfold ring character. 

There are two types of atoms in the primitive cell with four atoms of 

type I and eight atoms of type II. Consequently, we have two types of 

clusters and the .local density of states for these ST-12-Bethe systems 

are shown in Figs. 25c and d. In the cluster with a type I central atom 

we have four fivefold, two sixfold, six sevenfold and three eightfold 

rings of bonds with a total of 27 atoms. Comparing this spectrum with 

that of Figs. 24c and d we find that the peak at 1.5 in Fig. 25c is 

mainly caused by a sixfold ring peak and the overlap of a five and 

sevenfold ring peak. The shoulder around 0.3 seems to be caused 

principally by an overlap of a five and eightfold ring peak. Finally, 

the peak at (-2.6) is due to ~fivefold ring peak and the overlap of 

a seven and eightfold ring peak. Similarly, in the cluster with a type 

II central atom, we have 31 atoms with three fivefold, two sixfold, 

five sevenfold and eight eightfold rings of bonds. Again a comparison 

'of this spectrum with Figs. 24c and d reveals that the peak at 2.1 

is mainly caused by a sevenfold ring peak and the overlap of a six and 

eightfold peak. The hump near 0 ·is due primarily to an eightfold ring 

peak and the overlap of a five and sevenfold ring peak. Fi~ally, the 

little bump at (-1.4) is caused mostly by a sixfold ring peak and the 

peak at (-2.7) is mostly due to a fivefold ring peak and the overlap 

of a seven and eightfold ring peak. 

In Figs. 25e and f we show the total density of states of the 

ST-12-Bethe system as obtained from a weighted average over the local 

density of states spectra. We also show the crystalline ST-12 spectrum 

which is considerably more complicated than the BC-8 and diamond spectra. 
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Nevertheless, we are still able to say that the total density of states 

is mainly due to the local configuration. We have found that for all 

these structures the local densities of states are nearly independent 

of how the rings are arranged in the clusters and depend mainly oh the 

number and type of rings. 

ln conclusion we believe that our method provides a powerful 

way of studying the total density of states of an infinite system of 

atoms in terms of the local environment of each atom. In particular, 

this enabled us to calculate the total density of states of any system 

given the percentage of.atoms with the same ring statistics. Conversely, 

given a total density of states it may be possible to distinguish 

between possible ring statistics. This method could even be extended 

to deal with problems of impurities and surface effects. 
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IV. OPTICAL PROPERTIES OF COMPLEX CRYSTALLINE AND 
AMORPHOUS PHASES OF Ge and Si 

In this sectio~ we are concerned with the spectra of the imaginary 

part of the dielectric function £2 for Ge and Si in the FC-2, 2H-4, 

BC-8 and ST-12 structures as obtained from the EPM. From a band structure 

point of view we present a detailed analysis of the structure in £ 2 

for Ge and Si in the 2H-4, BC-8 and ST-12 cases along with their band 

structures containing the symmetries of wave functions along important 

directions. This is of interest since the BC-8 and ST-12 structures 

may have a variety of applications, e.g., exciton droplets and when 

doped, superconductivity. From the point of view of understanding the 

amorphous phase the trends observed in £2 as the· structures become more 

and more complex may give some insight into the amount of disorder 

necessary to produce the distinctive features of the amorphous £2 • We 

shall show that our short range disorder model is the only theoretical 

model until now that can account for both the amorphour density of states 

' 10 
and the amorphous £

2
• In particular we shall show that when one 

measures the amorphous £
2 

spectrum one is essentially just measuring 

an averaged energy dependent matrix element. 

The parameters and potentials used in these calculations are the 

same as those in Section III. The reader who is only interested in the 

amorphous phase may proceed to part C with no loss in continuity. 

A. Symmetry Considerations 

We find that the 2H-4 structure has a symmetry classification of 

n:h and is therefore associated with a non-symmorphic space group. The 

BC--8 and ST-12 structures have symmetry classifications T~ and D: 
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respectively and are thus also associated with space groups which are 

non-symmorphic. The Brillouin zones (BZ) for these structures are shown 

.in Fig. 13 with the notation used by Leurhmann.
17 

In order to label the 

symmetries of our wave functions, shown in Figs. 26, 38, 30, 32, 33 and 

35, we have used the notation for point group elements and the character 

tables foun. d 1.'n za·k. 23 I f h · · t · n our case, o course, t ese po1.n operat1.ons 

must be followed by the appropriate translations. However, several 

remarks must be made relating to the additional symmetry, in some cases, 

demanded by time reversal invariance, and to the symmetry notation for 

points located in the interior of the zone. 
. \. . 

In the 2H-4 (D:h) structure time reversal invariance adds additional 

symmetry to R. Thus R1 and R2 in our notation are obtained from R1 + R4 

and R
2 

+ R3 , respectively, using Zak's character table. In the case of 

M (D
2
h) our notation is identified by replacing lf' and cJK with u1 

and a1 

in the character table forD2h in Zak. For E(C2) we obtain our character 

table by replacing c2' a and a' with u1 , a, and az respectively in the 
v v 

character table for c2v in Zak. Similarly for f(D 6h) and ~(c6v) our 

notation is identified by replacing ah, 3av with az, a(x) and 3av' 3ad with 

3a(x), 3a(l) respectively in the appropriate character tables found in Zak. 

7 In the BC-8 (TJstructure time reversal invariance adds additional 

symmetry to A, P, D, rand R. Thus for A(c
3
), A1 and A2 in our notation 

is obtained from 1 and 2 + 3, respectively, using Zak's charact,er table. 

Similarly for P, time reversal invariance requires P1 remain P1 and 

P
2 

+ P
3 

becomes P
2

. For D(C
2
), D1 + n2 becomes n1 and for f(Th), 1 becomes 

rl' 2 + 3 become r2, 4 becomes r3, 5 becomes r4' 6 + 7 becomes r5 and 

8 becomes r 6 • The character table for His the same as forTh; it can 

,· 

... 
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be treated the same way as r. ·.In the case of Ll(c
2
v) our notation is 

identified by replacing c2 , ov, and ov with S• oY and oz respectively 

in the character table for c2v in Zak. 
. 4 
In the ST-12 (D

4
) structure our notation regarding labeling of 

symmetry points and directions is that of Leuhrman, as mentioned before, 

and for this case it differs from Zak's notation. Aside from this, 
' 

time reversal invariance requires that uY, Mz, S, R, T, M and Uz have 

additional symmetry. Thus Y
1 

+ Y
2 

using Zak's notation becomes ur using 

our notation. Similarly for Mz, we have M
1 

becomes Mi, M
2 

+ MJ becomes 

z z M2 , and M
4 

+ M5 becomes M3 , and for S we have s1 + s2 become S. For R 

we have A1 + A2 becomes R1 and forT, T1 + T2 become T
1

. Finally, for 

M we obtain M1 from R1 + R2 and M2 from R3 + R4 and for Uz we obtain 

U~ from w1 ~ w2• In the case of rcn4), Ll(c
2
), 2:(c2) and 6z(c4), which 

are internal symmetry points, our notation is identified using the 

charactet;" tables for n
4

, c
2

, and c
4 

respectively found in Zak. 

B. Results 

The band structures of Ge and Si in the 2H-4, BC-8 and ST-12 structures, 

shown in Figs. 26, 28, 30, 32, 33 and 35 were obtained from EPM calculations 

and the form factors used were given in Section III. In Figs. 27, 29, 31, 

34 and 36 we show the c
2 

spectra calculated from these band structures 

using 

Ef -+ 
o(E Ck) 

c -

-+ 
E (k) 
v -

BZ 

(21) 
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where lk,v> is a Bloch state in the valence band and the integral is 

over the entire BZ. 

For the 2H-4 and ST-12 structures we can distinguish between the 

polarization of the electric vector and the c axis taken to be in the 

z~direction. In this case the factor.of 1/3 in Eq. (21) is removed and 

we have parallel polarization if we use d/dz in the matrix element and 

perpendicular polarization if we use di'dx or d/dy. The integration was 

performed using the Gi1at-Raubenheimer scheme. 16 Tables III through VIII 

summarize the major contributions to the various peaks in the £
2 

spectra 

for the six compounds. The first column identifies the energy of a 

particular peak and the second column contains the major contributions 

to this peak identified by interband transitions which are listed in -

order of decreasing strength. In particular, we list the bands which 

contribute more strongly once we are away from symmetry points- and lines. 

The third.column assigns the interband transitions to various regions 

of the BZ. Finally, in columns four and five we list the symmetries of 

the critical points and their associated energies respectively. In 

some cases, the s)1IIlliletries were obtained from a preliminary analysis 

and warrant further investigation. These are designed in the tables 

by a tilde. 

The.complexity of the BC-8 and the ST-12 structures introduces the 

possibility that we may have critical points which are also inflection 

points along certain directions. Although it is rather difficult to 

determine this, it is conceivable that some of the critical points whose 

symmetries are uncertain may be of this type. 
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For completeness we present an analysis for all six compounds and. 

although experimental optical data are not available at the present, 

the cont'):"ibutions and identification of strong interband transitions 

to the optical properties will not vary appreciably with small changes 

in the form factors. 

1. Ge 2H-4 

The threshold in£~ (Figs. 26 and 27) at 1.46 eV is caused by r 5 - r 8 
II transitions and the threshold in e:2 at 1.77 eV is caused by r1 - r8 

transitions. The rise in£~ around 2;25 eV is caused by r 6 - r 10 

transitions which are associated with an M0 critical point (cp).and a 

·region along b.(b.6 - 113 ) with small energy derivatives and large matrix 

elements. The shoulder at 2.25 eV is caused by an M1 cp and associated 

transitions A3 - A1 at 2. 26 eV. The small shoulder near 2. SO eV in £~ 

seems to .be caused by an M0 cp near the center of the FALM face from 

bands 7-9. However, the shoulder near 2 .50 eV in e:~ is caused by 

11
5 

- 111 transitions and an M1 cp approximately 3/5 of the way from r to A. 

The small peak at 2.68 eV in £~ is caused by u
4 

- u2 transitions and what 

seems like an M
1 

cp at about 7/10 of the way from M to L. Although regions 

off symmetry directions around this critical point also contribute to e:1i 
_near 2.68 eV, this effect is overshadowed by u2 - u2 transitions and an 

M1 cp near (0.5,0,0.4) at about 2.78 eV. These transitions are responsible 

for the peak observed around 2.75 eV in e:~. The shoulder near 3.15 eV 

in e:~ is caused by 7-10 transitions from a region near the T symmetry 

direction from an M0 critical point at about (0.08,0.08,0.2) with energy 

3.03 eV. In addition 7-9 transitions contribute to this shoulder from 

a probable M2 cp at 3.14 eV and near· (0.11,0.11,0.2). The shoulder in 
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1 . 
£

2 
at 3.35 eV is caused by transitions from bands 6-9 in a large region 

mainly in the fALM plane around an M1 cp approximately at (0.2,0,0.25). 

A similar shoulder in £1~ at 3. 57 eV is caused by a region with large 

matrix elements around what appears to be an M1 cp near (0.2,0.2,0.35) 

at about 3.57 eV. The strongest peak in £~ occurs at 3.60 eV and is 

caused mainly by 6-9 transitions in a large region with strong matrix 

elements around M
7 

- M1 particularly along u
3 

- u1 and 2:
4

- 2:1 . HoweVer, 

additional strength is obtained by 8-10 transitions in a region around 

R2 - R1 about 1/2 of the way from A to L and from an M2 cp near 

(0.~,0,0.4) at 3.80 eV. The matrix elements are large from hw < 3.80 eV 

and very small for'hw > 3.80 eV. The largest peak in £1~ occurs at 3.72 eV 

caused mainly by an M1 cp near Hat the same energy. 
. 1 

The peak l.n £
2 

at 4.52 eV is caused by small contributions from three different interband 

transitions. The main contribution is from 8-11 transitions in a 

region (u4-ut around 12 -11 , tentatively designated an M0 cp at 4.40 eV. 

A slightly weaker contribution is from bands 8:_9 caused by a region around 

the T synnnetry direction with what seems like an M0 cp near (0.23,0.23,0). 

. 1 
at 4.45 eV. The final contribution to the peak at 4.52 eV for £ 2 is 

probably caused by an M
1 

cp near the center of the fALM face at 4.53 eV. 

This critical point privides the strongest contr~bution to the peak at 4.52 eV 

II for £
2 

because of large matrix elements. The other main contribution to ,. 

' 
this peak is caused by 8-9 transitions 

along T'. The shoulder around 4.70 eV 

with an M
2 

cp at K and a region 

. 1 
in £ 2 is mainly caused by 7-9 

transitions with a probable M
2 

cp at K and a small region extending 

along T'. Additional contributions to this shoulder are from 8-9 

transitions in a small region around (0.4,0.15,0.15) with an M
3 

cp at 
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4.72. The final contribution to this shoulder is from a region around 

A particularly along S with a probable H2 cp near (0.03,0.03,0.45) at 

4.71 eV. The shoulder in£~ around 4.70 eV is caused by an M
0 

cp near M 

about 0.1 of the way along T' and from 7-9 transitions in a region near 

K along P with a probable M3 cp at about 4.9 eV near (0.33,0.33,0.15). 

1 
The last descernible peak in e:: 2 occurs.at 5.23 eV and is caused mainly 

by r5 - r12 transitions which are associated with an M2 cp at 5.23 eV. 

Additional contributions to this peak are from 8-11 transitions in a small 

region around (0.08,0.08,0.35) which has an M
3 

cp at 5.30 eV. The last 

discernible shoulder in £~ around 5.29 eV is caused by M5 - M4 and 

L:
3 

- L:4 transitions at 5.33 eV and 5.31 respectively, We have not 

determined the symmetry of these critical points. Other contributions 

to this shoulder are from 8-11 transitions in a small region around 

(0.3,0.1,0.15) at 5.29 eV. 

2. Si 2H-4 

The threshold in e::~ (Figs. 28 and 29) at 2.60 eV is caused by L: 1 - L: 1 

transitions and a probable M0: cp near (0.3,0,0) while the region around 

this cp off symmetry directions contributes to the threshold in e::1~ at 

nearly the same energy. The first shoulder in e:: 11 at 3.10 eV is caused 
2 

by an M
0 

cp near the center of the fALM face from. bands 7-9. The next 

II shoulder in e:: 2 occurs around 3.35 eV and is caused by u2 - u2 transitions 

with an M1 cp near (0.5,0,0.35) at about 3.34 eV. The rise in e::~ 

around 3.35 eV is caused by r6 - r10 transitions which are associated 

with an M
0 

cp and a region along ~(~6 - ~3 ). The shoulder at 3.35 eV 

is caused by an M
1 

cp and associated transitions A
3

- A
1

. The next 

1 
shoulder in e:: 2 at 3.60 eV is a result of ~5 - ~l transitions and an M1 
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cp approximately 1/2 of the way from f to A. The lartest peak in E~ at 

4.10 eV is caused mainly by 6-9 transitions in a large region with strong 

_matrix elements around M
7 

- M1 particularly along u
3

- u1 and I 4 - I 1 . 

To a much lesser extent additional strength to this peak is obtained from 

a region around R2 - R1 , specifically 1/2 of the way from A to L. Here 

we find an M2 cp near (0.15,0,0.5) .at about 4.13 eV. The first large 

peak in E~ occurs around 4.25 eV and is caused by a region with large 

matrix elements around what appears to be an M1 cp near (0.2,0.2,0.35) 

at about 4.21 eV. In addition, a region near H along S' which also has 

large matrix elements contributes around 4.26 eV. 
1 

The shoulder at e:
2 

near 4.38 eV is a result of an M2 cp around (0.2,0,0.4) at 4.38 eV and 

transitions in a region around R
2

- R
1 

near (0.2,0,0.5). The second large 

·peak in e:1i occurs around 4. 68 eV and is the result of several contributions. 

First, we have 8-10 transitions in a region near M about 0.2 of the way 

along T' where we ·have a probable M2 cp at 4.64 eV. Next, there are 

8-9 transitions in a small region around (0.3,0.1,0) with an M1 cp at 

4.68 eV and.7-ll transitions with an M
0 

cp at 4.61 near (0.4,0,0.35). 

Finally, we have contributions from the shoulder of a non~discernible 

peak around 4.75 eV caused by 7-9 transitions along T with what is 

probably an M2 cp at 4.74. 
1 

The peak in e:2 at 4.69 eV is caused mainly 

by 8-9 transitions along the T symmetry direction with an M
0 

cp at 

4.57 eV and to a lesser extent from ~6 -

like an M1 cp at 4.69 eV near (0,0,0.3). 

~5 transitions with what seems 

1 
The peak in e:2 at 4.89 eV is 

a result of what appears to be an M2 cp at K around 4.87 eV and a 

probable M2 cp near (0.3,0.25,0.25) around ·4.89 eV. The shoulder in 

e: 1~ at 4. 91 eV is caused by a probable M2 cp for 7-10 and 8-10 transitions 

.. 
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at 4.91 eV and 4.93 eV near (0.2,0.08,0) and (0.2,0.1,0) respectively. 

. 1 The shoulder 1.n £ 2 at 4.96 eV is caused mainly by 8-11 transitions 

slightly off the I direction at a probable M2 cp near (0.35,0.05,0.05) 

at 4.96 eV, while the shoulder at 5.50 eV is a result of r
5

- r12 transitions 

with an associated M1 cp at 5.47. Finally, the shoulder around 5.55 eV 
II -

in £2 is caused by M5 - M4 and r
3 

- I 4 transitions at 5.61 and 5.54 eV 

respectively. 

3. Ge BC-8 

The first peak in £ 2 (Figs. 30 and 31) at 2.03 eV is caused by 

r1 - I 2 trans~tions with an M1 cp about 4/5 of the way from r to N. The 

shoulder at 2.46 is caused by a small region around I 2 - I 2 with a 

probable cp near (0.4,0.4,0) at 2.46 eV whose symmetry we have not 

determined. Additional contributions to this shoulder are from 64 - 64 

transitions-and an M0 cp about 1/2 the way along 6 at 2.41 eV. The main 

contribution to the peak at 2.70 eV is from 13-17 transitions in a 

small region around an M0 cp near (0.2,0.8,0.15) at 2.67 eV. A smaller 

contribution is from G
2 

- G1 transitions with what appears to be on M0 

cp near (0.15,0.85,0) at 2.65 eV. The large peak at 3.21 eV is a 

result of many contributions. First, we have 16-19 transitions in a 

region of large matrix elements around an M0 cp near (0.25,0.35,0.25) 

at 3.19 eV. Next, we have G1 - G2 transitions with an M2 cp near 

(0.4,0.6,0) at 3.24 eV and a region of large matrix elements around 

(0.3,0.4,0.15) at about 3.23 eV. Thirdly, there are 14-17 transitions 

in a region around (0.2,0.4,0.15)_with what appears to be an M2 cp at 

3.21 eV. Finally, we have 13-18 transitions near (0.3,0.45,0) with an 

M1 cp at 3.21 and G1 - G1 transitions with a probable cp at (0.22,0.78,0) 
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whose symmetry we have not determined. The shoulder around 3.76 eV is 

also the result of several contributions. The first is from 15-19 

transitions in a region near N with c2 - c1 transitions and an M3 cp 

near (0."4,0.55,0) at 3.78 eV. Next we have 12-18 transitions near N 

with G2 - c1 transitions and an M1 cp near (0.35,0.65,0) at 3.76 eV. 

Finally, we have contributions from a small region around f with r 2 - r6 

transitions and an M3 cp at 3.74 eV. The shoulder at 3.98 eV is caused 

by 14-19 transitions in a large r~gion around (0.25,0.65,0.15) at 4.0 eV. 

The last discernible peak occurs at 4.50 eV and is caused by 12-19 

transitions in a region around (0.26,0.63,0.15) and 14-20 transitions in 

a large region around (0.1,0.5,0.1) both with strong matrix elements. 

In addition, we have contributions from 16-21 transitions in a region 

around (0.15,0.2,0.1) with an M2 cp near 4.48 eV and 61 - 64 transitions 

with an M0 cp near (0.25,0,0) at 4.42 eV. 

4. Si BC-8 

· The threshold in e:2 (Figs. 31 and 32) at 0. 43 eV is caused by 

H
3 

- H
4 

transitions. The small bump around 1. 70 eV is a: result of 

6
1

- 64 transitions with an M0 cp near (0.55,0,0) at 1.65 eV. The 

next small bump at 2.04 eV is caused by.what appears to ·be an M
2 

cp 

near (0.3,0.55,0). The shoulder at 2.60 eV is primarily caused by 

E1 - E2 transitions with an M2 cp near (0.4,0.4,0) at 2.62 eV. Additional 

structure is obtained by 15-17 transitions in a region around an M0 cp 

near (0.3,0.5,0) at 2.54 eV. The shoulder at 3.0 eV is caused by 

13-17 transitions in a small region around an M0 cp near (0.2,0.7,0.15) 

at 2.96 eV. The large peak at 3.45 eV is the result of many contributions. 

The first is from 13-17 transitions in a region of every large matrix 
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elements around (0.1,0.5,0.1) at about J..46 eV. Next we have 14-17 

transitions in a region around what appears to be an M2 cp near 

(0.2,0.4,0.15) at 3.45 eV with strong matrix elements. Also, there are 

16-19 transitions in a small region with very large matrix elements and 

an M1 cp near (0.3,0~4,0.2) at 3.43 eV. Finally, there is a region 
I 

around r1 - r6 transitions with an associated M0 cp at 3.38 ·eV. 

The shoulder at 3.7 eV is.caused by a small region around G1 - c
2 

transitions with an M
2 

cp at 3.7 eV near (0.45,0.55,0) and by a small 

region aro.und n1 - n1 transitions with large matrix elements and an M1 

cp at 3.68 eV around (0.5,0.5,0.15). The shoulder at 4.05 eV is the 

result of several types of transitions. First, we have 16-21 transitions 

in a small region around (0.2,0.6,0.15) with large matrix elements and 

b.1 - ll2 transitions with an M2 cp near (0.5,0,0) at 4.04 eV. Next we 

have 15-21 transitions in a small region around (0.2,0.6,0.1) with an 

associated M0 cp at 4.02 eV and c1 - G 1 (13-18) transitions with a 

probable cp near (0.2,0.8,0) whose symmetry we have not yet determined. 

Finally, we have 14-19 transitions in a region around what appears to 

be an M1 cp near (0.25,0.65,0.1) at 4.07 eV. The large peak at 4.20 eV 

is mainly caused by 16-22 transitions in a region of very large matrix 

elements around what appears to be an M2 cp near (0.2,0.5,0) at 4.20 eV. 

In addition we have contributions from 12-18 and 15-22 transitions in a 

small around an M2 cp near (0.15,0.7,0.15) at 4.22 eV and an M0 cp near 

(0.15,0.7,0) at 4.14 eV respectively. Finally, the shoulder at 5.05 eV 

can be attributed to 14-21 transitions in a small region around an 

M2 cp near (0.2,0.6,0.1) at 5.05 eV and n1 - D~ transitions with a 

probable cp near (0.5,0.5,0.1) at 5.0 eV whose symmetry we have not 

determined. 
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5. Ge ST-12 

In this section and the section on Si ST-12 we shall treat the 

perpendicular component of E~ first and discuss the parallel component in 

the last paragraph. 

The threshold in E~ (Figs. 33 and 34) occurs at 1.46 eV and is 

caused by r
1 

- r1 transitions. The shoulder at 2.10 eV is caused by 

equal contributions from 24-25 and 23-25 transitions in small regions 

(tubular along the z direction) around an M0 cp near (0.4,0.1,0.3) at 

2.08 eV and an M1 cp near (0.4,0,0.3) at 2.18 eV respectively. The 

shoulder around 2.55 eV is caused mainly by 24-26 transitions in a 

region 

weaker 

around an M1 cp near (0.5,0.1,0.3) at 2.48 eV along with much 

z z contributions from T1 - T1 (0.5,0.5,0.4) and u1 - u1 (0.5,0,0.3) 

transitions at 2.52 eV and 2.50 eV respectively whose critical point 

symmetries have not been determined. Next we have 23-26 transitions in a 

region of relatively large matrix elements around (0.4,0.15,0.25) 

contributing at 2.62 eV. Other contributions to this shoulder are 

from 22-25 and 21-25 transitions, with a probable M2 cp near (0.4,0,0.25) 

at 2.62 eV and an M1 cp near (0.4,0.15,0.25) at 2.60 eV respectively, 

along with transitions at Min a much weaker sense at 2.60 eV. Finally, 

we have 24-25 transitions with an M0 cp near (0.1,0.1,0.4) at 2.54 eV. 

The peak around 2.80 eV is the result of several types of transitions 

whose contributions are all of comparable weight. First, we have 

23, 24-26 transitions in a region (mostly along z direction) around 

s1 - s1 with an M2 cp near (0.4,0.4,0.5} at 2.87 eV. Next there are 

21-25 transitions in a region around an M1 cp near (0.4,0.15,0.25) at 

2.60 eV which contributes to 2.75 eV because of matrix elements and in 
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a weaker sense L\ - A1 (0.4,0,0) transitions with a cp of undetermined 

synunetry at 2.80 eV •. Next we have 24-25 transitions near the If' synunetry 

direction with an M1 cp near (0.2,0,0.4) at 2.70 eV. Finally, we have 

_24-27 transitions in a small region (tubular along z-direction) around 

an M1 cp near (0.5,0.1,0.3) at 2.76 eV along with some weaker r
3

- r
5 

transitions with an M
0 

cp at 2.75 eV. The shoulder around 3.0 eV is 

~aused mainly by 20-25 transitions in a region (tubular along z-direction) 

around an M
0 

cp near (0.4,0.15,0.25) at 2.93 eV and 22-2.5 transitions 

in a region around z2 - z2 with an associated M0 cp at 2.98 eV along 

with much weaker T1 - T1 (0.5,0.5,0.3) transitions at 3.0 eV. Additional 

contributions to this shoulder are from 24-27 transitions in a small 

region near R along Tz with an M1 cp near (0.5,0.5,0.45) at 3.11 eV 

and 19-25 transitions in a region of relatively large matrix elements 

arourid (0.35,0.18,0) ~t 2.97 eV along with weaker M~ - M~ transitions 

with what appears to be an M2 cp at 3.0 eV. Finally, we have 22-27 

transitions with an M0 cp near (0.5,0.15,0.3) at 3.04 eV. 

