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ELECTRONIC STRUCTURE OF COMPLEX - CRYSTALLINE AND
AMORPHOUS SEMICONDUCTORS

John Joannopoulos
Department of Physics, Inorganic Materials Research Division,

Lawrence Berkeley Laboratory and University of California
Berkeley, California 94720

ABSTRACT

A study,of fhe eleétroﬁic structure.ofvsoﬁe complex crystalline
and amorphotis phases of Group iV, binary and Group VI compouﬁds is
present with the emphasis on understanding the effects of long- and short-
range order and disorder.:

The effects of iong#rangg order are stuaied by comparisons of cal-
culations of change densitieé of ZnS in the zinc blende and wurtzite.
étructures using the empirical pseudopotential method (EPM).ZF A scheme
for qbtaining_the charge density from only a few representative K
Vectoré is presented.

Effects'of short-range order and disorder are studied by an examin-
atibnvof'the band structures, electronic densities of states, and optical

(froberties of Ge and Si in the diamond, wurtzite, BCs-8,l and ST-—12l
crystal structures using the EPM and simple tight binding models. - A
complete haﬁdstructure, critical point analyéis and.group theoretical
discussion of the wurtzite, BC-8 and ST-12 structures is‘presented.
Dipole m;trix'elements P(E).and joint densities of states J(E) aré
calculated and examined in order to discern information about the effecfs.
of disorder on the optical properties. In addition a new method is

introduced to obtain the density of states of an infinite system using

only information about local topologies.
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~ Effects of disordef on the density of states Qf_binéfy compounds
are studied by taking GaAs as a protQtype and construeting various GaAs
structures'ueing the atomie pdsitions ef the wurtéite,'BC—S and ST-12
stfuétureé. The densify of states of GaAs iﬁ these structures is
caleglated esing tﬁevEPM and simple tight binding ﬁedele. Two density -
of states modeiszafe presented simulating the effects of disorder With_ |
and without like-atom bonds. In addition, Charge'densitiesvare used in
_order'to Stﬁdy the nefure of like-~atom bonds. l

Finally, a comparative study of the electronic densities:efvstates

of Se and Te in the trigonal and amerphous phases is presented. Néw
EPM calculetions on trigonal Se and Te are perfermed which are in

41,42

excellent agreement with recent photoemission results. Charge -

densities are calculated for certain regions of energy which associate

peaks in the densities of states with particular bonding characteristics.-

In addition, a new method for détermining bonding charge by extracting
short wavelength components from the charge density is introduced. The
changes observed in the densities of states of amorphous Se and Te are

examined and interpreted.

i 5]
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I. IN?B@DUCTION

We present a theoretical study of the electrbnic'structure of various
crystalline énd amorphous semiconductors with eméhaéis on understénding
the influences of long- and short-range order and disorder{_ We begin in_
Section II with an exaﬁination of the effeéts'of long-range order on the
electronic‘charge densities of ZnS in a zinc blende and an igggg_wurtzite
structure. A comparison of the éharée densities reveals the presence of
a net pdlarization in the'igggl_wurtzite structurel ‘In éddition, two
rgpresengative gipoints are found whose total change density is in very
gdod agreemént with the charge_dénsity obtained by sﬁmming over.many'
points in the irreducible#part of the Brillouin zone.

From here we proceed in the following sections to a study of

short—fangé'disorder (SRD) on the electronic and optical properties of

‘some complex crystalline and amorphous semiconductors. In Section III

we present calculations of the band structures and.electronic densitiés'
of‘statgs of Ge and Si in the diamond, wurtzite, Si IIIl (BC-8), and

Ge IIIl (Sf—lZ) structures. This is a series of crystals which exist «n
nature and are listed in order of increasing number'and pdgitional diéorder
of atoms in the primitive cells. From the increase compléxity of the
crystal structures we find that SRD is able to account well for the

density of states of amorphous Ge and Si. These calculations also

provide a method of explaining various features in the amorphous density

of states and show what structural asﬁects of the amorphous state are
responsible for these features. In’addition, using a simple Hamiltonian,

" we introduce a new method to study explicitly the effects of. local

topology on the density of states of an infinite system. Our results



show that the number and typg of rings of bonds in ﬁhé vicinity_of

‘and passing through a certain atom are intimately related to the position
and number of peaks in the local density of states of fhis atom. Ih
Section IV we calculate and examine the imaginary part of the dielectric
function éz as a function of energy for Ge and Si in the afofmeﬁtioned'
crystal structures. In particular we have obtained the symmetriesvdf

wave functions along importan; symmetry direCtions and identifiéd_the

major contributioné to the optical structure. In addition, a further study
is made into the optical properties of amorphous ée'and 51 which reve;ls
tHat the amorphous éé_spectrum has the saﬁe férm as an averagéd matrix
element és a function of frequency. In Section IV we extend our methods;
to study the amorphous binary compounds."Specifiéally, wé investigafe
the effects of two types of—disorder.on the density.of states of III-V

semiconductors. For the first type of disorder we consider a stoichiometric

system with fourfold coordination, éll'bonds satisfied; variations in

‘bond lengths'and angles, and only'ﬁnlike—étom bonds. The seéond'type of

disorder includes the propertiés of the first with the addition of

like-afém bonds. These two types of disorders are studied explicitly

by taking CaAs as a‘pfbtotypé and making various GaAs structures using
the atomic positions of the.preViously mentioned éfystél sfrﬁctures.

A comparison'ofrthe trends observed in the densities of‘states with the
inclusion of different types of disorder reveals Valuablevinformétion |

concerning the relationship of the structural nature of an amorphous

system to its density of states. From our results we construct two density -

)

of states models for amorphous III-V compounds which simulate the effects

of these. two types of disorder respectively.

o
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V‘Finally, in Section VI we sﬁudy the elgétronié structure of chain-
like elements, i.e., Se and Te. We Have obfained electronic densities
of states and chargé distributions for the valenée electrons in trigonal
Se and Te and we have explored the relation between density of states
structure and éharge density. In particular structures in the photoemission
spectra are identified with particular interchain and intrachain bondiﬁg
states. These results are then used to interpfet the changes obgerved
in.the axperimental photoemission spectra of amofphous Se and.Te.

The calculational methods that we have used in ail our work include

.the empirical psendopotential method2 and Various.tighf binding models.

These methods will be discussed in detail in the text and in the Appendices.



- IT. ELECTRONIC CHARGE DENSITIES FOR ZnS IN THE WURTZITE
AND ZINC BLENDE STRUCTURES

In this section, we wish to obtain and cémpare.the electronic
distributions of two different crystal structures of-tﬁe same éompound.
Specifically, we have calculated the electronic charge density as:a
function of position'iﬁ the unit cell for ZnS in the wurtzite and
zinc bleﬁdé strucfures. These two crystal structures are shown in
Fig; 1, with thé'wurtzite'structure alighed so that tﬁebc axis is in
tbe direction and the zinc blende structure is_aligngd with its (111) -
direction in the z direction. The difference between the two structures
occurs first at third nearest neighbors and a detailed diséussion of
the wurtzite structure is given in Appendix C along with tﬁe st%uctural
parameters used. R |

The charge density was obtained indi?idually for each valence and
conduction band and for the sum of the valence band; from a bénd étructure'_
caléulatibn using the‘empirical pseudopotential method2 (EPM) . - This
method is discussed in Appéndix A but briefly_if.invdlveé solving a

secular equation for the pseudopotentialvHamiltonian}which has the form
K= -0¥omy Vv . ()

To take advantage of the crystal éymmetry, the weak crystalline

T ’ -+
pseudopotential V(;) is expanded in the reciprocal lattice {G} v

> >

V(;) = V(IEI) S(E),eic.r , - (2)

z
>
G

- N
where S(G) is a structure factor and contains information about the

>
position of the atoms in the primitive cell and the V(IGI) are called



form'factOrs and are thé fourier components of the atomic pseudopotentials.
Becauée of.S(E) one only needs a»small number of V(|E|) in order to
specify the crystalline pseudopotential. The EPM is particularly useful
in studying different crystal structures of the same compound since if
one has a good set of férm faétors for a given cryétal structure one only.
‘needs to perform a suitable interpolation to obtaiﬁ.the form faétors for
any othervcrystal structure defined by S(E). This was done first by
Bergstresser and Cohen3 for ZnS in the Wurtzige structure and it is these
factors that we have used in our study.

In order to obtain good convergence in the wave functions it was
necessary to diagonalize a 90%X90 matrix for zinc blende and a 135135 .
matrix for wurtéite. Eighty.additional plane waves were brought in
through fhe use of a perturbation technique developed by Lowdin.

We now have in_principle all the information necessary to obtain

v R |
~ the charge density. Since the wave functions»dJn E(r) are known as a

s

function of band index we can postuléte a‘ﬁband" charge density:

-> * -> -> v
p () = e % N {CORL N 40 ‘ : (3)‘
> BZ *. > F > o > > i‘f'; -
P (x) = e %22 o (G -T,k) a Gk e (4)
G k '
The totél charge density is then given by
» > . ) )
P(r).= L Dn(r) : (5)

n

where the sum in Eq. (5) is over the valénce bands.



The expression in Eq.'(4) is a general result; ﬁowever,'the procedure
invblved'inveﬁal;ating this expression depénds on-the'symmétry properties
of.thé crystal studied; The zinc blende charge densify calculation
vwaslcarried out exactly as in Ref. 5. The Qurtzité,charge deﬁsity
calculation will now bé descfibedvbfieflyé

The Brillouin Zorne kBZ) for the hexagonal structuré and its irreduciblev
part are well known. Althqugh the energies Enkﬁ) are éxactly the same
at related points in the BZ,_the wave functions in’géneral ére not. Our
procedure was to calculate the ¢ > 1in 1/34 of the zone at 84 points

n,k
and obtain the rest of the ¢n,§ by rotations of ﬂ/3,'inversions aqd
mirror reflections in k space. The method used to find how the ¢n,KF
transform_is discuSsqﬂ in Appendix B.
A. Results

Since we are dealing with‘pseudowavéfﬁnctions'wﬂich should not be
valid near the core it ié important to say something ﬁuantitative about
the size of the Zn and S cores. The electronié'configura;ion.of the Zn

and S cores is 1s22822p63823p63d10 and 1322922p-6 respectively. Using

the wave functions 6btained by Herman and Skillman6 we found that:

(i) Ninty per cent of all fhe Zn core'electrbns are within a radius
of 122 of.the nearest neighbor distance. Ip particuiaf fhis rédius .
contains 86% of the 3d shell, 93% of the 3p and 3s shells and'approximatély
iOOZ of the rest.

(ii) Ninty per cent of all the S core electroﬁs aré within a radius
of 0.16 of the nearest neighbor distance. In particular this radius.

contains approximately 88% of the 2p and 2s shells and approximately

100% of the 1s shell.



We are copfident that for such smail cores the wave functions are
quite adequate.
1. Cubic
In the cubic case, chains Qf bonds that lie in a plane only occur
in a zigéag pattern. If one sights along the direction of any bond one
sees the same symmetrical distributionbor environment of atoms. Thus
the effects of this environment through ;ong range electrostatic interactions
will be along the direction of the bonds‘and‘thevshort range tetrahedral -
symmetry will be preserved.

:We found the charge density of ZnS in the zinc blende structure to
bevvery éimilar to that of ZnSe obtained by Walter and Cohen.5 Because of
this similarity we show in Fig. 2 only a confour plot of the EgEg} @harge
deﬁsity; There is only oné type of‘plane of interest énd-that is the |
(110) plane or the plane formed by the dotted lines in Fig. 1b. The

'chargerdensity is evaluated on a grid of over 1500vpoints. In Fig. 3.
we show a contour plot.of the total crystélline pseudopotential, obtained
from Eq. (6); in the same plané as the charge density;v The poténtial

was evaluéted on a grid of over 3500 points and the_zerd of poteﬁtiél

was chosen arbitrarily such that the avérage crystalline potential is
zero. The tetrahedral symmetry in Figs. 2 aﬁd 3 is evidenf. The amount
of charge aroqnd the S atom within a radius éf 3/4 the nearest neighbor.
distance is approximately 7.3 e, and only 2% of this chargg is in the

core region.



2. Hexagonal

In the wurﬁZite structure wé have fourvatoms.in the unit cell so
that we have eight valence bands,. We found that‘the”charge dénsity‘
of bands 1 and 2 are almost identical so that in’Figs. 4 througﬁ 7
wé show contour plots of the charge density for ban&s 1 through's.' In
Fig. 7 we also show a'plotvfor’the hypothetical situation where the
conductidn_band‘is.full of electrohs. The plane‘in these figures.is
the (110) piéne or plane I;in Fig. la. The charge densities we;e 
evaluated on'a.grid of more than 4000 pdinfs) We notice that bands 1
and 2 are very s-like whereas the rest of the bands have pronouncea
p-like character. In particular bands 6 and 8 are gimdst pure pxy-like
and pz-like_respectively. We'also notice that the character of the
conduction Band_is alﬁoSt free electron-like although there still is
some localization around the § atoms. In Fig. 8 we:show a plot of the
total charge density in plane I..bIn‘this plane,'tﬁe atomslform square
wave-like chains_of’boﬁdS'whiéh'cannot'be found iﬁ zinc blende. The
zigzag'pa;térns in the cubic éése, howéﬁef,vcan be found in thé:(101)
plane of plane Ii iﬁ Fig. ia. A contour plot of thg total charge
denstty in this plane is shown in Fig.b9. In Figs. 10 and 11 we;also
show contour plots of the total charge density in planes III and IV.i
'These planes help providéva three-dimensional view of the charge density.
Comparing Figs. 8 and 9 we ﬁotice immediately an asymmetry in the_elecfron
distribution. Although’the ionic cores are in a perféct tétrahedral
arrangemént ﬁhe charge density is ;ot. There Seemé to be a difference
between bonds in the z directions and bonds in the other three corresponding

tetrahedral directions. Firstly, the maximum charge density occurs only



for bonds_in the z direction and secondly, the charge denéity is pushed
slightly out of the bond for those bonds which.are not in the z direction.
This asymmetry is actually a direct manifestation df the potential. This'
is clear invFig. 12 in Which:we show'cohtour plots of the crystalline
pseudopotential in plane I. |
Actually thése results afe not surprising. Iﬁ the zinc blende structure
the environment of egchibond is the same for all bonds. 'in thekurtzite
structure, however, this is not the éase. If one éights along a bond in
the z direc;ion all the atoms which affect it are placed symmetrically,
in planes pefpendicular to the z direction. The net éffect of these
;toms is then directed along the bond. If one now sights along any other
bénd not in the z direction bqe finds an asyﬁmetfical distribﬁtion of
atoms. The'nét effect of this type of environment is not directed
along thé bond, but actually directed slightly out of the bond. To show
this in'a simple way consider the. following model. .We assume We can
construct a ZnS crystal out of two types of constituents: (1) positively
charged Zn cores with a chargg of 2e and (2) S cores currounded by a
perféct.tetrahedral distribution of electrons as in Fig. 2 of the cubic
charge deﬁsity.» The net charge on this second parﬁ Being -2¢ . We are
thus taking implicitly into account the short range interactions and we
shall be interested in the effect of lbng—range electrostatic interactionév
on the bond‘electroné of type (2) constituents. If we now arrange
" these constituents in a zinc blende stfucture and calculate the net
electric field acting on these electrons we find‘of course that the
field.is directed along the bond présérving the tetrahedral symmetry.

However, if we construct a wurtzite crystal out of these constituents
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and calculate the net electric field on the electrons in the diagonal
bonds we find that the field is direétedvbrimafilybaiqné the bond
diféction appart from a small z component which has the effect of
pughiqg electrons out of the bond in the foéitive z direction. This -

is exactly what we .find in our charge densities.

This asymmetrical distribution of charge in '"ideal" wurtzite

will'produce a polarization. We can éalpuléte th;>dipole moment p per
primitive cell analYtically using the fourier expansion of the charge
density. We find:

P~ 10—19 esu cm . . (6)
This is only about SOI;imes smaller,thén_a usual ferroelectric—like
BaTiOB.. Although we do.ﬁot expect our value for p-to‘Be accurate we do
believe that there will be a resultant polarization. This polarization
~ will then charige fhe electronicvénd core positions. so that the crystal
reaches'é lowefAénergy State'a;d:the polarizatioﬁ 16 minimized. This
tempts'oné to suggest thaf the non-ideal c¢/a ratio.found in reéllcrystals

results from changes in the crystal structure to reduce p.

B. Representative k’Vectors for the Total Charge Density

The idea here is to find a few E points whose charge density wiil’
'v give a gobd approximation to the total charge density. Baldereschi7
first proposed this and obtained one representative E point which géve
an approximate total charge density for compounds in an fcc lattice.
Chadi and Cohen,8 using wave functions expanded in terms of Wannier
functions, obtained three representative K points at whose weighted sum

of charge densities gives better agreement than the Balderéschi point.

¥
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In this section we wish to present a simple method of obtaining
the same conditions for the k points without using any wave functions.

Let 6(?) be defined in the following way:
B(k,7) = ZIo(Tk,r) . B¢
T ,
> > . >
where P(k,r) is the charge density of the point k and {T} represents

. A 5
the set of point operations for the lattice. Now pz(r) is" a periodic

function of k, so that we can expand it in the following way:

p@&,D =z od,D eik'z S . (8)

A > O 2 ~ -> A ..
Now since P(k,r) = P(Tk,r), D(z,r) = D(TZ,r). Therefore,

p(k,1) = % RS %'eikaI | - %)
p@E,D) =D E@,D | o

where S(O,?) is‘the total charge density in question. Thus, if we could
find a Eb that makes all the E(E,I) equal to zero for I # 0 then

5(?0,¥) would be exactly equal.to the total charge.densityf‘ We have
found that D(E,;) is a sléwly varying function of k so that we expect the
S(K,;) to decrease in magnitude as IEI increases. The object then is

:to find a ko which.will make as many of tﬁe E(Eo,z)‘fof small Iz].equal
to zero as possible. The Baldereschi point gives & equal to zero for

the first two Izl_shells. In this calculation we obtained two k points

for an hep lattice which give & equal to zero for the first ten shells

except ‘for the fifth shell. The total charge density we obtained using
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the average charge density of these points, agrees very well with this
‘calculation.

The innté_are given by:

k1=_<£2 , '/_g’%) -. .v | | )
kz‘(%_”:g—j—’%) S | _ | ,(12)

and'thé components are wifh respect to the primitivé reéiprocal lattice
vectors K; E and E hekagoﬁal with'g'g = 0.5.

'Recently,,Chédi and Cohen9 have developed»avsystematic'way of
generating larger énd larger sets of special k‘points. This is‘Qery useful
since a one or two point scheme is inadeéuate for calculating the
individual Dn(;) aithough it‘workébvery well in ob;aining thelggiél charge
density; On the other hand, the Chadi and then9 ten (for zinc blende)
or twelve (for wurtzite) point scheme is excellent for the Egggl‘ghargé

density and works very well for’the pn(¥).
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III; ELECTRONIC DENSITIES OF STATES OF COMPLEX CRYSTALLINE AND
AMORPHOUS PHASES OF Ge and Si

The electronic densitie§ of states of amorphous Ge and Si as
obtained from ultraviolet (UPS)10 and X-ray (XPS)11 photoemission
spectroscopy exhibit some‘very interesting features when coﬁpared ‘
wifh the corresponding ones of their crystalline phases..-For exaﬁple,
one finds'experimentally the retention of a "gap" iﬁ the amorphous
phase. This has been shown theorefically for some special models by
Weaire and Thorpe12 and McGill and Klima.13 However, the conduction
band density of states seems to have none of the_structﬁre found in the
crystalline phase (see Fig. 2lé). Furthermore, the form of_the valencé
band density of states in the amorphous phase consists of a smoothed,
blue shifted, peak at the top of the valence band:and a seemingly large.

12,13 (see Fig. 23). This

broad peak at the bottom of the valence band
is in contrast to the three strong peaks found in the valence bands
of the crystalline phase.

Amorphous samples can be prepared in a varietyrof ways with a
range of bulkldensity from 257 less to approximately the same as the
bulk‘density of the crystalline case. There also exists a lot bf
speculation as to the structural nature of the amorphous phase. On
this point there have been primarily two main schools of thought. First
that the amorphous structure is made up of small domains of perfect
crystalsvseparated.by disordered boundaries, which is called the 'micro-
crystalli;e.model". For example, Rudee and Howie14 found that their

amorphous films gave consistent diffraction ring patterns with a

microcrystallite model if their amorphous sample were made up of "wurtzite"
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micrecrystals. Another approach is that the amorphbus phase can

eiiet in a completely disordered structure while each atom retains

an imperfeet tetrahedral arrangement of nearest'neightore._ In this-
case, if ail the bonds are satisfied, the model is called a 'rendom
netwerk mq&el“. Spicer a_nd-co--workerslO seem to be able to prepare their
amorpho;s saméies in an "ideal" manher,such'that they have a negligible
'preseﬁee'of microvoids aﬁ& dangling boeds'eﬁd have the same nearest
neighbor dlstance and approx1mately the same bulk den31ty as that of

the crystalline case. It is this type of sample that we will have in
mind when we discuss and compare our results w1th the amorphous phase.

"It is clearly a formidable task to perform a realistic calculation

on a structure with long range disorder. Hewever, we could ask the
followinquuestion. How ﬁueh disorder is ﬁecessary to achieve the
distinctive features evident_inlthe‘amorphoﬁe-data?: ré explore the
pbssiﬁle'anSWers'to this question, we have caléulated the band structure
and densityvof'statee for Ce'and Si in theudiamend, “Wﬁrtzite", éivIII,lv
and Ge III; strﬁctures‘esing the EPM2 and'the tight—ﬁinding model used
recently by Weaire.12 From the pseﬁdopotential'band structure we hare'
also calculated the optical properties of these structures. The diamend
structure is'face—ceetered cubic with two atoms per primitive cell
(FC;Z), wurtzite is hexagonal 2H with four atoms per priﬁitive cell
(2H;4), Si III is body—ceﬁtered cubic with eight atoms per primitive
cell (BC-8), and Ge III is simple—tetragonal with twelve atoms per
primitive cell (ST-12). The Si'Ilr and Ge III structures are complicated,
dense, metastable crystalline phases which are reeovered from high preseure"

-experiments and persist at normal pressures. When Ge occurs in the Si III
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structure it is called Ge IV.l5 Becaﬁse of tﬁis rather unfortunate
terminology we shall use the notation described above‘in parentheses
for the specification of these variohs structures;

FFC—2, 2Hr4,VBC—8 énd ST-12 provide us with a series of structures
,that'become more énd mére 1océlly disordered. What we imply by local
disorder is that we have a crystal (long range order) and yet the atoms
in the pfimitive cell of our crystal are in a'"disqrdered"_tetrahedral-
like arrangement. The FC-2, 2H-4 and BC-8 stfuctﬁres are all similar in
that they héve sixfold rings of bonds and oné type.of‘atomic environment.
The ST—12 structure, however, is very novel in thatxit has fivefold
rings of boﬁds and two types of atomic environment. The electronic
:properties of these structures should then provide us with some interesting.
tests for the microcrystallite and random network ﬁodels and should provide
us with an idea of how much disorder is necessary to repfoduce-the
Aimbbrtan; features of the experimental amorphous data.