The next shoulder around 3.20 eV is caused mainly by z1 - z1 

transitions with an associated M0 cp at 3.18 eV along with much weaker 

transitions Z~ - Z~ with an M
3 

cp at 3.20 eV. Other contributions to 

this peak are from 21-25 transitions in a small region around If' with 

an M
2 

cp near (0.2,0,0.5) at 3.21 eV and 23-28 transitions in a region 

(tubular along z-direction) near R mostly along Tz with a probable M
1 

cp at 3.20 eV. Finally, we also have contributions from 19-25 transitions 

with an M2 cp near (0.5,0.15,0.3) at 3.21 eV along with weaker A1 - L1 

transitions near (0.38,0,0) at 3.20 eV. The peak at 3.50 eV is caused 

mainly. by 19-25,26 transitions and a region (along z-direction) around 
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R
1 

- R1 with an M
0 

cp at 3.46 eV and 18-25 transitions in a small region 

around_ T1 - T1 near (0.5,0.22,0.5) with a pro~able M0 cp at 3.49 eV. 

Additiortal contributions are from s1 - s1 (20-25) transitions with an 

M
0 

cp near (0.06,0.06,0.5) at 3.45 eV and what appears to be an M1 cp 

near (0.45,0.45,0.5) also at 3.45 eV. · Other contributions are from 

. z 
17-25 transitions in a small region along T near (0.5~0.5~0.3) with a 

probable M1 cp at 3.53 eV and 24-21 transiiions with a probable M2 

cp near (0,0.1,0.25) at 3.47 eV and to a lesser extent T1 - T1 transition~ 

near (0.5,0.3,0.5) at about 3.50 eV. Finally, we have T1 - T1 (20-26) 

transitions with an M2 cp at 3.47 eV and 22-27 transitions with an 

M2 cp near 3.54 eV and to a lesser extent 6.1 - 6.1 transitions near 

(0.45,0,0) contributing at 3.50 eV. 

The shoulder at 3.65 eV is caused by 17-25 transitions in a region 

(tubular along z-direction) around an M2 cp at 3.67 eV near (0.5,0.25,0.3) 

and in a weaker sense by z1 - z2 transitions with an M0 cp at 3.65 eV. 

Other contributions to this shoulder are from 23-27 transitions in a 

relatively large region around (0.1,0,0.25) which contributes around 

3.65 eV, 24-29 transitions-in a region around ux with an M0 cp near 

(0.22,0,0.5) at 3.60 eV, and 24-30 transitions at R with an M1 cp at 

3.60 eV. The peak at 4.20 eV is caused by 24-30 transitions in a region 

(mostly in z-direction) near ~ around (0.3,0,0.4) which contributes at 

about 4.18 eV along with weaker transitions in a region around M at 

4.20 eV. In addition we have 21-27 transitions with an M2 cp near 

(0.15,0.15,0.2) at 4.22 eV and 23-28 transitions in a region around 

6.2- 6.1 with most of the contributions near (0.1,0,0.05) at 4.20 eV. 
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Oth~r transitions contributing to this peak are 21-28 transitions in 

a small region near~ around (0,15,0,0.4) at 4.20 eV and 20-25 

transitions around L2 - Ll with an M1 cp near (0.7,0.7,0) at 4.21 eV. 

Finally, we also have some weak structure from s1 - s1 (23-32) transitions 

with a cp of undetermined symmetry near (0.22,0.22,0.5) at 4.20 eV. 

The last peak that we shall consider in £~ occurs at 4.50 eV and 

is the result of many different contributions. First, we have 23-31 

transitions in a region around U~ - U~ with a probable M
3 

cp near 

(0.5,0,0.2) at 4.57 eV and L2 - Ll (21-23) transitions with a cp of 

undetermined syminetry near (0.4,0.4,0)" at 4.48 eV. Next we have 22-30 

transitions in a s~all region near uY with an M1 cp around (0.45,0.1,0.05) 

at 4.36 eV and an M1 cp near (0.3,0.15,0.4) at 4.52 eV. In addition we 

have 20-26 transitions with an M3 cp near (0.15,0,0.1) at 4.54 eV and 

20-28 transitions with an M0 cp near (0.15,0.15,0.25) at 4.47 eV. 

Finally, for completeness we also list in Table V a set of much weaker 

transitions along synnnetry directions at critical points of undetermined 

symmetry, start~ng with M~ - M~ transitions and ending with ui - ui 
transitions. Taken as a whole they are of comparable weight to the 

others discussed above. 

The threshold in £~ occurs around 1.60 eV with minute matrix elements 

from L
2 

- Ll transitions at 1.46 eV and very small matrix elements near 

1. 6 and appreciable contributions only from h.2 - h.l transitions with a 

probable M1 cp near (0.4,0,0) at 1.7 eV. The shoulder around 2.15 eV 

is caused mainly by L
2

- Ll transitions with an M
0 

cp near (0.37,0.37,0) 

at 2.07 eV. ·rn addition we have contributions from 24-25 and 23-25 

transitions in small regions around what appears to be an M0 cp near 
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(0.4,0.1,0.3) at 2.08 eV and an M1 cp near (0,4,0,0.3) at 2.18-respectively. 

The shoulder around 2.65 eV is caused mainly by 21-15 transitions in a 

region around an M1 cp near (0.4,0.15,0.25) and 2.60 eV and a region 

( 1 ·1 1 y) d X X ' h b bl 2 65 particu ar y a ong U aroun z1 - z
1 

w1t a pro a e M2 cp at . · eV 

and ur - ui transitions contributing at 2.63 eV. Additional contributions 

are from 2.2-26 transitions with an M1 cp near (0.5,0.2,0.25) at 2.74 eV 

and 22-25 transitions in a region around M; - M~ with a probable M2 

cp at 2.70 eV. Finally, to a much lesser extent, we have contributions 

from r
3 

~·r4 transitions with an M0 cp at 2.64 eV. 

The peak at 3.20 eV is a result of several interband contributions 

of approximately the same weight. First we have 24-27 transitions in 

a region around z1 - z1 with an M0 cp at 3.18 eV along with weaker 

Z~ - Z~ transitions with a~ M3 cp at 3.20 eV and b.2 - b.1 transitions 

with a probable M2 cp near (0.45,0,0) at 3.18 eV. Next we have 21-25 

transitions in a small region (mostly along z-direction) around ~ with 

an M
2 

cp near (0.2,0,0.5) at 3.21 eV and a region of large matrix 

elements near (0.2,0.2,0.3) contributing to 3.20 eV .. In addition we 

have 24~26 transitions in a region around s
1 

- s1 with an M
3 

cp near 

(0.26,0.26,0.5) at 3.26 eV and in a weaker sense R1 - R1 (23-28) 

transitions at 3.20 eV and r2 - r1 (24-28) transitions with a probable 

M1 cp near (0.25,0.25,0) at 3.20 eV. The next peak in 3.50 eV is a 

result, in part, of 20-25 transitions in a region around z
2 

- z
2 

with 

a cp of undetermined symmetry at 3.48 eV and s1 - s1 transitions with 

an M0 cp near (0.06,0.06,0.5) at 3.45 eV. In addition, there are 

contributions from 22-27 transitions in a small region around an M2 

cp near (0.3,0.1,0.3) at 3.54 eV, r5 - r5 transitions with an associated 
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M cp at 3.44 eV and 20-26 transitions in a region (tubular along z-
0 

direction) of relatively large matrix elements around (0.3,0.1,0.3) 

at 3.53 eV. Finally, there are weaker contributions from L:
2 

- L:1 

(24-29) and ~l - ~2 (24-26) transitions with critical points of 

undetermined symmetry near (0.35,0.35,0) at 3.45 eV and near (0.3,0,0) 

at 3.48 eV respectively. 

The shoulder at 3.70 eV is caused by 24-28 transitions in a small 

re~ion around 61_ - ~2 with a cp of undetermined symmetry near -(0. 26,0, 0) 

at 3.70 eV and s1 - s1 transitions with a probable M2 cp near (0.2,0,0) 

also at 3.70 eV. Other contributions to this shoulder are from 21-27 

X ' Z Z tra~sitions around z1 - Z~ with an M1 cp at 3.69 eV and u1 - u1 

transitions with a cp of undetermined symmetry near (0.5,0,0.2) at 

3.71 eV. The peak at 3.90 eV is caused in part by 19-25 transitions 

in a small region (mostly in z-direction) around an M
3 

cp near 

(0.2,0.15,0.3) at 3.92 eV and 24~29 transitions around ~~ - 6~ with an 

M
2 

cp near (0,0,0.18) at 3.94 eV. Additional contributions are from 

23-29 transitions around 61 - 62 with what appears to be an M2 cp 

at 3.9 eV, s1 - s1 transitions with a cp of undetermined symmetry at 

3.9 eV, and 62 - ~l (21.-26) transitions with a probable M1 cp near 

(0.15,0,0) at 3.88 eV. The peak at 4.20 eV is caused in part by 24-29 _ 

transitions in a region of very large matrix elements around r3- r4 

with an M3 
cp at 4.22 eV and 20-25 transitions in a region around r3- r4 

with an M
0 

cp at 4.16 eV along with an M1 cp near (0.07,0.07,0) at 

4.21 eV from t:: 2 - t::1 transitions. Other contributions to this peak are 

from 21-28 transitions in a region around r 2 - r 1 with an M0 cp at 4.22 eV 

including in particular 6~ - 6~ transitions at 4.23 eV, transitions in 



-50-

a small region near lf around (0.15,0,0.4} at 4.20 eV, and to a lesser 

extent s1 - s1 transitions with a cp of undetermined. symmetry at 4. 20 eV. 

Still other contributions are from 22-29 transitions with an M0 cp near 

. X X 
(0.15,0.15,0.2) at 4.21 eV and weaker z1 - z1 transitions with an M2 cp 

at 4.24 eV. Finally, we have 24-30 transitions with an M1 cp near 

(0.1,0.1,0.3) at 4.26 eV and 22-30 transitions in a region around 

(0.3,0.25,0.25) contributing at 4.21 eV. 

The last peak that we shall consider in £
1i occurs at 4. 40 eV and 

is the result of many different contributions. First we have 20-26 

transitions in a region (tubular along z-direction) around an M2 cp near 

(0.17,0.17,0.1) at 4.42 eV and 18-27 transitions in a region around 

z1 - z1 with an M0 cp at 4.26 eV. Next we have 23-28 (L1 - ·L2) transitions 

and 22-27 (L1 - L2) transitions with a critical points of undetermined 

symmetry near (0.14,0.14,0) at 4.40 and 4.37 eV respectively along with 

~l - ~2 transitions with a cp near (0.25,0,0) at 4.40 eV. Other 

contributions are from 23-24 transitions around M; - M~, with a probable 

M2 cp at .4.40 eV and E1 - L2 transitions with a cp of undetermined 

symmetry near (0.35,0.35,0) at 4.40 eV. In addition, we have weaker 

contributions from 16-26 transitions in a small region around z2 - z2 , 

z z particularly along ~2 - ~3 at 4.40 eV, with a probable M1 cp at 4.37 eV. 

Finally, we have 23-30 transitions with an M3 cp near (0.35,0.15,0.3) 

at 4.42 eV, L1 - ~2 transitions with a cp of undetermined symmetry near 

(0.37,0,0) at 4.40 eV, and 22-31 transitions around ui- ui with a cp 

near (0.5,0.3,0) at 4.40 eV. 

·' 
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6. Si ST-12 

1 
The threshold in e:2 {Figs. 35 and 36) occurs at 1.76 eV and is the 

result of 24-25 transitions around an M
0 

cp near (0.4,0.2,0). The 

shoulder at 2.33 eV is· caused by 23-25 transitions and 24-25 transitions 

in a region (tubular along z-direction) around an M
0 

cp near (0.4,0,0.3) 

at 2.31 eV and around an M
1 

cp near (0.4,0,0.45) at 2.33 eV respectively. 

The shoulder at 2.50 eV is caused by 23-26 and mainly 24-26 transitions 

in a region around M with a probable M1 cp at 2.50 eV. In particular, 

we have contributions from T1 - T1 transitions with an M1 cp near 

(0.5,0.15,0.5) at 2.52 eV and U~ - U~ transitions at 2.51 eV. Finally, 

. X y y 
we have weaker transitions from a region near Z along u1 - u1 contributing 

to 2.45 eV. 

The peak at 2.80 eV is a result in part of 23,24-26 transitions in 

a region around s1 - s1 (0.4,0.4,0.5) at 2.76 eV with particularly 

strong contributions off the symmetry axis with an M1 cp near (0.4,0.4,0.4) 

at 2.80 eV. Other contributionsare from 21-.25 transitions with an M0 

cp near (0.45,0.15,0.3) at 2.73 eV, 62 - 61 transitions with a cp of 

undetermined symmetry near (0.45,0,0) at 2.80 eV, and ui - ui transitions 

with an M1 cp near (0.5,0.2,0) at 2.79 eV along with 22-26 transitions 

in a large region (along z-direction) around (0.5,0.3,0.15) contributing 

at 2.82 eV. Finally, we have contributions from z1 - z1 (23-28) transitions 

with an M
0 

cp at 2.78 eV and 22-25 transitions with an M
2 

cp near 

(0.4,0,0.25) at 2.74 eV. The shoulder at 3.20 eV is caused mostly by 

20-25 transitions in a region of relatively large matrix elements around 

' 61 - 61 , with an M
0 

cp near (0.39 ,0, 0) at 3.17 eV and a region around 
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E1 - E1 with an M2 cp near (0.37,0.37,0) at 3.21 eV, along with 19-25 

transitions in a region (along z-direction) around E1 - E2 with a probable 

M
1 

cp near (0.4,0.4,0) at 3.18 eV. Additional contributions are from 

22-25 transitions in a region around z2 - z2 with an M
0 

cp at 3.18 eV 

and an M1 cp near (0.2,0.2,0.25) at 3.16 eV and 20-26 transitions in a 

region around uY with an M1 cp near (0.5,0.35,0.05) at 3.17 eV and a 
\ 

cp of undetermined symmetry near (0.4,0.4,0) from E1 - E1 transitions 

at 3.20 eV. Other contributions are from 22-28 transitions, from a cp 

of undetermined symmetry around ur - ur near (0.5,0.4,0) at 3.20 eV and 

R1 - R1 transitions at 3.20 eV, and 21...;.26 transitions in a region 

around Tz with an M2 cp near (0.5,0.5,0.4) at 3.2J eV. 

The largest peak in £~ occurs at 3.38 eV and is the result of many 

types of transitions. First, we have 20-25 transitions in a region 

z near R along T with an M1 cp near (0.5,0.5,0.45) at 3.39 eV and 19-25 

transitions in a similar region around Tz with a probable M3 cp near 

(0.48,0.48,0.4) at 3.45 eV, along with E2 - E1 transitions near (0.35,0.35,0) 

with a cp of undetermined symmetry at 3:35 eV. Next, we have 22-26 

transitions, with a large region (along z-direction) around an M2 

cp near (0.25,0.25,0.3) at 3.36 eV. Additional contributions are from 

18-25 transitions, with an M
0 

cp near (0.4,0.2,0) at 3.35 eV and uY - uY 
1 1 

transitions ·near (0.5,0.38,0) with a cp at 3.4 eV, and 24-27 transitions 

with an M1 cp near (~.15,0,0.3) at 3.38 eV and U~ ~ U~ transitions near 

(0.5,0,0.15) with a cp around 3.38 eV. Finally, we have 22-28 transitions, 

with an M0 cp at 3.37 eV from z2 - z1 transitions and an M1 cp near 

(0.45,0.4,0.3) at 3.35 eV, and 23-27 transitions with contributions 

from various regions of the zone contributing at around 3.35 eV. The 
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shoulder at 3.60 eV is caused in part by 20-25 transitions in a region 

near Z around ifC with an M
0 

cp near (0.1,0,0.5) at 3.60 eV and 21-26 

transitions with a probable M1 cp near (0.3,0.2,0.25) also at 3.60 eV. 

Other contributions are from 22-27 transitions in a region around 

2:
2 

- 2:1 with an M0 cp near (0.3,0.3,0) at 3.50 eV, 21-29 transitions in 

a region around R1 - R1 with an M0 cp at 3.59 eV and '23-27 transitions 

with an M0 cp near (0.1,0.1,0.25) at 3.54 eV. Finally, we have 23-28 

transitions with an M1 cp near (0.5,0.15,0.3) at 3.5& eV, 22-26 transitions 

in a region around t.~ .... t.~ with a cp of undetermined symmetry near 

.(0,0,0.3) at 3.60 eV and 22-28 transitions in a region around 2: 2 - 2:1 

with a cp near (0.32,0.32,0) at 3.60 eV. 

The peak around 3.85 eV is the result of many types of transitions 

1 
contributing approximately equally to E2 . First, we have 24-29 transitions 

X X 
in a region around z1 - z1 with an M2 cp at 3.92 eV and 23-28 transitions 

in a region (tubular along z-direction) around r
5

- r1 with an M0 cp 

z z at 3.71 eV along with t.4 - t.1 transitions with an M2 cp·near (0,0,0.24) 

at 3.85 eV. Next we have 23-29 transitions in various regions of the 

zone with strongest contributions from a large tubular region in the 

z-direction around (0.35,0.15,0.25) contributing at 3.85 eV and 17-25 

z z 
transitions in a large region around u1 - u1 (0.5,0,0.33) parallel to the 

· T direction contributing at 3.85 ~V. Other contributions are·from 22-27 

transitions, with a probable M1 cp near (0.15,0.15,0.2) at 3.81 eV, 

21-29 transitions_, with contributio?s from a sma.ll region around 2:1 - L: 2 

and an M1 cp near (0.42,0.42,0) at 3.88 eV, and 20-26 transitions with 

what appears to be an M1 cp near (0.15,0.1,0.4) at 3.89 eV. Finally, we 

have 16-25 transitions in a region around Mz - Mz with an M1 cp at 
3 2 
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3.86 eV and 23-20 transitions with a probable M
1 

cp near (0.35,0.35,0.25) 

at 3.81 eV. 

1 
The last structure we shall consider in the E

2 
spectrum occurs at 

4.45 eV. This shoulder is caused in part by 20-26 transitions in a 

region (along z-direction) around what appears to be an M
2 

cp near 

(0.1,0,0.1) at 4.48 eV, E1 - E1 transitions with a cp of undetermined 

symmetry near (0.12,0.12,0) at 4.44 eV and 23-25 transitions with a cp 

z z . 
at M

2 
- M

3 
at 4.46 eV. Other contributions are from 15;...27 transitions 

z . z 
in a region aroundM

3
- M1 with a probable M1 cp at 4.45 eV and 15-26 

transitions near Mz with a cp from E2 - E1 transitions near (0.44~0.44,0) 

4 42 V 1 i h z - uz . i h (0 5 0 0 34) at • e . a ong w t u1 1 transit1ons w t a cp near . , , . 

at 4.45 eV. z z Next we have 14-26 tr:ansitions, with a cp at M3 - M2 at 

4.41 eV and a cp from T1 - T1 transitions near (0.5,0.28,0.5) at 4.45 eV, 

and 21-27 transitions with a probable M1 cp near (0.2,0,0.2) at 4.40 eV 

and a cp from ll; - ll~ transitions near (0,0,0.27) at 4.45 eV. Finally, 

we have· contributions from E2 - E1 (22-33) transitions with a cp near 

(0.44,0.44,0) at 4.45 eV, E1 - E1 (22-33) transitions with a cp near 

(0.4,0.4,0) at 4.45 eV, 19-27 transtions with an M
2 

cp near (0.35,0.15,0.3) 

.at 4.48 eV and a series of weaker transitions listed for completeness 

in Table V. 

The threshold in E~ occurs at 1.76 eV and is the result of 24-25 

transitions around an M0 cp near (0.4,0.2,0) which are weaker than in 

1 
the £ 2 case. The shoulder starting at 2.32 eV is. caused in part· by 

~ 

23-25 transitions and 24-25 transitions in a region (mostly along z-

direction) around an M0 cp near (0.4,0,0.3) at 2.31 eV and around an 

M1 cp near (0.4,0,0.45) at 2.33 eV respectively. Other contributions 
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are from 24-26 transitions in a region around U~ - U~ with an M
0 

cp 

near (0.5,0,0.4) at 2.46 eV and 22-25 transitions in a region around 

L2 - Ll with an M0 cp near (0.35,0.35,0) .at 2.32 eV. The ~houlder 

around 2.80 eV is caused to a large extent by 24-26 transitions in a 

small region around an M0 cp near (0.1,0.1,0.4) at 2.81 eV and an 

M
0 

cp near (0.2,0:2,0.5) at 2.79 eV. Other strong contributions are 

from 21-25 transitions with an M0 cp near (0.45,0.15,0.3) at 2.73 eV, 

ui- ui transitions with_an M1 cp near (0.5,0.2,0) at 2.78 eV and 

22-26 transitions in a region (along z-direction) _around 0.5,0.3,0.15) 

at 2.82 eV and an M0 cp at M at about 2.65 eV. Weaker contributions are 

from z1 - z1 (24-27) transitions with an M0 cp at 2.79 eV and 24-25 

transitions with an M2 cp near (0.2,0.05,0.4) at 2.81 eV. 

The peak at 3.30 eV is caused in part_by 21-25 transitions in a region 

(tubular along z-direction) around ~ with an M2 cp near (0.2,0,0.5) 

at 3.33 eV and 23-27 transitions-with an M1 cp near (0.35,0.15,0.3) 

at 3.31 eV. Additional c'ontributions to this peak are from 22-26 

transitions in a region around what appears to be an M
2 

cp near 

(0.25,0.25,0.3) at 3.36 eV and 23-26 transitions in a region near r with 

' z z 
particularly strong contributio?s from ~4 - ~4 transitions at about 3.3 eV. 

Finally, we have contributions from 24-26 transitions with an M2 cp 

near (0.12,0.12,0.25) at 3.25 eV and 21-28 transitions in a region 

around L2 - Ll with a cp of undetermine9 symmetry near (0.14,0.4,0) at 

3.3 eV. The peak at 3.65 eV is the result of three main types of 

contributions. First, we have 22-27 transitions in a region near Z · 

off the S direction with a probable M1 cp near (0.15,~.1,0.45) at 3.64 eV 

along with an M1 cp near (0.2,0,0.4) at 3.69 eV, and 21, 22-27 transitions 
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in a region of relatively large matrix elements near M off the lf 

direction with a probable M0 cp near (0.37,0.1,0.4) at 3.62 eV and 

an M cp near (0.3,0.3,0.25) at 3.60 eV. Second!Q, we have 19-25 
0 

transitions, in a region near Z around s1 - s1 , with an M
0 

cp near 

(0.1,0.1,0.5) at 3.65 eV, and 20-25 transitions also near l but around 

lf with an M0 cp near (0.1,0,0.5) at 3.60 eV and what appears to b~ an 

M0 cp near (0.2,0.1,0.3) at 3.62 eV. Thirdly, we have 24-28 transitions, 

with a cp of undetermined symmetry near s1 - s1 (0.25,0.25,0.5) at 

3.65 eV and a region around T1 - T1 with an M3 cp near (0.5,0.21,0.5) 

at 3.74 eV and 23-28 transitions w~th an M:1 cp near Tat about (0.5,0.15,0.4) 

at 3.60 eV along with weaker ~l - ~2 (24~27) transitions with a cp near 

(0.35,0,0) at 3.65 eV. 

The large peak at 3.90 eV is caused in part by 24-30 transitions in 

a region around an M1 cp near (0.5,0.22,0.25) at 3.92 eV and 24-29, 30 

transitions in a region around ~ 

particularly strong contributions 

X . - z1 with an M
0 

cp at 

along ur - ur at 3.95 

3.93 eV and 

eV. Other 

important contributions are from r
3

- r 4 with an M2 cp at 3.98 eV and 

23~29 transitions with an M0 cp near (0.2,0,0.3) at 3.91 eV. Next, we 

have 18-25 transitions in a region around (0.3,0,0.4) contributing at 

3.90 eV, ~2 - ~transitions with a cp near (0.35.,0,0) also at 3.90 eV, 

and 21-;6 transitions in a region around ~ 2 - L: 1 with an M1 cp near 

(0.16,0.16,0) ~t 3.92 eV. Finally, we have 22-30 transitions with an 

M0 cp near (0.35,0.35,0.1) at 3.81 eV and 23-28 transitions with a 

cp near (0,0,0.22) at 3.88 eV. 
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The shoulder around 4.26 eV is caused in part by 20-25 transitions 

in a region (along z-direction) of large matrix elements around r3- r4 

with an M0 cp at 4.07 eV, 22-29 transitions in a region (along z-direction) 

around M with a probable M1 cp at 4.28 eV, and 22-32 transitions in 

z z . 
a region around M

3
_- M

3 
with a cp at 4.30 eV and'in a region around 

y y . u1 - u1 with a cp near (0.5,0.3,0) at 4.26 eV. Additional contributions 

to this shoulder are frqm 20-28 transitions in a region around 0.4,0.2,0.25) 

at 4.30 eV, 18-27 transitions in a region around z1 - z1 with an M
1 

cp at 

4 .. 25 eV and 19-25, 26 transitions in a region around (0.25,0.25,0.3) at 

4.28 eV. Finally, we have 24-30 transitions with critical points of 

undetermined symmetries near U~ - U~ (0.5,0,0.15) at 4.26 eV, 

s1 - s1 (0.3,0.3,0.5) at 4.27 eV, ~l - ~2 (0.36,0,0) at 4.26 eV and 

an M3 cp near (0.3,0.1,0.2) at 4.41 eV. The last structure we shall 

II consider in the E2 spectrum occurs at 4.96 eV. This shoulder is caused 

in part by 20-38, 29 transitions in a region (mostly along z-direction) 

around (0.3,0,0.25) at 4.95 eV. O~her contributions to this shoulder 

from critical points of undetermined symmetry are listed in Table VIII. 

C. Discussion of Amorphous Phases 

The experimental amorphous dielectric function E2 (E) 10 (Figs. 37 

and 38) consists of a seemingly featureless spectrum with one broad peak 

positioned near the A peak in t4e FC-2 E2 • This spectrum is quite 

different from any known crystalline E2 (except for ST-12) and cannot be 

obtained by simply averaging the peaks in the FC-2 spectrum. 

24-29 The theoretical attempts to explain the amorphous E
2 

have all 

assumed that long range disorder is of primary importance. They have 

taken the FC-2 band structure as a starting point and have applied 
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various modifications to study the effect of long range disorder. In 

24' 28 
some cases ' complete k non-conservation was considered in the sense 

. 25-27,29 . 1 -+k 
of a non-direct transition (NDT) model and 1n other cases part1a 

non-conservation was proposed which enabled the introduction of some type 

of short range order parameter. In all cases,' however, the results are 

similar, in good agreement with experimental e:
2 

data, and the authors agree 

-+ . 
that strong k non-conservation (long range disorder) is a requisite in 

exp~aining the amorphous e: 2 . None of these theories, however, predicts 

even a correct trend to the density of states of the amorphous phase. 

11 The single broad peak at the bottom of the valence band density of 

states for the amorphous case is very striking and cannot be accounted 

for by a simple broadening of the two s-like peaks in the FC-2 structure. 

This problem was discussed in Section III where we suggested that the 

experimental results could be explained by a short range disorder which 

would make the presence of five and sevenfold rings of bonds appreciable. 

It is precisely the lack of this short range disorder in these theories 

that produces this inconsistency with the eXperimental data. To see 

this let us examine one of the most interesting and sophisticated of the 

aforementivned theories, which is that of a complex band structure 

(CBS). 27 , 28 'It was instigated by the work of Maschke and Thomas 26 and 

developed by Kramer. A one electron Green function is expanded in a 

Born series and a configurational averaging is applied by introducing 

in each term containing n scattering centers an n-particle correlation 

function which is integrated over all n sites. It is then assumed 

that the ~-particle correlation functions can be approximated by products 

of two particle correlation functions which are taken to be sums of 



-59-

Gaussian-like functions centered on lattice sites, with half-widths which 

tncrease with increasing distance from a given lattice point and are 

proportional to a small parameter a which describes the amount of 

disorder. This type of approximation treats correctly multiple 

s'cattering at one atom only while higher multiple scattering terms are 

treated approximately correctly if one has a << 1.. The two body co'rrelation 

functions can be related to experimental amorphous radial distribution 

functions (RDF), however, we notice that in Ge for example it would be 

' 30 
difficult to reproduce the second and third hump in the RDF curves by 

simply placing Gaussian-like function~ at FC-2 lattice points. 

Nevertheless, the averaged Green function series, which is written 
31 . . 

in terms of pseudopotentials v(q), can be reduced if one assumes slowly 

varying potential functions and small enough a so as to take v(q) constant 

+ . 
in the k-integration which in turn permits decoupling of terms and a 

resummation of the series. The poles of this averaged Green function 
. . . 

are now obtained from a general.ized pseudopotential secular equation 

which is now no longer Hermitian. Kramer then finds that he obtains 

complex energies whose real parts are approximately the energies of 

the crystal and whose imaginary parts can be interpreted as average 

reciprocal lifetimes or equivalently average energy widths. The average 

£
2 

spectrum is obtained-by using the Kubo formula and performing a 

similar configurational averaging on a product of two one electron 

Green functions. With some approximations the forms for the averaged 

€2 and density of states are similar in that they are written as a sum 

.over partial spectra belonging to different regions of the BZ where 

the reciprocal lifetimes can be taken constant. The partial spectra 
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are then given by a convolution of the crystalline spectrum (shifted 

in energy when appropriate as shown below) with a 1orentzian which 

depends on an average reciprocal lifetime. The parameter a. was chosen 

to fit the £2 spectrum of amorphous Ge and Si. 

Kramer's results show the valence band being affected very slightly 

while the conduction band is broadened considerably. In particular, 

forGe the r25 -.r2 and 11 - 13 gaps become smaller while the x4 - x1 

gap .becomes larger. Furthermore, r2 is very slightly broadened, 12 is 

slightly b~oadened, and x1 is largely broadened. This is not surprising 

nor difficult to understand. In principle, we would expect the electrons 

in the conduction band to be affected more by long.range disorder than 

the very well localized valence electrons. In fact, if we look at the 

charge density at symmetry points in the conduction band, we find that 

x1 is largely spread out while 13 is somewhat loca~ized and r2 shows 

difinite signs of localization. This is exactly the same trend observed 

in the reciprocal lifetimes mentioned above. The effect of this on £2 

is then to average out most of the X peak while preserving the A peak 

and shifting it to slightly lower energies. The agreement with the 

experimental amorphous £ 2 is good. The effect of Kramer's disorder on 

the density of states, however, is a strong averaging of the conduction 

band and a very small averaging of the valence band'peaks of FC-2. This 

11 is certainly not in agreement with experiment. The problem is that 

one is dealing here with a system that has the short range order of 

diamond. In fact, the parameter a.~ used to fit £2 , is very small and 

corresponds, for example, to all first, second and half the third nearest 

neighbors being within a deviation of only 0.04a of the crystalline FC-2 
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positions. It could·be suggested that the density of states might agree 

better with experiment .if a was· taken to be ·larger. But now the e:
2 

would be shifted to lower energies and agreement with experiment here 
I 

would be considerably marred. Besides, the approximations involved in 

obtaining Kramer's final expressions may not be valid for large a. 

Thus, we believe that the conclusions drawn by applying the CBS 

theory to the FC-2 structure are.not valid for the amorphous case. The 

32 suggestion · that the peak in the amorphous e:
2 

is due to A transitions 

because of the preservation·of the bonding direction is highly< 

questionable and is only a conjecture supported by analyzing a hypothetical 

"amorphous" system that is too close to the FC-2 ·structure ... 

The results from these theories lead us to suspect that the e:2 

spectrum may not be a good judge of the microscopic structural aspects 

of the amorphous state and that one needs a theory that will be able 

to account for both the density of states and e:2 in the amorphous phase. 

I 

In Section III we applied the concept of short range disorder to the 

density of states and obtained good agreement with experiment. We 
, 

show how to do the same for the e:2 spectrum. 

There are two features of the amorphous e:2 spectrum which are of 

primary importance. These are, of course, the one hump form _of the 

spectrum and the position in energy of this hump. We shall _attempt 
I 

to account for these features in the following analy~is. 

The crystalline e:
2

(E) may be written as: 

e:
2 

(E) = CJ (E) L (22) 
-+ 
k 

c, v 
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where C is a constant· and J(E) is the joint density of states given by: 

,J(E) = L L o(Ec(k) - Ev(k) - E) 
k c,v 

(23) 

Equation (22) is just an expression for an average matrix element P{E) 

mulitplied by the joint density of states J(E). If we now incorporate the 

constant C into J(E) we can write. 

E
2

{E) = J(E) P(E) (24) 

This is a physically reasonable expression and could be used to study 

the amorphous phase since it is essentially the number of states accessible 

for transitions at an energy E, multiplied by an average probability for 

those transitions. When one does band structure calculations, however, it 

is easier to calculate an associated average matrix element M(E) obtained 

-+-+-+ 2 
by a weighted averaging of l<~c(k)jVI~v(k)>j • Then Eq. (23) can be 

written as33 

E2(E) = J(E)•M(E) 
. E2 

(25) 

Equation (23) or (24) can now be used to qualitatively account for the 

amorphous £ 2 spectrum in a simple way. In the amorphous case we would 

expect J(E) to be a monotonically increasing function of energy without any 

sharp structure from specific localized regions in the BZ. Similarly, 

we would expect the average dipole matrix element P(E) to be a smooth 

monotonically decreasing function of energy. The product of these 

two functions would then give a one hump structure which would explain 

the shape of the amorphous £ 2 • To examine this in more detail we have 

. 2 2 
calculated £2 , J/E and M, and J and M/E as a function of energy for 
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Ge and Si in the FC-2, 2H-4, BC-8 and ST-12 structures using the 

Gilat-Raubenheimer
16 

integration scheme. The results are shown in 

' Figs. 37 and 38. For each row the product of the two curves in the second 

and third columns gives.the e:2 spectrum in the first column. In the 

cases of 2H-4 and ST-12 structures we show the weighted average of the 

parallel and perpendicular components of e:
2

. We are interested in, 

observing the trends ·as we go from FC-2 down the columns io more and 

locally disordered and complicated crystal stru.ctures. For the moment 

let us concentrate on the third column in each figure. We notice that 

with the increasing complexity of the crystal structures, J gradually 

loses the sharp structure prominent in the FC-2 case which was caused 

by the simplicity and synnnetry of ~his band structure. When we reach 

ST-12, J is almost a smooth and featureless spectrum which would co~pare 

well with what we expected in the amorphous case. In addition the average 

. . 2 
dipole matrix.element M/E for ST-12 is for the most part a smooth 

decreasing function of energy. This is particularly the case for Ge ST-12 

in a large energy region while in ST-12 this is true for E>3 eV which, 

however, contains the peak of e:2 • If we now examine the e:2 spectra we 

. ' 

notice that it is precisely the ST-12 structure that has the qualities 

of the superimposed amorphous e:2 spectrum obtained by Donovan and 

10 . . 10 
Spicer for Ge and by Pierce and Sp1cer for Si. The agreement between 

the ST-12 spectra and the amorphous spectra is quite encouraging and 

shows that the kind of short range disorder which accounted for the 

amorphous density of states also accounts for the important features 

\ 
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of the amorphous £
2 

spectrum. The discrepancy in magnitude of the £2 

curves is irrelevant· in this discussion and is caused in part by the 

differences in bulk density of the ST-12 and amorphous structures. 

An interesting feature that comes out of this analysis is that 

J/E2 should look something like a step function in the amorphous case 

since J is such a smooth polynomial-like increasing function of energy. 

This would then suggest that the average gradient matrix element M 

must contain most of the information about £
2

. This is shown in Figs. 37 

2 
and 38 as we go down the second column where we have plotted J/E 

. I 2 and M. In the FC-2 case the £ 2 spectrum looks mostly like ·J E while 

. 2 
M simply modulates the J/E spectrum. In the 2H~4 structure we find 

2 that the form of the £2 spectrum is now shared between J/E and M where 

- 2 M contributes most of the first peak and J/E contributes the second 

peak. When we examine the BC-8 case we find that the £
2 

spectrum now 

looks mostly like M while J/E2 just modulates the M spectrum. Finally, 

in the ST-12 structure we find that J/E2 is a relatively featureless 

step-like function of energy and again £ 2 looks like M. 

Therefore, we can safely conclude'from this that the average 

gradient matrix element M determines the position in energy of the 

hump in the amorphous £
2

, and most important, when ~ne measures the 

amorphous £
2 

spectrum, one is essentially just measuring the average 

matrix element M. 

In summary our aim in this work has been twcfold. First to make 

a complete band structure analysis of Ge and Si in a series of novel, 

interesting and complicated crystal str~ctures. This included calculating 

energy eigenvalues, densities of states, optical functions, determining 
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the symmetry of wave functions and identifying optical structure. Secondly, 

to use the increasing complexity o.f the crystal structures to study 

the trends observed in the density of states and the impainary part of 

the dielectric function as we app~oach the amorphous phase. To this end 

we have made particular use of the ST-12 structure which has deviations 

in bond lengths and angles and has odd-numbered rings of bonds. We have 

_not used the ST-12 structure as a repli:a of amorphous Ge and Si, but 

rather as a tool.to probe the important microscopic structural aspects of 

the amorphous phase. 

We have found that if one is to make a reliable model of the amorphous 

phase, one cannot start with a long-range disorder model applied to the 

FC-2 structure. On the other hand, a short-range disorder model, defined 

as a system with deviations in bond angles, bond lengths, with all bonds, 

satisfied and with odd-numbered rings of bonds, cou1d account for both 

the amorphous density of states and imaginary part of the dielectric 

function. In particular we found that the amorphous e:_
2 

is just the 

spectrum of an average matrix element. 

If we now include long-range di'sorder to our short-range disorder, 

we would expect to. have a much better model for the amorphous phase. 

Our point is, however, that the effects of long-range disorder are of 

secondary importance. 
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V. EFFECTS OF lHSORDER ON THE ELECTRONIC DENSITY OF STATES 
OF BINARY COMPOUNDS 

In this paper we would like to investigate in some detail the 

effects of disorder on the electronic density of states of amorphous 

III-V semiconductors. We shall restrict our disorder to topologically 

disordered stoichiometric structures with atoms in fourfold coordination 

and no dangling bonds. We will divide this disorder into two main 

types which we shall call disorder (U) and disorder (L). Disorder (U) 

describes a disorder connected network of atoms with deviations from the 

ideal tetrahedral bond lengths and angles but with the restriction of 

having only unlike-atom bonds (i.e., only III-V atom bonds). On the 

other hand, disorder (L) can also have like-atom ~onds (i.e., III-III 

and V-V bonds). As we shall see this division of disorder into these 

two types is useful since the effects of like-atom bonds on the. density 

of states are very strong and for the most part overshadow effects 

from disorder (U) •. structures with disorder (L) will always have equal 

numbers of III-III and V-V bonds sinc.e we are assuming stoichiometric systems. 

In general, if we let NIII-III' NV-V' NIII and NV be the total number of 

type III-III bonds, type V-V bonds, type III atoms and type V atoms 

respectively, then we have: 

NIII-III 
2 + 

N 
II I-V 

4 (26) 

NV-V NIII-V = N 
-2-+ 4 v (27) 

so that the difference in percentage of type III-III and type V-V 

bonds is equal to the difference in percentage of type III and type V atoms. 
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We wish to examine the effects and differences of disorder (U) 

and disorder (L) on the electronic density of states. The purpose of 

this would be to examine an experi~ental amorphous density of states 

spectrum and to determine the type of disorder present. 

To our knowledge, there have been as yet no publishedexperimental 

XPS or UPS spectra on amorphous III-V compounds. 

To understand the influences of disorder (U) and disorder (L) on 

the density of states we shall be interested primarily in effects due to: 

(i) topological arrangement of atoms 

(ii) bond angle and bond length distortions 

(iii) percentage of like-atom bonds 

(iv) different clustering configurations of 

like-atoms 

(v) topological variations of clusters of 

like-atoms 

These effects can be studied in the context of short range disorder 

as we have done previously in oJr work on amorphous Ge and Si. We can 

take a series of crystals whose primitive cells are becoming gradually 

larger. This permits, and in fact we have an increase in the positional 

disorder of the atoms. Thus, a study of the trends observed in the 

density of states for these crystals can give us specific information 

about the effects of particular types of disorder. 

As we have shown in our work on complex structures of Ge and Si, 

the effects of long range disorder (i.e., the fact that we do not have 

crystals) are of secondary importance. 
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In this paper we shall again take the 2H-4, 4H-8, BC-8, ST-12 

and SC-16. (BC-8 taken as a simple cubic lattice) structures as a basis 

for our studies. In the case of disorder (U) we shall use the 2H-4, 

4H-8 and SC-16 structures while in the case of disorder (L) we shall 

examine the 2H-4, 4H-8, BC-8 and ST-12 structures. The reasons for 

these choices will be given later. 

To study these crystal structures we shall use simple three-parameter 

tight binding models and the EPM. The right binding scheme will be used 

to easily discern struGtural features in the density of states and the 

EPM will provide a more realistic examination of the density of states. 

We also present charge density calculations in ord~r to examine the 

nature of like-atom bonds. 

In all our calculations we shall take GaAs as a prototype of the 

III-V compounds and we assume that our results on these effects of 

disorder will be applicable to all III-V compounds. However, we are 

not able at the present to predict with any certainty what III-V compo~nds 

could exist with disorder (U) or disorder (t). 

In Appendix C we examine the topological properties of the 2H-4, 

4H-8, BC-8, ST-12 and SC-16 structures in detail. If we place equal 

numbers of Ga and AS atoms at the atomic positions defining the basis 

for each of these five basic crystal structures we find that we can make 

'2 
N!/((N/2)!) different substructures respectively assuming each atomic 

position to be distinct, where N is the total number of atoms in the 

primitive cell. Some of these substructures are of course identical and 

many of them are quite similar. In what follows we shall break up each· 

group of substructures into smaller groups defined by the percentage of 
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like-atom bonds present. We shall then break up each of the smaller 

groups into sub-groups depending upon the number of like-atom bonds 

for each atom. This is of interest since it characterizes each 

substructure by the immediate environment of each of its atoms. Now 

the substructures in the subgroups can be divided further into classes 

de.pending upon the particular clustering configurations of ·like atoms. 

However, from stability considerations we restrict ourselves to 

substructures that have atoms with only two or less like atom nearest 

neighbors. The method used to investigate the total energy per atom 

·of these structures is described in Appendix E. 

With this restriction we are effectively left with substructures 

that have like-atoms which can cluster into chain-like configurations 

which may be open or closed. A chain is defined by a series of nearest 

neighbor like-atoms~· These substructures can be very conveniently 

characterized or identified by using the following notation: 

(28) 

" where M(L) is the total number. of chains of Ga (As) atoms in the 

i i ) th primitive cell and NGa (NAs is the number of Ga (As) atoms in the i 

chain. The fraction of like-atom bonds in a particular structure is 

given by 

M 

I: 
i=l 

i=l 

(Ni - 1) 
Ga N - 2M T . 

2NT 
(29) 
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where NT is the total number of atoms in the primitive cell. Since 

we are dealing with stoichiometric structures an equivalent expression 

i i 
to Eq. (29) could be obtained by replacing NGa by NAs· In Eq. (29) we 

are assuming finite chains of like-atom bonds. In the case of rings 

i 
or infinite chains we can use Eq. (29) but we must replace NGa-1 by 

i i th 
NGa' where NGa would represent the number of like-atoms of the i ring 

or infinite chain in the primitive cell. We could also make this 

explicit in the notation Eq. (28) by placing an R (ring) or I (infinite 

chain) after the number Ni. The number of atoms in the structure that 

have zero like-atom neighbors is just given by the total number of one

i . 
link chains (i.e., N = 1). The number of atoms that have one like-atom 

neighbor is given by twice the total number of finite chains of order 

greater than one. Finally, the number of atoms in the structure with 

two like-atom neighbors is given by the total number of atoms in finite 

chains of order greater than two minus twice the number of finite chains 

of order greater thart two plus the total number of atoms in rings or 

infinite chains. 

As an example, let us find what information we can obtain about two 

substructures of the ST-12 structure if they are designated by (5,1/4,2) 

and (3,3/4I,l,l) respectively. In the first structure we have two Ga 

atom chains of order five and order one and two As atom chains of order 

four and order two. In the second structure we have two Ga atom chains 

of order three, an infinite As atom chain with four atoms in a primitive 

cell and two one As atom chains. The fraction of like-atom bonds in 

both structures is 1/3. In the first (second) structure there is one 

(two) atom(s) with zero like-atom nearest neighbors, six (four) atoms 
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with one like-atom nearest neighbor and five (six) atoms with two 

like-atom nearest neighbors. 

We may now proceed to analyze the 2H-4, 4H-8, BC-8, ST-12 and 

SC-16 structures using the aforementioned notation as an aid to our 

characterization and discussion. We shall not study all the possible 

distinct substructures that can be made but rather we select and describe 

in Appendix C those which are most useful for our purposes. Furthermore, 

in many cases the notation (N~a .•. ~a/N!s .•. N~s) does riot uniquely 

define a particular substructure. For instance, we may have many 

substructures forming a set in which they are all of type (I,J/K,L). 

In this case we shall, arbitrarily, use stability (see Appendix E) 

requirements as a discerning factor in choosing one substructure to 

study out of this set. It should be noted, however, that the densities 

of states of all the substructures of a given type are very similar 

so that the method used in choos.ing one substructure is relatively 

unimportant. 

In our calculations we have interpolated the form factors obtained 

31 s by Cohen and Bergstresser for GaAs since in this reference V was 

constrained to be the Ge potential. 34 For other form factors the 

qualitative features iri the density of states are the same and we only 

get small shifts in the energies of the peaks. 

For good convergence in the 2H-4 structure we used 50-60 plane 

waves as a basis set along with another 140 plane waves th~ough a 

.. . 4 -+ 
perturbation scheme developed by Lowdin. We calculated E(k) 

in 1/24 of the BZ at 144 grid points. For the 4H-8 structure 

we used approximately 70 plane waves as a basis set with about 200 

I 
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additional plane waves through perturbation theory. We diagonalized 

our Hamiltonian in 1/24 of the BZ at 144 grid points for the (2,1,1/2,1,1) 

structure and at 62 grid points for the (1,1,1,1/1,1,1,1) structure. 

In the case of BC-8 we used 60 plane waves as a basis and an additional 

140 plane waves through the Lowdin scheme. We used 1/8 of the BZ with a 

grid of 154 points. For the ST-12 structure we used about 70 plane waves 

as a· basis, set and another 270 plane waves through p,erturbation theory. 

The Hamiltonian was diagonalized in 1/2 of the BZ at 192 grid points. 

Finally, for SC-16 we used about 85 plane waves as a basis set along 

with approximately 235 more plane waves through the Lowdin scheme. The 

eigenvalues were obtained in 1/2 of the BZ at 256 grid points. 

In our tight binding calculations we have taken the following 

modification of the Weaire Hamiltonian 

J(' = ±V 0 L I ¢H)( ¢ H I + v 1 
i,R-

~ I¢ • n )( ¢ • n 
1 I ,L.J ~.lv ~.lv 

i,SI,:f51,1 

I ¢ • n )( <jl • 1 n I 
~.lv ~ ,~v . 

i=Fi 1 ,51, 

(30) 

where the I<PiR,) represent localized orthonormal basis functions which 

can be taken as (SP
3

) hybridized directed orbitals (four to each atom). 

The subscripts i and R- label a particular atom and the orbitals of that 

atom respectively. The first term in this Hamiltonian is a diagonal 

term which is taken to be +V or -V depending on whether the states 
0 0 

are associated with group V atoms or group III atoms. The second term 

represents an interaction v1 between different basis functions on the 

same atom and the last term is an interaction v
2 

between basis functions 
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along the same bond. We have thus ignored the differences in the 

interactions of basis functions on different atoms and along the 

different types of bonds and we have assumed equal bond lengths and an · 

ideal tetrahedral arrangement of atoms. We used V 
0 

= 3. 2 eV, V 1 = -2·. 7 eV 

and v
2 

= -6.1 eV which are the same values as those used by Weaire and 

Thorpe for their calculation of GaAs in the zinc blende structure. 19 

The most prominent features of this tight binding model are an 

inadequate conduction band because of the limited number of basis functions, 

a relatively good description of the s-like states, and for the case of 

structures with all or no bonds that are like-atom bonds, a delta 

function peak in the density of states at the top of the valence band. 

This peak contains pure p-like bonding states with a degeneracy of one 

state per atom. This is interesting because it says that to first order 

with nearest neighbor interactions which are independent of the dihedral 

angle the p-like states are not disturbed by topological differences. 

This is a fact that is supported to some degree by experiment. 11 However, 

if we introduce the possibility of having like and unlike-atom bonds in 

our structures it is no longer true that the delta function will contain 

one state per atom. It would, therefore, be of interest to obtain an 

expression for the degeneracy of the delta function depending upon the 

type of like and unlike-atom bond configurations that exist in a 

particular structure. One thing this will give us is an idea of how 

much of the density of states of zinc blende is preserved under disorder 

(L). 
} 

/ 
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Consider first the case where we have only one type of bond in the 

struct.ure, then there are three p-like functions that can be formed on 

each atom from the four hybrids. Therefore, there are 3N pure p-like 

functions that can be formed in a system of N atoms, However, there is 

one constraint per bond if we wish to make pure p-like bonding or 

antibonding states. 
12 Thus as Weaire and Thorpe have shown, there are 2N 

independent contraints and, therefore, 3N - 2N = N degenerate pure p-like · 

bonding (or anti bonding) crystalline states. These states are then 

responsible for the delta function peak with one state per atom. In the 

case of a structure with both like-atom and unlike-atom bonds we must 

be a bit more careful; We must now distinguish the p-like functions 

among bonds of type III-III, V-V and III-V. That is, we are interested 

in the p-like functions of a certain type (i.e.,' III-III, V-V or 

III-V) which can be made fr.om th.e hybrids along bonds of that type. 