A detailed discussiqn of the s;ructure_of these polymorphs and
tﬁeir‘parameters is given in Appendic C. The bulk densities of
" Ge ST-12 (Si ST-12) and Ge BC-8 (Si BC-8) differ by about 1%. However,
they are both about 10% greater than those of Ge FC-2 (Si FC-2) and -

1 .
0 Therefore, a comparison of the

certain types of amorphous Ge'(Si).
differences between the density of states of Ge FC-2 (Si FC-2) and

Ge BC-8 (Si BC-8) ean be attributed primarily to stfuctural and symmetry
differepces. Hence,‘co;périspns of the polymorphs provide a method of

filtering out the effects of greater density, which should not be very

- important as long as the bond lengths do not change appreciably.



It wOul& be appropriate at this time to mention that we were able to
build a crystal with the same sym@etry and number bf'étoms in the_primitive
gell'as Gé ST—12 but with the same_nearest'neighbor distance and bulk
dénsiﬁy as amorphous Ge. -~ The méthod consisted of fihdiﬁg'three independent

2 3 :

V such that c = V/az. Once the density was fixed through V we minimized

bohd'leﬁgths bl’ b, and b, which were functions of a,'xl, Xy, x3 xa-and

the function
R . -. .3 ) . ] ‘ 2'
M(xl,x‘z,.XB,.xl',a) = Z(bi[xl,xz,xqu,a] - Q,i)

: ‘ i=1 » ' .
5y avmethod of steepest decent. Although we obtained the correct bond
lengths Ri’ bulk density and a good radial distrigution function, we oBtaiﬁed
some bond anglgs that were,40%'bigger thah thé ideal tetrahedral angle.

These large deviations in our modified cfystai pro&ﬁéed large d%yiatidns‘

in the Hamiltoﬁian matrix elements_and we_fqund'tha;:&e obtained a

semimeta1{  This is inslarge cohtrast to the féét*thét we found quite

a* sizeable gap for Ge ST-12. Th’isvwill; be of interest later when we

discusé what different struéturalvaspects affect the size of the gap;
Sincevho éxperimental data are availablg at this time for the

polymorphes we have étudied, the form fac;ors we haVe'obtéined might ﬁave

to be adjusted_slightly to give better‘agréement wigh experiment. }n

Table I and'Table Ii we list the unnormalized form factors for Ge‘and

Si and the cqrrespondiﬁgvreciprocal lattice véctors'for the 2H—a, BC—8I

“and ST-12 crystal structures; For the 2H—z structure we ﬁsed 50-60 plane

waves as a basis set along with another 140 plane waves throﬁgh a

perturbation scheme developed by Lawdin.4 We éalculated E(E) in 1/24
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of the BZ at 275 grid points. For the BC-8 structure we
used approximately 60-65 plane‘w§ves as a Easis>with:ébout 160 additional
plane waves through perturbation theory. We diagoﬁalized our
Hamiltonian in 1/48 of the BZ at 240 grid pdints. _Finally, for ST-12 we
used aboutv70 plane waves as a basis éet along with épproximately 270
more plane waves throqgh the Lawdin scheme..bThe‘eigenvalues were
obtained in 1/16 of the BZ atv251.grid points.  For all these
structures we obtain a convergeﬁce of <0.1 eV for almost all the states
in valence band and for thé states in the conductién band in the vicinity
of the gap. |

In our tight bindiné calculation we took the model used recently b&
Weaire and Thdrpe.lz. The Bloch ane functions for_eéch band have the

form:
-> n >
= .
WE’n(r) & CmXK,m(r) | ‘ - (13)

where the Xk m(?) form a basis set of order M of tight binding Bloch
. : R v

states given by

N=d

-5
ik*R

¢ -R-1, -7

T -5 (1)

X @) = 7;-5 e
: R
where m = i, %; N is the number of primitive célls and the ¢m are
localized orthonormal states which'can be taken as (sp3)-hybridized
‘difected orbitals (four of each atom). The positioﬁ of the ith atom
in the primitive cell is givén by ?i’ and 31 designates the directiqn
.and centef ofaﬁass_posgtion of the'lth dirécted orbital of the ith atom.

o v - - >
Furthermore, for i # i', &' = £ will imply Py = E&,and that.lTi - Ti']

«
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is equal to a bond length. Thusfstates ¢i, . and ¢i I} are orbitals from
. ’ B b
different atoms which lie in the same bond and ¢i 2 and ¢i o1 represent
. ) ’ H
different orbitals defined with respect to the same atom.

 In this model there are only two important nonzero matrix elements

given by:

and ¢ 1,2|H|i",0)

(1,2]H[1,20) = v

1 v a (15)

2.

:The pararnieters Vl aﬁd V2 for the FC-2 strucfure'weré_obtained by fitting‘
theﬁ to the valence band density;of states of Ce FC—Z.using the EPM.
Thé Yalues obtained were V1;= —2.22 énd Vz = -6.20 énd were téken‘to be.
the same for the BC-8 and ST-12 structures. The Wéaire model of course
assumes all the bond lengths are equal and a perfect tetrahedral
arrangemént for the atoms. The most‘prominent featureS of this model
are a flat band at the top of the valence band contéining.twq states
pef,atom, a,rather_inadequate'conduction band dﬁé to the limited number
of basis,functions and an energy gap which is the same for all structures
with even.mémbered rings of bonds; vAn exfenéiqﬁ ofrfhis model tov.
include all intefactiqns betweeﬁ nearest neighbors works very well and
is discussed.in Appendix D. | |

Once the.band structure is known the density of states can be
obtained using the following expreséion?

N(E) =

> .
- LS(E - E (K)) o | (16)

1
W3
k

where Na is the number of atoms in the primitive cell, N is the number

of ﬁrimitive cells and N(E) is normalized to the number of stateé per
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atom. ' The method used to evaluate tﬁe integral in Eq. (16) is due to
Gilat and Radﬁenheimer.l6 The‘energy derivatives‘required_by this
‘method Qere obtained using K'; perturbatioh theogy.

| A. Results .

The band étructuresvof Gevand Si in the 2H-4, BC—8.and‘ST—12 stfuctures
are shown in Figs. 14 through 19. 1In Fig. 13‘we show.the Brillouin zones
bfor these structures and the symmetry and nqtation'used bj Leuhrman.17

Certain symmetry directioﬁs in the 2H-4 structure can be compared with
analogous oﬁes in the FC-2 structure through an alignment of the Brillouin
zones.ls One finds the TL direction (FC-2) maps into the TAT direction .
(2H-4) so that the indirect gap at L for Ge FC—é becoﬁes a direct gap at
I' in Ge 2H-4 and is equal to 0.55 eV. Although the I'X direction (FC—2).
is nof associated with any symmetry direction in 2H—4, the X point is
found to iie 2/3 along thé U axis from M to L (2H—4); Si, héwever, which
has an indirect gap at X in the FC-2 structure has an indirect gap at M
in the 2H-4 structure equal to 0.85 eV.

| In the BC-8 structure we find direét gaps for Si and Ge and they bofh
occur.at H. Fof Ge we obtain a zero gap whereas for‘Si we obtain 0.43 eV.
It is interesting fhat in the Weaire tight binding BC—8 band structure we
find the bottom of the conduction band‘also occurs at H.

In the ST-12 étructure we.find a-direct gap for Ge 0.7 of the way
ffom r to»M;. The magnitude of the gap is 1.47 eV. For Si we obtéin
an indifecfiéap”with the top of the valencé band 0.4 of théiway from
I' to Mz and the Bottom of the conduction band about 0.75 of the way between

I' and z_. The Si gap is equal to 1.6 eV. It should be mentioned, however,

that since the valence band is rather flat along many symmetry directions
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and the conductiOn band has many dips at véry nearly the saﬁe energy,

the actual experimental gap could be direct or indirect and could lie

in a varie;y of places. It is intefesting, nevertheieésrthat we find

using the ‘Weaire tight binding model that the ST-12 gap lies at Mz.
'What'is stfiking in tﬁié’calculation is that thé‘éé énd Si ST—12 gaps

are about 507 larger than those of all the other structures. This is

probably due t§ the influence 6f the large numbe;s of five and sevenfold
rings in the ST-12 sfruéfdr¢1Which-would'prevent the preéence of low-
lying, antibonding.s—like states in the conduction béﬁd, Weaire et'al.12
have suggested fhis mighf happeﬁ‘in structures with ddd;ﬁumbered rings,
but the degree wo which it hapﬁens is showﬁ in Fig. 20. Here we show the
results of our calculation on an "ideal"uST;12 and.BC—8 structure using
the Weaire model. At the top of thevvélence.band we héve‘the p-like
~delta function peak containing'two'states peffatom, while the rest of
thé‘vélence band is s-like and also conféinsftwo states per atom. We
notice in Fig; 20(5) that we now hévé a ''valence gaph and a "coﬁduction
gép";. The "cbﬁducfion gaﬁ" for ST-12 ié cOnéideréblytléfger than that
~of BC—B and FC;Z (dotted~line)1 In facg, we fiﬁd a 200% increase in

the gap.if we include an ad hoc 2.0 eV broadening of the delta function
ﬁeak at the top of the valence band. In this model the '"valence" and
"conduction'" gaps are intimately related. This is beéause thekconduction
-and valence band eigenvalues (except for the pure p-like states) are
associated through the same analytic transfofmation (aéide from a sign)

- to the eigenvalues of a one-state Hamiltonian.19 The.coéfficient of a

one-state wave function is then equal to the sum of the coefficients of

. the corresponding four states in the old Hamiltonian»which is just the
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s coefficient of these four states. Thus, the omisSion of antibonding

states in the one-state Hamiltonian will reflect itself in the omission

of s-like states from the top of the va1ence'band and bottom of the
conduction band.

In the EPM case we do not expect such large effects since we obtain
a much more realistic bana structure. .Nevertheless, fhe low energy

conduction band states are rather localized and so we still expect the

influence of odd-membered rings to be important. In fact, we can even

observe a "valence gap" in Figs. 18 and 19 for Ge ST-12 and Si ST-12.
In Ge ST=12 the s-like and p-like states area almost separated while in
'Si ST-12 there is just a little mixing around -4.4 eV.

In Figs. 2la, b and ¢ and we show plots of the dénsity of states for

: Ge in the FC-2, 2H-4, BC-8 and ST-12 structures. Similar results for Si

are shown ianig. 22. Superimposed on the Ge (Si) FC-2 density of states
is a sketch of the amorphous density of stétes'obtainéd'by.Donovan and
Spicer10 (Pierce and Spicer). The sharp peaks are primarily due to

Bragg gapszo.apd would be smoothed out in a structure Qith no periodicity.
Keeping this in mind we can ﬁake some interesting comparisons among

these structures'and we can examine the trends in going from FC-2 to

2H-4, to BC-8, to ST-12, to amorphous. | |

First we notice that the conduction band becomes more and more

.smoothed out as we go from FC?Z to ST-12. These lack of large structure

also seems to be evident in the amorphous phaée. Next we notice that
the two large peaks at the bottom of the valence band in FC-2 seem to gain
more structure as we go to 2H-4 and BC-8. Nevertheless, these peaks

still retain most of their individual identity. In the STQIZ structure,
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hbWever, there is a’thoréugh mixing of the two peaksf This is similar
to‘the suggesfion by Thorpe et a1.21 for -the amo;phoﬁs case. Experimentally
.Wiech_andrzapfzz did find a séeming;y large.broad peakiat‘the bétfom of
the'valencé band for amorphous Si using a soft'X—ray’spectroscopy.
Rééently; this has been confirmed by Ley et al.ll for amorphous Si and

Ge using X—fay photoelectrbnic spectroscopy; Theée résults are shown

in Fig.v23._ The fact that states éré iﬁtroduCed in the valley.between
vthé two lower-valence band'peaks in Figs. 21a and 22a fbr'fhe amorphous and
‘STj12 phases, in such a way as td‘obtain a_lérge hump'where the valley
used té be, can be primarily ‘attributed to the presence of'oda ﬁuﬁbered
rings‘of bon&sQ This is Suggested by the folléwing:simplé argument .,

The FC-2 structure can be considered to be made up.pf six memb;red rings
in the "chéirﬁ configuration. :Thaf is, we can.pick a set of rings which
can be Erought‘togeﬁher to make an FC-2 structure and we will assﬁme
for'fhe mOment thaf they dévnot_loose théir identity,1 iet us now isolafe_
one of these ringé and place one localizéd ofbitalxat each of the afomic
sites. We éfe thinkiﬁgvin terﬁs.df thé'éne—étate Haﬁiltonian mentioned
earlier. _The symmetry of thié ring is D3d and if we gssume'that these
localized states transform.into one aﬁother under de’ fhey then form

. a basis for the six dimensional reprééenﬁation F6‘é Ai + E1 + EZ + Bl;
Thus, we have six states consisting of two single states of symmeiry

A1 and Bl’ and two doubly degenerate.states of syﬁmet;y El and E2. If

we now assume only nearest neighbor inﬁeractions ﬂi we obtain

E(a)) = 2|3 |, E@E) = -li;], EE) = [5] and EB,) = 2[i;|. Let

us how isoiate N rings atvinfinity} The density of states for this

~ system is just an N-fold degenerate single ring density of states. As
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we bring thése rings closer together, to make aﬁ FC-2 or 2H—4_structure,
‘the rings will interact ;nd the states are going to spréad. Since we
are considering only neafest neigﬁbor'intéractiohs we so not expect ény
drastic or significant differences wheﬁ the inter-ring inferaction
becomes equal to the intra-ring interaction. For example, wé can bring
ﬁwo_rings together in such a way as to make a toﬁal of five rings. -
However, the energy spectrum for this systém consists of just a
splitting of each energy level of the two single ring s&stem.by about
lﬂ&l. This is what we expected and thus the N—ring.system should have
a density éf states which consists of two big humps and some'type of
valley in between. This density of states is then analogous to the
two pééks‘at the bottdm of the valence-band in Figs. 2la and 22a.
Conside;:now the same analysis with a five membered ring which we
may take to have symmetry DS'_ Assuming again that the localized stateé
transform into each other under D5, they'span a five dimensional
representation PS = A1 + E1 + E2. Thﬁs we have five states consisting
of a single state of symmetry Al and two double degenerate states of
symmetry Ey and E,. We then obtain E(Al) = —ZJﬁil, E(El) = -2 cos g%-lﬂi!
and E(Ez) =-—2 cos &%;lﬂil. The’states of symmetry E1 and'E2 lie
intermediate in energy to'those.of the sixfold rings with symmetry El’
Thus fivefold rings will introduce states in the vélley »

E andlB

2 1’

between the two density of states peaks at ‘the bottom of the valence

band. In fact the eigenvalues of any ring of order N are given by:

o |
En=—2|JC[Icos—£—., n=0,1,...,N-1. (17)
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Therefore,_eevenfold rings will also introduce states in the valley,
Thus five and seyenfold rings will help. to produce a one hump tyoe of
structure Qith a peak.whererthe valley used to be. These results are
consistent with those obtained by Weaire and Thorpelgifof "Hueumi cacti”
" made up of five.and'sixfold rings. In Section IiI;vae will use e

- different approach which will lead us to the same oonclusions.

The valence band density of states edges of Ge and Si in the FC 2
2H—4 and BC—8 structures (Figs. 21 and 22) are all similar in ‘that they
gradual slopes. On the other hand, Ge and Si in the ST-12 and amorphous
_phases have very sharp edges. Along with this is the fact that there
is a very noticeable shift of the hump et the'top,of>the velence.band
to higher energiee in the amorphous and ST—12 etructures.‘ We believe that
the reason for this is an increase in the coulomb.repulsion energy and
kinetic energy because of variations in the bond angle in the amorphous
and ST-lQ:phases. This'can be showh by the following argument. Consider
a ‘system With’a perfect tetrahedral arrahgehént of atoms like Ge FC-Z
for example; The states in the large hump at the.top;of the valence
band localize the electrons primarily in the bond whereas the states
in the two‘lerge peaks at the bottom of the valence.béndllocelize_the
electrons primarily on the atoms. It is the electrons in the bonds
~which are more sensitive to changes in bond angle. Now the states at
the high energy side invthe hump have a larger kinetic energy than the
states at the lower enérgy side in this hump. This reflects 1tself
in the fact that the former states are very 1ocalized in the bonds
whereas the latter states are more spread_out in the bonds. Let us

now consider an amorphous system and let us naively assume that we have
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just as ﬁany larger bond angieSAas smélier bond aﬁgles. Since the
interaction between the bonds is not linear we will have an increése in
the energy of each electronic state. Howeve;, the states at the lower
energy side in the large hump will‘have a larger overlapvénd a larger
increése in energy than ﬁhe stafes near the gap. This will produce an
increasé in the number of states near the gap and a sfeepening of the band
edge. .A simple éaICuiation sho&s that the increase in the energy involved
is of the same order as-that observed in the amorphous.case (Fig. 21a).
In the pseudopotential calculation for ST;12 coulomb effects are not
taken explicitly into account and the shifting'of the peak is mainly due
to an increéée in the kinetic energy. We may argué’in the same manner
as above since variations in bond angles will produce a larger decrease
in the effgctive'volume occupied by the electrons at the lower energy
side‘of the hump than the eleétrons in states near the gap which are
more localized in the bonds. This will result in an increase in the
kinetic energy and we should'obtaiﬁ the same effect as in the amérphous
case. This is evident in Fig. 21d. Although the:BC—S structure has
much smaller deviations in‘bond angles thén ST-12 we can still nétice
~an introduction of stafes near the gap when we compare BC-8 with 2H-4.
Finally; we would_like‘to make somercombarisonsvbetween our results;
for the'BCf8.and ST-12 étructureé usingvthe EPM énd.the Weaire model.
If we compare ST-12 (Weaire) with Ge ST-12 (EPM) we notice a very good .;
matching of gross structure. The delta function at -2 eV represents

the large hump at the top of the valence band. The two strbng peaks



-26-

near -4 eV and -6 eV are obtained in both:cases énd reveal a characteristic
property of the struéture, Iﬁ §i ST-12 the peak af -4 eV-has merged
with the forward hump. Iﬁ fhe BC-8 strﬁcture the éomparisons are not as
good. Howevef, we still get a characteristic dip nea?'—B eV for both
cases. .The‘peak near -6 eV seems also to be well reproduced.v

| in summary, we have shown ﬁhat long range disorder is not necessary
;o reprodﬁce the essential features §f>the amorpﬁoﬁs data. By studying
a seriéé of strﬁctures that became more and more lOCAlly disordered we |
were aBle to draw some intereéting conclusions ‘as té what pfoperfies of
the amorphous'structure are important. We have found that deviations in
bond aﬁgies will produce an enhancément of ﬁhe states near the gap and
‘what seems like a shift of‘the ﬁump in the density of sfates at the top
of the Valencé band to higher energies: The presence of local disorder
also seems to smear.out the strong sfructupe in the region near the
bottom of the conduction band;v The presence of.five and seven membered -
rings will enhance the numberbof‘states in the yalley between the two
low energy density of'stateé peaks at the-bott§ﬁ>of ﬁhe valence band.
The odd-numbered rings also have an effect in producing a "valence gap"
and perhaps it is this featufe that helps to ret;in.the dip in the
amorphous density of states shown in Fig. 23. Finally, the odd-membered
rings seem to have an effect on the size of tﬁe intrinsic energy gap.
We found this to be a very large influence on the gép in the Weaire modél.
Now one may argue that this is of no realis;ic consequence'since the
conduction band in the Weaire ﬁqdel is inadequate and insufficient.
Nevertheless, in the EPM calculation we find that the states near the

gap at the bottom of the conduction band are s-like and are rather
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localized. In this sense the predictions of the Weaire model may

still be valid for these states. However, wevaré not iﬁplying that

the presence of fivefold rings will produce an increase.inxthe energy
gap. As we found in our modified crystal the gap depends very critically
on thé Hamiltonian matrix elements. Furthermore, the amdrphous phase
»ié less dense and,bheﬁce; has probably fewer fivé—membered }ings than

the ST-12 case. Therefore; this fact along &ith.variatiohs in the
"Hamiltonian ﬁatrix elements could producé a gap in the amorphous phase
whiéh is very néarly the same as‘that bf FC-2.

'We also believe that a microcrystallite model with 2H—4:micro—
crystallitésvis not substantiated by our calculations. This is clearly
the case in the optical properties even if we.average the Ez(w) function
since the peak lies higher in energy than the amorphous hump. This is
also the case in the density of states for 2H-4 since an averaging
does not_reprodﬁce in any way the amorphoﬁs‘features. One might
suggest an amorphous structure made up of ST-12 microcrystallites
and argue that small regions of microvoid structure could make up for
bulk density differences. However,_the radial distributiqn function
for.theSe structures ﬁould be quite different. The next nearest
neighbors_iﬁ the Ge ST-12 structure at 3.45A and 3.64A& would be hard to
" lose. ' -

The random network model seems like a reasonable model for fhe
amorphous state. It's major problem is, of codfse, that of non-uniqueness.
It is clearly obvious that one could make a random network model and

obtain a zero gap. Thus, effects of stability must be very important
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in determiﬁing the particular types of random network structure that

’ .

can exist in a metastable state. The fact that amorphous samples are
always prepared with very nearly the same gap clearly reflects this.

B. Method to Study Densities of States Using Local Configurations

In this paft we shall be mainly cbncerned witﬁ_éffects bf topoiogy
and in particuiar the effects of topology on thel"s;like" states of Ge
and Si. As we have seen the.four—state Weaire Haﬁiltoniaﬁ provides a
good desgription‘of these states and has eigenvalues which are relatéd-
by an analyﬁicvtransformafion to the eigenvalues E ofva much simplér
one-state Hamiitonian'with'oniy nearest néighbbi ihtéractioﬁé V. Using
this one-state Hamiltoniaﬁ’for simplicity, we have developed a new,
simple method of caiculating the local density of states of an atom
in terms;of\thé local environmeﬁt of that atom. - Thé'systém of atoms
we consider consists of an infinite connected network of atoms with
tetrahedral likelcbdrdinatian The proceédute uééd‘to_caiculate.ﬁhe
local density of states ié as follows. We pick a‘péfticﬁlar'afqm as
a reference point and a small cluster of atoms surfounding‘and including
this atbm”is removed frem. the systeﬁ. The cluster is_chosen such that
~every atom in the cluster belongs to a ring passing through the reference
or central atom. Thé Bethe lattice is now introduced'as a‘boundafy |
condition toiassure.that all bondé_are satisfied and simurates the effeét
of the rest’ of the system. The local Green fﬁnction for thé centrél atdm
of this cluster-Bethe system can now be obtainéd.éxactly.

The Bethe lattice was chosen as a boundary condition since it

provides a soluble method of treating an infinite system of atoms without
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being restricted to periodicity. In additiop, it prévides a total
density of stateé which is smooth and featureless. Conéequently any
structure obtained in the local density of states is very closely
related to the local configuration of atom. In.the'diamond structﬁre
we'choose a cluster of (1 + 28) afoms which contains 12 sixfold rings
passing through the centrél atom; each of the 28 nén-central atoms is
in at leaét one of the 12 rings. There are five ineﬁuivalent classes
of atoms: the central étom, 4 nearest-neighbors and an infinite number.
outside the cluster in the Bethe lattice. The diagonal element (o|glo)-

of the Green function is in this model given by

Colglo) = {e ~4 V* [e - 3 VP(e - vy~ z7h7Hy (18)
where |
E=1-4 vZ(e - 2 vay~t (€ - vyt (19)
and
o= [E - (62 -12 vz)l/21/6v . (20)

' These equations are obtained by solving avset.bf (4x4) linear
equations in the unknown (i|g|o); & given by Eq. (20) is the contribution
~from the Bethe lattice.

The local density of states obtained from Eq. (18) is given in
Fig; 24a. Superimposed.we show the density‘of statesyof the Bethe lattice
and thg diamond structure. In Fig. 24b we show similar results’obtained |
by suing fhe four-state Hamiltonian. It is easily seen from these figures
‘that ﬁhe local environment of the atoms gives the main contribution to
the density of states.‘ In particular the association .of structure in

the local density of states with the ring statistics of the cluster is shown
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3

in Figs. 24c through e, Here we have constructed five clusters which are

méde'up of éix ringé pf only one type (i.e., fivefold, sixfold, sevenfold
and eightfold rings respectively. Eéch pai;>of Boﬁds of the centrél

atom is part of a ring. 1In Fig. 24§ we have'ploﬁted the local density of
sta;es for these ring—clusfér—Bethe syétems'correspdnding to the
‘Hamiltoniaﬁ (Eq. (1)). 1In Fig. 24d.wé show theféquivalent calcﬁlations for
_the fouf—state‘sps»Hamiltonian. The §tructure iﬁ the$eJdensities of states
can be easily’idéntified with the eigehvalu;s of isbléted rings as shown

in Fig. 24e. The agreement is excellent and indicates that the ring-like
nature of the local environment is paramduﬁt‘in determining the'type of
étructure fqﬁnd in thé.density statgs; A cibs¢ eﬁaﬁination of Fié. 24¢
shows that the strengtﬁ of péaks is larger the smailer the'ring.  This
indicates the importancé of the small rings in a cluster.

» Wé have also applied our method to examine the total densitonf
states of the BC-8 and ST-12 struc;ufes-whigh hﬁﬁe prpvenfté'be very
important iﬁ‘fhe study of.the structural éspectsvbf éﬁorpHOus Ge and Si.
In the BC-8 strucﬁure we  only have.one tyﬁé of atom and conseqﬁently, aé
in diamond, the local and total depsities of states are equivalent.

We have'choseﬁ a clustér»in the same manner as described.previously:

it confains 26 atoms. The results for the BC—8—Be§he system are shown

in Figs. éiaand b along witﬁ the crystalline ﬁC—8 épectrum. Again, the
'aéreement between the BC-8 and BC-8-Bethe épectraAis good, indicating

the importancé of a local configuration. A comparison of Figs. 25a and b
with Figs. 24c and d reveals the sixfold ring character of the BC-8

structure, which is caused by the nine sixfold rings passing through

each atom.
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The ST-12 structure is quite interesting>since it provides us
with . a system which‘éxhibits five, six, seven and eightfold ring character.
. There are two types of atoms in the_primitive cell with four atoms of

type I and'éight atoms of type'IIf Conséqﬁently; we have two.types of
clusters and the local density of states for these éT—lZ—Bethe systems
are showﬁ in Figs. 25¢ and d. In the élﬁster with'é.tYpe I central atom
we have four fivefold, two sixfoid, six SeQeﬁfold and three eightfold
rings of bonds with a total of 27 atbms. Comparing fhis spectrum wifh
fhat of Figs. 24c and d we find that the peak.at 1.5 ianig. 25¢c is
»mainly caused by a sixfold ring peak and the overlap ofva five and
sevenfoid ring peak. The shoulder around 0.3 seems to be caused ‘
:principaily by an overlép of a five and eightfold ring peak; Finélly,
the peak at (-2.6) is due to a fivefold ring peak ana the overlap of
a seven and eightfold ring peak. Similarly, in the cluster Qith a type
II central atom, we have 31 atoms with three fivefold, two sixfold,'
five éevenfold and eight eightfold rings of bonds. Again:a comparison
'of this spectrum with Figs. 24c and d reveals that the peak at 2.1 .
is.mainly caused by.a sevenfold fing peak and thetpverlap of a six and
- eightfold peakf The hump ﬁear 0 is due primarily to an eightfold ring'
peak and the overiap of a five and sevenfold ring peak. Finally, the |
little bump éﬁ‘(-l.4) is éaﬁsed'ﬁOStlyvﬁy a sixfold ring peak and the
peak at (-2.7) is ﬁostly due to a fivefold ring peak and the overlap.
"of a seven'aﬁd eightfold ring peak.
In Figs. 25e and>f we show the total density of states of the
_ ST-12-Bethe system as obtained frqm a weighted avérage ovér the local
density of states spectra. We also show the crystalline ST-12 spectrum -

which is considerably more complicated than the BC-8 and diamond spectra.
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Nevertheless, we are still abie to say fhat the totél density of states
is mainly due to the local configurafion. We havé found that for all
theée-Struétures ﬁhe local densities of stafes are nearly independent
" of how the rings are arranged in.the cluéterS-and.depend mainly on the
number and'fype of rings.

In cbﬁclﬁsion we believe that our method provides a powerful
way of studying the'totalﬂdéhsity of stétés df:an;infinite sfstem of
.atoms iﬁ terms of the local environment.of'eaéh atom. In‘particular,
this enabled us to gaiculatevthe totai density of stétéé of any system
"given the percentage of atoms with the same ring statistics. Conversely,
givéﬁ é total density of states itvmay Se possible fo.distinguish
between ﬁbssible'ring statiétics. Thisvmefhad could even be extended

to deal with problems of impurities and surface effects.
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IV. OPTICAL PROPERTIES OF COMPLEX CRYSTALLINEvAND
AMORPHOUS PHASES OF Ge and Si

In this secfion we are concerned with the spectra.of the imaginary
part of the dieléptfic function €2 for Ge and Si in fhe FC-2, 2H;4,
BC-8 and ST—12 structurés as obtained ffdmvphe EPM. From a band structure
point'of &iew we present é degailed analysis of the structure in 82
for Ge and Si‘in the 2H-4, BC-8 and ST-12 cases along with their band
structures cOntaining.the'symmetries of wave functions along important
directions. This is of interest since the BC-8 and ST-12 structures
maf'have a &arieﬁy of_applications, e.g., exciton droplets and when
doped, éupefconductivity. From the point of view of understanding the
amorphous phaée the ﬁreﬁds observed in 82 as‘the~structures become more
and moré complex may giﬁe'some insight into the_amouﬁt of disorder
necessary to produce the distinctive‘features of the amorphousv€2. We
. shall shoﬁ th;f our short range disorder model is the only theoretical
model until’nowvthat can account for Eggh_the-amorphour density of states
and the amorphous Eé.lo In pértiéulai we.shall show that when one

measures the amorphous €

2 spectrum one is essentialiy just measuring

an éveraged energy dependent matrix element.

The parameters and potentials used in theée calculations are the
' same as those in Section.III. Ihe reader who is only interested in the
amorphoué phése may proéeed to part C with no'ioss in coﬁtiﬁuity;b

A. Symmetry Considerations

We find that the 2H-4 structure has a symmetry classification'of

Dgh and is therefore associated with a non-symmorphic space group. The
4

BC-8 and ST-12 structures have symmetry classifications-Ti and D4
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respeétively and are thﬁs also assoéiated'wiﬁh_spacevgroups which are
non—symmorphié. The Brillouin zones (BZ) for these stfuctures are shown
in Fig. 13 with the notation used by Leﬁrhmann.l7 In order.to label the
éymmetries of our wave functions, shown in Figs. 26,'38,‘30, 32, 33 and
35, we ha&e used fhe no;ation fo£ point group elements and. the character
tables found in Zak.23 In our caée, bf\course, these point operations
- must be followed by the appfopfiate'trénslations;  However,_several
remarks must be madé relating to the-additionél Symmetry, iﬁ some cases,
‘demanded by.fimg reversal invariance, and to the symmetry notatién for
points located in the interior of the zone.

In the 2H-4 (Dgh) structure time revefsél invariance adds additional
‘ symmetry to R. Thus R1 and RZ in 6ur notation are.qbtained from R1 + R4
+ 33, respeptively, using Zak's chargcter #ablef, In the case of

aﬁd R2

M (DZh) our notation is identified by replacing i and o® with Ulrand ol

in the character table for'D2h in Zak. - For Z(sz)‘We obtain our character
table by replacing C2, Ov and 0& with'Ul,'O, and OzvrespéctiVely in the
character ta?le‘for sz in Zak. Similarly for F(D6h) and A(C6v) our
notation is identified by replacing Oh’ 30V with OZ,FO(X) and 3OV, 30d with

(x) @5

30 s 30 respectively in the appropriate character tables found in Zak.

In the BC-8 (T;)structure time reversal ipvariahce adds additionél
symmetry todA, P, D, I and H. Thus for A(C3), Al and A2 in our nqtation
is obtained from 1 and 2 + 3, respectively, using Zak's Eharéctgr ﬁable.
Similarly for P, time revefsal invariance requires P1 remain Pl and |
P, + P, becomes P,. For D(CZ)’ D, + D2 becomes Dl'and for P(Th), 1 becomes

2 3 2 1

r 2 +'3 become T

v 2? 3°

8 becomes T6. The character table for H is the same ‘as for Th; it can

4 becomes [',,, 5 becomes F4, 6 + 7 becomes FS and

.
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be treated the same way as I'. In the case of A(CZV) our notation is

identified by replacing C2, Gv’ and Ov with Cg, 0’ and o° respectively

in the character table for C2 1n-Zak
. In the ST-12 (D )] structure our notation regarding labellng of
symmetry p01nts and directions is that of Leuhrman, as mentioned before,

and for this case it differs from Zak's notation. As1de from thlS,

’

time reversel invariance'iequires that Uy Mz S, R, T, M and U have

additioﬁal‘SYmmetry. Thus Yl + Y2 using Zak's: notatlon becomes U{ using:

our notation. Simllarly for M » "we have M1 ‘becomes Ml’ M2 + M3‘becomes

: 2, and M4 + M becomes M> , and for S we have'Sl + Sz_become'S. For R

5 3
we have A1 f A2 becomes R1 and for T, T1 + T2 become'Tl.. Finally, for
M we obtain Ml from Rl + R2 and M2 from R3 + R4 and for U we obtain

Ui from wi fbwz. In the case of T(D ), A(C ), Z(C ) and AZ (CA)’ which
are internal symmetry points; pur notation is identified u51ng the
character tables for D4, 2 and CA respecti§e1y found in Zak.
~B. Results
The band stfuetures of Ge and Si in the 2H-4, BC-8 and ST-12 structures,
shown in Figs. 26, 28, 30, 32, 33 and 35 were obtained from EPM calculafions

and the form factors used were given in Section III. In Figs. 27, 29, 31,

34 and 36 we show the €, spectra calculated from these band structures

2

using

. 4 ‘ .
£, ®) = % ezf‘ Z S(E (&) - E &) - E)|<k c|VIE, w2 (21)
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where IE,V) is a Bloch stafe in the Qalende band and the integral is
over the entire BZ, |

'For the 2H-4 and ST-12 structures we can distinguiSh beﬁ&een the
polarizétion of ﬁhe electric vectof and the c axis taken‘to_bevin the
z-direction.: In this case the factorfof 1/3 in Eq. (21) is removed and
we,haVe'péraliel‘polarizatioﬁ if wé use‘d/dz in tHe matrix element and
perpendicular polarization if we use d/ax or d/dy. “The integratioﬁ was
perférmed using tﬁe Gilat-Raubenheimer scheme;16 Tables III through VIII
summarize the major contributions to the yarious peaks in the é2 spéctrav
for the éix compounds. The first column identifies the energy of a
particulér peak and_the second'column containé the ﬁéjor_contriﬁutions
to this peak. identified by'interbénd transitions which are listed in -
order of decreaSing'streﬁgtH. In particular, we.list'ﬁhevbands which
contribute mofe strongly once we are away_ffom symmetry points and lines.
'The‘tﬂird>coluhn assigns'the ihterband transitioﬁs.t6 vérious regions
of the BZ; Finally,vinncolhmﬁs_ﬁﬁnfand five we list tﬁe symmetries of'
the critical points and their associated energies réspecfively. In
some cases, the symmetries were obtained from a preliminafy analyéis
and_uarréht further investigation. These are designed in the tables
by a tilde.

fhé,comﬁlexity of the BC-8 and the STle structures_introduces the
possibility that we may’ﬁave critical pointé whigh.are also inflectioﬁ
points along certaiﬁ directions. Although.it ié rather difficult to
determine this, it is concéivaSle that some of thevcritical points whose

symmetries are uncertain may be of this type.
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For compléteness we present an analysis for ail six compounds and
although experimental optical data are not available at the present,
the contributions and identification of strong interband transitions
to the optical properties will hot vafy appreciably with small'changes
in the form factors.

1. Ge 2H~4

. Il - ' | :
The threshold in 62 (Figs. 26 and 27) at 1.46 eV is caused by.l"5 - FS

transitions and the threshold in 62 at 1.77 eV is caused by Fl - F8

‘ ' 1 :

transitions. The rise in 82 around 2.25 eV is caused by F6 - FlO

" transitions which are associated with an MO critical point (cp).-and a
" ‘'region along A(A6 - AB) with small energy derivatives and large matrix

elements. The shoulder at 2.25 eV is caused by an M1 cp and associated
transitions A, ;'Al at 2.26 eV. The small shoulder near 2.50 eV inv€g

seems to be caused by an M0 cp near the center of the FALM face from

: o _ ' 4
bands ‘7-9. However, the shoulder near 2.50 eV in €2 is caused by

AS - Al transitions and an Ml cp appfoximately 3/5 of the way from [' to A.

The small peak at 2.68 eV in é;

;| ©p at about 7/10 of the way from M to L. Although regions
| (-

off symmetry directions around this critical point also contribute to €2

is caused bj U4 - U2 transitions and what

seems like an M

2

M1 cp near (0.5,0,0.4) at about 2.78 eV. These transitions aré.responsible
l Il

- for the peak obsérved around 2.75 eV in €2. The shoplder near 3.15 eV

in Eg is caused by 7-10 transitions from a region near the T symme;ry

direction from an MO critical point at about (0.08,0.08,0.2) with energy.

near 2.68 eV, this effect is overshadowed by U, - U2 transitions and an

4

3.03 eV. 1In addition 7-9 transitions contribute to this shoulder from

5 CP at 3.14 eV and neéf (0.11;0.11,0.2). The shoulder in

a probable M
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et at 3;35-eV is caused‘by'trans;tions from b;nds'6-9.in a large.region
" mainly in the T'ALM plane around anvM1 cp épproximately at (0.2,0,0.25). .
A similarVQHOulder in E& at 3.57 eV is.caﬁsed by a region with large
mafrix e}ements around what appears to be.an Ml cﬁ,#ear (0;2;0.2,0.35)‘
at about 3.57 eV. The strongest péak'in €§‘occﬁrs atv3.60'eV,apd:is>
caused mainly by 6-9 tr#nsitions in a large regién with.strong matrix

7 3 1

additional strength is obtained by 8-10 transitions in a region arodnd

elements around M, - M1 particularly»albng U, -U iand'Za'—'Zl. However,

R, - R; about 1/2 of the way from A to L ‘and from an M, cp near

2
(0.2,0,0.4) at 3.80 eV. " The_matrix elements are large from hw < 3,80 eV.
and very small for hw > 3.80 eV. The largest peak'iﬁ Eg océurs at 3.72 eV
caused‘mainly by an Mi cp near H at the same energy. ‘The peak in 82 i

at 4.52 eV is caused by small contribﬁtions from three different intérband
transitions. The main contribution is from 8-11 trénsitions in a

region (Ud4%?'around L, —'Ll,-tentativély'aesignated ag’Mo.cp'at 4,40 eV,

A slightly weaker cqntfibﬁtibh is from bands 3;9 Caﬁsed by é region around
the T éymmetry direction with what seems 1ike’anuM6'C§ near (0.23;0.23,0).

: | ‘ , 1
at 4.45 eV. The final contribution to the peak at 4.52 eV for 82 is

probably caused by an Ml cp near the center of the T'ALM face at 4.53 eV.

This critical point privides the strongest contribution.to the peak at 4.52 eV

l : . . . ‘
for €2 because of large matrix elements. The other main contribution to &
J ' :

this peak is caused by 8-9 tramnsitions with an M, cp at K and a region

2
. s l . .

along T'. The shoulder around 4.70 eV in 52 is mainly caused by 7-9

transitions with a probable M2 cp at K and a small region extending

along T'. Additional contributions to this shoulder are from 8-9

transitions in a small region around (0.4,0.15,0.15) with_an M3 cp at
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4.72. The final contribution to this shoulder is from a7region.éround
A particularly along S with a probable M2 cp near (0.03,0.03,0;45) at

4.71 eV. The shoulder in 6" around 4.70 eV is caused by an M0 cp near M

2

about 0.1 of the way along T' and from 7-9 transifions in a region near

K along f with a probable M3.cp at ébout 4.§ eV near (0.33,0.33,0.15).

The last descerﬁible peak in E; occurs.at 5.23 eV and is caused mainly

by FS - F12 trgnsitions which are associated with an M2 cp at 5.23 eV.
Additional contributions to this peak are from 8-11 transitions in a‘small

3 ép at 5.30 eV. The last

region around (0.08,0.08,0.35) which has an M
discernible shoulder in eg around 5.29 eV is caused by M, -'M4 and

23 - 24 transitions at 5.33 eV and 5.31:respectively, We have not

determined the symmetryvof these critical points. Other contributions
to this shoulder are from 8-11 transitions in a small region around
(0.3,0.1,0.15) at 5.29 eV. |
2. S1i 2H-4
The thréshold in»ég (Figs. 28 and 29) at 2.60 eV is caused by I - I,

transitions and a probable Mo'cp near (0.3,0,0) while the region around

this cp off symmetry directions contributes to the threshold in €g at

nearly the same energy. The first shoulder in El at 3.10 eV is caused -
By an M0 cp near the éenter of the TI'AIM face from bands 7-9. The next
shoulder in Eg occurs around ‘3.35 eV and is caused by U2 - U2 transitions

with an M, cp near (0.5;0,0.35)_at about 3.34 eV. The rise in'Eé

1

around 3.35 eV is caused by F6 - rlO transitions which are associated

with an Md cp and a region along A(A6 - A3). The shoulder at 3.35 eV

is caused by an Ml cp and associated tfansitions A3 - Al' The next

1
shoulder in €

2 at 3.60 eV is a result of AS - Al transitions and an M1
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' 1
cp approximately 1/2 of the way from I to A. The lartest peak in €2 at
4.10 eV is caused mainly by 6-9 transitions in a large region with strong
.matrix elements around M7 - M1 particularly along U3 - U1 and 24 - Zl.

To a much lesser extent additional strength to this peak is obtained from

™~

a region around R2 - Rl,'specificélly 1/2 pf‘the way from A to L. Here

" we find an M, cp near (0.15,0,0.5).at about 4.13 eV. The first large

2

peak in El occurs around 4.25 eV and is caused by a region with large
matrix elemen¥s around what appears tobbe an Ml cﬁ near (0.2,0.2,0.35)

at about 4.21 eV. VIn addition, a region near H aloﬁg S' which also has

' large métrix elements contributes around 4.26 eV. The shoulder at Eé

~near 4.38 eV is a result of an'Mz‘cp around (6.2,0,0.4) at 4.38 eV.and
transitions in a region around R2 - R1 near (0;2;0,0.5). The second 1arge
‘peak in Eg occurs around 4.68 eV and is the result of several contributions.
First, we have 8-10 transitions in a region near M about 0.2 of’the way
along T' Where'We:have a pfobéble M, cp at 4.64 eV. Next, thé;e are

8-9 transitions in a small region around (0,3;0;1,0)bwith'an'Ml cp at

0

Finally, we have contributions from the shoulder of a non-discernible

4.68 eV and .7-11 transitions with an M. cp at 4.61 near (0.4,0,0.35).
peak around 4.75 eV caused by 7-9 transitions aiong T with what is
| probably an M2 cp at 4.74. The peak in 52 at 4.69 eV is caused mainly
by 8-9 transitions.along‘the T symmetry direction Qith an MO cp at
4.57 eV.and to a lesser extent from A6 — A5 transitions with what.seems
like an Ml cp at 4.69 eV near (0,0,0.3). The ‘peak in €é at 4.89 eV is
‘a result of what appéars to be an M2 cp at K around 4.87 eV and a
probable M2
s" at 4.91 eV‘is caused by a probable Mz'cp for 7-10 and 8-10 transitionsv

cp near (0.3,0.25,0.25) around 4.89 eV. The shoulder in

2
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at 4.91 eV and 4.93 eV near (0.2,0.08,0) and (0.2,0.1,0) respectively.