The number of such functions that can be made on a certain atom given 

the configuration of nearest neighbor atoms is shown in Table IX. Therefore, 

given a structure with a particular distribution or arrangement of atoms, 

we can use Table IX to find the total number of p-like functions of a 

particular type. Once this is known the total number of bonding 

(or antibonding) p-like states of a certain type that can be made is just 

given by this number minus the total number of constraints for bonds 

of that type. But the number of constraints of a particular type is 

just equal to the number of bonds of that type. Therefore, the degeneracy 

of the delta function DX representing bonding (or antibonding) p-like 

states of type X (where X represents the three distinct combinations 

of III ~nd V) is given by: 
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(31) 

Here ~ represents the number of atoms with I bonds of type X and ~ is 

the total ni.lmber of bonds of type X. If we now express ~ in terms of 

the ~ we get: 

(32) 

This expression is quite useful since it tells us immediately that for 
I 

the structures we are studying there will be no delta function in the 

density of states represent.ing like-atom (L) bonding states. This is 

L L 
because we chose our structures to have N4 and N3 equal to zero due 

to stability requirements. This suggests, therefore, that in the 

amorphous case the like-atom bonding state regions in the density of 

states will be quite sensitive to different types of clustering config-

urations. On the other hand, Eq. (32) also tells us that in the 

structures we are studying we will definitely have a delta function 

peak in the density of states representing unlike-atom (U) bonding states 

as in the case of zinc blende whose degeneracy will be given by 

DU = N~ + t N~. One might thus suggest that there will be a region 

of the p-like states in the density of states of zinc blende whose 

character will be relatively unaffected by disorder. In other words, 

the nature of the :unlike-atom bonding states in the amorphous density 

of states should be very nearly the same as that of the zinc blende 

p-like states. We shall examine this again in part B. 
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A. Results for Disorder (U) 

In the study of disorder (U) we are interested in investigating 

effects on the density of states caused by the following features: 

(i) Topology 

(;ii) Bond angle and bond length variations. 

As we have already mentioned, these features can be studied with the. 

concept of short range disorder. In this case we take GaAs in the 2H-4, 

4H-8 and SC-16 structures. The first two structures have ideal tetrahedral 

arrangements of atoms and provide a comparison of purely topological 

properties. In the 2H-4 structure each atom sees a hexagonal neighborhood 

which is 'different from the cubic neighborhood of the zinc blende 

structure. This difference starts at the third nearest neighbor. pn 

the other hand, in the 4H-8 structure each atom sees alternate layers 

of cubic and hexagonal neighborhoods. The SC-16 structure provides 

us with distorted tetrahedral units and, therefore, has variations in 

bond lengths and angles. It also provides for a new topology although 

it is very similar to the 2H-4 structure in that it has the same type 

of third nearest neighbor environment. 

The tight binding model is not very useful in studying these 

structures with disorder (U) since we could tell no difference between 

the 2H~4 and 4H-8 structures and only small differences with the SC-16 

structure. In addition, the simplicity of the model would be destroyed 

by the introduction of many parameters to take into account bond length 

and bond angle deviations. On the other hand, the EPM is very useful 

and the results of our calculations using the EPM ~re shown in Fig. 39a-c 

where we have plotted the density of states of GaAs in the 2P.-4(1,1/l,l), 
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4H~8(1,1,1,1/l,l,l,l) and SC-16 structures. The filled valence band is 

shown at negative energies and part of the conduction band is shown at 

positive energies. These are unsmoothed computer plots and no interest 

should be paid to the small wiggles along the curves. Before we compare 

these spectra, however, it would be useful to have some information 

about the average distribution of electrons in each band. From the charge 

density calculations of Walter and Cohen5 we know that the region of the 

density of states (Fig. 39) from about -10 eV to -12 eV contains electrons 

which are primarily concentrated on the As atoms. They are essentially 

the As s-like states and we shall be calling this the "s-like region" 

.of the density of states. The middle peak around -6 eV is actually part 

of a band that tails all the way to 0 eV. Charge density calculations 

for this band show that the electrons are now more concentrated on the 

Ga atoms and in the bond. Part of the bonding nature of this band is 

probably coming from the tail. Actually, if we just took a simple two 

potential well model in the tight binding sense, the lower energy state 

would be s-like bonding primarily around the As atom and the higher 

energy state would be s-like antibonding primarily around the Ga atom. 

Although this model is certainly too simple it does give us some feeling 

for the region around -6 eV which we shall be referring to as the 

"middle peak" region. Finally, the region in the density of states 

from -4 eV to 0 eV contains electrons which are almost entirely 

concentrated in the bonds as in Ge and Si. We shall be referring to 

this region in the density of states as the "p-likc region". 

Let us now compare and examine the trends in the density of states 

spectra shown in Fig. 39. As we go from the 2H-4 structure to the 4H-8 
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structure the spectra seem to be almost identical. Ail the widths are 

the same for the two cases and the only difference is in the structure 

in the p-like region between -1.5 eV and -3.5 eV. What we are seeing 

here are the effects caused by purely topological differences. In 

particular in the 4H-8 structure we have the effects of averaging over 

cubic and hexagonal environments. In fact, the only way to have an 

amorphous structure with purely topological disorder is to stack 

randomly two dimensional hexagonal layers of atoms such that the bonds 

form eigher eclipsed or staggered configurations. From our results we 

would expect that the effects of such an amorphous structure would be 

to smooth out the peaks in the p-like region and leave everything else 

essential intact. 

If we now compare the 2H-4 and 4H-8'density of states with that 

of SC-16 we notice some small but interesting differences. First, 

we notice a slight broadening of the s-like States. This is caused by 

variations in the second nearest neighbor distances due to bond angle 

and bond length distortions. These variations cause variations in 

the overlap integrals of' the As s-like states and consequently a 

broadening of this band. This broadening corresponds to about a 

0.2 eV increase in the width. For the p-like states we first notice 

a steeping of the band edge by the introductlon of states at the top 

of the valence band around 0.5 eV. This is caused most likely by the 

deviations of the bond angles from the ideal tetrahedral angle which 

produce the same effects as in Ge. Secondly, we notice that the p-like 

region also gets broadened. This is caused by the rather large 

distribution of first nearest neighbor distances in the SC-16 structure 
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as we discussed in Appendix C. The presence of smaller bond lengths 

than the ideal bond length would tend to broaden the p-like region as 

is the case with the SC-16 structure while structures with only larger 

bond lengths would get a narrowing of the p-like region as is the case 

with Ge ST-12. These effects, however, are clearly very small. In the 

·middle peak region the most prominent difference is a slight shift of 

the main peak to higher energies by about 0.5 eV. Perhaps this is also 

due to the bonding character of the states in this region although 

it is not really clear what is happening here. 

We can get some idea of the distribution of bond lengths and 

angles in the amorphous case from the radial distribution functions 

(RDF) of Shevchik and Paul. 35 The RDF' s of their amorphous III-V samples 

were very similar to that of amorphous Ge. In fact, the RDF of amorphous 

GaAs is almost identical to that of amorphous Ge. Unfortunately, an 

RDF is not'a sufficient condition for a particular structure nor can 

one prove the existence of fivefold rings of bonds with an RDF. 

Therefore, if we were to hypothesize a random network structure which 

gives the same RDF as amorphous GaAs but with disorder (U), we would 

expect to get the density of states shown by a dotted line in Fig. 39a. 

First we would expect the p-like behavior to be very similar to that 

of amorphous Ge since the distribution of bond angles and bond lengths 

of amorphous Ge and GaAs are very nearly the same. Secondly, we would 

probably get slight shift of the main peak in the middle-peak region 

to higher energies as in the case of SC-16. And finally, we would expect 

to· get a smaller ,broadening of the s-like region in the· amorphous GaAs 

case than in the SC-16 structure since the distribution of second 
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nearest neighbor pistances is centered at slightly larger distances in 

35 the amorphous phase than in the SC-16 case. 

As we shall see in the.next section, however, the effects of disorder 

(U).are rather small and mostly insignificant when compared with the 

effects of disorder (L). 

B. Results for Disorder (L) 

In a recent communication36 we described the gross effects of 

disorder (L) on the density of states based on a very simple charge 

density model. We suggested that the entire spectrum would be broadened 

because of an increase in the overlap integral between like-atoms and 

the different types of bonding states that are now premissible. We 

estimated at least a 1.0 eV broadening of the s-like region and we 

suggested that one may be able to distinguish As-As (Ga-Ga) bonding states 

at the low (high) energy side of the p-like region. 

In this section we shall examine these ideas more carefully and 

analyze them on a more firm theoretical basis. In particular we would 

like to studyexplicitly the effects on the density of states produced 

by the following features: 

(i) topological arrangement of atoms 

(ii) bond angle and bond length variations 

(iii) percen~age of like-atom bonds 

(iv) different clustering configurations of like-atoms 

(v) topological variations in clustering configurations 

The first two features were discussed in Section IV ~nd are overshadowed 

for the most part by features (iii) to (v). In what follows, we shall 

concentrate primarily on the effects of (iii) to (v) which can also be 
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studied in the context of short range disorder. Thus we will use the 

tight binding model and EPM to examine the various substructures of the 

2H-4, 4H-8, BC-8 and ST-12 structures mentioned in Section II. 

In Fig. 40a-f we show the densities of states for the 2H-4 (1,1/1,1), 

2H-4 (2/2), BC-8 (2,2/2,2), BC-8 (4/4), ST-12 (3,3/3,3) and ST-12 (5,1/5,1) 

structures using the tight binding model. The valence band is mostly 

at negative energies with the delta function set at 0 eV and E designates 
c 

the bottom of the conduction band. Each spectrum is norma-lized to 24 

for ease in comparisons and the small numbers of top of the peaks give 

the relative weight for each peak. The solid line at 0 eV represents 

a delta function of pure GaAs p-like bonding states whose degeneracy is 

obtained from Eq. (32) and the discussion in Section II. For example, 

u 
for ST-12 (3,3/3,3) we have N

4 0, N~ u 
8 and N1 = 0 so that the 

degeneracy of the delta function is Du = 4. The .fraction of like-atom 

bonds for each structure is given by Eq. (29). So .that for 2H-4 (1,1/1,1) 

2H-4 (2/2), BC-8 (2,2/2,2), BC-8 (4/4), ST-12 (3,3/3,3) and ST-12 (5,1/5,l) 
~ 

we have 0, 25%, 25%, 37-1/2%, 33-1/3% and 33-1/3% of like-atom bonds 

respectively. 

When we examine the trends in the density of states as we go from 

2H-4 (1,1/1,1) to 2H-4 (2/2) we notice that the peaks in both the s-like 

region and the middle peak region have now split into two. In addition 

in the p-like region there is one peak at higher and lower energies with 

respect to the position in energy of the delta function. We get the same 

qualitative results when we examine the density of states for BC-8 (2,2/2,2). 
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The 2H-4 (2/2) and BC-8 (2,2/2,2) substructures have different topological 

properties, however, they do have the same·type of like-atom clustering 

configurations. This suggests, therefore, that the splitting of the peak 

in the s-like region is due to the clustering of As atoms into chains 

of order two which produces essentially a bonding-antibonding splitting. 

In a similar way the splitting in the middle peak region is essentially 

due to the clustering of Ga atoms into chains of order two, although 

we must again be careful here, as with dis·order (U) since the states 

in this region are not purely Ga s-like states. As for the p-like region 

the single peaks at high and low energies respectively are probably due 

to the different binding energies of the like-atom bonds which cluster 

into chains of order one. Since the As atomic valence states lie lower 

in energy than the Ga atomic valence states we would exp.ect that the 

lower energy peak contains mostly As-As bonding states while the higher 

energy peak contains Ga-Ga bonding states. We shall return to discuss 

this point with some evidence later. These ideas are further corroborated 

by an examination of the density of states of BC-8 (4/4), ST-12(3,3/3,3) 

and ST-12 (5,1/5,1). In the first case we have the effects of like-

atoms in chains of order four and like-atom bonds in chains of order three. 

We notice that the s-like region has now split into four peaks which is 

exactly what would happen in a system consisting of localized states in 

a chain of order four with only nearest neighbor interactions. In fact 

the eigenvalues of any such chain of order N are just the roots of an 

Nth order Chebyshev polynomial of the second kind. We can also distinguish 

four peaks in the middle peak region presumably caused by the Ga-atom 

chains. In the p-like region we now have three lower energy peaks 



-83-

and three higher energy peaks. This lends support to the idea that these 

peaks represent like-atom bonding states and are caused by the like-atom 

bonds clustering in chairis of order three. 

The density of states for ST-12 (3,3/3,3) and ST-12 (5,1/5,1) show 

the same behavior of the s-like and p-like regions when analyzed in terms 

of chains of atoms and bonds respectively even though they have quite 

different topological properties from the BC-8 and 2H-4 substructu~es. 

For ST-12 (5,1/5,1) we notice the superposition of states in the s-like 

region due to chains of atoms of order five and order one. For the 

p-like states we can almost distinguish four lower and higher energy 

peaks caused by the like-atom bonds that are only forming chains of 

order four. The middle peak regions for these two ST-12 substructures, 

however, do not follow very closely the characteristics of chain-like 

behavior. Nevertheless, they are sensitive to the Ga atom clustering 

configurations as can be seen by an examination of the wave functions . ' 

in this region. Furthermore, an examination of the wave functions in 

the p-like region can give us the nature of the bonding states in the 

low and high energy regions with respect to the delta function. However, 

the fact that the lower and higher energy peaks in the p-like regions 

are actually mostly As-As and Ga-Ga bonding states respectively is very 

easily observed in Fig. 4la-c. Here we have plotted the density of 

states of ST-12 (5,1/3,3), ST-12 (4,2/5,1) and ST-12 (3,3/41,1,1). 

These substructures all have 33-1/3% like-atom bonds but they are of 

particular interest since each structure has its Ga and As atoms in 

different types of clustering configurations. In the density of states 

for ST-12 (5,1/3,3) we notice three peaks in the s-like region which is 
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consistent with the As atoms forming chains of order three. If we were 

now to make bonding states that were almost exclusively of As-As 

bonding character we would expect two peaks in the p-like region. This 

is exactly what is observed in the lower energy region of the p-like 

states. On the other hand, at the high energy side of the delta function 

we can distinguish four peaks and this is consistent with Ga like-atom 

bonding states caused by the Ga-Ga bonds forming chains of order four. 

For the ST-12 (4,2/5,1) structure we notice that the s-like region has 

essentially five peaks with a small splitting of the middle peak. This 

splitting is due to a difference in environment between the As atoms 

in the chains of order five and order one. In the p-like region we can 

have the Ga-like atom bonding states giving three or four peaks while 

the As-like atom bonding states should give four peaks. From Fig. 4lb 

we notice that both the lower and higher energy peaks are four and so 

it is rather difficult to distinguish visually the difference between 

the chains of bonds. Finally, in the density of states for ST-12 

(3,3/4I,l,l) we see the effects of an infinite (or four that matter, a 

very long) chain of As atoms. The s-like region has one slightly 

split peak near the middle which i~ caused by two chains of As atoms 

of order one. Superimposed on this is essentially the familiar one 

dimensional type of density of states which can be obtained by taking 

only nearest neighbor interactions in an infinite linear chain of atoms. 

The width of this s-like region is the largest broadening that we would 

expect to get from any of the other substructures. The effects of an 

infinite chain of As-As bonds is shown in the lower energy region of 

the p-like states. We notice that its width is large enough to mix in 
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with the states in the middle peak region. 

By using the tight binding model we have observed some very large 

effects in the density of states caused by disorder (L) which could be 

understood quite easily. In particular we f9und that the s-like and 

p-like regions in this model follow some very simple tight binding 

rules which are intimately related to the clustering configurations 
. I . 

of the like-atoms and like-atom bonds. We must ask, however, how 

realistic in fact are these large effects? Use of the EPM provides the 

answer and as we shall show below many of these large effects actually 

carry through in a more complicated calculqtion. Thus the tight binding 

model serves the valuable prupose of providing a simplicity that aids 

in the understanding of the effects of disorder (L) using a more realistic 

model. In Fig. 42a-d we have plotted the density of states using the 

EPM for the ST-12 (4,2/5,1), BC-8 (2,2/2,2), 2R-4 (2/2) and 4H-8 (2,1,1/2,1,1) 

substructures which have 33-1/3%, 25%, 25% and 12-1/2% like-atom bonds 

respectively. Like the tight binding case, these densities of states 

are normalized to 24 for each substructure.and the numbers on top of 

the peaks represent the approximate strength of those peaks. In addition, 

there is an overlap between conduction and valence band states near 1 eV. 

We notice immediately that the effects of disorder (L) using the EPM 

are just as spectacular ·as with the simple tight bidding model. Let us 

first examin.e the s-like region of the density of states. For the ST-12 

(4,2/5,1) substructure we find six peaks which correspond to the six 

peaks also found. in the tight binding case (Fig. 4lb). Howev-er, a 

comparison of the s-like region in Fig. 4lb with that of Fig. 42a shows 

that the latter peaks using the EPM are not symmetrically situated 



-86-

around the s-like peak of As atoms in chains of order one. This is 

caused to a major extent by the increase in the potential between the 

atoms in chains of order greater than one which causes a shift of these 

states to lower energies. This is similar to shift of the one electron 

s-like energies in the hydrogen molecule-ion. In the latter case this 

shift is always greater or nearly equal to half the splitting or width 

of the bonding-antibonding states. Similarly in the case of all the 

substructures we have studied with the EPM this shift is approximately 

equal to half the broadening of the s-like states. So as a general 

rule the highest energy peaks of an s-like chain will overlap with the 

s-like peak of chains of order one. Therefore, one of the two highest 

energy peaks in the s-like region of ST-12 (4,2/5,1) is a band representing 

the As atoms in chains of order one. In the s-like region for the 2H-4 

(2/2) and BC-8 (2,2/2,2) substructures we only get two peaks. This is 

due to the As atoms clustering into chains of order two as we saw in 

the tight binding case. The similarities between shape and energy 

splitting of these two peaks for the 2H-4 (2/2) and BC-8 (2,2/2,2) 

substructures shows that the s-like region is relatively insensitive to 

the topological variations of the atomic chain-like configurations. 

We also notice that the higher energy s-like peak for both substructures 

lies very closely in energy to the s-like peak for the As atoms in chains 

of order one (Fig. 39). Finally, in the 4H-8 (2,1,1/2,1,1) substructure 

which contains both As atom chains of order one and order two we can 

again see, directly, the overlap between the antibonding like state 

(weight one) of the As-atom chain of order two and the band (weight two) 

of As atoms in chains of order one. Furthermore, the splitting between 

.. 
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bonding like and antibonding like states for the As atoms in chains 

of order two is very nearly the same as that for the 2H-4 (2/2) and 

BC-8 (2,2/2,2) substructures. Therefore, the size of this splitting, 

which also happens to be the smallest possible broadening of the s-like 

region under disorder (L), is also unaffected by the percentage of_like

atom bonds present in the substructure. Using the charge density mode136 

we estimated a minimum width of about 3 eV in the amorphous case. This 

is not too far from the results of the present calculations. 

If we were now to assume that the amorphous phase with disorder (L) 

would tend to favor like-atoms clustering in chains or order no larger 

than two, then we ~auld estimate the percentage of like-atom bonds in 

principle by measuring the strength of the two s-like peaks. The fraction 

of like-atom bonds would then be given by 1/[2(1 + H/L)] where H/L is 

the fraction of strength of the higher and lower energy peaks in the 

s-like region. Generally speaking, however, the effects of disorder (U) 

are a broadening of the s-like region and a shift of the center of mass 

of this region to lower energies. In addition, the width of this region 

depends primarily on the types of chain present and not on the percentage 

of like-atom bonds or the particular topological configuration of these 

chains. 

Let us now examine the p-like regions for these substructures. The 

p-like regions are bounded from below approximately by the dashed lines 

at about -5 eV. These regions are further approximately subdivided into 

Sections I, II and III representing particular types of bonding 

characteristics. A comparison of the p-like region for ST-12 (4,2/5,1) 
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using the EPM and the tight binding model suggests that the lower energy 

region of the p-like states (region I) should presumably represent As-As 

bonding states while the high energy region (III) should characterize 

Ga-Ga bonding states. The middle p-like region (II) represents the delta ~ 

function peak whose nature remains unaffected to first order by effects 

of disorder (L). This middle p-like region then retains the character 

of the p-like region without disorder and represents the Ga-As bonding 

states. Similar.classifications can be·made with the p-like regions of 

the ·other three substructures in this figure. A comparison of the middle 

p-like regions for the BC-8 (2,2/2,2) and 2H-4 (2/2) substructures 

reveals that the shape of this region is rather sensitive to the topological 

properties of the structure. The difference in strength of the two peaks 

in the middle p-like region for the 2H-4 (2/2) case is most likely caused 

by the fact that the lower energy p-like region for 2H-4 (1,1/1;1) c'ontains 

states that mostly describe diagonal unlike-atom bonds while the higher 

energy region represents mostly vertical (along z direction) unlike-atom 

bonds. Therefore, since the 2H-4 (2/2) structure has only diagonal 

unlike-atom bonds this anisotropy in the strength of these two peaks is 

understandable. In an amorphous structure, however, we would not expect 

this type of anisotropy so that the middle p-like region should look more 

like the one in the BC-8 (2,2/2,2) substructure. The effects on the 

p-like region obtained by reducing the percentage of like-atom bonds while 

retaining similar types of like-atom clustering configurations can be 

seen from Fig. 42d. The p-like region for the 4H-8 (2,1,1/2,1,1) 

substructure is just slightly broader than the BC-8 (2,2/2,2) and 2H-4 

(2/2) substructures. In addition, the most important change seems to be 
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just a reduction in strength of the As-As and Ga-Ga bonding state regions. 

Finally, all that we can say about the middle peak regions for 

these four substructures is that we obtain an overall broadening in each 

case as compared with the middle peak region for 2H-4 (1,1/1,1). As for 

the conduction bands we notice that we get a shift to lower energies 

when .compared to the bottom of the conduction bands for the corresponding 

substructures without like-atom bonds. In fact, the states at the bottom 

of the conduction band under disorder (L) are most probably As-As 

antibonding like states in addition to beingplane wave like. This is 

due to the fact that the low lying conduction states should be 

orthogonal to the top of the valence band and s-like. At the same time 

the deeper As-As potential would be a stronger influence on these states 

and would try to bring them down to a lower energy. ·However, the 

effects of shifting of the conduction band and broadening of the p-like 

region due to like-atom bonds as some very serious consequences. 

We have found that all our EPM calculations related to disorder (L) 

yield semimetals. Experimentally, 37 a large decrease in the gap has 

been found for amorphous III-V compounds and our results are consistent 

37 with Connell's suggestion that this decrease might be caused by 

like-atom bonds. Before we go into this in any more detail; however, 

let us first look at some charge density calculations. This way we can 

explore further some of the speculations that we have seen making regarding 

the character of various regions of ·the density of states and we can get 

some idea of the nature of the like-atom bond. The methods used to obtain 

the charge densities are discussed in Section II- Band Appendix B. As 
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a simple and typical example, we shall take the 2H-4 (2/2) substructure. 

Some information about the distribution of electrons in various regions 

of the density of states can be obtained from band charge densities 

-+ 
p (r). 
n 

-+ 
Charge density contours for PI (r) for bands 1 to 10 in the 

n 

(110) plane of the 2H-4 structure are shown in Figs. 43 to 47. In 

Fig. 43 we show the s-like region where the bonding and antibonding 

nature of the As s-like states is clearly evident. In Fig. 44 we 

have what is essentially the middle peak region. The electrons here are 

mostly spread out around the Ga and As atoms with electrons in the Ga-Ga, 

Ga-As and As-As bonds. In particula~ band 3 has more electrons in the 

As-As bond and around the Ga atoms than band 4, while band 4 has more 

electrons iri the Ga-As bond: In addition, there seems to be slightly 

more charge around the Ga atoms than the As atoms. In Fig. 45 we have 

the charge density for band 5 which should represent approximately the 

lower energy region of the p-like states. As we see, the electrons are 

concentrated primar!ly on the As-As bonds with a smali concentration 

in the Ga-As bonds and neglig1ible distribution in the Ga-Ga bonds. In 

this same figure we show band 6 which is effectively the first half of 

the middle p~like region. Now the electrons are primarily concentrated 

in the Ga-As bonds with a small concentration in the As-As bonding region. 

Similarly, band 7 in Fig. 46 which is essentially the other half of the 

middle p-like region has its electrons almost completely occupying the 

Ga-As bond. The contours to the left of the Ga atoms and to the right 

of the As atoms represent cross-sectional slices of the other diagonal 

bonds which are not .shown in this plane. In this same figure we show 
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band 8 which approximately represents the states in the high energy region 

... of the p-li~e states. As we see, the electrons are now primarily 

concentrated around the Ga-Ga bond withnegligible distributions around 

the As atoms. Finally, in Fig. 47 we show the distribution of electrons 

in the hypothetical situation where the first two conduction bands are 

completely filled. The electrons are now very plane-wave like but at the 

same time are primarily concentrated on the As atoms in an antibonding 

like configuration. 

These charge densities confirm our earlier speculations about the 

distribution of electrons in certain regions of the density of states. 

Furfhermore, similar results can be obtained by examining an integrated 

-+ 
"energy" charge density PE E (r) for various intervals. [E.,E1 ] as. 

. f' i . . 1. 

discussed in Appendix B. In Figs. 48-50 we show our calculations of 

-+ 
PE/,Ei (r) for the 2H-4 (2/2) substructure for the intervals (in eV) 

[-7.2,-6.1], [-6.1,-5.0], [-5.0,-3.7]·, [-3.7,-1.3], [-1.3,0.6] and 

[0.6,2.2]. These intervals are labeled with arrows and shown in. Fig. 42c. 

The middle peak region can be also approximated by the intervals 

[-7.2,-6.1) and I:-6.1,-5.0]. The charge density for these cases is shown 

in Fig. 10. We notice immediately that although the general appearance 

of the electronic distributions are the same as bands 3 and 4 there are 

some interesting differences. Unlike bands 3 and 4 the charge density 

in these two energy intervals are almost identical. In going from the 

low energy interval to the higher energy interval we observe a very 

slight increase in charge around the Ga-Ga and Ga-As bonds with a 

corresponding reduction in charge around the As-As bonds. Furthermore, 

although the electronic distribution in band 3 is very similar to that 
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of the low energy interval, the charge density of band 4 is quite different 

in that it lacks As-As bonding character. 

This suggests that band 4 has a rather large overlap with the higher 

bands presumably in the Ga-As bonding region. As we have already mentioned 

it is rather difficult to characterize the middle peak egion but generally 

speaking the electrons are spread out around both types of atoms and in 

all three types of bonds. In Fig. 49 we show the charge density for 

the interval I-5.0,-.3.7] which is essentially the low energy p-like 

region. This electronic distribution represents the As-As bonding 

states and agrees well with the charge density of band 5. In this figure, 

-+ 
we also show PE E (r) for the interval I-3.7,-1.3] which represents 

1 ' i 
approximately the middle p-like region. We notice that the charge is 

mainly concentrated in the Ga-As bonds and looks mostly like the charge 

density for band 7. This region then represents the Ga-As bonding states. 

In :Fig. 50, we show the electr~nic distribution in the interval 

.[-1.3,0.6] and [0.6,2.2]. In the former case we have essentially the 

Ga-Ga bondirig states and this.agrees very closelywith the results for 

band 8. In the latter case we have the hypothetical case of a filled 

conduction band energy interval. We not~ce that again we obtain plane 

wave like behavior but at the same time a distinct antibonding s-like 

distribution around the As atoms. Finally, in Fig. 51 we show the 

charge density obtained by suming over all the filled bands. We notice 

that we obtain definite bonding character for all the bonds. The 

strengths of the Ga-As bonds are very close to their strengths in the 

zinc blende case. The As-As bonds have a lot of bonding charge which 

is also quite localized. On the other hand, the Ga-Ga bonds are rather 

weak and less localized. 
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Let us riow return to the question of the gap in the density of 

states. What we must ask is whether we shall always get a semimetal 

under disorder (1). From the charge density calculations we have 

definite proof that the top of the valence band represents Ga-Ga bonding 

like states.· In addition the bottom of the conduction band has some 

antibonding As s-like character. Therefore, we would expect a shift in 

energy of these regions depending on the nearest neighbor distances of 

the Ga-Ga and As-As bonds. In our calculations of the 2H-4 and 4H-8 

substructures we have always taken the ideal situation where the Ga-Ga 

nearest neighbor distance is equal to that of the As-As nearest 

neighbor distance which is in turn equal to the ideal Ga-As nearest 

neighbor distance. Since the top of the valence band has much more 

charge around the Ga atoms than the conduction band has around the As 

atoms we would expect a larger sensitivity of the g~p to changes in 

Ga-Ga bonding distances. Hopefully, by increasing the gap we would 

also be making the Ga-Ga bonding states more bonding like in character 

and more concentrated in the bonds rather than what we obtain in Figs. 46 

and 50. We find that in the 2H-4 (2/2) substructure the gap increases 

by about 0.08 eV for every 1% reduction in the Ga-Ga bonding distance. 

Furthermore, this gap increases by only 0.01 eV for every 1% increase 

in As-As bonding distan~e. In Fig. 52a we show our results for the 

density of states of 2H-4 (2/2) with a 10% decrease in the Ga-Ga nearest 

neighbor distance and a 3% increase in the As-As bonding distance. In 

this structure we obtain a 0.1 eV gap and at the same time we have the 

same bulk density as before and only very small changes in the bonds 

'· 
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angles and Ga-As bonding distances. This result on the gap is very 

encouraging'and we would expect to get similar effects by changing the 

Ga-Ga and As-As distances in the other structures. The important point 

to remember is that given a particular configuration of like-atom bonds 

the Ga-Ga and As-As nearest neighbor distances would be critical in 

determining whether a gap could exist or not. In this struct"ure we also 

obtain a small shift in the s-like region due to the decrease in As-As 

bonding distances. This shift corresponds to about a 0.1 eV change 

for a 1% change in As-As.nearest neighbor distance. 

At this point we have enough knowledge about how disorder (1) affects 
I 

various regions of the density of states that we could make some definite 

statements as to what would be observed in a random network model with 

like-atom bonds. We begin by assuming a 10% presence of like-atom bonds 

which as Shevchik and Pau135 have shown would contribute very slightly 

to the heat of crystallization of the amorphous phase. From stability 

considerations we would expect that clustering configurations of like-

atoms to be in the form of chains or rings. However, we must also 

assume the presence of only low order (one, two or three) chains
38 

of like-atoms since these will affect the possibility of obtaining a 

i b d . 11 37 nonzero energy gap as s o serve exper1.menta y. As we have already 

seen in Fig. 42a, fourfold chains of atoms would make a rather large 

overlap between the Ga-Ga bonding-like states and the conduction band. 

Thus~ without a restriction for low order chains we would .need rather 

large unrealistic changes in the Ga-Ga bonding distances in order to get 

a nonzero gap. In this 'model, with only low order chains, we simply 
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assume a 10% decrease in Ga-Ga nearest neighbor distances and a 3% 

increase in As-As nearest neighbor distances. This way we would expect 

to get a nonzero gap as in 2H-4 (2/2) Fig. 52a. We should notice also 

that these changes in nearest neighbor distances for 5% anion-anion 

and 5% cation-cation bonds are compatible with some of the RDF's of 

35 Shevchik and Paul (e.g., GaP) just in case these RDF's repres.ent 

systems with disorder (1). 

Therefore based on all these c6nsiderations our model for the 

density of states of an amorphous phototype GaAs compound with disorder (L) 

would have the form shown in Fig. 52b. For comparison we also show the 

density of states of GaAs ih the zinc blende structure as the solid 

curve. Let us first concentrate·on the s-like region. As we mentioned 

earlier, there should be a shift in the center of mass of the s-like 

states to a lower energy. Along with this is the fact that the highest 

energy states of a particular chain tend to overlap with the states 

of chains of order one. This.suggests that we may divide the s-like 

region into two main peaks. The first peak is what we may call 

the lower energy s-like peak and would contain all the states except 

the highest energy states of all the As like-atom chains of order 

greater than one. The second peak which we may call the higher energy 

s-like peak would contain only t~e highest energy states of all the 

As like-atom chains and would be located around the energy of the 

states for As chains of order one. By·making these simplifications 

the fraction of like-atom bonds is again given by 1/[2(1 + H/L)] 

where H and L are the strengths of the higher and lower s-like peaks 
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respectively. In addition,as we have already seen;the splitting between 

the higher and lower energy peaks will be around 3 eV. Thus for 10% 

like-atom bonds H/L ~ 4 and we get an. s-like region as shown in 

Fig. 52b. In principle, therefore, an unfolding of th~ s-like region 

into two peaks should give us some idea of the fraction of like-atom bonds 

which are present in an amorphous sample. 

In the middle peak region our calculations can only suggest a 

general overall broadening. In part~cular our results imply an increase 

in broadening in the amorphous case by about 0.6 eV. In the p-like 

region we should have a shoulder in the lower energy region representing 

the As-As bonding states. This should look something like the one 

in the BC-8 (2,2/2,2) substructure but with less strength. In addition 

we should have a middle p-like region which represents Ga-As bonding 

like states and is, therefore, the only part of the density of states 

whose character is retained under disorder. Its shape is, however, sensitive 

to topological disorder so it should look mostly like the middle p-like 

regions in the BC-8 (2,2/2,2) or ST-12 (4,2/5,1) substructures. Finally, 

the higher energy p-like region representing the Ga-Ga bonding-like 

states will tend to overlap with the middle p-like region in order to 

obtain a nonzero gap as in Fig. 52a. From these considerations we 

propose a p-like region as shown in Fig. 52b which should be about 5 eV 

wide. For the bottom of the conduction band we should have a small shift 

to lower energies as we have observed in all the substructures with 

like-atom bonds. For our choice of like-atom nearest neighbor distances 

in this model, we should have band edges at energies which are similar 
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to those for 2H-4 (2/2) in Fig. 52a. As we have already seen in Section IV 

the effects of disorder. (U) on the size of the gap seem tp be rather 

small. In addition, the similarity in the overlap of the conduction 

and valence bands for the 2H-4 (2/2) and BC-8 (2,2/2,2) structures 

suggests that the most important influerrce on the gap is just the 

presence of like-atom bonds with or without disorder. Unfortunately, 

however, although the size of the gap is very sensitive to the Ga-Ga 

bonding distances it cannot be used alone as a measur.e of this bonding 

distance. This is because the contributions from the As-As bonds, 

even though they are weaker are not negligible. Nevertheless, a measure 

of the energy between the s-like high and low energy peaks, together 

with the size of the gap may"be able to provide some information about 

both the Ga-Ga and As-As nearest neighbor distances. 

In sunnnary we have been primarily interested in the structural 

nature of the amorphous III-V phase. From an experimental point of view 

h . f . b . d f . 1 . 39 d RDF' 35 · t e 1n ormat1on o ta1ne rom opt1ca propert1es an s 1s not 

very sensitive to the microscopic structural aspects of the amorphous 

phase. Neither of these experiments, for example, is able to give 

precise information as to what type of disorder is present in any given 

III-V sample. In the former case one would need a theoretical model that 

would have to agree very closely with the experimental optical data in 

order to get any believable information about the disorder present. 

And in the latter case the RDF is unfortunately not a sufficient 

condition for any structure. For example, random network models (RNM) 

have been able to fit experimental RDF's rather well. In all these 
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RNM' s however we find five and sevenfold rings of bonds. It is quite 

conceivable, nevertheless, and indeed probable that one could make an 

RNM with only even num-ered ·rings of bonds, that would also fit the 

experimental RDF's. This would then have important consequences related 

to the type of disorder that would be present in the amorphous phase. 

All this suggests that the aforementioned experimental data would 

in some cases still be consistent with two distinct types of disorder 

which could exist in an amorphous III-V compound. The first type of 

disorder, which can be called disorder (U), d'escribes the stoichiometric 

disordered system of atoms in fourfold coordination with ·only unlike-atom 

bonds. In addition, we have variations in the bond lengths and angles 

while keeping all bonds satisfied. The second type of disorder is 

referred to as disorder (L) and encompasses all the properties of 

disorder (U) along with the presence of like-atom bonds. 

In -order to be able to distinguish between these two types of 

disorder we chose to study their effects on the electronic density of 

states which would be quite sensitive to the microscopic structural 

nature of the amorphous phase. In order to study these effects we have 

used the concept or a short range disorder model and we have been 

particularly interested in the effects caused by the following structural 

features 

(i) topological variations of atoms 

(ii) variations in bond lengths and angles 

(iii) percentage of like-atom bonds 

(iv) clustering configurations of like-atoms 

(v) topological variations of clustering configurations 
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Our results for disorder (U) and disorder (L) are shown in 

Figs. 39a and 52b. For disorder (U) we find that the s-like region of 

the density of states is rather insensitive to the topological 

arrangement of the atoms. This, however, is not true for the p-like 

region whose shape is quite sensitive to the local environment of each 

atom. Furthermore, the s-like region is influenced by the second 

nearest neighbor distances which are affected by varia~ions in the bond 

lengths and bond angles.· The p-like states are also affected by 

deviations in the bond.angles which cause a steepening of the band 

edge as in the case of amorphous Ge. The middle peak region of the 

density of states seems also to shift slightly to higher energies with 

the inclusion of disorder. This is perhaps due to the relatively 

delocalized nature of these states. This region, however, is not at 

the present clearly understood. Finally, the energy gap does not seem 

to be very sensitive to the topological properties of the system and 

is affected only slightly by nearest neighbor distances. All in all, the 

effects of disorder (U) on the density of states are rather small. 

With disorder (L), however, we obtain' some very interesting effects. 

Our results show that the s-like region of the density of states is 

very sensitive to the types of clustering configurations the like-atoms 

can fo;rm. From energy considerations we have preferred clustering 

configurations in which any given atom does not have more than two 

like-atom nearest neighbors. This implies that the like-atoms can 

cluster into various configurations of chains. We find that we obtain 

N peaks in the s-like region from each group of chains of order N. In 
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addition the position in energy of these peaks is not very sensitive to 

the different topological arrangements of these chains. The center 

of mass of each set of N peaks is shifted to lower energies by an amount 

approximately equal to the interaction between atoms in a chain. This 

is similar to the shift observed in the electronic energy of a hydrogen 

molecule-ion. The effect of this shift is to make the highest energy 

peaks of each cluster of chains of order N to overlap and form one 

large peak around the.energy of the peak for chains of order one. 

Similarly (particularly true in the case of low order chains) the rest 

of the peaks will also tend to overlap into one peak at about 3 eV lower 

than the first one. The splitting of these two main peaks is found to 

be insensitive to the percentage of like-atom bonds present. However, we 

have found that the fraction (f) of like-atom bonds can be correlated in 

a simple and approximate way to the strength (L) and (H) Of these low 

energy and high energy s-like peaks respectively by the expression 

f = 1/[2(1 + H/1)]. In Fig. 14b we have assumed the presence of 10% 

like-atom bonds and so H/L - 4. 

The p-like region, of the density of states is also very .sensitive 

to the clustering configurations of the like-atoms and broadens into 

three main regions (I, II and III) which we call the low, middle and high 

energy p-li~e regions. The low and high p-like regions represent As-As 

and Ga-Ga bonding states respectively. On the other. hand, the middle 

p-like region represents Ga-As bonding states and is, therefore, the 

only region of the density of states that retains its character under 

disorder (L). In addition, the shape of this region is quite sensitive 
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to the topological arrangement of the atoms." The main effect of the 

percentage of like-atbm bonds on the p-like region seems to be just 

a variation in the strengths of the peaks in these_three regions. 

The width of the p-like region is however sensitive to the order of 

the like-atom chains and to the Ga-Ga and As-As bonding distances. We 

have found that in order to get a finite energy gap we would need a 

structure with only low order chains to atoms (~4) and Ga-Ga and As-As 

bonding distance~ which are smaller and larger respectiyely than the 

ideal Ga-As bonding distance. 

Finally, we should mention that although we used GaAs to study 

disorder (U)_ and disorder (L) we would have obtained similar results 

from any other III-V compound. This is not to say, however, that all 

the III-V compounds are equally likely to exist in the amorphous phase 

with disorder (U) or disorder (L). In particular in the case of disorder 

(L) we would expect to find only the compounds with the strongest bonding 

character. Now presumably the bonding charge calculated by Walter and 

Cohen5 can be considered a measure of this bonding charact~r. In that 

case, their results would indicate, for example, that InSb and InP are 

more likely to be found with disorder (L) than GaAs. In any case, if 

amorphous samples are to be found with disorder (L), it would seem 

preferable to prepare them at low enough temperatures so that the 

diffusivity of the atoms is very small. 
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VI. ELECTRONIC PROPERTIES OF TRIGONAL AND AMORPHOUS Se &~ Te 

The electronic structure of trigonal Se and Te h~s been the subject 

of many experimental and theoretical studies. 40 Recently, the advent 

of new ultraviolet (UPS)
41 

and X-ray (XPS) 41 •42 photoemission measurements 

has provided important information.about the complete valence band 

d h 1 d . d . f h . 1 1 1 . 43- 45 an as revea e some 1na equac1es o present t eoret1ca ca cu at1ons. 

43 . 
In one of these calculations a complete merging of s- and p-like bands 

was proposed which disagrees qualitatively with the recent photoernission 

d 0 h 1 1 . 44 '45 h ' . f d 1' k b d ata. t er ca cu at1ons s ow a separat1on o s- an p- 1 e an s 

which is in qualitative agreement with these. experiments, however, band 

widths and important structure in the p-like bonding states are not 

obtained correctly. The experimentally observed characteristic two-peak 

structure in the p-like bonding states is, as we shall show, intimately 

related to two types of states so that precise calculations are necessary 

before a detailed understanding of the electronic structure and bonding 

nature of Se and Te can be obtained. Finally, the information gained 

by a careful examination of the crystalline forms of Se and Te is a 

considerable aid in understanding the amorphous phases of Se and Te
42 •46 

as well. 

A. Discussion of Trigonal Phases 

In this part we present new calculations of the electronic densities 

of states of trigonal Se and Te using the EPM
2 

which for the first time 

agree quantitatively with all the observed structure in the experimental 

photoemission spectra. In Fig. 53 we show the results of our 

calculations for trigonal Se and Te, with the filled valence bands at 
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negative energies. The lowest band represents essentially the atomic 

s-like states of Se and Te respectively. The next band contains p-like 

bonding states which lie between -6.0 eV and about -2.2 eV for Se and 

for Te. Finally, the top most valence states are predominantly non-bonding 

p-like in nature. In order to facilitate comparisons with experiment 

we have convoluted these-spectra with an energy dependent broadening 

function and the results are shown in Fig. 54. Superimposed, we show the 

41 recent photoernission results of Schevchik, et al. for Se and 

42 
Joannopoulos, et al. · for Te. The experiments on Se were obtained by 

using UPS and XPS measurements on a sputtered and subsequently annealed 

films, while those on Te were obtained using XPS .on a single crystal. 

All observed structures in the experimental spectra·are reproduced 

with widths, positions and number of peaks now in good quantitative 

agreement with experiments. 

In order to understand the origin of the characteristic two-peak 

structure found in the p-like bonding states of both Se and Te we 

have calculated electronic charge distributions of states in each 

peak. This entails summing over states whose energies (in eV) fall 

within [-6.0,-3.6] and [-3.6,-2.25] for Se and [-6.0,-3.5] and 

[-3.5,-2.2] for Te. The results are shown in Fig. 55. The atoms which 

lie in the same chain are connected by a straight solid line. We 

notice. that the lower bonding p-like states are primarily concentrated 

in the region between atoms in the same chain whereas the upper bonding 

p-like states lie mostly in the interstitial region between the chains. 

We can, however, go one step further and Jsolate short wavelength 

Fourier components from the long wavelength Fourier components in these 
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charge densities. This introduces a new method of defining bonding 

charges and a way to separate out effects of metallicity. The cutoff 

or boundary wavelength A between short and long wavelength components 
0 

was found to lie naturally at A = d where d is the nearest neighbor 
0 

separation in Se and Te. The results obtained for Se by retaining 

only Fourier components with A ~ A are shown in Fig. 56a and b for the 
0 

energy intervals [-6.0,-3.6] and [-3.6,-2.25] ·respectively. The results 

forTe are similar and are shown in Fig. 57. We notice immediately 

that the lower energy peak in the p-like bonding states represents 

states involved in intra-chain bonding. The charge is well localized in 

the bonds between atoms belonging to the same chain. In the upper or 

higher energy peak of the p-like bonding states we find states which 

arise in part because of the hybridization of P and P states and.may 
X y 

also perhaps be considered as contributing to the inter-chain bonding 

of the crystal.. Now the charge is displaced out of the bonds and is 

concentrated in the region between neighboring chains. 

Some measure of intra-chain vs inter-chain bonding strengths is 

given by the magnitude of the respective bonding charges. For Se we 

have found 0.07 e- for the intra-chain bond and 0.04 e for the inter-chain 

bond. It is instructive to compare these values with 0.05 e and 

0.04 e for the intra- and inter-chain bonds of Te respectively. The 

difference in bonding charge between the intra-chain and inter-chain bonds . 
decreases in going from Se to Te and thus reflects the more three 

dimensional or more isotropic character of Te. Furthermore, we believe 

that the smaller amount of total bonding charge in Te is indicative of its 
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more metallic character. However~ it should be emphasized that the values 

of the bonding charges we have obtained should be considered mostly 

in a relative sense rather than individually. 

The more one-dimensional nature of Se vs the more three-dimensional 

nature of Te is also reflected in the s-like states shown. in Fig. 53 a 

and b. In Se we find two sharp peaks at the edges of the band with a 

broad valley in be~ween. This is very characteristic of the density of 

states of an infinite chain of s-like states with nearest neighbor 

interactions shown in Fig. 58 as a dashed line. For Te, however, we 

firtd in addition a peak near the middle of the valley. This new peak 

is very charact.e:tistic of the density of states of a simple cubic 

lattice of s-like states shown in Fig. 58 as a solid line. In Te this. 

new peak is a result of an increase of the inter-chain vs intra-chain 

interaction of the s-like states as compared to Se. Furthermore, these 

results are consistent with the fact that 'fe becomes simple cubic 

under uniaxial pressure. 

B. Discuss~on of Amorphous Phases 

The recent photoeinission measurements on amorphous Se and Te show 

mainly two very interesting differences when compared with their 

crystalline counterparts. One of these diffeiences occurs in the s-like 

states and the other in the p.-like bonding states. This is seen in 

Fig. 59 where we have superimposed the photoemission resuits of trigonal 

41 . 42 
(~olid line) and amorphous (dashed line) Se and Te . respectively. 

In amorphous Se the lower peak of p-like bonding states has now become 

weaker, whereas the upper peak has become stronger. In amorphous 
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Te we find the exact opposite effect. From our previous disc_ussion 

in part l we would interpret these differences as a decrease of the 

intra-chain inter·action in amorphous Se and an increase in the intra

chain interaction in amorphous Te. 

In the s-like states we find a bigger dip in amorphous Se as 

compared to trigonal Se whereas the dip in the s-like states of 

trigonal Te fills up in the amorphous case. This increase of the 

dip in amrophous Se suggests some very interesting structural properties. 

For example, it could not be caused by just a breaking of the infinite 

chains. This would only tend to fill up the dip unless the chains 

were of order two which seems highly unlikely. The only other reasonable 

alternative would be the formation of some type of rings. In particular 

the dip would get bigger only if the rings were of order three, five, 

six or seven. Rings of order four, eight or five and seven together, 

would certainly tend to fill up the dip. Furthermore, since the bond 

angles in the trigonal phase are around-100° wewould suspect that 

the most likely ring structures would be of type fivefold and sixfold 

or sixfold and sevenfold. We, therefore, propose that amorphous Se 

contains a substantial number of atoms in ring-like configurations 

with the rest of the atoms being members of chains. 

In amorphous Te the structural information obtained from the s-like 

states is a bit more difficult to discern. As we have already mentioned, 

a filling up of the dip could be obtained in many ways; such as a simple 

cubic structure, fourfold, eightfold, five and sevenfold rings, and broken 

chains. The simple cubic structure could, however, be dismissed since 
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it would merge the p-like bonding states with the non-bonding or lone

pair states. What remains, therefore, is to discern between a structure 

which most likely would contain only broken chains or. broken chains and 

rings. 

The differences between amorphous Se and Te may lie in the different 

t~chniques applied for this preparation. Amorphous Se samples were 

prepared by sputtering and forming a thin film whereas the amorphous Te 

samples were obtained by Argon bombardment on a single crystal. Under 

these conditions the formation of rings may be more likely in Se rather 

than in Te. 
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.APPENDIX A. THE EMPIRICAL PSEUDOPOTENTIAL METHOD 

Here we shall give a brief description of the various aspects of 

the Empirical ·Pseudopotential Theory which are relevant to our calculation. 

A much more thorough and extensive treatment can be found in Reference 2. 
,f 

!n the pseudopotential theory and other one electron theories one 

assumes that the crystal is made up of rigid tightly bound spherical ions 

and a system of valence or conduction electrons. It is the latter group 

of electrons which are of interest since they are responsible for the 

physical and chemical nature of the crystal. One now separates the 

total one electron crystalline potential into two parts: (1) a set of 

spherical potentials centered on the atoms which makes up the "cores", 

and (2) the potential everywhere else in a region outside the spheres 

called the interstitial region. In region (l) the potentials are strong 

in the sense that they have bound core and valence wave functions. In 

region (2) the potential is comparably weak and slowly varying. Thus 

inside the core, the valence electron wave functions will be a·tomic-like 

with many oscillations due to the large kinetic energy caused by the 

deep potential well, whereas, in the interstitial region the valence electron 

wave functions can be taken to be plane-wave like. 

In the pseudopotential theory one begins by expanding a Bloch 

-+ 
valence wave function ~ -+k(r) in terms of orthogonalized plane waves 

v, 

(OPW)'s: 
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-+ -+ -+ 
-+ 

\jJ -+k(r) v, 
~ · i(k-G)•r - ~... a.-+ -+ e 
-.... k-G 
G 

(A-1) 

-+ 
\jJ -+k(r) v, 

-+ ..... , -+ -+ = ¢ -+(r) - l: < \jJ -+k(r) ¢ -+k(r) )\j; k(r) 
v ,k c c' v' c' 

(A-2) 

where ipk is defined from Eq. (A-1) and \j;c,k is a tight::_binding Bloch 

core wave function which is a solution of the total Hamiltonian with 

energy E c. If one now operates on Eq. (A-_2) with this Hamiltonian one 

obtains a Schrodinger equation for ipk .in terms of an effective potential 

Veff which has two contributions: (1) a local attractive potential due 

to the atoms and (2) a nonlocal repulsive potential which projects ¢k 
on to the core states. In most cases, it is a good approximation to take 

repulsive potentials to be local which in turn simplifies matters 

considerably. _This Veff which is now presumably small throughout the 

crystal and can be considered as an empirical pseudopotential which can 

be described usually in terms of a small.set of parameters called form 

factors. The pseudopotential is then obtained by fitting the form factors 

2 to experimental optical data. This is called the Empirical Pseudopotential 

of the pseudopotential method is to remove the strong negative core 

pot~¥ltial and substitute it with a much weaker potential which will 

give the correct valence energy eigenvalues of the crystaL At the same 

time it acts. s.o as to remove the atomic like wiggles of the valence wave 
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functions inside the core leaving the correct valence wave functions 

outside the core. Since the core is usually very small, approximately 

0.2 of the nearest neighbor distance, the pseudowavefunc~ions should be 

capable of providing relevant information about bonding character, symmetry, 

and long range interactions. 