1
The shoulder in €2

slightly off the I direction at a probable M

at 4.96 eV is caused mainly by 8-11 transitions

2

at 4.96 eV, while the shoulder at 5.50 eV is a result'bf FS - F12 transitions

cp near (0.35,0.05,0.05)

with an associated Ml cp at 5.47. Finally, the shoulder around 5.55 eV

in E"

2 is caused by My - M, agd 23 - 24 transitions at 5.61 and 5.54 eV

respéctively.
' 3:' Ge BC-8

The first peak in'€2 (Figs. 30 and'31)‘at 2.03 eV is caused By
Zl - 22 transitions with an M, cp about 4/5 of the way from ' to N. The
shoulder at 2.?6 is caused by a émall region around Z, - 22 with a
probable cp near (0.4;0.4,0) at 2.46 eV whbse symmetry we have not
determiﬁed. Additional conﬁributions to this shéuldér are from A4 - A4
transitions and én_MO cp about 1/2 the way along A at 2.41 eV. The main
contribution to the peak at 2.70 éV is from 13-17 transitioﬁs in a
small region around an MO cp near (0.2,0.8,0.15) at 2.67 eV. A smaller
contribution is from G2 - Gl traﬁsitions with what appe;rs to -be on M0
cp near_(0.15,0.85,0) at 2.65 eV. Tﬁe large peak at-3.21 eV is a
result of many coqtributions. First, wé have l6f19 transitioﬁs in a
‘regign of large_matrix elements'éround an MO ép ﬁéar (0.25,0,35,0.25)
at 3.19 eV. Next, we have G1 - Cé transitions with an M2 cp near
(0.4;0.6,0) at 3.24 eV and a region of large matrix elements around -
(0.3,0.4,0.15) at about 3.23 eV. Thirdly, thére‘aré:i4~l7 tranéitions
in a regiqn around (0;2,0.4,0.15):with what appearsrto.be an M2 cp at
3.21 eV. Finally, we have 13-18 transitions near_(0;3,0.45,0) with an

M, cp at 3.21 and G, - G, transitions with a probable cp at (0.22,0.78,0)
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whose symmetry we have not determined. The shoulder’arbund 3.76 eV is
also the result of several contributioné.. The first is from 15-19
transitions in 'a region néaf‘N with G2 - Gl'transitions and"an‘M3 cp
.near (0.4,0.55,0) at 3.78‘eV. Next we have 12-18 trahsitions near N

with G, ~ G1 transitions and an Ml cp near (0.35,0.65,0)'at 3.76 eV.’

2
Finally, we have contributions from a small regidn(around I' with T2 - F6

transitions and an M, cp at 3.74 eV. The shoulder at 3.98 eV is caused

3
by 14-19 transitions in a large région éround (0.25;0.65,0.15) at 4.0 eV,
The last discerniﬁle peak occurs at 4.50 eV and is causgd by 12-19
transitions in a region around (0.26,0.63,0.15) and 14-20 transitions .in
a large regién aroﬁnd (0.1,0.5,0.1) both with strong matrix elementé.
In.addition, we have cOﬁtributions from 16-21 transitions in a region
éround (0.15,0.2,0.1) with an M, cp néar 4.48 eV and Al - A4.transitions

with an M. cp near (0.25,0,0) at 4.42 eV.

0

4., Si BC-8
" The threshold in e2 (Figs. 31 and 32) ét 0.43 eV is Causedvby

Hy - H, transitions. The small bump around 1.70 eV is a result of

Al - A4 transitions with an MO cp near (0.55,0,0) at 1.65 eV. The

next small bump'at 2.04 eV is caﬁsed by what appears to'b; an M2 cp

near (0.3,0.55,0). The shoulder at 2.60 eV is primarily caused by

Zl - 22 transitions with an M, cp near (0.4;0.4,0) at 2.62 eV. Additional
structure is obtained by 15-17 trénéitions in a region:afound an MO cp
near (0.3,0.5,0) at 2.54 eV. The shoulder at 3.0 eV is caused by

13-17 transitions in a small region around an MO cp near'(0.2,0.7,0.15)

at 2.96 eV. The large peak at 3.45 eV is the result of many contributions.

The first is from 13-17 transitions in a region of every large matrix

i
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elements around (0.1,0.5,0{1) at about %.46veV.] Next we have 14-17

transitidns:in a region around what appears to be an M2 cp near
'(0.2,0.4,0.15) at 3.45 éV with strong ﬁatrix eléments.. Also,'there are
16-19 tfansitions.in a small regioﬁ with very large-matfix elements and’
a? ercp near (0.3,0.4,0.2) at 3.43 eV. Finally, thgre ié a_fegion
ardund'F1 - I'¢ transitions ﬁith an associated M, cpﬂat 3.38 ev.

The shouldef at 3.7 eV is caused by a small fegioﬁ around Gi - G2

transitions with an M, cp at 3.7.eV near (0.45,0.55,0) and by a small

2

region around D1 - Dl transitions with large matrix elements and an M1

cp at 3.68 eV aroundx(0.5,0.5,0.15).. The shéulder at 4.05 eV is the.
result of several typés of transitions. First, we'haye 16-21 trénsitions
in a sﬁall region around (0.2,0.6,0.15) witﬁ largevéatrik elements and
'Al - A2 transitions with an M2 cp near (0.5,0,0) atv4;04 eV. /Next we

have 15-21 transitions in a small region around (0.2,0.6,0.1) with an

associ_ated'M0 ép'at 4.02 eV and G1 - Gl-(l3-18) transitions'with a
pfobable cp . near (0.2,0.8,0) whose symmetry we have not yet determined.
Finally, we have 14419 transitions in a. region around what appears to.:

be an M, cp near (0.25,0.65,0.1) at 4.07 eV. The large peak at 4.20 eV

1

is mainly caused by 16-22 transitions in a region of very large matrix
"elements around what éppears to be an M, cp near (0.2,0.5,0) at 4.20 eV."
In addition we have contributions from 12-18 and 15-22 transitions in a -

‘ sméll aroundvan M2 cp near (0.15,0.7,0.15) at 4.22 eV and an MO cp near

(0;15,0.7,0) at 4.14 eV respectively. Finally{ the shoulder at 5.05 eV
‘can be attributed to 14-21 transitions in a small region arbund ah

M, cp near (0.2,0.6,0.1) at 5;05 eV and D, - D tranéitions with a

1

2 1
probable cp near (0.5,0.5,0.1) at 5.0 eV whose symmetry we have not:

de;ermined.
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5. Ge ST—lé
In this section and the section on Si ST;lé we shall treat the
péfﬁendicular component of Eé first and discuss the parallel component in

the last paragraph. | |

The th;eshoid in Eg (Figs. 33 and 34) occurs at 1.46 eV and is
caused by'Xl - Zl transitions. The shoulder at 2.10veV is caused byl
equal.coﬁtributibns from 24-25 and 23-25 transiﬁions in small regions

(tubular along the z direction) around an M0

cp near (0.4,0,0.3) at 2.18 eV‘réspectively.‘ The

cp near (0.4,0.1,0.3) at

2.08 eV and an Ml

shoulder around 2.55 eV is caused mainly by 24-26 transitions in a

region around an M1 cp near (0.5;0;1,0.3) at 2.48 eV along with much

weaker ¢6ntributions from T1 - T1 (0.5,0.5,0.4) and Ui - Ui (0.5,0,0.3)

transitions at 2.52 eV and 2.50 eV respectively whose critical point

symmetries have not been determined. Next we have 23426 transitions in a
region of relatively large matrix elements around (0:4,0.15,0.25)
contribuﬁing at 2.62 ev. Other'contributions to this shouider are

from 22-25 and 21-25 transitions, with a probable M, cp near (0.4,0,0.25)

2

at 2.62 eV and an M, cp near (0.4,0.15,0.25) at 2.60 eV respectively,

1

along with transitions at M in a much weaker sense at 2.60 eV. Finally,

we have 24-25 transitions with an M cp near (0.1,0.1,0.4) at 2.54 eV.

0
The peak around 2.80 eV is the result of several types of transitions

whose contributions are all of comparable weight. First, we have

23, 24-26 transitions in a region (mostly along z &irection) around

Sl - S1 with an M, cp near (0.4,0,4,0.5) at 2,87 eV. Next there are

21-25 transitions in a region around an Ml cp near (0.4,0.15,0.25) at

2.60 eV which contributes to 2.75 eV because of matrix elements and in
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a weaker.aense Ai —'Al t0.4;0,0) transitions with.a cp of undetermined
symmetry at 2f80 ev. _Next &é have 24-25 transitions near the v symmetry
direction with an Mllcp near (0;2,0,0.4) at 2.70 ev; Finally, we have.
 24-27 tran31t10ns in a small region (tubular along z—dlrectlon) around

an M., c¢p near (0 5,0.1,0.3) at 2.76 eV along with some weaker T3 - FS

1

transitions with an M  cp at 2.75 eV, The shoulder aroundv3.0 eV is

0

caused mainly by 20-25 transitions in a region (tubular along z-direction)

around an M0 cp hear (0.4,0.15,0.25) at.2.93 eV and 22-25. transitions

in a région around 22 - Z2 with an associated MO cp at 2.98 eV along

With'much'weaker Tl - Tl (0.5,0.5,0.3) transitions at'3.0'¢V.‘ Additional
contributions to this.shoulder are from 24-27 transitions in a small
region near R along T with'an Ml Cp near (0.5,0.5,0.45) at 3.11 ev
and 19 25 transitions in a region of relatively large matrix elements
around (0 35 0 18, O) at 2.97 eV along with weaker M2 - M1 transitions
. with-what'appears‘to be an M2 cp at 3.0 eV. Flnally, we have 22—27 |
transitions with an MO cp near (0.5,0.15,0.3) at 3.04 eV.

The next shoulder around 3.20 eV is caused malnly by Zl - Z1
transitions with an associated M, cp at 3.18 eV along with much weaker
transitions_Zi'— ZT with an M3 cp at 3.20 ev; Othor oontributions to
this peak are from 21-25 transitions in a small region around U with
'lan M2 cp near (0.2,0,0.5) at 3.21 eV and 23-28 transitions in‘a region
(tubular along z~-direction) near R mostly along 1% with a probable Ml

cp at 3.20 eV. Finally, we also have contributions from 19-25 transitions
with an M2 cp near (0.5,0.15,0.3) at 3.21 eV along with weaker Al - Al
transitions near (0.38,0,0) at 3.20 eV. The peak at 3.50 eV is caused

mainly. by 19425,26vtransitions and 'a region (along z-direction) around
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cp at 3.46 eV and 18-25 transitions in a small region

R, - Rl with an M

1 0
around1Il‘— T1 near (0.5,0.22,0{5) with a probable MO cp at 3.49 ev.
Additional contributions are from Sl - S1 (20—25) tréﬁéitions with an
M0 cp‘nearb(QfO6,0.06,0.5) at 3.45 eV and what appears po be an Ml cp
near (0.45,0.45,0.5) also at 3.45 er» Other contributions ére from _
17-25 transitions in.a small région élong'T?_near (0;5;6.5;0.3) with a

brobable M, cp at 3.53 eV and 24-27. transitions with a.probable M,

1
cp near (0,0.1,0.25) at 3.47 eV and to a lesser extent T1 - Tl transitions
near (0.5,0.3,0.5)' at about 3.50 eV. Finally, we have T, -Ty (20-26)
transitions with an M2 cp atl3;47 eV and 22#27 transigions with an

M2 cp nearv3.54 eV and tb a lesser éxfent Al - Al transitions ﬁear
(0.45,0,0) contributing a£:3;50 ev.

The shoulder at 3.65 eV is caused by 17-25 trahsitions.in-a region
(tubular along z-direction) around aﬁ M2 cp at 3.67 erﬁear (0.5,0.25,0.3)
and in a’Weaker sense bS"Z1 ~ 2y tréﬁsitions with éﬁ M, cp‘af 3.65 eV.
Other'contributions to this shoulder ére from 23—27 transitions in a
relatively large region around (0.1,0,0.25) which contfibutes é;ouﬁd
3.65 eV, 24f29 transitions -in a region around.UX with an MO cp near
'(0.22,0,0.5) gt 3.60 eV, and 24—30 transitions at R with an‘M1 cp at
3.60 eV. The peak at 4;20 eV is qéused by 24-30 traﬁsifions in a region

. (mostly in z-direction) near v aroﬁnd (0.3,0,0.4) which contributes at

about 4.18 eV along with weaker transitions in a region around M at

'. 4.20 eV. In addition we have 21-27 transitions with an M2 cp near

(0.15,0.15,0.2) at 4.22 eV and 23-28 transitions in a region arQund

AZ—’Al with most of the contributions near (0.1,0,0.05) at 4.20 eV.
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Othef transitions contributing to this peek are 2lf28'transitions in |

a small region near U* around (0.15;0;0;4) at 4.20 eV and 20-25
_transitionsvaround 22 - Zl.with an Ml cb near (0.7,0.7,0) at 4.21 eV.
Finally, we also have some weak struCtﬁre from S1 - 81 (23-32) transitions
with a cp of undetermined symmetry near (0.22,0.22,6;5)'at 4.20 ev.

The last peak that we shall consider in 82 occurs at 4.50 eV and

is the result of‘many’different contributions. First; we have 23-31

transitions in a region around Ui - Ui with a probable M3 cp near

(0.5,0,0.2) at 4.57 eV and 22 - Zl (21-23) transitions with a cp of

undetermined symmetry near (0.4,0.4,0) at 4.48 eV. Next we have 22-30

]

transitions in a.shall_fegion near U0 with an Ml cp'around_(0.45,0.1;0.05)
at 4.36 eV and an Ml cp near (0.3,0.15,0.4) at 4.52 eV, In addition e
have 20-26 transitions with an M3 cp near (0.15,0,0.1) at 4.54 eV and

' 20-28 transitions with an M, cp near (0.15,0.15,0.25) at 4.47 eV,

Finally, for completeness we also list in Table V = a set of much weaker
transitions along symmetry directions at critical points of undetermined

zZ Lz ' . y _ Y
3 Ml transitions and ending with U1 Ul

transitions. Taken as a whole they are of comparable weight to the

symmetry, starting with M

others discussed above.

The threshold in EZ

from 22 - Zl transitions at 1.46 eV andvvery'small matrix elements near

occurs around 1.60 eV with minute matrix elements

1.6 and appreciable contributions only from Az'— Al transitions with a

probable M, cp near (0.4,0,0) at 1.7 eV. The shoulder around 2.15 eV

1
is caused mainly by 22 - Zl transitions with an MO cp near (0.37,0.37,0)
~at 2.07 eV. In addition we have contributions from 24-25 and 23-25

-transitions in small regions around what appears to be an M0 cp near
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- (0.4,0.1,0.3) at 2.08 eV and an M1 cp near (0.4,0,0.3) at 2.18.respectively.
The shoulder around 2.65 eV is caused mainly By 21-15 transitions in a

region around an M. cp near (0.4,0.15,0.25) and 2.60 eV and a region

1
(particularly along Uy) around ZT - ZT with a probablevM2 cp at 2.65 eV

and U{ -'U{.transitions éontributing at‘2.63 eV. Additional contributions

are from 22-26 transitions with an M1 cp near (0.5,0.2,0.25) at 2.74 eV

and 22-25 transitions in a region around M; - Mi with a probable M2

cp at 2.70 eV. Finally, to a much lesser extenf, we have contributions
ffom F3'— T4.trgnsitioﬁs with an MO cp at 2.64 eV,

 The peak at 3.20 eV is a result of severa1 interband cqntributiéns
of approximately the same weighi. ,Firs£ we have 24-27 transitions in
a region around Zl - Zl with an Md cp at. 3.18 eV along with weéker_
Z? - ZT transitions with an Mj cp at’ 3.20 eV and A2 = Al transitions
with a probgble M, cp near (0.45,0,0) at 3.18 eV. Next we have 21-25
transitions in a small region (mostly along z—difeétioﬁ) around‘Ux with
an M, ép‘near (0.2,0,0.5) at 3.21 eV and a region Qf'lérge matrix
elements near'(0.2;0.2;0.35 ébntribﬁting t6.3.20 eV. 1In additign we
have 24-26 transitions in a fegion aroﬁnd Sl - Sl'with an M3 cp near

(0.26,0.26,0.5) at 3.26 eV and in a weaker sense R, - Rl (23-28)

1
transitions at 3.20 eV and 22 - Zl (24-28) tfansitions with a probable
M1 cp near (0,25,0.25,0)_a§l3.20 eV. The next peak in 3.50 eV is a
fesﬁlt, in part, of 20-25 tramsitions in é region around 22 - 22 with
a cp of undetermined symmetry at 3.48 eV and Sl - Sl transitions with
an MO cp near (0.06,0.06,0.5) at 3.45 eV. Inbaddition, there are

contributions from 22-27 ﬁrénsitions in a small region around an M2 :

~ cp near (0.3,0.1,0.3) at 3.54 ev, FS - FS transitions with an associated
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MO cp at 3.44 eV and 20-26 trahsitions in a fggibn (tubular along é—
direction) of relatively'large matrix elements aroﬁﬁd‘(0.3,0,1,0.3)
at 3.53 eV. Finally, there are weaker cont;ibutiéhs from 22 - Zl
(24—29) and Al.é A2 (24f26).ﬁransitions with C?itical points of
undeterﬁined symmetry hear (0.35,0.35,0) at 3.45 eV énd near (0.3,0,0)
at 3.48 eV.fgspectively.v o | |

The shouldef af 3.70‘eV is caused by 24—28 trénsitions in a small
.'region around‘Al'— AZ with a cp.of undetermined'symmetry near .(0.26,0,0)

1 1
also at 3.70 eV. Other contributions to this shoulder are from 21-27

at 3.70 eV and S, - S, transitions with a probable M2 cp near (0.2,0,0)

transitions around Zf - Zi with an Ml cp at 3.69 eV and Ui - Ui

_transitioné with a cp of undetermined symmetry near (0.5,0,0.2) at

3.71 eV. The peak at 3.90 eV is caused in part b& 19-25 tranéitions
in a sﬁall region (mbstly in z-direction) around an M3 cp near
(0.2,0.15,0.3) at 3.92 eV and 24-29 transitions around A - A% with an.
M2 cp near (0,0,0.18) at 3.94 eV. Additional contributions are from
23—29‘tfansitions around Al - A2 with what éppears to»be an M2 cp

at 3.9.eV, S; -'Sl transitions with a cp of undetermined‘symmetry at
3.9‘eV, and Ay - Al (21-26) transitions with a probable Ml,cp near
(0.15,0,0) at 3;88 eV. The peak at 4.20 eV is caused in part 5y 24-29
transitions in a region of very large matrix elements around F3 - 1"4
with an M3 cp at 4;22 eV'an& 20-25 transitions in a region around-F3.— Fél
cp near (0.07,0.07,0) at

with an M, cp at 4.16 eV along with an M

0 1
4.21 eV from 22 —le transitions. Other contributions to this peak are
from 21-28 transitions in a region around FZ - Fl with an MO cp at 4;22 eV .

including in particular Ai - Ai transitidns at 4.23 eV, transitions in
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‘a small region near U™ around (0.15,0,0.4) at 4.20 eV, and to a lesser

extent S5, - S1 transitions with a cp of undetermined symmetry at 4.20 eV.

Still other contributions are from 22-29 transitions with an M0 cp near

x X L. .
1" Z1 transitions with ap My cp

at 4.24 eV. Finally; we have 24-30 transitions with an-Ml cp near

(0.15,0.15,0.2) at 4.21 eV and weaker Z

'(0.1,0.1,0,3) at 4.26 eV and_22—30 transitions in a region around
(0.3,0;25;0.25) contributing at 4.21 eV. a |
The last peak'that we shall consider in Eg occurs at 4.40 eV and

is thé result of many different contributions. First Qé have 20-26
trénsitions in a region (tubulag along z—direction) around an-M2 cp nearv
(0.17,0.17,0.1) at 4.42 eV and 18-27 transitions in a:région aroﬁnd

Zl.— Z1 with an M0 cp ét.4.26 ev. Next we ﬁave 23-2§ (Zl —'22) transitions
and 22-27 (Zl - Zé) transitions with a critical pdints of undetermined
symmetry near.(0.14,0.l4,0) at 4.40 and 4.37 eV respectively along with
Al - Aé trénsitions Qith a cp near (0.25,0,0) at 4.40 eV. Other '
cohtributions are. from 23-24‘trahsitions around M; - M;, with a probable

M, cp at 4.40 eV and.Z1 - 22 transitions with a cp of undetermined

2
symmetry near (0.35,0.35,0) at 4.40 eV. 1In additiqn, we have weaker

contributions from 16-26 transitions in a small region around.Z2 - 22,

3
-Finally, we have 23-30 transitions with an M3 cp hear (0.35,0.15,0.3)

particularly along A;_— AZ at 4.40 eV, with a probable Ml cp at 4.37 eV,

at 4.42 eV, Al - AZ transitions with a cp of undetermined symmetry near

y ¥

1 1 with a cp

(0.37,0,0) at 4.40 eV, and 22-31 transitions around U

near (0.5,0.3,0) at 4.40 eV.
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6. Si ST-12
v The ‘threshold iﬁ'Et (Fiés. 35'and‘36) occurs at l.76veV aﬁd is the
result of 24-25 transitions around an:MO cp near.(0.4,0.2,0); The
shoulder at 2.33_eV.is'caused ﬁy 23-25 tfansitionsvand 24-25 transitionsv
in a regian (tubular along z-direction) around an Ma cp near (0.4,0,0.3)
at 2.31 eV and around an M

1
The shoulder at 2.50 eV ié caused by 23-26 and mainly 24-26 transitions

cp near (0.4,0,0.45) at 2.33 eV respectively.

in a region around M with a probable Ml.cp at 2.50 eV. 1In particular,

" we have contributions from T1 - Tl transitions with an_Ml cp near

z zZ

(0.5,0.15,0.5) ‘at 2.52 eV and U] - U] transitions at 2.5l eV. Finally,
we have weaker transitions from a region near AN along U{ - Ui contributing

to 2.45 eV.