Let us now set up the secular equation for the pseudopotential 

Hamiltonian. The Schrodinger equation is taken as: 

-+ 
xcp -+k (r) n, 

h 2 -+2 -+ -+ -+ 
- - 'V <P -+(r) + V(r)¢ -+k(r) 2m n,k n, 

(A-3) 

and, using Bloch's Theorem: 

-+ -+ 
-iG•r 

e (A-4) 

-+ 
where the set {G} is the set of reciprocal lattice vectors for the partie-

ular lat.tice in question. 

-+ 
Now V(r) is the total crystalline pseudopotential so that it can 

be written as a sum of atomic speudopotentials: 

v(;) = ~ 
i,t;\ 

(A-5) 

where R is a real space lattice vector, TA is the position of the Ath 

-+ -+ -+ 
atom in the primitive cell and vA(r) = v1 (r) or v2 (r), depending on 

whether A denotes an atom of type 1 or type 2; 
-+ 

Since V(r) has 

the periodicity of the lattice we can take: 

-+ -+ 
V(r) = l: V(G) (A-6) 

-+ 
G 
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-+ 
and if we use Eq. (A-5), V(G) can be expressed as: 

(A-7) 

S A · where S and S are the symmetric and antisymmetric structure factors and 

v8 and vA are the symmetric and antisymmetric form factors given by: 

(A-8a) 

(A-8b) 

-+-+ 
S 1-+1 n 1 -+ -+· -iG•r 3-+ V ( G ) = Q f 2 [ v 

1 
(r) + v 

2 
(r)] e · d r (A-9a) 

(A-9b) 

where n is the number of atoms in the primitive cell of volume n and 

PA is +1 or -1 if A denotes an atom of type 1 or type 2. Here we'have 

assumed that the form factors are independent of energy, and since the 

atomic potentials are taken to be spherical, the form factors are 

functions of IGI only. If in addition we place the center of our 

coordinate system in such a way that the atoms of type 1 interchang~ 

their positions with atoms of type 2 under spacial inverstion, then s8 

and SA are both real. The secular equation is now easily obtained 

from Eq. (A-3)· using Eqs. (A-4), (A-6) and (A-7) and has the form: 

(A-10) 

where 

h 2 -+ -+ 2 s -+ -+ .· s -+ -+ 
= 

2
m (k + G) OGG, + V ( I G - G' I ) S ( G - G ' ) (A-ll) 

_A 1-+ -+ I A-+ -+ + iV-( G - G') S (G - G') 
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31 In the zinc blende structures Cohen and Bergstresser used only 

three symmetric and three antisymmetric form factors to obtain a good 

agreement of ~alculated optical properties with experiment. Once one 

has a good set of form factors, the atomic potentials can be obtained 

in principle form Eqs. (A-9a) and (A-9b). If one now assumes that 

the atomic potentials do not change very much from one type of crystal 

structure to the next; the form factors can be used for a variety 

of crystalline structures. In this sense the EPM is extremely useful. 

The procedure essentially involves obtaining a continuous v8 (j~j) and 

~(j~j) by a suitable interpolation scheme and reading off the 

v8 cicl) and ~<lei) for the set of c spanning the reciprocal lattice of 

the particular structure. · 

·• 
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APPENDIX B. CHARGE DENSITY AND WAVE FUNCTION TRANSFORMATIONS 

Charge density calculaiions are particularly useful in studying 

the nature of the bonding properties of a solid. They can also give 

us information about the-distribution of electrons in various regions 

of the density of states and, therefore, how disorder might affect 

these various regions. 

-+ 
We can obtain a charge density P(r) using the wave functions 

-+ 
~ -+k(r) that we get from our EPM calculations. Since the wave functions 
n, 

are known as a function of band index n or energy E,we can postulate 

-+ 
a "band" charge density P (r) or an average "energy" charge density 

n 
-+ 

PE(r). In the former case we would have 

-+ 
p (r) 
n 

* -+ -+ = e E ~ +k(r)i~ -+k{r) -+ n, n, 
k 

and in the latter 

. . -+ 
= e l: l: o(E (k) 

-+ 

-+ n 
. n k 

(B-1) 

(B-2) 

where the E (k) are the one electron valence energies. Therefore, in 
n 

-+ -+ 
principle in order to obtain Pn(r) or PE(r) it is necessary to integrate 

-+ -+ -+ -+ 
Pn(k,r) or PE(k,r) over the entire BZ. 

For our calculations on ZnS in the wurtzite or 2H-4 structure we 

used the two k point scheme described in Section II-2 and the following 

alternate approach. Our procedure was to calculate the ~ -+k in 1/24 n, 

of the zone at 48 points and obtain the rest of the ~ -+k by rotations 
n, 

of TI/3, inversions and mirror reflections in k~space. In order to find 

how the ~ -+k. transform one must go back to real space and study the 
n, 
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symmetry operations of the crystal. Since the wurtzite crystal has a 

synunetry classification of P6
3
mc, any rotations of Tr/3 in real space must 

be accompanied by certain translations. Once the space group elements 

are found, the procedure to find the transformed wave functions is now 

simple. Let us assume that R-l is some rotation in th~ point group 

in the negative sense. In order to make U a symmetry operator of the 

wurtzite crystal we must take. generally: 

(B-3) 

-+ 
where T is the appropriate translation operator with eigenvalue 1R. 

-+ 
Now ~n,k(r) has the form: 

-+ 
cp -+k(r) n, 

However 

-+ 
cp -+k(Ur) 
n, 

-+ -+ 
ik•r -+ -+ = e E a (G,k) 

-+ n . 
G 

-+ -+ 
ik•Ur -+ -+ = e E a (G,k) 

-+ n 
G 

-+ -+ 
iG•Ur 

e 

(B-4) 

(B-5) 

-+ 
is also a solution to X with exactly the same eigenvalue as ~n k(r). 

' -+ 
Thus we wish to find k' such that: 

-+ -+ 
cp -+k' (r) = cp -+k(Ur) n, n, · 

(B-6) 

From Eqs. (B-3) and (B-5) we have: 

-+ -+ 
-+ 

<P -+k(Ur) n, ( 
.-+ -1-+) ik•'t 1k•R r R 

= e e 
(B-7) 
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-+ 
¢ -+k(Ur) n, 
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-+ -+ 
-+ -+ ik•T 

R 
e 

iRk•r 
- e 

-1-+ -+ 
l: a (R G,k) 
-+ n 
G 

-~ 

-+ -+ 
iG•r 

e 

-1-+ -+ . 
iR G•T 

R 
e 

. (B-8) 

{ -+G} and Eq. (B-8) follows from the fact that the set is equal to the set 

-1 -+ 
{R ,G}. Now since 

-+ -+ 
ik' •r -+ -+ 

e l: a (G,k') 
-+ n 
G 

-+-+ 
iG•r 

e (B-9) 

-+ R-+k. a comparison of Eq. (B-9) with Eq. (B-8) reveals that if we let k' 

we obtain: 

-+ -+ 
a (G,Rk) 

n 

-+-+ 
ik•T 

e - R a (R-lG k) 
n ' 

-1-+ -+ 
iR G•T 

R 
e 

which is the required transformation expression. 

To obtain a transformation expression involving the inversion 
' 

(B-10) 

operation we must use the concept of the reversal symmetry. Thus we 

look at 

-+-+ 
-+ 

¢ -+k(r) n, 
ik•r * -+ -+ = e l: a (G,k) 

-+ n 
(B-11) 

G 

-+ -+ -+ 
If we now compare Eq. (B-9) and Eq. (B-12) and take k' = Ik = -k we 

obtain: 

-+ -+ 
a (G,-k) 

n 
* -+ -+ a (.,-G,k) 
n 

(B-12) 

which is the desired expression. 

Finally, we need to find the transformation expression for the 

mirror reflection operator. If we choose the mirror plane to be the 

plane defined by f, MandA then we will have all the transformations 
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necessary to span all of k space inside the Brillouin zone. In real 

space this mirror plane becomes plane I shown in Fig. l. It is clear 

that this mirror operator M is by itself a symmetry operator of the 

crystal. Thus proceeding as before: 

-+ -+ -+ -+ 
-+ ik•Mr -+ -+ iG•Mr 

(jl n,k(Mr) = e L: a (G,k) e 
-+ n 

(B-13) 

G 

-+ -+ -+ -+ 
-+ iMk•r -+ -+ iG•r 

cp k(Mr) = e L: a (MG,k) e n, -+ n (B-14) 
G 

From this it follows that: 

-+ -+ -+ -+ 
a ( G, Mk) = a (MG , k) 

n n 
·(B-15) 

and we now have all the transformations equations needed to obtain the 

wave functions throughout the Brillouin zone. 

In our calculations related to amorphous III-V compounds we have 

taken GaAs as a prototype and used the 2H-4 (2/2) structure as a simple 

typical example of a structure with like-atom bonds. In this case we 

9 have used the Chadi and Cohen twelve point scheme (see Section II-2) 

-+ -+ 
to calculate P (r). 

n 
In addition, we have calculated PE(r) using the 

-+ 
aforementioned transforiiJ.ations in order to obtain PE E (r) which is 

f' i 
defined by 

-+ = JE f PE E (r) 
f' i 

E 
i 

for various intervals (E1 ,Ef]. 

(B-16) 



-119-

APPENDIX C. STRUCTURES AND STATISTICS 

In this section we shall describe and discuss the structure and 

parameters.of the crystals we have used throughout this work. These 

crystal structures include. the 2H-4 (wurtzite), 4H-8 (hexagonal. 4H), 

BC-8 (Silll), ST-12 (Geiii) and SC-16 (BC-8 taken as a simple cubic 

lattice) structures. · We shall also discuss what GaAs sub-struc.tures 

we made and the criteria used in their selection for the work on the 

amorphous binary compounds. 

1. 2H-4 

The 2H-4 structure is a wurtzite-like 2H structure with four atoms 

in a primitive cell and is described completely by'two lattice constants 
I 

constants a and c and an internal para~eter u. If we make c/a = 1.633 

and u m 0.375 then we have an ideal wurtzite or 2H-4 structure and 

an ideal tetrahedral arrangement of atoms. For ZnS we took the ideal 

211-4 structure with a = 3.811A and c = 6.223A. 

Si has been found experimentally to exist in a 2H-4 structure by 

15 Wentorf and Kasper with a 2% increase in density·as compared to Si 

FC...,2. The lattice constants they obtained 'l.o<ere a=. 3.8oA and c = 6.28A. 

In our calculations, we assume in addition an ideal u = 0.375. Ge oh 

the other hand has not, yet been found, to our knowledge, to exist in 
-' 

a hexagonal structure so that we assumed an ideal Ge 211-4 with the same 

density and nearest neighbor distance (2.4sA) a~ that of Ge in the 

diamond structure. 

For the work on the amorphous binary compounds we took Ga and As 

atoms and made an ideal 2H-4 structure with lattice constants a and c 
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chosen in such a way as to make the bulk density of GaAs 2H-4 the same 

as that of GaAs in the zinc blende s.tructure. This assured a nearest 

neighbor distance which was equal to that of GaAs in zinc blende. 

Out of the possible substructures that can be made with the 2H-4 

structure we shall be interested only in two. These can be designated 

by (1,1/1,1) and (2/2). In the first case we have the wurtzite structure 

with zero like-atom bonds and in the second case we have a fraction 

of 1/4 like-atom bonds with the Ga-Ga and As-As bonds occupying the two 

vertical bond positions in the unit cell. The first structure can be 

used as a starting point for the study of disorder (U) while the second 

can be used to study the effects of like-atom bonds on structure 

contains the smallest fr~ction, other than zero, of like-atom bonds 

that can be made in the. 2H-4 structure. 

2. 4H-8 

The 4H-8 structure is a 4H structure with eight atoms in a primitive 

cell. The lattice constants and internal parameter that describe it an{ 

the same as those of 2H-4 except that we now take the lattice constant 

c 41~ 8 = 2c2H_4 • Again we have an ideal tetrahedral arrangement of 

atoms except that we now have a bit more topological disorder in the 

z~direction. This is of interest in our study of amorphous binary 

compounds. In particular the 2H-8 structure presents two useful options.· 

First the (1,1,1,1/l,l,l,l) substructure can be an aid in the study 

of disorder (U) since it contains some topological variations. Secondly, 

the (2,1,1/2,1,1) substructure contains only a fraction of 1/8 of like

atom bonds and thus contains the smallest fraction of like-atom bonds 
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other than zero that can be obtained from any of the substructures of 

all the basic five structures we are studying. The (2,1,1/2,1,1) 

structure has Ga-Ga and As-As bonds occupying two of the four vertical 

bond positions in the unit cell. 

3. BC-8 

The BC-8 or Si 111
1 

structure is body centered cubic with eight 

·atoms in the primitive cell and it is completely specified by a lattice 

constant a and an internal parameter x. Si and Ge have both been found 

to exist in the BC-8 structure after retrieving samples which had been 

· 15 rR under 120 kbars pressure. The lattice constant for Si is a = 6.63~ 

and for Ge we have a = 6.92A. The internal parameter x was taken to 

be x = 0.1. Each linked pair of Si (Ge) atoms has one bond length 

2.3oA (2.4oA) and three bonds of length 2.4oA (2.5oA), with an average 

bond length approximately equal to 2.37A (2.48A). There are also two 

types of bond·angles approximately.equal to 118° arid 100° for both Ge 

and Si. All the eight atoms in the primitive cell are of one type in 

that they exist in the same type of environment with the same relative 

arrangement of neighboring atoms. For Si (Ge) there is one next 

nearest neighbor at 3.4sA (3.6oA), six at 3.57A (3.73A), six at 

3.87A (4.04A), etc. 

To study the amorphous binary compounds we took GaAs BC-8 with 

0 

a = 6.896A and x = 0.1. From a topological point of view an interesting· 

feature of the BC-8 structure is that although it only has even numbered 

rings of boJ;J.ds we cannot create any substructures with a total of zero 

like-atom bonds. In the first group containing the smallest fraction 
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(1/4) of like-atom bonds there are six substructures and they are all 

of the type (2,2/2,2). The second group containing the next largest 

fraction (3/8) of like-atom bonds contains 32 substructures. This 

group can be divided further into two subgroups containing 24 and 

substructures respectively. The former contains four atoms with one 

like-atom nearest neighbor and four atoms with two like-atom nearest 

neighbors while the latter contains six atoms and two like-atom 

nearest neighbor and two atoms with' zero like-atom nearest neighbors. 

We. ·used stability considerations to choose one structure out of the 

first group of six and one structure out of the second group of 32 

which is of the type (4/4). These two structures will be studied 

using the tighting binding model and we shall single out the (2,2/2,2) 

structure for an EPM calculation using stability again as a discerning 

factor. 

4. SC..;.l6 

This structure can be obtained by just considering the BC-8 structure 

as a simple cubic lattice with a basis of 16 atoms and is very useful 

in studying disorder in binary compounds. All the BC-8 substructures 

can, therefore, be obtained from the SC-16 structure .. The purpose and 

usefulness of the SC-16 structures is that it provides us with a 

substructure that has zero like-atom bonds along with short range 

disorder. It is, therefore, very useful in studying disorder (U). The 

substructure that we chose was necessarily of the type 

(l,l,l,l,l,l,l,l/l,l,l,l,l,l,l,l). 

The atoms were then allowed to relax slightly to a state of lower 

energy by a random processes described in Appendix E. This resulted 
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in a small increase in randomness in the bond lengths and angles. In 

particular we obtained bond lengths that were up to 3% smaller and 

5% larger than the ideal bond lengths and bond arigles that varied from 

Unfortunately, there is no SC-16 substructure that can be found 

with a fraction of like-atom bonds which is smaller than 1/4 other than 

zero. 

5. ST-12 

1 
The ST-12 or Ge III structure is a simple tetragonal unit cell with 

12 atoms as a basis. It is completely specified by two lattice constants 

a and c and four internal parameters x1 , x2 , x3 and x4 . 

Ge has been found to exist in the ST-12 structure whereas Si has not. 

ForGe (Si) we used a= 5.93A (5.69A) and c = 6.98A (6.7oA). The Si 

lattice constants were chosen so that the c/a ratio is the same as that 

of Ge ST-12 and the fractional density change from Si FC-2 to Si ST-12 

is the same as·Ge FC-2 to Ge ST-12. ForGe and Sf the internal parameters 

were taken to be x1 = 0.09, x 2 = 0.173, x3 = 0.378 and x 4 0.25. In this 

structure the bond lengths are all about the same length and 

approximately equal to 2.49A (2.39A) for Ge (Si). The bond angles, 

however, are quite dissimilar. They range from 20% less to 25% greater 

than t,he ideal tetrahedral angle~(l09° 28 in.)• In this structure the 

Ge or Si atoms are positioned in two different types of environment. 

In the primitive cell there are four atoms of type (1) and eight atoms 

of type (2). The atoms of type (2) form long fourfold spiral chains 

along the z direction while atoms of type (1) form bonds between atoms 
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in the different spirals. For Ge atoms of type (1) have two next 

nearest neighbors at 3.45A, two at 3.64A, two at 3.81A, etc. Kasper 

and Richards
1 

neglected to mention the presence of the first two pairs 

of next nearest neighbors. Atoms of type (2) for Ge ST-12 have one 

next nearest neighbor at 3.45A, two at 3.56A, one at 3.64A, etc. 

Finally, the ST-12 structure is quite unusual because of the presence 

of fivefold rings of bonds. 

For our work on amorphous binary compounds we took GaAs ST-12 . 
with a = 5.91A, c = 6.955A with all the internal parameters the same 

"as forGe and Si.· Since this structure contains odd7numbered rings of 

bonds there are nece~sarily no substructures with a total of zero like-

atom bonds. The smallest fraction of like-atom bonds that can be 

found in these substructures is 1/3. The size of the group of sub-

structures with a fraction of 1/3 like~atom bonds is 216. This can 

be broken into three subgroups containing the following statistics. 

(1) Twenty-four ~ubstructure with four atoms having two like-atom 

nearest neighbors and eight atoms with one like-atom. nearest neighbor. 

(2) Forty-eight substructures with six atoms having two like-atom 

nearest neighbors, four atoms with one like-atom nearest neighbors. 
/ 

(3) One hundred and forty-four substructures with five atoms having 

two like-atom nearest neighbors, six atoms with one like-~tom nearest 

neighbor and one atom with zero like-atom nearest ·neighbors. 

In the first subgroup the substructures are all of type (3,3/3,3) 

while in the second subgroup we can find substructures of types 

(5,1/5,1), (3,3/41,1,1) and (41,1,1/3,3). Finally, in the third 
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subgroup we find four types of substructures (3,1/3~3), (3,3/5,1) 

(4,2/5,1) and (5,1/4,2). We have chosen one distinct substructure from 

each of these eight types. These will be studied using our tight 

binding model and we shall again single out one substructure (4,2/5,1) 

using stability considerations, whose atomic positions we shall relax. 

This structure will then be studied by the EPM. 

Although the fraction 1/3 of like·-atom bonds in these structures is 

rather large from a realistic point of view, nevertheless, the ST-12 

structure provides us with a series of substructures which have atoms 

in a variety of topological configurations and this 'is useful for 

studying the effects of these configurations in a simple and realistic 

way. 
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APPENDIX D. EXTENSION OF THE WEAIRE TIGHT BINDING MODEL 

In this section we extend the model discussed irt Section II to 

include all the interactions between nearest neighbor atoms. This 

introduces three additional parameters as shown in Fig. 60a. In this 

3 figure the lobes (labeled 1 to 8) represent sp like orbitals, four 

for each atom. The Hamiltonian matrix elements between these orbitals 

are represen.ted by V 1 , V 2 , V 3 , V 4 and V 5 . The parameter v1 represents 

the interaction between orbitals on the same atom. v2 represents the 

interaction between orbitals on different atoms but along the same 

bond. These are the same parameters ~s those used by Weaire and Thorpe.
12 

In addition we introduce v
3 

which represents the interaction between 

an orbital along the bond and one of the other three orbitals on a 

nearest neighbor atom which do not lie along the·same bond. v1 , v2 and 

v
3 

still do not give us any information about the dihedral angle so 

that we would still get a delta function of pure p-like bonding states 

at the top of the valence band. To remedy this we introduce v4 and v5 

which bring in effects of dihedral angle explicitly and saturate the 

number of interactions between nearest neighbor atoms. 

Using this complete model, the Hamiltonian matrix for the diamond 

structure can be written as 

"' "' 

J( = (~! ~) 
r X V 

1 

(D-1) 
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where 

vl vl 
A 0 vl vl = (D-2) 

vl 0 

vl vl 

and 

V3(l~l)+V4(t,;2~3) ~3(l~2)+V4(t,;l~3) V3(l+t,;3)+V4(t,;2~1) 

V3(l+;3)+V4(t,;l+;2) V3(t,;l+;3)+V4(l~2) v 3 c;2~3>+v 4 <1~1> v 2;3+v s (l+f;l+€,;2) 

V3(l+t,;2)+V4(~l+t,;3) V3(t,;l+f;2)+V4(l+f;3) v2t,;2+vsc 1~1+;3) v3c;2+t,;3)+V4(1-rt;z> 

V3(l+t,;l}+V4(t,;2+t,;3) v2t,;l+vs<1+;2+t,;3) V3(;1+;2)+V4(l+t,;3) v3c;l+t,;3)+v4c1+t.;2> 

where 

ik a/2 ik a/2 
t,; = e x e y 

1 

ik a/2 ik a/2 
€,;2 = e y e z 

ik a/2 ik a/2 
Z X . 

;
3 

= e e 

The density of states for Ge obtained from this model is shown in 

Fig. 60b. The agreement with the EPM calculations is surprisingly good. 

This is especially true for the valence bands, whereas, the conduction 

bands should not be taken too seriously. The p-like states, however, are 

not yet completely correct since we have not been able to reproduce the 

min 
dip between r1 ·. and X 

4 
which would lie near -4 eV. This could be 

accomplished, however, by introducing explicit interactions with second 

nearest neighbors. Nevertheless, the_model can be quite useful as it 

stands. The parameters we used in the above calculations are v1 = -2.0 eV, 

V2 = -4.8 eV, V
3 

= 0.2 eV, v4 = -0.4 eV and v5 = 0.6 eV. These parameters 
.. 

can also be related to Slaters parameters for the interactions between 

(D-4) 
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nearest neighbors and p basis functions. 47 If we change from a basis 

3 of sp orbitals to s and p functions and if we let s, px' py' pz and 

s', p~, p;, p~ denote the new basis functions associated with nearest 

neighbor atoms' respectively, then we obtain the following transformation 

equations 

6 = 4V sp 1 

~ 
ss' v2 + 6v3 + 6V4 + 3V5 

6 
sp' v2 + 2v3 - 2V - V 

X 4 5 

6pxp~ = V2 - 2V3 + 2V4 - V5 

6
pxp; = v2 - 2v3 - 2V4 + 3V5 

) 
I ; 

(D-5) 

Here, ~ represents the difference in energy between an s and p orbital 
sp 

and the rest of the 6 's represent Slater's interaction or overlap 
ab 

47 intergals for the basis functions a and b. From (D-5) we notice that 

the p-like delta function will broaden out if 6· , 6 I • This is I 
pxpx pxpy 

equivalent to introducing a v4 and/or a v5 as we have already mentioned. 

Since this model is in general not in such bad agreement with 

realistic Hamiltonians it might be interesting to do a calculation 

of the imaginary part of the dielectric function £
2

(w). This is given 

fO(Ec (k) 
-i-

- E (k) - w) 
v 

(D-6) 

I< k: 1;1k: >1 2 
d

3k . c v 

1-i- 1-i-where k } and k } represent Bloch states for the conduction and valence 
c. v 

bands respectively. The only additional function that we would now need 
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to evaluate is the matrix element l<k l;lk >1
2

. This can be done 
c v 

in the following manner. It is much simpler to make a transformation 

-+ l-+1-+ to the .matrix element < k r k > which is given by: 
c v 

-+ -+ 
E (k) - E (k) 

c v 
ih 

-+ -+1-+ m<k Irk·> c. v (D-7) 

Let us now write k 
3 as a sum over tight binding Bloch sp like orbitals 

-+ 
xk 9., m (r) where 

, , 9., 

-+ -+ 
-+ 

x-+k 9., m (r) = 
, , 9., 

l ik • R. -+ -+ -+ -+ 
~ e J <P (r - R .... '! - P ) 

r.: J 9., mn 
vN j x-

(D-8) 

where N is the number of primitive cells, <P is an sp 3-like orbital, Rj 
is a lattice vector, t 9., is the position of the 9., 1th atom in the primitive 

cell, and P represents the center of mass of the m1 th orbital on the 
m,e 

9., 1 th atom. Using Eq. (D-8) <k 1-;lk >becomes 
c v 

-+ -+ -+ 

* Cn 1 1 Vn x- ,m x-,m 

ik• (R.-R. I) 
e J J . 

where Cn, 1 and V n represent the coefficients of Eq. (D-8), for a x- ,m x- ,m 

(D-9) 

conduction and valence state respectively obtained by solving the secular 

equation with the Hamiltonian (Eq. (D-1)). Expression (D-9) is exact 

but can be simplified considerably if we assume that the strongest 
-+ . 

terms one those that contain< slrlp> where Is> and IP> ares and p-like 

functions on the same atom. This should not be a bad approximation and 
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* it implies that we should consider in Eq. (D-9) only terms where¢ and 

¢ are also on the same atom. If we do this then there are only two intergals 

in Eq. (D-9) that we need to ~onsider. The first is of the type 

f *+ 
+ + + 

d3r P B r¢ (r p ) ¢(r - p ) -
m£ m£ o m£ 

(D-10) 

and the second is 

f+*+ + + + 3 A 

. r¢ (r pm ) ¢ (r - Pm 1 ) d r - pl n I 

R, R, mR-,m£ 
(D-11) 

In Eq. (D-10) P
0 

is just the distance between an atom and the center of 

mass position of one of its sp3 orbitals. 

along the m1 th orbital of the R- 1 th atom. 