The peak ét 2.80 eV is a result in part of 23,24-26 transitions in
a region around Sl - Sl (0.4,0.4,0.5) at 2.76 eV‘with particularly
vstrong cpntributions off the symmetry axis wigh an Ml cp near (O.4;0.4,0.4)
at 2.80 eV. Other contribﬁtions;are f?om'21é25 transitions with:an MO

cp near (0.45,0.15,0.3) at 2.73 ev; A2 - Al transitions with a cp of

undetermined symmetry near (0.45,0,0) at 2.80 eV, and U{ - U{ transitions

with an M1

cp near (0.5,0.2,0) at 2.79 eV along with 22-26 transitions
in a large region (aloﬁg z-direction) around (0.5,0.3,0.15) contributing

at 2.82 eV. Finally, we have contributions from Z1 - Z1 (23-28) transitions

with an M cp near

0 2

cp at 2.78 eV and 22-25 transitions with an M
(0.4,0,0.25) at 2.74 eV. The shoulder at 3.20 eV is caused mostly by

20-25 transitions in a region of relatively large matrix elements around

‘Al - Al, with an MO cp near (0.39,0,0) at 3.17 eV.and a region around
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Zl - 21 with an M, cp near (0.37,0.37,0) at 3.21 eV, along with 19-25

transitions in a region (along z-difection) around Zl - 22 with a probable

M; cp near (0.4,0.4,0) at 3,18 eV. Additional contributions are from

22-25 transitions in a region around 22 - 22 with an M0 cp at 3.18 eV

and an'Ml Cp near (0.2,0.2,0.25) at 3.16 eV and 20-26 traﬁsitions in a
regioh around U’ with an M1 cp near (6.5,0.35,0.05) at 3.17 eV and a
bcp of undetefmined symmetry near (0.4,0.4,0) fr;m Zl - Zl transitions
at 3.20 eV.  Other contributions are from 22-28 transitions, from a cp .

of undetermined symmetry around U{ - U{ near (0.5,0;4,0) at 3.20 eV and

R, - R, transitions at 3.20 eV, and 21-26 transitions in a region

around T? with an Mz'cp near (0.5,0.5,0.4) at 3.23 eV.
1 ' ‘
The largest peak in €2 occurs at 3.38 eV and is the result of many
types of transitions, First, we have 20-25 transitions'in a region

near R along T” with an M, cp near (0.5,0.5,0.45) at 3.39 eV and 19-25

;ransitions'in a similar region around T with a probable M3 cp near
(0.48,074830.4) at 3.45 eV, along with 22 —'Zl trahSitiohs.near'(0.35,0.35,0)
with a cp of ﬁndetérminéd symmetry at 3.35 eV. Néxt; we have 22-26
transitions, with a large region (;long z-direction) around an M2

cp near (0.25,0.25,0.3) at 3.36 eV. Additional contributions are from

cp near (0.4,0.2,0) at 3.35 eV and v -0

18-25 transitions, with an M 1 1

0
transitions near (0.5,0.38,0) with a cp at 3.4 eV, and 24-27 transitions

with an Ml cp near (0.15,0,0.3) at 3.38 eV and Ui = Ui transitions near

(0.5,0,0.15) with a cp around 3.38 eV. Finally, we have 22-28 transitions,

with an M, cp at 3.37 eV from 22 - Zl transitions and an Ml cp near

0
(0.45,0.4,0.3) at 3.35 eV, and 23-27 transitions with contributions

from various regions of the zone contributing at around 3.35 eV. The
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shoulder at 3.60 eV is caused in part by 20—25'trén$itions in a region

near Z afound i with an M cp neér (0.1,0,0.5) at 3.60 eV and 21-26

0
transitions with a probable M1 ¢p near (0.3,0.2,0.25) also at 3.60 eV.

Other contributions are from 22-27 transitions in a region around

Z, - 21 with an M. cp near (0.3,0.3,0) at 3.50 eV, 21-29 transitions in

2 0]
a region around R1 - R1 with anvM0 cp at 3.59 eV ahd223—27 transitions

with an M, ¢p near (0.1,0.1,0.25) at 3.54 eV. Finally, we have 23-28

0
transitions with an Ml cp near (0;5,0.15;0.3) at.3.58 eV, 22—26 transitions
in a region around A; - AZ with a cp of undetermined symmetry near
,(0,0,0.3) at 3.60 eV and 22-28 transitions in a region around 22 - Zl
with a cp near (0.32,0.32,0) at 3.60 eV. |

" The ﬁeak around 3.85 eV is fhe result of many types of transifions
contributing approximately‘eQually to €§. First,_wg have 24-29 transitions

in a’regibn around Z; - ZT with an M2 cp at 3.92 eV and 23-28 transitions

in a region (tubular along z-direction) arcund FS - Fi'with an MO cp

at 3.71 eV -along with AZ - Ai transitions with an M2 cp'ﬁear (0,0,0.24)
‘at 3.85 eV. Next we have 23-29 tfansitions in various regions'of the
zone with strongest contributions from a large tubuiar region in the

| z-direction around (0.35,0.15,0.25) contributing ét 3.85 eV and 17-25
transitions in a large region around Ui - Ui (0.5,0,0.33) parallel to the
T direction contributing at 3.85 eV. Other contributions are from 22-27
| transitions, with a probable M1 cp near (0.15,0.15,0.2) at 3.81 ev,
21-29 transitionsf with contributioys from a small region around Zl - 22
and an M, cp near (0.42,0.42,0) at 3.88 eV, and 20-26 transitions with
what appears to be an Ml cp neéf (0.15;0.1,6.4) at 3.89 eV. Finally, we

have 16-25 tfansitioﬁs in a region around Mg - M; with an M1 cp at
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3.86 eV and 23—20>t£ansitions witﬁ a prébable M1 ép near (0.35,0.35,0.25)
at 3.81 eV, ‘ |

Ihé last structure we shall consider'in the_Eé‘spectrum occurs at
4.45 eV. fhis shoulder is Eaﬁsed-in_pért by 20-26 transitions in a
region (along z-direction) around what appéafs to be an M2 cp near
(0.1,0,0.1).at 4.48 ev; Zl'— Zl traﬁsitions with a cp of undetermined
symmetry‘ﬁear (0.12,0.12,0) at 4.44 eV and 23—25 frénsitions with a cp
at MZIF MZ ét 4;46 eV. Other contributions are'frém 15-27 transitions

2 3

. . o Z z
in a region around M

3 1

transitions near M® with a cp from 22 - Zl transitions near (0.44;0.44,0)

—_M with a probable M; cp at 4,45 eV and 15-26

z
1
at 4.45 eV. Next we have 14-26 transitions, with a cp at Mg - M; at

at 4.42 eV along with Ui - U transitions with a cp near (0.5,0,0.34)

4.41 eV and a cp from T1 - T1 transitions near (0.5,0.28,0.5) at 4.45 eV,
and 21—27‘tfansitipns with a prébable M1 cp near (0;2,0,0.2) at 4.40 eV
aﬁdva cp from A; - A; traﬁsitions near (0,0,0.27) at ‘4.45 eV. Finally,
we have contributions from 22 - Zl (22-33)‘transitioﬁ$vwith 5 ¢p near

(0.44,0.44,0) at 4.45 eV; L. - Zl'(22-33)’tran§itiéns with a cp near

1

(0.4,0.4,0) at 4.45 eV, 19-27 transtions with an M

o CP mear (0.35,0.15,0.3)

.at 4.48 eV and a series of weaker transitions listed for completeness
_in TableIV.
The threshold in Eg occurs at 1.76 eV and is the result of 24-25

transitions around an M, cp near (0.4,0.2,0) which are weaker than in

0

1 .
the €, case. The shoulder starting at 2.32 eV is caused in part by

2
23-25 transitions and 24-25"transitions in a region (mostly along z-

direction) around an MO cp near (0.4,0,0.3) at 2.31 eV and around an

M1 cp near (0.4,0,0.45) at 2.33 eV'respectively. .Other contributions
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are from 24-26 transitions in a region around Ui - Ui with an MO cp
near (0.5,0,0.4) at 2.46 eV and 22-25 transitions in a region around

22 - Zl with an MO Cp near (0.35,0.35,0)‘at 2.32 eV. The shoulder

around 2.80 eV is caused to a large extent by 24-26 transitions in a
small region around an M0 Cp near (0.1,0.1,0.4)'at 2.81 eV and an

vMO cp near (0,2,0;2,0.5) at 2.79 eV. Other strong contributions are

frdm 21-25 transitions with an MO cp near (0.45,0.15;0.3) at 2.73 eV,

U{ - Ui transitions with an Ml cp near (0.5,0.2,0) at 2,78 eV and

22-26 transitions in a region (alohg z—direction)‘around‘0.5,0.3,0.15)

at 2.82 eV and an M, cp at M at about 2.65 eV. Weaker contributions are

0
from Z1 - Zl (24~27) transitions with an M0 cp at 2.79 éV and 24—25
fraﬁsitions with an M2 cp near (0.2,0.05,0.4) at 2.81 ev.

The peak at 3.30 eV is caused in part by 21—25_transitions in a region
(tﬁbular along z—directiqn) around U with an Mz.cp neér (0.2,0,0.5)
‘at 3.33 eV and 23-27 transitions-with an Ml cp near (0.35,0.15,0.3)
at 3.31 eV. Additional dohtributions'toithis peak are from 22-26"
transitions in a region around what appears to be an Mé cp near
(0.25,0.25,0.3) at 3.36 eV and 23-26 transitions in a region near I' with
parficularly strong contributions from AZ,_ AZ transitions at about 3.3 eV.
'Finally, we have contributions from 24—26 transit?oﬁé witﬁ an M2 cp
near (0.12,0.12,0.25) at 3.25 eV and 21-28 transitions in a region
ardund'Z2 - Zlvwith a cp of undetermined symmetry near (0.14,0.4,0) at
3.3 eV. The peak at 3.65 eV is the result of three main types of
contributions. First, we have 22-27 transitions in.a region near Z-

off the S direction with a probable Ml ép'near (0.15,0.1,0.45) at 3.64 eV

along with an M1 cp near (0.2,0,0.4) at 3.69 eV, and 21, 22-27 transitions
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in a region of relatively large matrix eieménts near M off the U-
direction Qith a probable Mo cp.near (0.37,0.1,0.4) at 3.62 eV and

an M cp near (0.3,0.3,0.25) at 3.60 eV. Secondly, we have 19-25
transitions, in a region near Z around Sl - Sl; with an MO Cp near
(0.1,6.1,0.5) at 3.65 eV, and 20-25 transitions also near Z but around

U with an M cp near (0.1,0,0.5) at 3.60 eV ahd what appears to be an

0
M0 cp near'(0.2,0.l,0;3) at 3.62 eV. Thirdly, we have 24-28 transitions,
with a cp of undetermined symmetry near S1 - S1 (0,25;0.25,0.5) at

3.65 eV and a region around Tl - T1 with an M3 cp near (0.5,0.21,0.5).

at 3.74 eV and 23-28 transitions with an M, cp near T at about (0.5,0.15,0.4)

1
ét 3.60 eV along with weaker Al - A2 (24-27) transitions with a cp near
(0.35,0,0) at 3.65 eV.

The‘large ﬁeak at 3.90 eV is caused in part by 24—30 transitidns in
a region around én M1 cp near (0;5,0{22,0.25) ét.3.92 eV and'24—29; 30
trangitiqns in a région around Z? - Z? witHvan.MO ?p-at 3.93‘eV and

particularly strong contributions along U{ - U{ at 3.95 eV, Other
important contributions are from F3 - F4'with an M2 cp at 3.98 eV and

23-29 transitions with an M. cp near (0:2,0,0.3) at 3.91 eV. Next, we

0
havev18-25.tfaﬁsipions in a region around (0.3,0,0.4) contributing at
3.90 eV, A2 - Alltransitions with a cp near (0.35,0,0) also at 3.90 eV,
and 21—26'tranSitions in a”region around ;2 - Zl with an Ml cp near
(0.16;0.16,0) at 3.92 eV. Finally, we have 22-30 transitions with an
M0 Cp near (0.35,0.35,0;1) at 3.81 eV and 23-28 transitions with a

cp near (0,0,0.22) at 3.88 eV.



-57~

The'shéulder around 4.26 eV ig caused in part by 20-25 transitiéns .
in a regién (along z-direction) of large matrix elements around FB - FA
with an Mé €p ét 4.07 ev, 22—29.transitions in a regionl(along z—directioﬁ)
around M with a probable Ml‘cp at.4.28 eV, and 22-32 tfansitions in
é'region around Mgl—vMi with a ép at 4.30 eV and"in a region around
U{ - U{ with a cp near (0.5,0.3,0) af 4.26 eV. Additional contributions
to_this shoulder are from 20-28 transitions in a region around 0.4,0.2,0.25)
at 4;30 eV, 18-27 transitions in a region around Zl - Zl with an Ml cp at
4.25 eV and 19-25, 26 transitiohs in a.regioﬁ arouﬁdv(0.25;0;25,0.3) at
4.28 eV. Finally, we have 24-30 transitions with critical:points of
vundetermined symmetries near Ui.— Ui (0.5,0,0.15) at 4.26 eV,
'sll— 84 (0.3,0.3,0.5) at 4.27 eV, A - Aé (0.36,0,0) at 4.26 eV and
an M3 Ccp near (0.3,0.1,0.2) at 4.41 eV, The last structute we shall
consider in the Eg spectrum occurs at 4.96 eV. Tﬁis shoulder is caused
in part by 20-38, 29 transitions in a region (moétly‘albng z-direction)
‘arouﬁd (0.3,0,0.25) af 4.95 evV. Other contributions to this shoulder

_ from critical points of undetermined symmetry are listed in Table VIII.

C. Discussion of Amorphous Phases

The experimental amorphous dielectric function SZ(E)lothigs. 37
and 38) coﬁsists of ‘a seemingly featureless spectrﬁm with one broad peak
posifioned near the A peak in the FC-2 €2. This spectrﬁm.i; duite
different from any known crystalline 62 (except for Sf—lZ) and cannot be

obtained by simply averaging the peaks in the FC-2 spectrum.

24-29 to explain the amorphous'E2 have all

The theoretical attempts
assumed that long range disorder is of primary importance. They have

taken the FC-2 band. structure as a starting point and have applied
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various modifications to study the effect of long range disorder. In

some casés24’28 complete k non-conservation was considered in the sense

25-27,29 T
p

of a_ndn-direct transition (NDT) model and in other cases artial k

non—consefﬁation was pfopoéed ﬁhich enabled the intfoduction of some type
of short range order bafaméter. In all cases,'howevef, the results are |
similar, in good agreement with experimeptal €2 data, and the authors agree
that Stréng E non—cénservation'(long range:disdrder) is a requisite in
explaining the amorphous 82. None of thése theories, however,'predicts
éven a correct trend to the density of states of the amorphous_phase.

" The single broad peak11 at the bottom éf the valénce'bﬁnd density df
states for the amorphous case is very_striking and caﬁnbt be accounted .
for by a simple broadening of the two s-like peaks inlthe FC-2 structure.
This problem was discussed in Section III where we suggested that the
experimental results could be explained by a short range disorder which
would make the presence of five and sevenfold ringsvéf bondé appreciable.
It_is predisély'the lack of this short range disbrder_in these:thed;ies
that broauceévthis inconsistency with the eXperimental.data. To see

thié let us examine one of the most interesting and sophisticated of the
aforementioned - theories, which is that of a complex band structure

27,28 ‘Tt was instigated by the work of Maschke and Thomas26 and

(CBS).
" developed by Kramer. A one electron Green function is ekpanded in a
Born series‘and a configurational averaging is applied by intrbducing
in each term containing n scattering centers an n-particle correlation
function which is integrated over all n sites. It is theﬁ assumed

that the n-particle correlation functions can be approximated by products

of two particle correlation functions which are taken to be sums of
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Gaussian—like fﬁnctions céntefed on lattice sités, with HalfFWidths which
increase with'increasiﬁg distance from a given iattice ﬁbiht and are
proportioﬁél té a small parameter G.which describés'thé amount of
diéorder. This type of épproxiﬁatién treats correctly multiple
scattering at oﬁe afom only while higher multipie scattering terms are
treated approximafely_correctiy if one has a << l; The two‘bod§ correlation
bfunctions can be relafed to.experimental amorphods radiél‘disfribution
 functions (RDF); howéver, we notiée fﬁat in Ge for exaﬁple it would be
difficult to reproduce the second and third hump in the i{DF30 curves by
simply placing Gaussian—iiké functions-af FC-2 latticébpoihts.

| NevertheleSé, the éveraged Greeﬁ function serieé,‘whiéh is written
in terms of'pseudobotentials_v(q),31 can be redﬁced if‘oﬁé assumes slowly
varying éoténtial funétions and sﬁall eﬁough o so.as to také v(q) constant
in the K;integration whiéh in turn permits decoupling of terms and a
resdmmation of the series. The poles of this averaged Gre;ﬁ function
are now obtained from a generalizéa pseudopotentiai secuiar’edu;tion
which is now no longér ngmitién. Kramer then finds that:hevobtains
complei energies whose real parts are approxiﬁétely the.enérgiés of
the crysfal.and whose imaginary parts can be interpfefedmés avefage
recipfocal lifétimes or equivalently average energy widfhsi The average
82 spectrum is pbtained-by using the Kubo formula and perfAfming a
similar coﬂfiguratibnal averaging on a product of twd one electron
Green functions. With éome approximations the forms for the averaged
€2 and deﬁsity of states are similar in that they are wriffeh as a sum
.over partiél spectra belonging to hifferent régions of the BZ‘whére

the reciprocal lifetimes can be taken constant. The partialvépectra
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are then given by a convolution of the criétalline spectrum (shifted
in energy when appropriate as shown below) with a Lorentzian which
depends on an average reciprocal lifetime. The parameter O was chosen

to fit the € ‘spectrum of amorphous Ge and Si.

2
Kramer's results show ﬁhe valence band being affected-very'slightly

while the conduction band is broadened considerably.' In particular,

5 -AFZ and L, -'L3 gaps become sma;lerAwhile the X4 - Xl

gap becomes larger. Furthermore, F2 is very slightly broadened, L2 is

vfor Ge tﬁe F2

slightly broadened, and X, is largely broadened. This is not surprising

1
nor difficult to understand. In prinéiple, we-would expect the electrons
in the conduction band to be affected more by long range disorder than
the very well localized valence electrons. In faét, if we look at the
charge density at symmetry points in the conductioﬁ Band, we find that
X1 .
- difinite signs of localization. This is exactly the same trend observed

is lafgely spread out while L3 is somewhat localized and F2 shows

in the reciprocal lifetimes mentioned above. ‘The'effeét of this on €,

is then to aVérage out most of the X peak while preserving the A peék
and shifting it to slightly lower energies. The agfeement with the

' expérimental amorphous 62 is goodf The effect of:Kramer's disorder on
the density.of states, however, is.a strbngléveraéing of thé conduction
band and aivery small averaging of the valence band ‘peaks of FC-2. This
is certainly not in agreement with experiment.ll The problem is that

one is dealing here with a system that Has the short rangé order of
diamond. 1In fac;, the parameter &, used to fit 62, is very small and
corresponds, for example, to all first; second and half the third nearest

neighbors being within a deviation of only 0.04a of the crystalline FC-2
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positibné. It could be suggested thgt the densit& of states might.agree
betﬁef with experiment if O was taken to be larger. But now éhe Cé
would be'éhifted to 10Yer énérgies and agfeement w;th experimeﬁt here
would‘bé considerabiy_mérred.' Besiées, the appro#imatioﬁé involved in
obtaining Krémer'é.finélvexpreSsiohs may not be valid for lafg; a.

‘Thus, we‘Believevthat the conélusions drawn by applyinéﬁfhe CBS
fheory to the FC-2 structure are not valid for thé amorphous case, The
suggest:ion3'2 that the peak in the amorphous Ez'is'due to A transitions
because of the preservatiop~of the bonding direction is. highly: |
'questionéble’and is only a]conjecturé supported by analyzing a hypothetical
"amorphous" s&stem that is too close to the FC-2 structure.-

The'regults from these theorieé lead us to sﬁspect that the €2
spectrum may not be a good judge of the microscopic Structufal aspects
of the amorphous state and that one neéds a theory that will be able
to account for both the'density of states . and Fz_in the amorphous phase.
In Section III we aﬁélied thg con;ept of short range disorder to the
density of states and obtained good agreement with exﬁeriment% We
show how to do the same for the €2 spec%rum.

There are two features of the amorphous €, spectrum wﬁich are of
primary importance. These are, of course, the one hump form of the
spectrum anq the position in energy of this hump. Wg sﬁall,attempt
to accounf for these features in the follbﬁing anéif%is.

The crystalline CZ(E} may be written‘;é: |

e,(B) = B L T E ® - £ ® - By, v, @%@ @2

E c,Vv .



~62-

where C is a constant and J(E) is the joint density of states given by:

: > > N g
JE) =37 Y S(E (k) - E (k) - E) . (23)
E c,v ' .
Equation (22) is just an expression for an average matrix element P(E)

nulitplied by the joint density of states J(E).v_If we now incorporate the

constant C into J(E) we can write.
€,(E) = J(E) P(E) . | (24)

This is a physically reasonable expression and could be used to study

the amorphous phase since it is essentially the number of states accessible-

for transitions at an energy E, multiplied by an average probability for
those transitions. When one does band.structure calculations, however, it
'is easier to calculate an associated average matrix element M(E) obtained

) >->->+2 s )
by a weighted averaging of l(wc(k)IVva(k))l . Then Eq. (23) can be

written as33

£® = J(E) e (25)
Equation (23) or (24) can now be used to qualitatively account for_the

amorphous €, spectrum in a simple way. In the amorphdus case we would

2
expect J(E) to be a monotonically_increasing function of energy without any
sharp structure from specific localized regions in the BZ. Similarly,.

we would expect the average dipole matrix elemgnt P(E) to be a émooth
monotonidé;ly decreasing function of energy. The prbdﬁct of these

two functions.would then give a one hump structure whiéh woﬁld explain

the shape of the amorphous 52. To examine this in mofe detail we have

'calculated €. J/E2 and M, and J an-d_M/E2 as a function of energy for

2’

3
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Ge and Si iq the FC~2, 2H-4, BC-8 and ST-12 structures using'ihe
Gilat—RAﬁbenheimerl6'iﬁtegrgtion écheme. Tﬁe résults are shown in

Figs. 37 and 38. %orzeaph row the product of_the'tﬁo curvés-in.the second
and third columns givgs.the 52 ééeétrum in the first coiumnfi In the

casés of 2H-4 and ST;12 structures.ﬁe show the weighted avérage of the
Pérailel and Perpendiculér components of 62. We afe intereéfed_iﬁ,
observing the trendétas we go from FC-2 down'the'c01umﬁs to mére ;nd
iocally dié&rdered and compliéate& crystal stru;tureé. Foi théimqment

let us concentrate on the tﬁird.column in each figure. We notice that
with the-inqreasing complexity of the crystal structufes, J~gfadually
léses the sharp strﬁctufe"prbminent in the FC-2 casé which Waé'gaused

by the simplicity and symm?try ofAthis band structu;é. When we.reach
ST—12,HJ_is almost a smooth and'featureieés spectrum which would compare
well with what we expected in the amorphous case, In additibn the average
dipole matrix‘élemeﬁt M/E2 for ST—12 is for the most pért-a smooth
decreasing function of gnergy. Ihis:is particularly fhe casé for Ge ST-12
in a large enérgy region while in ST-12 fhisris tf@e for E>3 eV which,
however, contains the peak of sz If we now e#amine,the €2 spectra we .
notigé‘that it is ﬁrecisely the SI;lé structure thét has‘the qualities
ofAthe sgperimposgd amorphous 82 spectrum’obtaingd by‘Donovan and

Spicér10 for»Ge'andvby Pierce and Spicér10 for Si._ The agreeﬁent between .
the ST-12 spectra and the amorphous spectra.is quite encouraging and

shows that the kind of short range disorder which accounted for the

ambrphous density of states also accounts for the important features
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of_the amorphous 62 spectrum. Thé disqfepaﬁcy in magnitude of the 62
curves is irrelevan;'in this discussion and is caused in part by the
differences in bulk dénsity of the ST-12 -and amorphous structures.