The unit vector n points 
m£ 

In Eq. (D-11) ~ 1 is a unit 
m.Q,,m.Q, 

th 
vector pointing along the bisector of the angle formed by the m1 and 

m 11 th orbital of the £ 1 th atom and P
1 

represents the value of the integral. 

The parameter P1 , however, is not independent of P
0

• This is shown by 

transforming back to a basis set with s and p functions. We obtain simply 

p = ~ ( slxlpx} 
0 

(D-12) 

and 

pl = t<slxlpx} (D-13) 

thus 

pl 
1 p = 

13 0 
(D-14) 

Therefore, we have only one parameter P which can be taken physically 
0 

to be about 1/3 of the nearest neighbor distance. Equation (D-9) now 

becomes 
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( k ,;,k: ) 
·c v 

+ 
=.El:-r v 

.Q, m R.,m R.,m 

+ p l: l: n c* v + __!_ p l: 
o .Q, m m.Q, R.,m R.,m v'3 o .Q, 

··~ 

I m.Q,,m.Q, 

where the prime on the summation in the third term signifies that 

m.Q, 1 ml • Expression (D-15) can more be used even if we include 

more interactions in our Hamiltonian since it is based on the 

assumption that the most important terms are of the type< sjrjp> 

where s and p refer to the same atom. 

(D-15) 
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APPENDIX E. STABILITY AND RELAXATION 

In the process of selecting and studying various distinct substructures 

from substructures with similar like-atom bond clustering configurations 

it was useful to use stability as a final criterion. 'To calculate the 

energy U of a particular configuration of atoms which has both ionic 

and covalent character we must have a short range contribution and a 

coul·omb contribution .. For the short range energy we take a repulsive 

term due to the interaction between the ionic cores and an attractive 

term to take account of the covalent bonding nature of the atoms. With 

11 i f h k f K . 48 d M . 49 h h a sma extens on o t e war o eat1ng an art1n e can get t e 

follo~ing approximate but simple expression for U when expressed 

relative to the cohesive energy of the zinc blende structure 

n 4 
U = 

1 L L f . t1r 
2 . s,1 s,i 

s=l 1=l 

3 
+ 16 

n ~ ~ 2 
[!1(r .•r .)] 

~ ~ 2 
[f1(r .•r .)] 

s,1 s,1 

n * 2 M + 3 2: 2: (3 S,1 SaJ 
+ t 2: (e } (aM 

8 s,i,j 0 0 Er s - a.zB) 
(r . r . ) s=l i,j s=l 0 

s,1 s,J 
j>i 

Here U is the energy per primitive cell. The sum over s is over atoms 

in the primitive cell, the sums over i and j are over the bonds i and 

j of a particular·atom s, f . is a parameter describing the linear 
s,1 

(E-1) 

term of the repulsive ion core potential, a. . and (3 • • are essentially 
s,1 s,1,J 

bond stretching and bond bending force constants respectively, and 

0 r . is one of the three equilibrium nearest neighbor bond lengths 
s,1 . 

(since we can have like and unlike atom bonds). For the coulomb part 

* of the energy we assume rigid point ions with charges ±e which are the 
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effective charges on the atoms which interact via a screened coulomb 

potential with the electronic dielectric constant e:, aM is the Madelung 
s 

constant of a particular atom s; a~B is the Madelung constant of the 

zinc blende structure and r
0 

is the equilibrium nearest neighbor 

distance for atoms in the zinc blende structure. For simplicity we 

take all the a = a and all the B = S and we also assume that · s,i s,k,j 

the f i = f. The condition that the ·zinc blende structure be in 
s, 

equilibrium requires f = - 1 M * 2 2 * 4 a 2B(e ) /£r
0 

and we can take e to be the 

dynamic effective charge. 
. 49 

Then we have from Martin for GaAs in the 

zinc blende structure: 

* 2 r - 2.44 A and (e ) /£ 
0 

a = 4i.2 103 dyn/cm, P = 8.95 103 dyn/cm, 

0:441 e 2 which, along with the r 0 
. equal to 

s 'l. ' 

twice Paulings covalent radii for Ga and As, are the values we assumed 

fqr the parameters used in Eq. (E-1) to study our various GaAs structures. 

We ignore the changes in effective charge when we have like-atom bonds. 

Equation (E-1) works fairly well in comparing the differences in 

cohesive energy of various substructures of the same basic structure. 

In particular, the most important term in Eq. (E-1) for structures 

with like-atom bonds is the coulomb term. For example, the Madelung 

energy per primitive cell of the ST-12 substructures which have 

33~1/3% like-atom bonds can vary by more than 10 eV. In addition, the 

largest Madelung energy of these ST-12 substructures is only 20% smaller 

than the Madelung energy of GaAs in 'the zinc blende st!ructure. On the 

other hand, with our approximations the short range energy term will 

vary only by about 0.1 eV and if we take the Ss,i,j and the ai,j not 

all eaual respectively we would expect a variation by not more than 

1' e.v. 



-134-

We selected one substructure to study with the tight binding model 

from each set of substructures with similar like-atom clustering 

configurations. The selection of one substructure out of a particular 

set was carried out in two simple steps. First, we found the particular 

atom A in the primitive cell with the least binding energy for each 

substructure in the set. Secondly, we picked the substructure with t~e 

largest binding energy for the atom A as our choice for that particular 

set. 

We chose one substructure from each of the five basic structures 

to study with the EPM. The selection was carried out in a similar 

fashion as we just described above. In addition, we allowed the energies 

of these substructures to relax to a local minimum. The procedure was 

50 similar to that used by Henderson and Ortenburger and consisted of 

moving each atom by a small random amount. If the energy was lowered 

the m9ve was accepted, if not then it was rejected. This process 

was carried out about 2000 times until a local minimum in the cohesive 

energy was reached. The consequences of this relaxation were to 

lower slightly the energy of the substructure and to add a small 

randomness to the distribution of bond angles and bond lengths. 

. .. 
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Table I. Reciprocal lattice vectors, their magnitudes and. form factors for Ge in the 2H-4, BC-8, 
and ST-12 structures. The reciprocal lattice vectors are expressed with respect to the 
primitive translation vectors for each structure and the magnitudes of these vectors 
are in units of (2~/ao) 2 where SO is the lattice constant for Ge in the FC-2 structure. 
The form factors are in Ry and should be multiplied by a factor equal to the ratio of 
bulk densities of tbe particular Ge structure to the Ge FC~2 structure. Some of the 
form factors of Ge 2H-4 are omitted since the structure factors are zero for these. G's -

Ge 211-4 Ge BC-8 Ge ST-12 

c 02 c G2 + 2· G2 vf vf G G vf G vf 

(001) 0.750 (100) 1,338 -0.380 (001) 0.658 -0.470 (310) 9.110 0.040 
(100) 2.667 -o.255 (11-1) 2.676 -0.255 (100) 0.911 ~0.435 (203) 9.562 0.048 
(002) 3.000 -o. 230 (110) 4.014 -0.165 (101) 1.569 -0.350 (311) 9.768 0.050 
(101) 3.417 -0.200 (200) 5.352 -0.093 (110) 1.822 -0.325 (222) 9.918 0.053 
(102) 5.667 -0.075 (21-1) 6.690 -0.035 (111) 2.480 -0.270 (213) 10.473 0.060 
(003) 6. 750 (111) 8.028 -0.010 (002) 2.630 -0.258 (004) 10.521 0.060 
(110) 8.000 o.oio (210) 9.366 0.045 (102) 3.541 -0.193 (302) 10.829 0.060 
(111) 8.750 (22-2) 10.704 0.060 (200) 3.644 -0.188 (104) 11.432 0.060 
(103) 9.417 0.045 (300) 12.042 0.053 (201) 4.302 -0.148 (312) 11.740 0.055 
(200) 10.667 0.060 (31-1) 13.380 0.038 (112) 4.522 -0.140 (320) 11.843 0.055 
(112) 11.000 0.060 (211) 14.718 0.018 (210) 4.555 -0.135 (114) 12.343 0.050 
(201) 11.417 0.060 (2~1) 5.213 -0.098 (321) 12.501 0.048 
(004) 12.000 (003) 5.918 -0.065 (223) 13.206 0.040 
(202) 13.667 0.035 (202) 6.274 -0.050 (303) 14.117 0.025 
(104) 14.667 (103) 6.829 -0.030 (204) 14.165 0.025 
(113) 14.750 (212) 1 .His -0.018 (322) 14.473 0.023 

(220) 7.288 .,;0.013 (400) 14.576 0.020 

(113) 7.740 0.003 (313) 15.028 0.013 

(221) 7.946 0.010 (214) 15.076 0.013 

(300) 8.199 0.018 (401) 15.234 0.010 

(301) 8.857 0.035 (410) 15.487 0.008 

~ 

I 
I-' 
w 
00 
I 



Table II. Reciprocal lattice vectoril, their -gnitudea and fora facton for 51 in the 2H-4, BC-4 
and ST-12 structures, The convention is the aame as Table I. - -

Si 2H-4 Si BC-8 I Si ST-12 

G G2 vf G G2 vf G G2 vf G G2 vf 

(001) 0.748 -0.510 (100) 1.339 -0.420 (001) 0.658 -o.520 (310) 9.110 0.068 
(100) 2.723 -0.245 (11-1) 2.678 -0.250 (100) o,911, -o.480 (203) 9.562 0,073 
(002) 2.991 -0.210 (110) 4.017 -0.120 (101) 1.569 -0.380 (311) 9.768 0.075 -(101) 3.470 -0.165 (200) 5.356 -0.050 (110) 1.822 -0.350 (222) 9.918 0.078 
(102) 5. 713 -0.035 (21-1) 6.696 -0.001 (111) 2.480 -0.270 (213) 10.473 0.080 
(003) 6.729 0.001 (111) 8.035 0.041 (002) 2.630 -0.255 (004) 10.521 0.080 
(110) 8:168 0.045 (210) 9.374 0.070 (102) 3_.541 -0.160 (302) 10;829 0.080 
(111) 8.915 0.063 (22-2) 10.713 0.080 (200) 3.644 -o.l53 (104) _11.432 0.080 
(103) 9.4H 0.073 (300) 12.052 0.078 (201) 4~302 -0.105 (312) 11.740 0.078 
(200) 10.890 0.080 (31-1) 13.391 0.065 (112) 4.522 -0.093 (320) 11.843 0.078 
(112) 11.158 0.080 (211) 14.730 0.040 (210) 4.555 -0.090 (114) 12;343 0,075 
(201) 11.638 0.079 (211) 5.213 -0.058 (321) 12.501 0.075 
(004) 11.962 0.078 (003) 5.918 -0.030 (223) 13.206 0.068 
(202) 13.881 0.058 (202) 6.274 -0.015 (303) 14.117 0.055 
(104) 14.684 0.040 (103) 6.829 0.005 (204) 14.165 0.054 
(113) 14.896 0.035 (212) 7.185 0.015 (322) 14.473 0.047 

(220) 7.288 0.020 (400) 14.576 0.045 

(113) 7.740 0.033 (313) 15.028 0.030 
(221) 7.946 0.040 (214) 15.076 0.030 
(300) 8.199 0.045 (401) 15.234 0.025 

(301) 8.857 0.063 (410) 15.487 0.015 

-. 

I 
1-' 
w 
\.0 
I 
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Table III. TheoreticLl t 2 structure and identifications, including the location in the BZ, t.) .o.:ry and energy of critical points forGe and Si in the 
2H-4 structure, Details are given in the text, 

'.l Peaks (eV) 

1.46 1 

1.7711 

2.25 1 

2.50 II 

2.50 1 

2.68 1 

2. 75 II 

3.15 II 

3. 35 1 

3.57 II 

3.60 1 

3. 72 II 

4.52 1 

4.52 II 

4. 70 1 

4. 70 II 

5.23 l 

5.29 II 

Bands 

7,8-10 

6-10 

S-9 

6-9 

7-9 

8-10 

8-9 

7-9 

7-9 

6-9 

8-9 

6-9 

8-10 

8-9 

.8-11 

8-9 

7-11 

7-11 

8-9 

7-9 

8-9 

8-12 

-8-11 

7-9 

8-14 

8-ll 

8-12 

8-11 

•:;-15 
r1- 15 

1(,- 1io 
66-":! 
":!-'\ 

Ge 2H-4 

Location in Zone 

(0.25,0,0.25) 

6
5
-") (O,o,o.J) 

u~-u/o. s .o.o. 35) 

u
2
-u

2 
(O. s ,o,o. 4) 

(0.08 ,0.08,0. 2) 

co.u,o.u.o.z> 

(0.2 ,0,0.25) 

(0.2,0.2,0.35) 

u
3
-u

1 
(o.s ,o ,o.Is) 

(~.2,0,0.4) 

R2-~1 (o.zs.o,o.s> 

(0.3,U.3,0.4S) 

L2-Ll' u4-u2 

T(O, 23,0. 23.0) 

(0.25,0,0.25) 

(0.25,0,0.25) 

K,T
1 

K,T
1 

(0.4 ,0.15,0.15) 

A.
3

-A
3

, s
1
-s1 (O.OJ,o.oJ,0.45) 

M·,T
1 

K, P(0.33,0.33,0.1S) 

~- 1i2 

(0.08,0.08,0. 35) 

M5-H4 

~3-li, 

(0.3,0.1,0.15) 

Symmetry Energy (eV) 

"o 

"o 

1.77 

2.08 

2.23 

2.26 

2.48 

2.51 

2.68 

2. 78 

3.03 

3.14 

3.35 

3.57 

3.61 

3.59 

3.60 

3.80 

3.60 

3. 72 

4.40 

4.45 

4.53 

4.53 

4.52 

4.67 

4. 72 

4.71 

4.67 

4.90 

5.23 

5.30 

5.33 

5.31 

5.29 

E-
2 

Peaks (eV) 

2.60 1 

2.60 

3.10 

3.35 

3. 35 1 

3.60 1 

4.10 1 

4.25 II 

4. 38 l 

4.68 II 

"4.69 1 

4.89 1 

4.91 II 

4.96 1 

5.50 l 

5.55 II 

Bands 

7-9 

7-9 

7-9 

S-9 

6-9 

8-10 

6-9 

7-9 

8-9 

8-10 

8-10 

8-9 

7-11 

7-9 

8-9 

Si 2H-4 

Location in Zone 

r
1
-!

1 
(0.3,0,o) 

r1-lj_ 

(0.25,0,0.25) 

u
2
-u

2
(o. s,o,o. 35) 

k 1io 

A
3
-A

1 

65~61 (0,0,0. 25) 

M7-Ml 

~4-; 

u
3
-u

1 
(O.S,0,0.2S) 

R
2
-R

1 
(0.15,0,0.5) 

(0.2,0.2,0.35) 

H,S
1 

(0.2 ,0,0.4) 

R
2

-R
1

(0.2,0,0.S) 

M,T
1 

(0. 3,0.1,0) 

(0.4,0,0.35) 

T(0.2,0.2,0) 

T(0.·2,0.2,0) 

5,6-10 "'1;-<>
5

(0,0,0.3) 

7-9 

8-9 

7-10 

8-10 

8-ll 

8-14" 

8-12 

(0.3,0.25,0.25) 

!(0.2,0.08,0) 

(0.2,0.1,0) 

~(0. 35 ,0.05,0.05) 

rs- r12 

M5-M4 

r3-!4 

Symmetry 

"o 

"o 
M1. 

"o 

2.60 

2.60 

3.02 

3. 34 

3. )l 

3. 35 

3.59 

4.08 

4.09 

4.11 

4.13 

4.21 

4.26 

4.38 

4.30 

·4.64 

4.68 

4.61 

4. 74 

4.57 

4.69 

4.87 

4.89 

4.91 

4.93 

4.96 

5.47 

5.61 

s. 54 
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Table IV. Theoretical £2 structure and identifications, includin& the location in the BZ, ayiometry and energy of critical pointa for Ge 
and Si in the BC-8 structure, Details are given in the text. 

Ge BC-8 Si BC~8 

t 2 Peaks ( eV) Bands Location in Zone Symmetry Energy (eV) t 2 Peaks (eV) Banda Location in Zone Syametry Ellergy 

2.03 16-17 !1-~(0.37,0.37,0) M1 2.03 0.43 15,16-17 H3-H4 "o 0.43 

2.46 15-17 I2-~(0.4,0.4,0) 2.46 1. 70 16-17 .11-A4 (0.55,0,0) "o· 1.65 

13-17 A4-A4 (0.56,0,0) "o 2.41 2.04 16-17 (0.3,0.55,0) -H2 2.04 

2.70 13-17 (0.2,0.8,0.15) "o 2.67 . 2.60 16-18 I1-%l(0.4,0.4,0) H2 2.62 

14-18 c2-c1(0.15,0.85,0) -Ho 2.65 15-17 (0.3,0.5,0) "o 2.54 

3.Zl 16-19 (0.25,0.35,0.25) "o 3.19 3.00 13-17 (0.2,0.7,0.15) Ha 2.96 

13-17 •G1-G2(0.4,0.6,0) M2 3.24 3.45 13-17 (0.1,0.5,0.1) 3.46 

(0.3,0.4,0.15) 3.23 14-17 (0.2,0.4,0.15) -M2 3.45 I 
....... 

14-17 (0.2,0.4,0.15) -M2 3.21 16-19 (0.3,0.4,0.2) M1 3.43 ~ 
....... 
I 

13-18 (0.3,0.45,0) M1 3.21 16-,17 r1- r6 
Mo 3.38 

G1-G1(0.22,0.78,0) 3;23 3.70 13-17 G1-c2(0.45,0.55,0) ~ 3.70 

3.76 15-19 N,G2-c1 (0.4,0.55,0) M3 3.78 15-19 D1-D1(0.5,0.5,0.15) M1 3.68 

12-18 c2-c1(0.35,0.65,0) K1 3.76 4.05 16-21 (0.2,0.6,0.15) 4.05 

15-17, r2-r6 Ml ),74 ~-~(0.5,0,0) M2 4.04 
18 

3.98 14-19 (0.25,0.65,0.15) 4.00 15-21 (0.2,0.6,0.1) Ha 4.02' 

4.50 12-19 (0.26,0.63,0.15) 4.50 13-18 c1-c1(0.2,0.8,0) 4.02 

16-21 (0.15,0.2,0.1) M2 4.48 14-19 (0.25,0.65,0.1) -M1 4.07 

14-20 (0.1,0.5,0.1) 4.50 4.20 16-22 (0.2,0.5,0) -M2 4.20 

15-19 A1-t.4 (0.25,0,0) Mo 4.42 12-18 (0.15,0.7,0.15) M2 4.22 

15-22 (0.15,0.7,0) Me 4.14 

5.05 14-21 (0.2,0.6,0.1) M2 5.05 

13-20 D1-o1(0.5,0.5,0.1) 5.00 
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Table V. Theoretical E2 structure, with perpendicular polarization, and identifications. including the location in the BZ. symmetry and 
energy of critical points for Ge ST-12. Details are given in the text. 

Ge ST-12 E 1 r. 

.2 Peaks (eV) Bands Location in Zone Symmetry Energy (eV) •2 Peaks (eV) Hands Location in Zone Syritmetry Energy 

1.46 2-3,24-25 r1-~1 (0.35,0.35,0) Ho 1.46 20-25 s
1
-s

1 
(0.06,o.o6,0.5l H 3.45 

0 

2.10 24-25 (0.4,0.1,0.3) -Ho 2.08 s
1
-s

1 
(O. 45,0. 45 ,o. 5) -H1 3. 45 

23-25 (0.4,0,0.3) H1 2.18 17-25 Tz (0. 5 ,0.5 ,0. 3) -H1 3. 53 

2.55· 24-26 (0.5,0.1,0.3) H1 2.48 24-27 (0,0.1,0.25) -M2 3.47 

T
1
-T

1 
(0.5,0.5,0.4) 2. 52 T

1
-T

1 
(0.5,0.3,0.5) 3 .so 

u~-u~ (D. 5 ,o,o. Jl 2.50 2D-26 T
1
-T

1 
(0.5,0.)5,0.5) M2 3.47 

23-26 (0. 4 ,0.15 ,0. 25) 2.62 22-27 (0. 3,0.1,0. 3) M2 3.54 

22-25 (0.4,0,0.25) -H2 2.62 '\-~1 (0.45,0,0) 3. 50 

H 2.60 3.65 17-25 (0.5,0.25,0.3) M2 3.67 

21-25 (0. 4 ,0.15 ,0. 25) M1 2.60 z1-z2 MD 3. 65 

24-25 (0.1,0.1,0.4) MD 2 0 54 23-27 (0.1,0,0. 25) 3. 65 

2. 80 23,24-26 s
1
-s

1 
(0.4,0.4,0.5) M2. 2.87 24-29 u•(o.22,0,0.5l Mo 3.60 

21-25 (0 0 4 ,0.15 ,0. 25) M1 2. 60 24-30 R1-R1 M1 3.60 

.111-'\ (0.4,0,0) 2.80 4.20 24-30 U~(0.3,0,0.4) 4.18 

24-25 u"(0.2,0,0.4) H1 2 0 70 M 0 4.20 

24-27 (0.5,0.1,0.3) H1 2. 76 21-27 (0.15,0.15,0.2) M2 4. 22 

r
3

- r
5 Ho 2. 75 23-28 ~2-~1 (0.1,0 ,0. 05) 4.20 

3.00 2D-25 (0. 4,0.15 ,0. 25) Ho 2.93 21-28 u•(o.15,D,D.4l 4.20 

22-25 z2-z2 Ho 2.98 20-25 L
2
- :!:

1 
(0. 07,0.07 ,0) M1 4.21 

T
1
-T

1 
(0. 25,0. 5,0. 3) 3.00 23-32 s

1
-s

1 
(0.22,0.22,0.5) 4.20 

24-27 Tz (0.5 ,0. 5 ,0. 45) M1 3.11 4.50 23-)1 u~-u~ (O. 5 ,o ,o. 2) -M3 4.57 

19-25 (0. 35,0.18,0) 2.97 21-33 ::2-11 (0.4,0.4,0) 4.48 

M~-M~ -H2 ).00 22-30 uY (D. 5 ,o.1,o. 05) M1 4.36 ° 

22-27 (0.5,0.15,0.3) Mo 3.04 (().3,0.15,0.4) M1 4. 52 

3. 20 24-27 z1-z1 MD 3.18 20-26 (0.15,0,0.1) M3 4.54 

z~-z~ M3 3. 20 20-28 (0.15 ,0.15 .o. 25) MD 4.47 

21-25 u"(0.2,0,0.5) M2 3.21 14-27 M~-M~ MD 4. 46. 

23-28 R, Tz -M1 3.20 23-34 ;-~1 (0.36,0.36,0) 4.48 

19-25 (0.5,0.15,0.3) M2 3.21 23-35 "1-; (0. 5 ,0. 35 ,0) 4.48 

111-111 (0.38,0,0) 3. 20 21-29 ~~~·~~~ (0 ,0 ,0. 22) 4. 50 

3.50 19-25,26 Rl-R1 Mo 3.46 22-31 ~~-~~(6,0,0.3) 4. 50 

18-25 T
1
-T

1 
(0.5,0.22,0.5) -Ho 3.49 24-33 ui-ui(D.5,0.2,D) 4.52 



-143-

Table VI. Theoretical £
2 

structur~, with parallel polarization, and identifications including· the location in the BZ, symmetry and energy 

of critical points for Ge ST-12. Details are given in the text. 