An interesting feature that comes out of this analyéis is that
J/E2 should look something like a step functibn in the amqrphous case
since J is suéh a smooth polynomial-like increasiné funption of energy.
This would then suggest that the average gradient matrix element M
must contaih'mosf.of ﬁhe information about 62._ This is shéwn in Figs. 37f
and 38 as we gb &own the second column where we have plotted J/E2

and M. In the FC-2 case the €, spectrum looks mostly likeeJ/EZ_while

2
M simply.modulates the J/Ez'spectrum.. In the 2H—4‘structure we find
that the form of the 82 spectrum is now shared béfween J/Ez'and M where
M contributes most of the first peak and J/E2 contributes the second
.peak. When we examine the BC-8 case we find that'thé €, spectrum now
looks ﬁostly"like M while J/E2 just modulatés tﬁe.M spectruﬁ. Finall;,
in the ST-12 structure we find that J/Ez-iS'a relaiiyely featureless
step;liké function df energy and again €2 looks 1ike_M.~ :
Therefore, we can safely conclude from this that the average

giadient matrix element M determines the position in energy of the

hump in the amorphous 82, and most important, when phe measures the

amorphous €,  spectrum, one is essentially just measuring the average

2
‘matrix element M.

In summary our aim in this work has been twcfold. First to make
a complete band structure analysis of Ge and Si in a series of novel,

interesting and complicated crystal structures. This included calculating

energy eigenvalues, densities of states, optical functions, determining
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the symmetry of wave functions and identifying oﬁticél.structure. Secondly,
to use the increasing complexity of the crystal sﬁruétures to study
the trends oBservéd iﬁ the'density of ;fates and:thé impaiﬁary part of
‘the &ielectric fﬁnction as we appfoéch.the amorphous phase. ToAfhis end
we ha&e made_parLicular use of the ST-12 structuré whiéh has déviations
in bond lengths and angles and has 6dd—numbered_fings of bonds. VWe have
.nét used the'ST—lZ étructure as a rebliga of amorphous.Ge'éﬁdléi, but
rather as a téol:tb probe tﬁe importaﬁt.microscopié stfﬁétﬁraliéspects of
the amo?phbus phase. o

| Wg have.found that if one is to méke a reliable:m;del ;f.the amorphous

phase, one cannot start with a'long—range‘disorder model applied to the

FC-2 structure. On the other hand, a short-range disorder modei, defined

as a system with deviations in bond angles, bond lengths, with all bonds,
satisfied and with odd-numbered rings of bonds, could account for both

the amorphous density .of states and imaginary part of the_die1ectric

function. 1In particular we found that the aﬁorphous €2 is'just the

“'spectrum of an average matrix element.

If we now include long-range disorder to.our short-range disorder,

we would expect to.have a much better model for the amorphoué phase.

Qur point is, however, that the effects of long—range disorder‘are of

- secondary importance.
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V. EFFECTS OF DISORDER ON THE ELECTRONIC DENSITY OF STATES
; ~ OF BINARY COMPOUNDS

In this paper we would like to investigate in sdme detail the
-effects of disorder on the electronic density of states of amofphous
ITI-V semicénductoré. We shaliArestrict our disorder to topologically
disordered stoichiometric structures witﬁ atoms in fourfoid coordination
énd no dangling bonds. We will divide this disorder into two main
fypes'whicﬁ we Shail call disorder (U) and disorder (L). Diéorder )]
describes é disorder connected network éf atoms with deviations frém the.
ideal tetrahedral bond lengths and.angles buﬁ with the restriction of
having only unlike-atom bonds (i.e., only III-V.atom.bonds)f On the
_other hand, disorder (L) can also have ;1§gfatoﬁ‘bonds (i.e., ITI-III
and V-V bonds). As we shall sée this division of disorder into these
two types is useful since the effects of‘like—atom bonds on the density
of states are very strong and for the most part oversﬁadow effects
from diédrdef (U). Structures with_disorder (L) wili always have equal
‘numbers of III—III’and v-v bonds since we are assuming stoichioﬁétric sjstems.
In general,:if we let NIII-III’ NV-V’ NIII and NV be the totél number of
type III~III bonds, type V-V bonds,_type IIT atoms and type V atoms

respectively, then we have:

N N .
III-III III-V _
3 7 = N1 o (26)
N N o
V-V III-V _ - :
7 + 4 = NV (27)

so that the difference in percentage of type III-III and type V-V

~ bonds is equal to the difference in percentage of type III and type V atoms.
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We wish'to examine the effects and diffefenéeé:oﬁ disorder (U)
and disordei'(ﬁ) on the electronic density ofzstateé._ The purpose of
vthié would bé to examine an experimentél amorphous density of states
spectrumvand fo determine the type of disorder present. )

To our knowledge, there-have been as yet nd pﬁblished experimental
XPS or UPS spectra on amorphous'III—V compounds.: |

'To understand the influences df dispfaer (U)_and disorder (L) on
the densi;y of states we shall be iﬁterested primarily in effects dué to:

(1) topological afrangement of afoﬁs
‘(ii)bboﬁd angle and bond length distorfions
(iii) percenfage'of like—étom boﬁds |
‘(iv) different clustering configufationg of

like—atoms |

CY) topological variétions_of élusfets of

like—atoms

These effects can_bevstudied in the context of short range disorder
as we have done previously in our work on amorphous Ge and Si. We can
take a series of'crystéls whose primitive cells ére'becoming gradually»
larger. .This permits, and in fact we haye an ipcreaSé in the ppsitional
disorder éf:the'afomé, Thus, a study of thettrends observea in the
'deﬁsity of states fér thesé cfystals can give us specific infqrmation
about the effects of p§rticuiar types of disorder.

As we have shown in our work on cémplex structures of Ge ané Si,

the effects‘ofblongvraﬁge.disofder (i.e., the fact that we do not have .

crystals) are of seéondary importahce.
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In this paper we shall again take the 2H-4, 4H—8,YBC—8, ST-12
and SC-16‘(BC—8 taken as a simple cubic lattice) structures as a basis
for;burlétudies{ In the case of disordef U) we shéll use the 2H-4,
4H-8 and SC-16 structures while in the case of disordgr (L).we shall
examine the 2H-4, 4H-8, BC-8 and ST-12 structures. The reasons for
these choices will be given later.

To study these crystal structures we shall use simple three-parameter
tight binding modéls aﬁd'fhe EPM. The right binding‘scheme will be used
to easily discern structurai features in the density of states and the
EPM will provide a more realistic examination of the density of states.’
We also presenf chérge density calculations in order to examine the
nature of liké—atom bonds.

" In ali our calculationsvwe shall.take GaAs as a prototype of the
I1I-V compounds and we assume that our results on these effects of |
disoraer will be appiicéble to éll I1I-V compounds.. However, we are
not able at the present to predict with any cértéipty what III-V compognds
could exist with disorder (U) or disorder (L).

InvAppendix C we exémine the topological propertieé of theb2H-4,
4H-8, BC-8, ST-12 and Sé—lb structures in detail. If we place equal

numbers of Ga and AS atoms at the atomic positions defining the basis

for each of these five basic crystal structures we find that‘we can make
N!/((N/Z)!j2 different substructures respectively assuming each atomic
position to be distinct, where N is the total number of atoms in the
primitive cell. Some of these substructures are of course identical and
many of them are quite similar. In what follows we shall break up each "

group of substructures into smaller groups defined by the percentage of
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like-atom bonds present.' Wg shall then break ﬁp each of the smaller
groups into sub—-groups depending'ﬁpon the numbef of like-atom bonds
for eéch atom. This is of interest sincé'it_cﬁara;terizes each
substructure by the immediate envirénment of each of its atoms. Now
thé substructures iﬁ the subgrqups can be divided furfher into classes

debending upon the parficular clustering configurations of like atoms.

vHowéver, from stability considerations we restrict ourselves to

substructures that have atoms with only two or less like atom nearest

‘neighbors. The method used to investigate the total energy ﬁer atom

‘of these structures is described in Appendix E.

Wiﬁh this restriction we are effectively left with substructures
fhat have like-atoms whiéh caﬁ cluster into chain-like configurations
which may be open or closed. A chain is”defined by a series of nearest
neighbor 1like-atoms: These substructures can be Qery conjeniently
charécterized:or identified by using the following notétioh:

1.2 : 1 .2 oL
(NGa’ NGa’ e Nga/NAs’ NAs’ ctT NAS) B (28)

# : '
where M(L) is the total number of chains of Ga (As) atoms in the

primitive cell and Néé (Nis) is the number of Ga (As) atoms in the ith
chain. The fraction of like—atom bonds in a particular structure is
given by

M .

20D

i=1 _ T - : (29)
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where NT is the total number of étoms in the primitive cell. Since
we arév&ealing with stoichiometric sfrﬁctures an equivalent expression
to Eq. (29) could be obtained by replacing Né; by Nis. ~In Eq. (29) we
are éssuming finite chains of like-atom bonds. In the c;se of rings
or infinite éhains we can usg Eq. (29) but we must replace Né%—l by
‘Néa’ where Néa would represent the number of like-atoms qf the ith ring
or_infinite chain in the primitive cell. We could alsbrmake this
explicit in the notation Eq. (28) by placing an R (ring) or I (infinite
chain) after the_number'Ni. Thé numbér of atoms in the structure that
have zero like-atom neighbors is just’given by the total number of one-
iink éhains (i.e., Ni = 1). The number oantqms that have one like-atom
bneighbor is given by twice the fotal number of finite chains of order
greater thah one. Finally, the number of atoms in the strﬁcture with
two like-atom neighbors is given by the total numberAéfvatoms in finite
chains of order greater than two minus twice the number of finite chains
of order greater than two pius the total number ofuétoms in rings or
infinite chains. |

As an‘example, let us find what information we can obtain ébout two
substructufes of the ST-12 structure if they arerdesignated by (5,1/4,2)
and.(3,3/4I,l,l) respectively. In the first structure we have two Ga
atom chains of order fivg and order one and two As atom chains of order
four and order two. 1In the second strdctufe we have two Ga .atom chains
of order three, an infinite As atom chain with four atoms in a primitive
cell and two one As atom chains.. The fraction of like-atom bonds in

both structures is 1/3. In the first (second) structure there is one

(two) atom(s) with zero like-atom nearest neighbors, six (four) atoms
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with one iike—atom nearest néighbor and five (six) atoﬁs with two
like-atom nearest neighbors.' '

.We may now prbceed to analyze the 2H-4, 4H-~8, BC-8, ST-lZ And
SC;l6.structures-using fhe aforementioned notation as an aid to our
' characterization and diScussion. We shall not stﬁdy all the possible
distinct substructures that can be made but rather we select and describe
vinvAppéndix'é those whichvare most useful for our purposes.‘ Furthermore,‘
in many cases the notation (Néa . Nga/Nis .o Nks) does nof uniquely
define a particular substructure. For instance, we may have ﬁany
substructures forming a set in which they are all of.type (I,J/K,L).'.
In this case-we shall, arbitrarilj, use stability.(See Appendix E)
requirements as a discerning factor in choosing one sﬁbstructure to
study out bf this set. It should be noted, however, that the densities
of states of all the substructures of a givén type are very similarv
so that the method used in choosing oné sﬁbstfucture is relatively
unimportanﬁe | |

In our calculations we have interpolated the forﬁ factors obtained
by Cohén and Bergstresser31 for GaAs since in this reference VS was
constrained to Eé the Ge ﬁotential.b For other form factors34 the
qualitative features in the density of;states are the éame and we only
get small shifts in the energies of the peaks. i

For gﬁod convergence in the 2H-4 structure we used 50-60 plane
waves as a basis set along with anogher 140 plane waves through a
perturbation scheme developed by‘Lb'wdi.n.4 We calculated E(ﬁ)

in 1/24 of the BZ at 144 grid points. For the 4H-8 structure

we used‘approximately 70 plane waves as a basis set with about 200
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additional plane waves through perturbation theory. We diagonalized
our Hamiltonian in 1/24 of the BZ at 144 grid points for the (2,1,1/2,1,1)
structure and at 62 grid points for the (l,i;l,l/l,l,l,l) structure.
In the case of BC-8 we used 60 plane waves as a basis and an adaitional
140 plane waves through the Lowdin sphemé. We used 1/8 of the BZ with a
grid of 154 points. For the ST-12 structure we used‘about 70 plane waves
as a-basis set and another 270 plane waves throughvperturbation theory.
The Hamiltonién was diégonalized in 1/2 of the BZ at 192 grid points.
Finally,‘for SC-16 we used about 85 plane waves as a baéis set along
with approximately:235 more plane waves through the Lowdin scheme. The
eigenvalues were obtained in 1/2 of the BZ at 256 grid points.

Iﬁ our fight binding calculations werha§e taken the following

modificatipn of the Weaire Hamiltonian

_ : B |
' i, i,84#2"
+ v, z |9 @¢00n 4l
i#i',Q ) B

where thé,!¢i£) represent localized orthonormal basis functions.which
can be taken:as (SP3) hybridized directed orbitals (four to eaéh atom).
The'subscripts i and 2% label a particﬁlax atom'and ﬁhe orbitals of that
atom respectively. The first term in this Hamiltonian is a diégonalv
term which is taken ;o be +Vo or —Vo depending on whether the states'
are associated with group V atoms or group III atoms. The second term
represents an interaction V1 between different basis functions on the

same atom and the last term is an interaction V2 between basis functions
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along the same bond. We have.thus'ignéred the differences in the
interactions of basis functions on different‘atoms and along the

different types of bondsAand we have assumed edual bond lengths and an
.ideal tetrahedrél arrangemeﬁt of atoms. We used Vé = 3.2 eV, V1 = =2.7 eV

and V, = -6.1 eV which are the same values as those used by Weaire and

2
Thorpe for their calculation of GaAs in the zinc blende structure.
The moét.prominent features of this tight binding model are an
inadequate conduction band because of the limited number of basis functions,
a relatively good description of the s-like states, and for the case of
stfuétures with all or no bonds that are like-atom bonds, a delta
function peak in the density of states at the top of the valence band.
This peak contains pufe p-like bon&ing states with a degeneracy of one
state per atom. This is interesting because it says that to first order
with nearesf neighbor interactions which are independent of the Aihedral
angle the p—like stafes are not disturbed by topological differences.
' _This 1s a fact that is supported to some degree by experiment.ll’ However,
if we introduce the possibility of having like and uﬂlike—atom bonds in
our structures it is no ionger true that the delta function will contain
one state per atom. Itvwould, therefore, be of interest to obtain an
expression for the degeneracy of the delta function depending upon the
type of like and unlike-atom bond configurations that exist in a
particular structure. One thing this will give us is an idea of hoﬁ

much of the density of states of zinc blende is preserved under disorder

w. | | | ‘
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Consider first the case where we havelon1y10ne type of bond in the
struchre, then there are three p-like functions tﬁat can be formed on
each.atom from the four hybrids. Thérefbre,»thefe are 3N pure p-like
functions that can be formed in a s&stem of N atoms, However, there is
one constraint per bond if we wish to ﬁake pure p-like bonding or
antibonding states. Thus as Weaire and Thorpe.l2 have shown, there are 2N
indépendenfvCOntraints'and, theréfore?'3N - 2N = N aégéneraté-pure p-like -
‘bonding (or anti.bonding) crystalline states. These states are then
respoﬁsible for the delta function peak with ane state per atom. In the
case of a structure with both like—atom and unlike-atom bonds we must
be a bit‘mdre careful. We mus; now.distinguish‘the p—like functions
among bonds of type III-III, V-V and III-V. That is, we are interested
in the p-like functions of a certain type (i.e., III—III, V-V or
III-V) which can be made ffbm the hybrids along bonds of that type.

The number of such functions that can be made on a certain atom giVen

the cénfiguration of nearest neighbor atoms is shoén'in Table IX. Therefore,
given a ‘structure with a pérticular‘distribution‘or arrangement of atoms,
we can use Table IX to find the total number of p-like functibns of a

- particular type. Once this is known the total number of bonding

(or antibonding) p-like states of a certain type that can be made is just
given by this number minus the total number éf constraints for bonds

of that type. But the number of constraints of avpérticular type is

just equal to the number of bonds of that type. Therefore, the degeneracy
of the deltavfunction DX representing bonding (or antibonding) p-like

states of type X (where X represents the three distinct combinations

- of III and V) is given by:
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D = 3N + 2 + Ny - Ny | - | (31)

Here N¥ represents the number of atoms with I bonds of type X and Nﬁ is

the total‘ﬂumber of bonds of -type X. If.we Nnow express N§ in terms of.
the N¥ we get: . |
This expressioq is quite useful since it tells us immediately fhat for
the structures we are studying there will be no delta function in the
density of states'representing like-atom (L) bonding states. " This is

_ : : L L
because we chose our structures to have N4 and N3 equal to zero due

to stability requirements. This suggests, therefore, that in the

amorphous case the like-atom bonding state regions in the density of
states will be quite sensitive to different ﬁypes of clustering config-
urations. . On the other hand, Eq. (32) also tells us that in the
strucfurés'we are studying we will definitely hgve‘a delta function

peak in the density of states representing unlike-atom (U) bonding states

~ as 1In the case of zinc blende whose degeneracy will be given by .

v vl NU. One might thus suggest that there will be a region

23

of the p-like states in the‘density of states of zinc blende whose

character will be relatively unaffected by disorder; In other words,

the nature of the unlike-atom bonding states in the amorphous density

of states should be very nearly the same as that of the zinc blende

p-like states. We shall examine this again in part B.
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A. Results for Disorder (U)

In the study of disorder (U) we are interesfed ih investigating

effeqﬁsvon the density of states caused by the following features:

K (i) Topology

_(ii) Bond angle and bond length variations.
As we have already mentioned, these features caﬁ be studied with the.
concept of short range disorder. In this casé we take GaAs in the 2H-4,
4H-8 and SC—l6_structurés. The first two structures'héve ideal teﬁrahedral
arrangementé of atoms and prbvide a comparison of purely tbpologicai
properties. In the 2H-4 gtructure each atom sees a hexagonal neighborhodd
which is'different from_thé.cubic neighborhood of the zinc blende
structure. This difference starts at the.third nearest neighbor. On
the other,hand, in the 4H78 structure each étom sees alternate layéfs
of cubic and hexagonal neighborhéods. The SC-16 structure providgs
us with diStorted tetréhedral units and, therefore, has variations in
‘bond lengths'and angleé. it also provides for a new topology although
it is vefy similar to- the 2ﬁ—4 structure in that it has the same type
of.third nearést neighbor environment.

The tight binding model is not very useful in studying these
structures with disorder (U).since we could. tell no difference between
the 2H~4 and 4H-8 structures and only small differences with‘theISC—l6
structure. In addition, the simplicity of the model would be destroyed
by'the introduction of many paraméters to‘take into éccount bond length
and bond angle deviations. On the other hand, the EPM is very useful
and the results éf our calculatioﬁs usiﬁg'the EPM are shown iﬁ Fig. 39a-c

where we have plotted the density of states of GaAs in the 2B-4(1,1/1,1),
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QH;S(l,l,l,l/l,l;l,l) and SC-16 structures. The filled valence band is
shown at»negétiﬁe energies and part éf the conduétioﬁ band is shown at
positive enefgies. Thése.are unsmoothed computer blots and no interest
should be paid to the sméil wiggles alohg the'curves; ‘Before we compare
these épectra, howevér, it would be usefui to have some information
about the average distribution of electrons in each band. From the charge
density calculations éf Walter and Cohen5 we know that the region of the
density of states (Fig. 39) from about -10 éV to —12leV contains electrons
which are primarily concentratéd on the As atoms. Tﬁey are essentially
the As s;like states and we shall be calling this the "s-like region"
.of the density of states. The middle peak around -6 eV is actually part
of a band that tails all the way to 0 eV. Charge density calculations
for this band show that the electrons aée now more concentrated on the
Ga atoms and in the bond. Part of the bohding nature of this band is
prob;bly coming from the.tail. Actually, if we jﬁSt took a simple two
potential well model in the tight binding sense, the lower energy state
would be s—like bonding primarily around the As atom and the higher
energy stéte wpuldvbe s-1like antibonding primarily around the Ga atom.
Although this model is certainly too simple it doés give us some.feelipg
for the region around -6 eV which we shall be referring to as the
"middle peak" region. Finally, the region in the density of states
'fxdm ~4 eV fo.O eV contains electrons which are almost entirely
concentrated in the:bonds as in Ge and Si. We shall be referring to
this region in the density of states as the "p—like region'.
Let us now compare and examine the trends inbthevdensity of states

spectra shown in Fig. 39. As we go from the 2H-4 structure to the 4H-8
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structure the spectra seem to be almost identical. Ail the widths are
the same for the two cases and the only difference is in the structure
in the p-like region between -1.5 eV and -3.5 eV. What we are seeing
here are the effects caused by purély topglogical”differences;_ In
pérticulaf in the 4H-8 structure we have the effects of averaging over
cubic an& hexagonal enviromments. In fact, the only way to have an
amorphous structufe with purely topological.disorder is to stack.
randomly‘two dimensional hexagonal layers of atoms such that the bonds
form eigher éclipsed or staggered configurations. Ffom our results we
would expect that the effects of .such an amorphous strucfure would be
to smooth out the peaks in éhe p-like region and leave everything else
essential intact.

If we now compare the 2H-~4 and 44-8'density of states with that
of SC-16 we notice some small but interesting differences. First;
we notice a slight broadeningvof the s—like stateé.' This is caused by
variations in the second nearest neighbor distances due to bond angle
and bond lengthvdistortions. These variations cause variations in
the overlap integrals of the As s-like states and consequently a
bréadening of this band. This.broadening corresponds to about a
0.2 eV‘increase in the width. For the p-like states wé first notice -
a steeping of the band edge by thg introduction of states at the top
of the valence band around 0.5 eV. This is caused most likely By the
deviations of the bond angles from the ideal tetrahedral angle which
produce the same effects as in Ge. Secondly, we notice that the p-like
region also gets Broadened. This is caused by the rather large

distribution of first nearest neighbor distances in. the SC-16 structure
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as we discussed in Append}x C; The presence of smaller bond.lengtﬁs‘
than the ideal bond length would tend té broaden thevp—like region as
is the case with the'SC—IG structure while structures with only larger
bond lengths would get a narrowing éf the p-like rggion as is the case
with Ge ST-12. These effecfs, however, are clearly very small. In the
-middle peak region the most prominent difference is_a_slight shift of
the main peak to higher energies by aBout 0.5 ev. Perhaps this is also
due: to the bonding character of the states in thié region although |
it is not really cléar what is happening here. | |

We can get some idea of the distribution of bond lengths and
angles in the amorphous case from the radial distribution functions

(RDF) of Shevchik and Paul.>>

The RDF's of theiriamorphous III-V samples
were very.similar=todthat of'amorphous Ge. 1In fact, ;he kDF’of amorphous
GaAs is almost identicél to that of amorphous Gé. Unfortunately; an

RDF is not a sufficient condition for a particular structure nor can

one prove the existence of fivefold riﬁgs of bonds with an RDF.
Therefore, if we were to hypothesize a random network structure which
gives the same RDF as amorphous GaAs but with disorder (U), we would
expect to get the density of states shqyn by a dotted line in Fig. 39a.
First we would expect the p-like behavior to be very similar to thét

of ‘amorphous Ge since the distributioﬁ of bond angies énd bond lengths

of amorphous Ge and GaAs are very nearly the éame. Secondiy, we would
probably get slight shift of tﬁe main peak in the middle-peak region

to higﬁer energles as in the case of SC-16. And finglly, we would expect

to get a smaller broadening of the s-like region in the amorphous GaAs

case than in the SC-~16 structure since the distribution of second
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nearest neighbor distances is centered at slightly larger distances in
the amoréhous phaSeBS'than’in the SC-16 case.

As we shall see in the next section, however,.the effects of disorder
v(U),are rathgr small and'mostly‘insignificant when compared with the
effécts.of disorder (L).

B. Results for Disorder (L)

In a recent communication36 we described the gross effects of
disorder (L) on‘the density of states based on a very simple chérge
density model. We suggested that the entire spectrum would be broadened
because of an increase in the overlap integral between like-atoms and
the different types of bonding states that are néw premiséible. We
estimated at least a 1.0 eV broadening of the s—likerregion and we
suggested that one may be abiebto distinguish As-As (Ga-Ga) bonding states
“at the low (high) enérgy'side of the p-like region. |

‘In this section we shall examine these ideas more carefully and
analyze them on a more firm theoretical basis. Invpérticulaf we would
like_to study explicitly the effects on the density:of states produced
by the following features:

| (i) topological arrangement of atoms
(ii) bond anéle and bond length variations
(iii) percentage of like-atom bonds
(iv) different clustering configﬁrations of like-atoms
(v) topological vériétions in clustering configurations
The first two features.were.discussed in Section IV and are overshadowed.
for the most part by features (iii) to (v). In what follows, we shall

-~

concentrate primarily on the effects of (iii) to (v) which can also be
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studied in the contéxﬁ of short range Aisofder. Thus we will use thé
tight binding model and'EPM to examine the various substructures of the
2H~4, 4H-~8, BC-8 and ST412 structures mentioned inASecfion.II.

. In Fig. 40a-f we show the densities of states for the 2H-4 (1,1/1,1),
2H-4 (2/2), BC-8 (2,2/2,2), BC-8 (4/4), ST-12 (3,3/3,3) and ST-12 (5,1/5,1)
. structures usihg the tight binding model., The vélence band_is mostly

at negative energies with thg delta function set at Q eV and EC designates
.the bottom of the conduction band. Each-épectrum isvnormalized to 24

‘for ease in comparisons and the sﬁall numbers of tép'of the peaks give
vthe relative weight.for éach peak. The solid line at 0 eV represents

a delta function of pure GaAs p-like bondiﬁg states whose degeneracy is
obtained froﬁ Eq. (32) and the discussion in Section Ii; For example,

g 8 and Ng = 0 so that the

- for ST-12 (3,3/3,3) we have Ng =

degeneracy of the delta function is DU

0, N

4, The fraction of like-atom

]

bonds for‘eéch structure is given by Eq. (29). So that for 2H-4 (1,1/1,1)
, 2H-4 (2/2), BC-8 (2,2/2,2), BC-8 (4/4), ST-12 (3,3/3,3) and ST-12 (5,1/5,1)
we have 0, 25%, 25%, 37-1/2%, 33-1/3% ana 33-173% éf like-atom bonds
 respectively.' | | |

Wﬁen‘we examine the trends in the density of stapes as we éo from
2H-4 (1,1/1,1) to 2H-4 (2/2) we notice that the peak§ in 5oth the s-like-
region and thé middle pedk region have now éplit into two. In addition‘»
in the p-like reéion there is one peak at higher;and lower énergies with

respect to the position in energy of the delta function. We get the same.

qualitative results when we examine the density of states for BC-8 (2,2/2,2).
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The 24-4 (2/2) and BC-8 (2,2/2,2) substructures have different topological
properties, however, they do have the same-type of like-atom clustering

configurations. This suggests, therefore, that the splitting of the peak

-

iﬁ éhé s;like-region is due to the clustering‘of_As atoms into chains

of order two»which produces essentially‘a bonding—antibonding splitting.
In a similar way the splitting in the middle peak region ié essentiélly
due.to the clustering of Ga atoms into chains of order two, although

we must agaiﬁ be careful here,»aé with disorder (U) since the étates

in this region are not purely Ga s-like states. As for the p-like region
the single peaks at high and low energies respectively are.probably due
to.thé different bindiné energies of the like-atom bonds which cluéter
into chains of order one. Since the As atomic'valence states lie lower

in enefgy_than the Ga atomic valence states we would expect that the

lower energy peak contains mostly As—-As bonding states while the higher
.enérgy peak céntains Ga-Ga bonding states. We Shail'réturn to discuss
this pdint:with some evidence later. These ideas.are further corrobofated
by’an examination of the density of states of BC-8 (4/4);'ST—12(3,3/3,3)
and ST-12 (5,1/5,1). 1In the first case we have the effects of like-

atoms in chains of order four anqvlike;atom bbnds in cﬁains of order three.
‘We notice that the s-like region has now split into four peaks which is
exactly whét Véuld happen in a system consisting of localized states in

" a chain of order four with only nearest ﬁeighbor inferactions.' In fact

. the eigenvalues of any such chain of order N are just the roots of an

Nth order Chebyshev polynomial of the second kind. We can also distinguish
four peaks in the middle peak region presumably caﬁsed by tﬁe Ga-atom

" chains. In the p-like region we now have three lower energy peaks
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and three higher enefgy peaks. This.lends 3uppoft to_the idea that these
peaks represent like-atom bondiﬁg stétes and are caused by the like-atom
bonds clustering in chains of order three.

The density of states for ST-12 (3,3/3,3) and ST-12 (5,1/5,1) show
the same behavior of the s-like and p—iike regions when analyzed in terms
of chains of:atoms and bonds respectively even though fhey have quite
differént.topological properties from the BC-8 and ZH-4 suﬁétructufes.
For ST—lZ (5,1/5,1) we notice the superposition of states in the s-like
region due to chains of.atoms éf order five and order one. For the
p-like states we caﬁ almost distingﬁish four lbwer and higher energy
- peaks caused by theAlike-atém.bonds that are only forming chains of‘
o?def four. The middle peak regionslfor these two ST-12 éubstrﬁctures,
however, do not follow very closely the characteristics of chain-like
behavior. Nevertheless, they are sensitive to the G# atom clustering
'configuratibns as éan be seen by an examinafion of the’wave fuhctibns
in this'region. Furthérﬁofe, an examination of the wave functiéﬁs in
the p-like region caﬁ'give ﬁs the hature of the bonding étateé in the
low and high energy regions with.respec; éovthe déltaifunction.v However,
the fact thaé the lower and higher energy peaks invthe p-like regions
are actually mostly As-As and éa-Ga bonding sﬁateé respéctively is very
easily observed in>Fig. 41a-é.‘ Here we have plotted the density of
states of ST—121(5,1/3,3), ST-12 (4,2/5,1) and ST—12.(3,3/4I,1;1).

‘Thése substructures:all have 33-1/3% like-atom bonds but ghey are 6f
particular inferest since each structure has its Ga and As atoms in
differént fypes‘of cluste:ing ;onfigurations. In fhe density of states

for ST-12 (5,1/3;3) we notice three peaks in the s-like region which is
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consisteht with the As atom; forming éhains of order three; If we were
now to make bonding states that were almost exClusively of As-As
bonding character we would expéct two peaks in the p—like region. This
is exactly what is observed in the lower energy region of the p-1like
states. Oﬁ the other hand, at the high energy side of the delta function
we can distinguish four peaks and this is consisten; with Ga like-atom
bonding stateé'caused.by the Ga-Ga Bonds forming chains of order four.
For the ST-lé (4,2/5,i)'structure we notice that the s-like region has
essentially five peaks with é small splitting of the middle peak. This
splitting is due to a difference in environment betwéen the As atoms

in the chains ofvorder five and order one. 1In the p-like region we can
have the Ga—like atom bonding states giving three or four peaké while
the As-like atom bonding states should give four peaks.. From Fig. 41b
we notice that both the lower and higher energy peaks'are four and so
it is rather diffiéult to distiﬁguish visuélly_the'difference béfween
the chains of bonds. Finally, in the density»of states for ST—12‘
(3,3/41,1,1) we see the effeété of anvinfiﬁite (or four that matter, a
very long) chain of As atoms.v-The s=-1like regionvhés one slightly

split peak'heéf the middle whicﬁ is caused by two chains of As atoms

of order one. Superimposed on this is essentially the familiar one
dimensional type of density of states which can be obtained by taking
only nearest neighbor interactions in an infinite linear chain of atéms.
The width of this s-like region is the largest broadening that we would
expect to get from any of the other substructures. The effects of an
infinite_chain of As-As bonds is shown in the lower energy region of

the p-like states. We notice that its width is large enough to mix in
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withithe_sfétes in thé middle peak region. |

By usBing the tight Binding model we have Qbserved some‘very‘large
effects in the densityvof stétes causéd by disorder (L) which éould be
understood quiteveaSily. AIn particuiar we found that the s-like and
p—liké regions in this model follow some very simplé tight binding
‘rules which are ihgimately related to the clpstering configurations
of the like-atoms and like-atom bonds. We must ask, however, how
réalistic‘in fact are these large effects? Use_of the EPM provides the
answer and as we shall show below many of these large effects actually
carry through in a more complicated calculation. Thus the tight binding
model serves the valuable prupose of providing a gimplicity;that aids
in‘the understanding of the effects of disorder (L) using a more realistic
model. 1In Fig. 42a-d we have'plottéd the density of states using the
EPM for the ST-12 (4,2/5,1), BC-8 (2,2/2,2), 2H-4 (2/2) and 4H—8 (2,1,1/2,1,1)
substructures which have 33-1/3%, 25%, 25% and 12-1/27 like-atom bonds |
respectively. Like thé tight binding case, these deﬁsities of states
are ﬁormalized to_24bfor each subétruétufe,and the numbers on top of
the peaks represent the épproximate strength of those peaks. In addition,
there is an overlap between conduction and valence band states near 1 eV.
~ We notice immediately that the effects of disorder (L) using the EPM
are just és spectacular ‘as with the simple tight bidding model. Let us
first examinelthe s—-like region of the density of states. For the ST-12
‘(4;2/5,1)>substructure we find six peaks which correspond to the six
peaks also.found.in the tight binding cése (Fig. 41b). However, a
comparison of the s-like region in Fig. 41b with that of Fig. 42a shows

that the latter peaks using the EPM are not symmetrically situated
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around the s-like peak of As atoms in chains of order one. This is

caused to a major_extént by the increase in the potential between the

atoms in chains of order greater than one which causes a shift.of these -
states to lower energies. This is similar to shift of the one electron
s—~like energies in the hydrogen molecule-ion. 1In the latter.case this
shift is'always greater or'nearly equal to half the splitting or wiath

of the bohding—antibonding states. vSimilarly in thevcase of all the
substructures we have studied with the EPM this shift is approximately
.equal to half the broadening of the s-like stafes. 'Sq as a generalv

rule the highest energy'peaks of an é-liké chain wili:oﬁerlép with the
s—-1like peak of chains of order one. Therefofe, one df the two highest‘
energy peaks in the s-like region of ST-12 (4,2/5,1) is a band representing
the As atoms in chains of‘Order one. In the s;like‘region for the 2H-4
(2/2) énd BC-8 (2,2/2,2) sﬁbstructures we only get two peaks. This is

due to the As atoms clustéring into chains of order two as we saw in

the tight biﬁding case. The'simiiarities'bétweenvéhape>and energy
 sp1itting'of these two peaks for the 2H-4 (2/2) ané BC;S (2,2/2,2)
gubstructureS'shows that the s-1like region is relativéiy insensitive to

the ﬁopological variations of the atomic chain—like.configuratidns.

We also notice that the higher energy s-like peak for both substructures .
lies very closely in energy to the s-like peak for the As atoms in chains
of order one (Fig. 39). Finally, in the 4E-8 (2,1,1/2,1,1) substructure
which cpntains both As atom chains of order one and order two we can
again see, directly, the overlaﬁ between the antibonding 1iké state
(weight one) of the As-atom chain of order two and the band (weight two)

of As atoms in chains of order one. Furthermore, the splitting between
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bonding like and antibonding 1like state; for the As_afoms in chéins

of order two is very néérly the same as that for tﬁe 2H-4 (é/Zj.and

BC-8 (2,2/2,2) substructufes. Therefore, the size of this splitting,
which also happens to be the smallest possible broadening of the s-like
region under disorder (L), is also unaffected by fhe percentage of like-
atbm bonds present in the substructurel Using the charge derllsityvmodel36
we estimated a minimum width of about 3 eV in thé.amorphous casef: This
is not too far from the results of the present calcﬁlations. '

If we were now tblassume fhat the amorphous‘éhasé witﬁ disorder (L)
ﬁ;ﬁld tend to favor like;atoms clustering in chains of érder no lérger
than two, then we could estimate the percentage of iiké—atom bonds . in
principle by measuring the strength of the‘gwo s—like péaks. Thé.fraction
of like-atom bonds would.then be given bf 1/[2(1 + H/L)] wheté H/L is
‘the fraction of strength of thé higher and lower energy peaks in-the
s~1like region. Generally speakiﬁg, however, the effects of disorder (U)
;re a broadening of fhe s—like region aﬁd a shift of fhe center'§f mass |
of this fegion to lower energies. In addition, thé.width of this region
depends primafily on the types of chain present and not on the percentage
 of like-atom bonds or the particuiar topological configufation of these
éhains. |

Let us now examiﬁe the p-like regions for these substruéturéé. " The
p-like regions are béunaed from below épproximately by the dashed lines
at about ?5 eV. These regions are further apﬁ?oximatély subdiviéed into
Sections I, II and III representing particular typeé_of bonding

characteristics. A comparisén of the p-like region for ST-12 (4,2/5,1)
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'usihg'thé EPM and the tight Binding-model sﬁggests.tﬁat the lower energy
region‘of the p—like states (region I) should présumably represent As;As
bonding states while the high energy region (I1II) should cﬂaracterize
Ga-Ga bonding statés. ‘The middle p—1ike regibn (I1) represents the delta
function peak whose nature remains unaffected to first order‘by>effec§$

of disorder (L).' This middle p-like regidn then retains the character

of théfp—like_region without disorder and represents the Ga-As bonding

: stétes. Similar .classifications can be made with ;he p-like regions of
fhe‘other three substrpctures iﬁ this figure, A comparison of the middle
p-like regions for the BC-8 (2,2/2,2) and 2H-4 (2/2) substruéturesv
reveals that the shape of this region is rather sensitive to the topological
properties of the structure. The differenée in strength of.the two peaks
in the middle p—like region for the 2H-4 (2/2) case is most likely caused
by the fact that the lower energy p-like region for 2H—4 (l,l/l;l) contains
states‘thaf mostly describe diagonai unlike-atom bonds whiie.the>highef
energy fegionvrepresents mostly verticai (aloﬁg deirgctioh) unlike~-atom
bonds. Therefore, since the 2H-4 (2/2) structure has only'diagénal
unlike-atom bonds this anisotropy in the strength of tﬁese two peaks is
vunderstandable. In an amorphoué structure, however, wé would not expect
this type éf anisotropy so that the middle p-like region shouid.look more
like the one in the BC-8 (2,2/2;2) subsgructure. The effects on.the
p-like regién obﬁained by reducing the percentage of like-atom bonds while
retaining similar types of like-atom clustering configuraﬁions can be

seen from Fig. 42d.« Thevp—like region for the 4H-8 (2,1,1/2,1,1)
1vsubstructure is just slightly broader than the BC-8 (2,2/2,2) and 2H-4

(2/2) substructures. In addition, the most important change seems to be

@
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just a reduction in strength of the As-As and Ga-Ga Bonding stéte regions.
- Finally, all that we can s;y about the middle peak regions for |
these fouf substructurgs is that we obtain. an overall broadening in each
case as coﬁpared with the'middle.peak'region‘for ZH;A_(l,l/l,l). As for
the conduction bands we notice that we get.a shift to lower emnergies
when compared to the bottom of the conduction bands for the corresponding
’subséructures without like-atom bonds. In fact, the states at the bottom
of the cqnduc;ion band under disérdgr (L) are most probaBIy As;As |
antibonding iike states in addition to'being'planévwave like. This is
due to the fact that the low lying conduction states should be
orthogonal to the top of the valence band and s—likéfA At the same time
‘the deeper As—As.potential would be a stronger influéncé on tﬁese states
and would fry to bring them down to a lower energy. 'However,‘thé
effgcts 6f shifting of the conduction band and broadening of the p-like
region'due to ‘like-atom bonds as some very serious cdhéeqﬁences.

We have found that all ouriEPM calcﬁlatibns felated to disorder (L)
yield semiﬁetals. Experimentally‘,37 a large decréasé in the gap has
_been found for amorphous III-V compounds and our results are consistent
with.Connell's37 suggestion that this decrease might be é;dsed by
like—atomrbonds. Before we go into this in any more detail, however,
_let us first look at some charge density}calculatiénsl This way we can.
explore further some of the speculations that ﬁe have séeﬁ,making regarding
the character of various regions of the dénsity offstates'énd we can get
some idea of the nature of the like—atom bond. The methods used to obtgin

the charge densities are discussed in Section II-R and Appendix B. As
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a simple and typical example, we shall take the 2H-4 (2/2) substructure.
Some information about the distribution of electrons in various regions
of the density of states can be:obtained frﬁm band charge densities
pn(¥). Charge'density coﬁtours for Dﬁ(;) for bands 1 ﬁo 10 in the
(110) piane of tﬂe 2H-4 strucfure are shown in Figs. 43 to 47. In
Fig. 43 we show the s-like region where the bonding and antibonding
nature of the As s-like states is clearly evidént;.'in Fig. 44 we
‘ have what is essentially the middle.peak region. ‘The eleétronsvhere are
moétly‘spread out around the Ga andrAs:atpms with eleétrons in the'Ga—Ga,
Ga-As and As-As bonds. In particular, band 3 has more electrons in the
As-As bondland around the Ga atoms than band 4, whilé band 4 has»more
electrons in fhe Gg—As bond. In addition, there seems to be élightl&
more charge aréund the Ga gtoms than the As atoms. In Fig. 45 we have
the charge denéity for band 5 which should represént épproximately the
‘lower energy region of.the p—-like states. As Qe sée, the electroﬂs»are
concentrated primarjily bn the As-As bonds with a small concentration
in the Ga—~As bonds and neglig&ble distribption in the Ga-Ga bonds. Iﬁ
‘this same figure.we show>band 6 which is effectively the first half of
the middle p=~like region. Now the electrons are primarily concentrated
"in the Ga—-As bonds with a small concentration in thé As-As bonding regioﬁ.
Similarly, band 7 in Fig. 46 which is essentially the other half of the
middle p-like region has its electrons almost completely occupying the
Ga-As bond. The contours to the left of the Ga atoms and to the right
of the As atdms represent cross-—-sectional slices of the other.diagonal

bonds which are not shown in this plane. In this same figure we show
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‘band 8 which.approximately represents the states in the highlenergy'region
of the p—like states. As we see, the‘electrons are now primarily
concentrated around the Ga—Ga bond withcnegligible distributions around
the As atoms.’ Finally; in Fig. 47 we show the distribution of electrons
in the'hyPothetical situation where the.first two conduction bands are
completely filled The electrons are-now very plane—wave like but at the
same time are primarily concentrated on the As atoms in an antibonding
like configuration.

These charge densities confirm our earlier speculations‘aboutvthe
distribution of electrons in certain regions of the density of statés.

Furthermore, similar results can be obtained by examinlng an 1ntegrated

energy charge density D (r) for various 1ntervals [E L,E ] as
f’

discnssed in Appendlx B. In Figs. 48—50 we show our calculations of

OE B (;) for the 2H-4 (2/2) substructure for the intervals (in .eV)

[-7.2,-6.1], [-6.1,-5.01, [-5.0,-3.7], [-3.7,-1.3], [-1.3,0.6] and
[0.6,2.2]. These intervals are labeled with arrows and shown ianig. 42c¢.
The middletbeakhregion can be alsodapproximated by the intervals

A[ ~7.2,-6.1) and [ 6 l -5. 0] The charge denslty for these cases is shown
in Fig. 10. We notice immediately that although the general appearance
of the electronic distributionsrare the same as bands'3iand 4 there are
some interesting differences;“ Unlike‘bands-B and 4 the charge density

in these two energy.intervais are almost.identical.._ln going from the
low energy‘interral to the higher‘energy interval we observe a very
slight increase in charge aronnd.the_GafGa and Ga-As bonds with a
corresponding rednction in charge.aronnd the As—As bonds. Eurthermore,

although the electronic distribution in band 3 is very similar to that
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of the low energy intefval, tﬁe charge denéity of_bénd 4 is quite different
in that‘it>lacks-As—As bonding character.