',! Ge ST-12 E II .. 
c 

t~ Peaks (eV) Bands Location in Zone Symmetry Energy (eV) ~ Pe?ks (eV) Bands Location in Zone Symmetry Energy 

.~ 1.6D 24"25 ~2-~1 (Do35,Do35,D) MD 1.46 U~-U~(Do 5 ,D ,Do 2) 3o 71 
I 

112-'\ (Do4,9,D) -M1 1. 7D 3o9D 19-25 (Do2,Do15,Do3) M3 3o92 

2o15 2.\-25 '~2-~1 (Do 37 ,Do 37 ,D) MD 2oD7 24-29 ~~~~~(D,D,Do18) M2 3o94 

24c25 (Do4,Do1,Do3) -MD 2 oD8 23-29 111-112(Do37 ,D,D) -M2 3o9D 

23-25 (Do4,D,Do3) M1 2o18 s
1
-s

1
(Do 26 ,Do 26 ,D 0 5) 3o9D 

' 
2 o65 21-25 (Do4,Do15,Do25) M1 2:6D 21-26 112-'\ (Do15,D,D) -M1 3o88 

z~-z~ -·M2 2o65 4o2D 24-29 r3- 14 M3 4o22 

ui-ui 2o63 2D-25 r3- r4 MD 4o16 

22-26 (Do5,Do2,Do25) M1 2o 74 !2-~1 (DoD7 ,DoD7 ,D) M1 4o21 

22-25 M;-H~ -M2 2 0 7D 21-28 r2- r1 MD 4o22 

2~-25 r3- r4 MD 2o64 ~~~-~ 4o 23 

3o2D 24-27 z1-z1 MD 3o18 Ux(Do15,D,Do4) "0 2D 

z~-z~ M3 3o2D s
1
-s

1 
(Do25,Do25,Do5) 4o2D 

~-'\ (Do45,D,D) -H2 3o18 22-29 (Do15 ,Do15,Do 2) MD 4o21 

21-2~ ~(Do2,D,Do5) M2 3o2l' z~-z~ M2 4o 24 

(Do2,Do2,Do3) 3o2D 24-3D (Do1,Do1,Do3) M1 4o26 

24-26 s
1
-s

1 
(Do26,Do26,Do5) M3 3o26 22-3D (Do3,Do25,Do25) 4o21 

23-28 R1-R1 3o2D 4o 4D 2D-26 (Do17 ,Do17 ,Do1) M.2 4o42 

24-28 2:2-~ (Do25,Do25,D) -M1 3o2D 18-27 z1-z1 MD 4o 36 

3o5D 2D-25 z2-z2 3o48 23-28 2:2-!1 (Do14,Do14,D) 4o4D 

s
1
-s

1 
(DoD6,DoD6,DoD5) MD 3o45 22-27 2:1-~2 (Do14 ,Do14 ,D) 4o37 

22-27 (Do3,Do1,Do3) M2 3o 54 111-~(Do25,D,D) 4o4D 

rs- rs "D 
lo44 23-34 M~-M~ -M2 4o4D 

2D-26 (Do3,Do1,Do3) 3o53 !1-:!:2 (D. 35 ,Do 35 ,D) 4o4D 

24-29 !2-~ (Do 35,Do 35 ,D) 3o45 16-26 Z2-Z2 -M1 4o 37 

24-26 111-112(Do3,D,D) 3o48 ~~~-~~; 4o4D 

3o 7D 24-28 111.,112(Do26,D,D) 3o 7D 23-3D (Do 35,Do15 ,Do 3) M3 4o42 

srs1 (Do2,D,Dl -M2 3o 7D '\-112 (Do37 ,D,O) 4o4D 

21-27 z~-z~ M1 3o69 22-31 ur -ui(Do5,Do 3 ,D) 4o4D 
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Table VII. Theoretical £
2 

structure. with perpendicular polari.zatfon, and identifications, including the location in the BZ, symmetry and 

energy of critical points for Si ST-12. Details are given in the text. 

Si ST-12 "[! -; 

":2 Peaks (eV) Bands Location in Zone Symmetry Energy (eV) £2 Peaks (eV) Bands .Location in Zone Symmetry Energy 

1. 76 24-25 (0.4,0.2,0) Mo 1. 76 3.60 20-25 Z,Ux(O.l,O,O. 5) Mo 3.60 

2.33 23-25 (0.4,0,0.3) Mo 2.31 21-26 (0.3,0.2,0.25) -M1 3.60 

24-25 (0.4,0,0.45) M1 2.33 22-27 1:2~1:1 (0.3,0.3,0) MD 3. 50 

2 .so 23, M -M1 2 .so 21-29 R1-R1 MD 3.59 
24-26 

T
1
-T

1 
(0.5,0.15,0.5) Ml 2.52 23-27 (0.1,0.1,0.25) Mo 3.54 

u~-u~ 2.51 23-28 (0.5,0.15,0.3) Ml 3.58 

zx ·~i-ui 2.45 22-26 6~-6:(0,0,0.3) 3.60 

2.80 23, s
1
-s

1 
(0.4,0.4,0.5) 2. 76 22-28 1:2-1:1 (0.32,0.32,0) 3.60 

24-26 

(0.4,0.4,0.4) M1 2.80 3.85 24-29 z~-z~ M1 3_.92 

21-25 (0.45,0.15,0.3) Mo 2. 73 23-28 r s-r 1 Mo 3. 71 

62-61 (0.45,0,0) 2.80 6:~6~(0,0,0.24) M2 3. 85 

21-251 ui-ui (O. s ,o. 2 ,o) M1 2. 79 23-29 (0. 35,0.15 .o. 25) 3.85 

22-26 (0.5,0.3,0.15) 2.82 17-25 u~ -u~ (O. 5 ,o,o. 33) 3.85 

23-28 z1-z1 Mo 2. 78 22-27 (0.15 ,0 .15 ,0. 2) -M1 3.81 

22-25 (0.4,0,0.25) M2 2. 74 21-29 1:1-1:2 (0. 42,0.42 ,0) M1 3.88 

3.20 20-25 61-61 (0.39,0,0) Mo 3.17 20-26 (0.15,0.1,0.4) -M1 3.89 

1:1-1:1 (0. 37 ,0. 37 ,0) M2 3.21 16-25 M;-M~ M1 3.86 

19-25 1:2-1:2 (0. 4 ,0.4 ,0) -M 
1 

3.18 23-30 (0. 35, 0. 35 ,0.25) -M1 3.81 

22-25 z2-z2 Mo 3.18 4.45 20-26 (0.1,0,0.1) -M2 4.48 

(0.2,0.2,0.25) *I 1.16 \-E
1 

(0.12,0.12,0) 4.44 

20-26 uY (o.s,o.3s,o.os) M1 3.17 23-35 M~-M~ 4.46 

1:1-1:1 (0.4,0.4,0) 3. 20 15-27 M~-M~ -M1 4.45 

22-28 ui-ui (0.5,0.4,0) 3.20 15-26 1:2-1:1 (0:44,0.44,0) 4.42 

R1-R1 3.20 u~ ~u~ (O. s ,o ,o. 34) 4. 45 . 
21-26 Tz (0.5 ,0.5 ,0. 4) .M2 3.23 14-26 M~-M~ 4.41 

3.38 2D-25 R, T' (0. 5 ,0. 5 ,0. 45) M1 3.39 T
1

-T
1 

(0.5,0.28,0.5) 4.45 

19-25 R, Tz (0. 48 ,0.48,0.4) -M3 3.45 21-27 (0.2,0,0.2) -M1 4.40 

1:1-1:1 (0.35,0.35,0) 3.35 6;-6~ (0,0 ,0. 27) 4.45 

22-26 (0.25,0.25,0.3) -M2 3.36 22-33 1:2-1:1 (0.44,0.44,0) 4.45 

18-25 (0.4,0.2,"0) Mo 3. 35 1:1-1:1 (0.4,0.4,0) 4.45 

ur-ui (0. 5,0. 38,0) 3.40 19-27 (0.35,0.15,0.3) M2 4.48 

24-27 (0.15,0,0.3) H1 3.38 21-28 6~-6~ (0,0,0. 24) 4. 43 

u~ -u~ (0. s ,o ,0.15) 3. 38 22-29 ui-ui (O.S,O.ll,O) 4. 41 

22-28 z2-z1 Mo 3. 37 19-25 1:2-1:1 (0.15,0.15,0) 4.45 

(0.45,0.4,0.3) M1 3.35 17-28 M 4. 42 



-145-

Table VIII. Theoretical £
2 

structure, with parallel polarization, and identifications, 
of critical points for 51 ST-12. Details are given in the text. 

including the location in the BZ, synunetry and energy 

51 ST-12 E u. ~ 
------------- -~---

'z Peaks (eV) Bands Location in Zone Symmetry Energy (eV) e:
2 

PE>aks (eV) B:mds Lo.cation in Zone. Symtncl ry Energy 

----------
1. 76 24-25 (0.4,0.2,0) Ho 1.76 3.90 24- 30 (0.5 ,0. 22 ,0. 25) M1 3.92 

.~ 2.·32 23"25 (0.4,0,0.3) Ho 2.31 24-29, z~-z~ Mo 3.93 
30 

24-25 (0.4,0,0.45) M1 2.33 :ur-~r 3.95 

24-26 u~-u~ Ho 2.46 24-29 r 3-r 4 Hz 3.98 

22-25 r2-r1 Ho 2. 32 23-29 (0.2,0,0.3) Ho 3.91 

2.80 24-26 (0.1,0.1,0.4) Ho 2.81 18-25 (0.3,0,0.4) 3.90 

(0.2,0.2,0.5) Mo 2. 79 62-61 (0.35,0,0) 3.90 

21-251 (0.45,0.15,0. 3) Ho . 2.73 21-26 r
2
-r

1 
(0.16,0.16,0) H1 3.92 

21-25 ur-ur (0.5,0.2,0) H1 2.78 22~30 (0.35,0.35,0.1) Ho 3.81 

22-26 (0.5,0.3,0.15) 2.82 23-28 6~-6~ (0 ,o •. o. 22) 3.88 

H "o 2.65 4. 26 20-25 r 3-r 4 Ho 4.07 

24-27 z1-z1 Ho 2.79 22-29 H -H1 4.28 

Z4-Z5 (0.3,0.05,0.4) Hz 2.81 22-3Z H;-H; 4. 30 

3. 30 21-Z5 Ux(0.2,0,0.5) Hz 3.33 ur -ui (0. 5 ,0. 3 ,0) 4. 26 

Z3-Z7 (0.35,0.15,0.3) H1 3. 31 20-Z8 (0.4,0.2,0.Z5) 4.30 

ZZ-Z6 (O.Z5,0.25,0.3) -Hz 3.36 18-Z7 z1-z1 H1 4.Z5 

23-Z6 r ,6:-A: 3. 30 24-30 y~ -u~ (O. s ,o,o.IS) 4.26 

Z4-Z6 (0.12 ,0.1Z,O. 25) M2 3.25 s
1
-s

1 
(O. 3 ,o. 3,0. 5) "4.Z7 

21-Z8 r
2
-r

1 
(0.4,0.4,0) 3.30 61-62(0.36,0,0) 4.26 

3.65 22-27 z. 5(0.15 ,0.1,0. 45) -HI 3.64 (0.3,0.1,0.2) M3 4.41 

(0.2,0,0.4) -H1 3.69 19-25. (0.25,0.25,0.3) 4.28 
26 

21, M, yM(O. 37, 0.1, 0. 4) -Mo 3. 62 4.96 2Q-28, (0.3,0,0.25) 4.95 
2Z-27 29 

21-Z7 (0.3,0.3,0.25) Mo 3.60 20-28 u~-u~ (O. 5,o,o. 2) 4.96 

19-Z5 z,s
1
-s

1 
(0.1,0.1,0. 5) Mo 3.65 19-33 EZ-E

1 
(0.43,0.43,0) 4.94 

20-25 z ,ux (0.1,0,0. 5) Mo 3.60 19-26 62-61 (0.18,0,0) 4. 95 

(0.2,0.1,0.3) -Mo 3.6Z 21-Z9 s
1
-s

1 
(O. 3,0. 3,0.5) 4.98 

24-28 s
1
-s1 (0.25,0.Z5,0.3) 3.65 U~ -U~(O. 5,0,0. 2) 4. 96 

T1-T1 M3 3.74 17-31 E
2

-E
1 

(0.42,0.42,0) 4.97 

Z3-28 T(0.5,0.15,0.4) M1 3.60 23-33 u~-u~ (O. 5 ,o,o. 25) 4.96 

Z4-i7 61-62 (0. 35,0 ,0) 3.65 23-31 E
2

-E
1 

(0.18,0.18,0) 4.94 

~ 

.• 
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Table IX. The number and type of p-like functions that can 
be made for a certain atom given the configuration 
of nearest neighbor atoms. 

Number of unlike- Number of p-like Number of p-like 
atom nearest functions of type functions of type III-
neighbors II I-V III or V-V 

4 3 0 

3 2 0 

2 1 1 

1 0 2 

0 0 3 
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FIGURE"CAPTIONS 

Fig. 1. (a) Wurtzite and (b) zinc. blende crystal structures. The 

wurtzite structure is aligned with the c axis along the z 

,. direction and zinc blende is oriented with the (111) ·direction 

pointing along the z direction. 

Fig. 2. Total charge density for ZnS in zinc blende structure, (liO) 

plane. 

Fig. 3. Crystalline pseudopotential for ZnS in zinc blende structure; 

(liO) plane. 

Fig. 4. ZnS wurtzite charge density-bands 1 and 3, {110) plane. 

Fig. 5. ZnS wurtzite charge density-bands 4 and 5, (110) plane. 

Fig. 6. ZnS wurtzite charge density-bands 6 and 7, (110) plane. 

Fig. 7. ZnS wurtzite charge density-bands 8 and 9, (110) plane. 

Fig. 8. ZriS wurtzite total charge density in plane I, (110) plane. 

Fig. 9. ZnS wurtzite total charge density·in plane II, (101) plane. 

Fig. 10. ZnS wurtzite total charge density iri plane III, (001) plane. 

Only the S atoms lie in this plane. 

Fig. ll. ZnS wurtzite tot~l charge density in plane IV, (100) plane. 

Only the S and Zn. atoms in the center of the figure lie in 

this plane. 

Fig. 12. Crystalline pseudopotential for ZnS in wurtzite structure in 

plane I, (110) plane. 

Fig. 13. Brillouin zones and associated symmetry points and lines for 

... 
the 2H-4, BC-8 and ST-12 structures. 

Fig. 14. Band structure Ge in the 2H-4 or wurtzite structure. 
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Fig. 15. Band structure of Si in the 2H-4 or wurtzite structure. 

Fig. 16. Band structure of Ge in the BC-8 or Si III structure. 

Fig. 17. Band structure of Si in the BC-8 or Si III structure. 

Fig. 18. Band structure of Ge in the ST-12 or Ge III structure. 

Fig. 19. Band structure of Si in the ST-12 or Ge III structure. 

Fig. 20. Density of states for the (a) BC-8 and (b) ST-12 structures 

calculated from·the tight binding model used by Weaire. The 

BC-8 structure is shifted slightly to lower energies with 

respect to the ST-12 structure so as to agree better with 

Ge BC-8 (EPM). The dotted line in (b) represents the bottom 

of the condition band for the FC-2 structure using the Weaire 

model. 

Fig. 21. ·Density of states of Ge in the (a) FC-2, (b) 2H-4, (c) BC-8 

and (d) ST-12 s·tructures using the Empirical Pseudopotential 

·Method. The dotted line in (a) represents a sketch of the 

amorphous density of states obtained by Donovan et al. (Ref. 10). 

The dotted line in (d) represents the averaging of Bragg gaps 

for Ge ST-12 in this calculation. 

Fig. 22. Density of states of Si in the (a) FC-2, (b) 2H-4, (c) BC-8 

and (d) ST-12 structures using the Empirical Pseudopotential 

Method. The dotted line in (a) represents a sketch of the 

amorphous density of states obtained by Pierce and Spicer 

(Ref. 10). The dotted line in (d) represents the averaging 

of Bragg gaps for Si ST-12 in this calculation. 



,. 

-149-

Fig. 23. Experimental XPS results which are related to the density of 

states for Ge and Si in the FC-2 and amorphous phases. Top, 
' 

experimental curve (dots) for Si and Ge in the FC-2 structure 

along with a sharp theoretical and a broadened theoretical 

(EPM) calculation. Bottom, XPS results for Si and Ge in 

the amorphous phase compared with the calculated density of 

states for Si and Ge in the ST-12 structure (EPM) from this 

work. The relative sizes of the humps in the Si experimental 

curves differ from those in Ge because of the differences in 

scattering cross-sections of the 3x, 3p and 4s, 4p electrons. 

Fig. 24. Density-of-state calculations for the diamond and one-class-

ring structures. (a) One-orbital Hamiltonian in the diamond 

structure: Bethe lattice (dashed line), exact calculation 

from Ref. 19 (l:lght full line) and our results (heavy full 

line). (b) Four-Orbital sp 3 Hamiltonian.in the diamond 

structure: Bethe lattice (dashed line), exact calculation 

from Ref. 19 (light full line) and our results (heavy full 

line). (c) Structure with 6 n-fold rings around the central 

atom in the one-orbital Hamiltonian: 1 (full line) n ~ 6; 

2 (dashed line) n = 5; 3 {dotted line) n = 7; 4 (broken line) 

n = 8. (d) Structure with 6 n-fold rings in the four orbital 

3 . "1 . sp Haml. tonJ.an. Notation as in (c). (e) The orbital energies 

for isolated sixfold rings (full lines),. fivefold rings 

(dashed lines), sevenfold rings (dotted lines) and eightfold 

rings (broken lines) and eightfold rings (broken lines). 
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Fig. 25. Density-of-state calculations for the BC-8 [(a) and (b)] 

and ST-12 [(c) through (f)] structures. (a) Our calculation 

for BC-8 with the one-orbital Hamiltonian. (b) Our calculation 

for BC-8 with the four-orbital sp3 Hamiltonian (full line) 

and the exact calculation (dashed line). (c) The LDOS for the 

two different atoms in the one-orbital Hamiltonian for ST-12. 

(d) The LDOS for ST-12 arid the four-orbital sp 3 Hamiltonian. 

(d) The TDOS for ST-12 in our calculation for the one-orbital 

Hamiltonian. (f) The TDOS (ST-12 structure, four-orbital· sp3 

Hamiltonian) according to our calculation (full line) and to/the 

exact results (dashed line). 

Fig. 26. Band structure of Ge in the 2H~4 or wurtzite structure. 

Fig. 27. Imaginary part of the dielectric function, £ 2 , forGe 2H-4 with 

Fig. 28. 

Fig. 29. 

I 

Fig. 30. 

Fig. 31. 

parallel (top) and perpendicular (bottom) polarizations. 

Band structure of Si in the 2H-4 or wurtzite'structure. 

Imaginary part of the dielectric function, E2 , for Si 2H-4 with 

parallel (top) and perpendicular (bottom polarizations. 

Band structure of Ge in the BC-8 structure. 

Imaginary part of the dielectric function, £2 , for Ge BC-8 (top) 

and Si BC-8 (bottom). 

Fig. 32. Band structure of Si in the BC-8 structure. 

Fig. 33. Band structure of Ge in the ST-12 structure. 

Fig. 34. Imaginary part of the dielectric function, £
2

, for Ge ST-12 

with parallel (top) and perpendicular (bottom) polarizations. 

Fig. 35. Band structure of Si in the ST-12 structure. 
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Fig. 36. Imaginary part of the dielectric runction, E
2

, for Si ST-12 with 

parallel (top) and perpendicular (bottom) polarizations. 

Fig. 37. Imaginary part of the dielectric function, E
2

, average gradient 

2 matrix element M, associated joint density of'states J/E , 

average dipole matrix .element M/E2 , and joint density of states 

J for Ge in the FC-2, 2H-4, BC-8 and ST-12 structures. For 

each row the product for the two curves in the second and 

third columns gives the E
2 

spectrum in the first column. The 

E
2 

for the·2H-4 and ST-12 structures was obtained by averaging 

over parallel and perpendicular polarizations. The matrix 

( 2TTa)2 element M is in units of _where a is the smallest lattice 

constant of each c'rystal 
2 

and J in the figure is in units of 

·(·a) 2 2TT (eV) ~ The unnormalized J(E) defined in Eq. (23) can 

be obtained from the values of J in the figure by taking J to 

be in units of 

1 

(cm) 3 
eV 

The amorphous E
2 

is from Donovan and Spicer (Ref. 10). 

Fig. 38. Imaginary part of the dielectric function E
2

, associated 

average matrix element M, associated joint density of states 

J/E2 , average dipole matrix element M/E2 , and joint. density of 

states J for Si in the FC-2, 2H-4, BC-8 and ST-12 structures. 

The convention is the 'same as in Fig. 37. The amorphous E2 

is from Pierce and Spicer (Ref. 10). 
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Fig. 39. Density of states of GaAs in the (a) 2H-4, (b) 4H-8 and 

SC-16 structures using the EPM. The dashed line in (a) 

represents the consequences of disorder (U) as described 

in the text. 

Fig. 40. Density of states of GaAs in the (a) 2H-4 (1,1/1,1), (b) 2H-4 

(2/2), (c) BC-8 (2,2/2,2), (d) BC-8 (4/4), (e) ST-12 

(3,3/3,3) and (f) ST-12 (5,1/5,1) structures calculated from 

the simple tight binding model discussed in the text. The 

solid line at 0.0 eV represents a delta function peak in the 

density of states. The bottom of the conduction band is 

designated by E and the numbers on top of the peaks represent c 

the approximate strength of these peaks. 

Fig. 41. Density of states of GaAs in the (a) ST-12 (5,1/3,3), 

(b) ST-12 (4,2/5,1) and. (c) ST-12 (3,3/4I,l,1) structures 

using the simple tight binding model discussed in the text. 

The convention is the same as in Fig. 2. 

Fig. 42. Density of states of GaAs in the (a) ST-12 (4,2/5,1), 

(b) BC-8 (2,2/2,2), (c) 2H-4 (2/2), and (d) 4H-8 (2,1,1/2,1,1) 

structures using the EPM. There is an overlap of the valence and 

conduction bands near 1 eV. Regions I, II and III represent 

the p-like region of the density of states where Region II 

is analogous to the delta function peak using the tight 

binding model. The small numbers on top of the densities of 

states represent the approximate strength of various regions 

and peaks in these densities of states. 
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Fig. 43. GaAs 2H-4 (2/2) charge density in the (110) plane for 

bands 1 and 2. 

Fig. 44. GaAs 2H-4 (2/2) charge density in the (110) plane for 

bands 3 and 4. 

Fig. 45. GaAs 2H-4 (2/2) charge density in the (110) plane for 

bands 5 and 6. 

Fig. 46. GaAs 2H-4 (2/2) charge density in the (110) plane for 

bands 7 and 8. 

Fig. 47. GaAs 2H-4 (2/2) charge density in the (110) plane for 

bands 9 and 10. 

Fig. 48. GaAs 2H-4 (2/2) charge density in·the (110) plane for the 

regions of the density of states in the energy intervals 

[-7.2 eV, -6.1 eVJ and t-6.1 eV, -5.0 eV] designated by 

arrows in Fig. 42(c). 

Fig. 49. GaAs 2H-4 (2/2) charge density in the (110) plane for the 

regions of ·the density of states in the energy intervals 

[-5.0 eV, -3.7 eV] and [-3.7 eV, -1.3 eV] designated by arrows 

in Fig. 42(c). 

Fig. 50. GaAs 2H-4 (2/2) charge density in the (110) plane for the 

regions of the density of states in the energy.intervals 

[-1.3 eV, 0.6 eV] and [0.6 eV, 2.2 eV] designed by arrows 

in Fig. 42(c). 

Fig. 51. GaAs 2H-4 (2/2) total charge density in the (110) plane. 

Fig. 52. Density of states of GaAs in the (a) modified 2H-4 (2/2) and 

(b) FC-2 structures using the EPM. The modified 2H-4 structure 

was obtained from the ideal 2H-4 structure by taking a 10% 
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decrease in Ga-Ga bonding distances and a 3% increase in the 

As-As bonding distances. This resulted in a merging of 

Regions II and III and the formation of a nonzero energy gap. 

The dashed curve in (b) represents the consequences of disorder 

(L) with 10% like-atom bonds as discussed in the text. The 

dotted line distinguished between the low and high energy 

.s-like peaks. 

Fig. 53. The electronic density of states of trigonal Se (a) and Te (b) 

as obtained from the EPM. The filled valence band is at 

negative energies. 

Fig. 54. Calculated densities of states (solid iines) for trigonal Se 

(a) and Te (b), whlch have .been broadened by 1.2 eV for the 

s-like states and by 0.7 eV for the remaining states. 

Superimposed are the experimental photoemission spectra 

(dashed lines). 

Fig. 55. Electronic charge densities for trigonal Se in the energy 

intervals (a) [-6.0 eV, -3.6 eV] and (b) [-3.6 eV, -2.25 eV] 

and for trigonal Te in the intervals (c) [-6.0 eV, -3.5 eV] 

and (d) [-3.5 eV, -2.2 eV]. The units are e/D. 

Fig. 56. Bonding charge of trigonal Se for the (a) lower and (b) -upper 

p-like bonding states, calculated as described in the text. 

Only positive contqurs are shown, with values in units of e/D. 

Fig. 57. Bonding charge of trigonal Te for the (a) lower and (b) upper 

p-like bonding states, calculated as described in the text. 

Only positive contours are shown, with values in units of e/D. 
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Fig. 58. Sketch of the density of states of a simple cubic lattice 

·• (solid line) and an infinite one-dimensional chain (dashed 

line) for s-like states with only nearest neighbor interactions. 

The widths of the bands,were chosen e3;rbitrarily to be the 

same. 

Fig. 59. Experimental photoemisSion measurements for trigonal (solid 

line) and amorphous (dashed line) Se (Ref. 42) and Te (Ref. 41). 

Fig. 60. (a) Schematic representation of the interactions V between 
': 3 - . ~, 

sp ~like orbitals on two neighborin~ atoms. The orbitals are 

labeled 1 to 8. We show only one representative pair of 

orbitals for each interaction. (b) The density of states 

for Ge obtained using the above model and described the text. 
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r------------------LEGALNOTICE---------------------

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 
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