‘ This.suggests that band 4 has a rather large ovérlap with the higher
bands presumably in the Ga-As bohding.region. As we have‘alfeady mentioned
it is rather difficult to characterize the middle péak egion but géngrally
speaking thé electrons are spread oﬁt around Bofﬁ.ty?es of atoms and in
all three,types ofvbonds. In Fig. 49 we show thé éharge density fof
therihferﬁal [-5.0,-3.7] which is essentially tﬁe low energy p-like
:egion. Tﬁis electronié distribution repreéents the As-As bonding
states and agrees well with the charge density of band 5. 1In this figure,

' > . '
we also show P (r) for the interval [-3.7,-1.3] which represents

BBy

approximately the middle p-like region. We notice that the charge is
mainly concentrated in the Ga-As bonds and looks mdétly like the charge
density for‘band.7.‘vThis region then fep;eseﬁts the Ga-As bonding‘stateé.
In Fig. 50, we show the eléééfdﬁic diétfibution in the interval | ‘
[-1.3,0.6] and [0.6,2;2].- In the former case we have essentially the
Ga—Ga bonding'states‘aﬁd this agrees.very élosely.with the resﬁlﬁs fof
band 8. ih the latter case we have the hypothetical'case of a filled
.éonduction band energy interval. We notice that Again.ﬁe obtain plane_
wave like behavior but at the $ame time a distincf antibonding s-like
distribution around the As atoms. Finally, in Fig. 51 we show the
charge denéity obtained by suming over all the filled bands. We notice
that we obtéin definite bonding character for all the bonds. The
strengths of the Ga-As bonds aré very close to fheir strengths in the
zinc blende case. The As-As bonds have a-lqt of bonding charge which »

is also quite localized. On the other hand, the Ga-Ga bonds are rather

weak and less localized.



-93-

Let us now return to fﬁe question of the gap in the density of
sﬁateé; What we must ask is whetherrwé shall always get a sem;metal
under disorder (L). From the-charge.dgnsity caléulations we ha;e
'definite proof that the top of the valence band represents Ga-Ga bonding
like stgtes.' In addition the bottoﬁ of the cépd;ction band has some
‘antibonding A; s—like character. Theréfore, we would ex@ect a éhift in
energy‘of these regions deﬁénding on'the nearest.néighbor’distahces of
.the Ga-Ga and As-As bonds."In our calculations of;fhé 2H-4 and_AH—S
subst£uctu#e8'we héve always taken the“ideal situation Qhere the Ga-Ga
néaresf neighﬁér distance is eqpal to that of the Aé—As nearest
neighbor distance whicﬁ is in turn equal Fo the idea} Ga—As_pggfes;-
neiéhbbr diStéhce{ Since the top of the &alénée band has mﬁch méfe
charge ‘around the‘Ca atoms than thevconduction band has around tﬁé As
atoms we would'expect é iarger sensitivity of the}gép‘td chéﬁgeé in..
Ga-Ga bonding'diStgnceé. Hopefully, by inéréasing’the gap wei@ould
also be makiﬁg-the Ga—G; bonding Stateé more bdndingalike.in chéracter
and more'concentfatgd in the ﬁonds rather fhan what we obﬁain in Figs. 46
and‘SO; We f;nd that in thé 20-4 (2/2) sﬁbstructure the gap increases
by about dl08 eV_fof every 17 réductidn in the Ga-Ga bonding distance;
Furthermore, - this éapiihcreases by only 0.01 ev for'eQery 17 ipcrease
.in As-As bondipé diétanée. In Fig. 52a.we showboﬁr fesulté for the
densify oflsfates‘of 2ﬁ-4‘k2/2)‘with a 10% decreasevin £ﬁe Ga-~Ga nearest
néighbor distance and a 3% increase in the As—As‘bonding distanée. In
thié structure we obtain a.O;l eV éap and at the same time.wé‘have the

same bulk density as before and only very small changes in the bonds
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angles and Gé—As bonding distances. This result on the gap is very
encouraging‘énd we would expect to get siﬁilar effects by changing the
Ga~Ga and As-As distances in the other structures.‘ The important point
to remember'is that given a particular configurationrof like—atom bonds
the Ga-Ga and As—As.nearest neighbor distances woﬁlﬁ be critical in )
déterminiﬁg whether a gap could exist or not. .In tﬁis strﬁcture we also
obtain a small shift iﬁ.the s-1like fegion due to the decrease in As-As
Bonding distances. This shift cofrésponds-to about a 0.1 eV change -

for a 1% ;hange in As-As.nearest neighbor distance.

At this point we have enough knowledge about how disorder (L) affects
&arioué regions of the density oflstatés'that we coﬁld make some definite
statementé as to what would be obsérved in a randém network model with
like-a;dﬁ bonds. We begin by aésuming a 10% presencé'of like-atom bonds
which as Shevchik and Paul35 have. shown would contribute véfyvslightly
to the ﬁeat of crystallization of fhe gmorphous phaéé} From stébilify
considerations we'woqld expect that clustering.canfigﬁratioﬁs of like~
atoms to be in the form of .chains or fings. However, we must also
éssumevthé.presence of only low order (one; two or three) chains38
of like—atoms'since these will affect the possibility of obtaining a
nonzero energy gap as is observed experimentally.37 As we have already
seen in Fig;'42a, fourfold chains of atoms would make.a.ra;her large
overlap between.the Ga-Ga bdnding—like states and thg_conduction band.
Thus,, without a restriction for low order chains we would .need rather
large-unréalistic changes in the Ga-Ga bonding disfances in order to get

a nonzero gap. In this 'model, with only low order chains, we simply
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vassume a 107 decreése in Ga~Ga néarest neighbor distapces and a 3%
increase in As-As nearest neighbor distances. This way we would expect
to get a nonzero gap aé in 2H-4 (2/2) Fig. 52a. We should notice also
that thesé changes in nearest neighbor distanceé for 5% anion-anion
aﬁd 5% cation—cationvbonds are compatible with some of the RDF'é of

Shevchik and Paul35

(e.g., GaP) just in case these RDF's represent
.systems Withvdisorder ).

Therefore based on all these considerations our model for the
vdensity of states of an amorphous phototype GaAs comﬁound with disordef (L)
would have the form shown in Fig. 52b. For comparison we also show the
density of states of GaAs in the zinc blende structufe as the solid
curve. Let usvfirst concentrate-on the s-like region. As we mentioned
earlier, there should be a shift in the center of mass of the s-like
states to a lower energy. Along with this.is théffact'that the highest
énergy states of a particular chain tend to overlép with the sfates |
of chains 6f order oné. This suggests that we may divide the s-like
region intobtWO main peaks. The first peak is whét we may call
thé lower energy s-like peak'and would contain~all the states except
the highest energy‘states of all fhe As like—afom chains of order
greater than one. The seqond peak thch we may call the higher energy
s-l1like peak would éontain only the highest'energy states of all the
As like-atom chains and would be located arouﬁd the energy of the
statés for As chains of order one. By making thesebsimplifications
the fraction of like-atom bonds is again.given by 1/[2(1 + H)L)]

where H and L are the strengths of the higher and lower s-like peaks



—96~

.

respectively. In addition{as we have already seen, the éplitting between
the higher and lower energy peaks will be around 3 eV. Thus for 10%
1ike—atoﬁ bonds H/L ~ 4 and we get an s-like region as shown in

Fig. 52b. 1In principle, therefofé, an unfolding of the s-like region
into two peaks should give us some idea of the_fractidn of like-atom bonds
which are present in an amorphous sample.

In the middle peak region our caiculations can only suggest a

general overall Broadening. In part@cular our resuits imply an increase
'in broadening in the amorphous case by about 0.6 eV. In the p-like |
region‘we should have a shoulder in the lower energy region representing
the As-As bonding states. This should look something like the one

in the BC-8 (2,2/2,2) substructure but with less strength. . in addition
we should have a middle p—like region which represents Ga—-As bonding

like states and is, therefore, the only part of thebdensity of states
whoée chéfactér is retained under disorder. Its shape is,'however, sensitive
to topélogiéal disorder so it should look mostly.like the middle p-like
regions in the BC-8 (2,2/2,2) or ST;12 (4,2/5,1) substructures. Finally,
the higher energy p-like region representing the Ga-Ga bonding-like
states will tend to overlap with the middle p-like region in order to
oﬁtain'a nonzero gap as in Fig. 52a. From these considerations we
propose a p-like region as shown in Fig. 52b which should be about 5 eV
wide. For.the bottom of the conduction band we should have a small shift
to lower energies as we have observed in all the substructures with
like-atom bonds. For oﬁr choice of like-atom nearest neighbor distances

in this model, we should have band edges at energies which are similar
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to those fo; 2H-4 (2/2) in Fig..52a. Aévwe have-al;éaay séeh in.Section v
the effects of disorder;(ﬁ) on the size"of-the gap seem to be rather
sﬁall. In addition, the sbmilarity in the overlépYOf the conaucfion
and valence bands for .the 2H-4 (2/2) and BC;S (2;2/2,2) structures
suggests that the most impértant influence on the gép is just the
présence of like-atom bonds with or without disorder. . Unfortunately;

however, although the size of the gap is very sensitive .to the Ga-Ga

bonding distances it cannot be used alone as . a measure of this bonding

distance. This is because the contributions from the As-As Bonds,

“even though they are weaker are not negligible. Nevertheless, a measure .

. of the energy between the s-like high and low energy peaks, together

with the size of the gap may ‘be able to providé soﬁe information about
bqth the Ga-Ga and Aszs nearest neighbor distances.

In summary we’have been primarily interested in thé structural
nature of the ambrphous III;V phase. From an experiméhtél point of view
the.informétion obtained from optical_propertieé3? and RDF's3§ is not
very sensitive to tﬁe microscopic structural aspects of the amorphous
phase; Neither of these experiments, for example, is able to give
precise inforﬁation asvto what type of disorder is present in>any given
III—V.sample. In the former case one would need a theoretical model that

would have to égree very closely with the experimental optical data in

order- to get aﬁy'believable*information about the disorder present.

And in the latter case the RDF is unfortunately not a sufficient
condition for any structure. For example, random network models (RNM)

have been able to fit experimental RDF's rather well. In all these
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RNM's however we find five and sevenfold rings of bonds. It is quite
conceivablé, nevertheless, and indeed probable that one could make an '
RNM with only even num-ered rings of bonds, that‘wéuld also fit the
experimental RDF's. This would then have importantbconsequences reiated
to the type of disorder that would be present in the amorphdus phase.
All this suggests that the aforementioned experimental data would
in some cases still be consistent with two distinct types of disorder
which coﬁld exist in an amorphous ITI-V compound..'The first type of

.disorder, which can be called disorder ), déscribes the stoichiometric

disordered system of atoms in fourfold coordination with only unlike-atom -

bonds. In addition, we have variations in the bond lengths and angles
bwhile keeping all bonds satisfied. ‘Tﬁe second type of disorder is
referred to as disorder (L) and encompasses all thé ﬁ;operties of
disorder (Uj‘along Qith the presence of like-atom bondsf
In order to be able to distinguish between these two types of"

disorder we chose to study their effects on the electronic density of
states which'would_be'quite sensitive to the micrdscopic structural
nature of the amorphous phase. In order to study these effects»wé have
uséd the concept of a shért range disorder model and we have been
particularly interested in fhe effects caused by the following structural
features

(i) topological variations of atoms

(ii) variations in bond lengths and angles

(iii) percenfage of like-atom bonds

(iv) clustering configurations of like-atoms

(v) topological variations of clustering configurations



-99-

vOur results for disorder (U) and disorder (L) aré sﬁown_ip

Figs. 39a and Séb. For disorder (U)‘we find that the s-like region df 
the density of states is rather insensitive to the fopological
arrangement of thé atoms. This, howeVer,'is not'tfue for the p—liké
region whose'shape is'quite'sensitiVe to fhe locél_environment of eaéh '
atom. Furthefmore,fthe s-like region is influenced by the second
neareét neighbor distanceé which are affected by variations in the bond
lengths and bond angles. The p-like stétes are also affectgd by
deviations in the'bond,angleé which cause a steepening of the band
.édge‘as in'the case of amorphous Ge. Thé middlevpeak region of the
density Qf‘statés'seems also to shift slightly to_higher energies with
the: inclusion of disorder. This is perhaps due to the relatively |
deloéalized héfure of these states. This regioﬁ;~h0wevef; is not at
the présent cleafly understood. Finally, the energy gap does not seem
to be very sensitive to the topological properties of the system‘and'

is affected only slightly by nearest neighbdr distaﬁées. All in all, thé
.effects'of disordér (U).Qn tﬁe density of stateé‘afe rather small.

With disorder (L), however, we obtain' some very interesting effects.

Our fesults show that the sélike\region of the density of states is
very sensitive to the types of clustering configdratidns the like-atoms
can form. From ehergy considefations we havé’preférred clustering
'configurations in which any givén atom does not have more than two
1iké—atom nearest neighbors. This implies that the like-atoms can
cluster ihto various.configurations of chains. We find that we obtain

N peaks in the s-like region from each group of chains of order N. 1In
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addition the position in energy of these peaks is not very sensitive to
the different tqpological arrangements of these chains. The center
of mass of each set of N peaks is shifted té lower energies by an amount
apprbximately equal to the interaction between atomsvin a chain, 'This
is similar to the shift observed in the electronic energy of a hydrogen
molecule~ion. The effect of this shift is té make the highest energy
peaks of each cluster of chains of order N to overlap and form one
laége péak around’the.energy-of the peak for chains of order one.
Similarly (partichlarly true in the case of low order chains) the rest
of the peaké will also tend to overlap‘into one peak at about 3 eV lower
than the first bne. The splitting of these two main peaks is found to
be insensitive to the percentage of like-atom bonds present. However, we
have found that the fraction (f) of like-atom bonds can be correlated in
a simple and approximate way to the strength (L) énd (H) of these low-
energy éﬁd high energy s-like peaks respectively by the expreésion
f=1/[2¢2 + H/L)]. 1In Fig. l4b‘we have assumed thé:presence of 10%
like—étom 5ohds»and so H/L ~ 4. |

The p-like fegion.of the density of states is also very sensitive
to the clustering configurations of fhe like~atoms and broadens.into
three main regions (I, II and III) which we call the low, middle and high
energy p—like’regioné. The low and high p-like regions represent As-As
and Ga-~Ga bonding statesvrespectively. On the other;hand, the middle
p—like-regi&n represents Ga-As bonding states and is, the?efore, the
only region of the density of states that retains its character under

disorder (L). In addition, the shape of this region is quite sensitive
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to the topological arrangement of the -atoms. The main effect of the
percentage of iiké—atdm bonds on the p-like region seems to be just
a variation in the strengths of the peaks in theSe:threelregions.
The width of the p-like region is however éensitive to the order of
the like-atom chains aﬁd to the Ga-Ga and As-As bonding distances. We
héve found that in order to get a finite energy gap we would need a
structure with only low order éhains to atoms (<4) and Ga-Ga and As-As
bonding distances whiéh are smaller and larger respectively than the
ideal Ga—~As bonding distance. | | |
Finally, we should mention that although we used GaAs to study
disorder (U)AandbdiSOrdgr (L) we would have obfained.éimilar results
from any dther II1I-V compound. This is not to say, however, that all .
‘the III—V,cqmpounds are equally likely to exist in the amorphous phase
with disorder (U) or disorder (L). _In particﬁlaf in the case of disorder
(L) we would expect to find only the compounds with tﬁe ;ﬁrongest bonding
characfer. Now presumably the.bonding chargé calculated by Walter and
Cohen5 can.be considered a measure of this bonding_éharactgr. In that
case, their fesults wopld indicate, for examp;e, that InSb and InP'are
more likely to be found with disorder (L) than GaAs. In any case, if
amorphous samﬁles are to be foun& with disorder (L), it would seem
preferable to prepare them at low enough temperatures so that the '

diffusivity of the atoms is very small.
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VI. .ELECTRONIC PROPERTIES OF TRIGONAL AND AMORPHOUS Se AND Te
The electronic structure of trigonal Se and Te has been the subject

of many experimental and theoretical studies.40 Recently, the advent

41,42

of new ultraviolet (UPS)41 and X-ray (XPS) photoemission measuremeﬁts.

has provided important information about the complete valence band
. . P , -43-45
and has revealed some - inadequacies of present theoretical calculations.
In one of these calculations43 a complete merging of s— and p-like bands
was proposed which disagrees qualitatively with the recent photoemission

445 show a separation of s- and p-like bands

data. Other calculations4
which is in qualitative agreement with these. experiments, however, band
widths and important structﬁre in the p-~like bonding states are not
"obtained correctly. »The experimenﬁally observed éharécteristic two-peak
structure in the p-like bonding states is, as we shall show, intimately
related to two types of states so that precise calculations are necessary
before a detailed undérstanding of the electronic stfucturevand'bonding
nature of Se and Te can be obtained. Finally, the infbrmation'géined

by a careful examination of the crystalline forms of Se and Te is a
considerable aid in understanding the amorphous phases of Se and Te42’46
as well.

-

A. Discussion of Trigonal Phases

In this part we present new calculations of the electronic densities
of states of trigonal Se and Te using the EPlewhich for the first time
agree quantitatively with all the observed structure in the>experimental
photoemission spectra. In Fig. 53 we show the reéults of our

calculations for trigonal Se and Te, with the filled valence bands at

\
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negative.energies. Ihe lowest band represents essentially the_atbmic
s—like states of Se aﬁq Te fespeétively. The néxt band céntains p-like
bonding states which lie between -6.0 eV and ébout =2.2 eV for Se and
fof Te. Finally, thé top most yaleﬁcevstafes are predominantly nén;bdnding
p—like‘iﬁ nature. ' In order t0'facilitate comparisons Qith experiﬁeht ;
we have convoluted these*spectfa with an energy dependént broadening
_function'and'tﬁe resﬁlté are showﬁ'in Fig. 54. vSuperimppsed, we show the
recent bhofoemission results of Schevchik, ét al.l‘-1 for Se and
Joannopoulos; et al.42 for Te. The'experimeﬁts on Se were obtained by
vvusing UPS and XPS measurements on a.sputtered.and sﬁbsequently annéaled
films, while those on Te were 6btained using XPS on a single crystal.

All observed structures in the experimental spectra are reproduced

with widths, positions and numbér of peaks now in éood quantitative
agreement with experiments.

In order to understand the origin of the charactéristic two-peak

structure found'ih the p-like bonding states of both Se and Te we

have éaléulated_electronic‘charge'distributions of statés in each

vpeak. This entails summing over states whose eneigies (in eV) fall
within [-6.0,-3.6] and [-3.6,-2.25] for Se and [~6.0,-3.5] and
[-3.5,-2.2] for.Te.  The results are shown in Fig. SS. The atoms thch
"lie in thevséme chaih aré connec£ed byya straight solid line. IWe |
' noticebthat the lower bonding p-like states are primarily concentrated

in the region between atoms in the same chain whéfegs the upper bonding
p-like states lie mostly in the interstitial region between the chains.
We can, however, go’ope step further and isolate short wavelength

" Fourier components from the long wavelength Fourier components in these
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charge densities. This introduces a ﬂew method of defining Bondiné
charges and a way to separate out effects of metallicity. The cutoff

or boundary wavelength Ao between short and long wavelength comfonents
was found to lie naturally at Ao =d wﬁere d is the nearest neighbor
separation in. Se and Te. The resulté obtained fof»Se by-retainiﬁg '
only Fourier components with A < Ao are shown in Fig. 56a and b for the
energy intervals [-6.0,-3.6] and [-3.6,-2.25] respectively. Ihe resulﬁs
for Te are similar and are éhowﬁ in Fig: 57. We notice immediately

that the'léwer energy peak in the p-like bonding states represents

states involved in intra-chain bonding. The charge is well localized in

the bonds between atoms beélonging to the same chain. In the upper or
higher energy peak of the p-like bonding states we find states which

arise in part because of the hybridization of Px and Py states and may

also perhaps Be'considered as contributing to the inter-chain bonding
of the crystal. Now the charge is displaced out of the bonds and is
cOncen;rated'in the region between neighboring;chaiﬁs.

Some measure of intra-chain vs inter-chain bonding strengths is
given by the magnitude of the respective bonding charges. For Se we
have found 0.07 e for thevintra—chain bond ‘and 0.04 e for the inter-chain
bond. It>is instructive to compare these values with 0.05 e and
0.04 e for the intra- gnd inter-chain bonds of Te respectively. The
differenge‘in bonding charge between the intra-chain énd iﬁter-chain bonds
decreaseé in going from Se to Te and thus reflects the more three‘
dimensional or more isotropic character of Te. Furthermore, we believe

that the smaller amount of total bonding charge in Te is indicative of its
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more metallic character. Hoﬁevér;_it shoUld be émphasized that the values
of the bonding charges we have obéained sﬁould be considered mostl&
in a relative sense rathervthan'individually. |

The more one;dimensional nature of Se vs the’méré three—dimensidﬁal~
nafure of Té is also reflected in the s-like states shown. in Fig; 53 a
apdvb. In Se we find two sharp peaks at the édges of the band with a
bfoéd‘valléy in between. This is very characteriéfic of the density of
 states of an ihfinite chain of s~like states with nearest neighbor
iﬁteractions.shoﬁﬁ in Fig. 58 as a dashed line. For Te, however, we
find in addition arpeak near the middlé of the valley. This néw peak
is very qharactéristiC'of the density of states of é.simple cﬁbic
lattice of s-like states shown in Fig. 58 as a'solid'lipe. In Te this.
new peak is a resﬁlt of an incfease of the inter%chain Vs intré—chain
interaction of the s—liké states as compared to Se. Furthermore,.these"

results are consistent with the fact that Te becomes simple cubic

under uniaxial pressure.

B. Discussion of Amorphous Phases

Thé recent photoemission measurements on.amorphous Se and Te show
mainly two very interesting differences when compared with their
crystalline counterparts. One of these diffefences bccurs in the s-like
states and the other in the p-like bonding states. 1This is seen in
Fig.‘59 where we have superimposed the photoemission'résults of trigonal
(éolid 1ine).énd émorphous (dashed'line5 Se41 andaTeAZ reépectively.4
In amorﬁhous Se the lower peak of p-like bonding states‘has now becoﬁe

weaker, whereas thevupper peak has become stronger. In amorphous



-106-

L]

Te we find the exact opposite effect. From bur previous discussion
in part 1 we would interpret these differences as a decrease of the
intra—-chain interaction in amorphous Se and an increaée i; the intra-
EﬁgiE iﬁtera¢tion in amorphous Te.

In the s-like states we find a bigger dip in amorphous Se aé
compared to frigonal Se whereas the dip in the s—like states of
‘trigonal Te fills up in the amorphous case. Ihis incfease of the
dip in amrophous Se suggests some very interesting structural pfopertiés.
For éxémple, it .could not be caused by just a breaking of the infinite
chains. This would oﬁly tend to fill up the dip ﬁnleés the chains
were of order two which seems highly unlikely.. Thevonly other reasonable
alternative would be the formation of some type of rings. In pafticular
the dip would get bigger only if the rings were of ﬁrderlthree, five, -
six or sevén. Rings of order four, eight or five and seven together,
would certainly tehd to £fill up the dip. 'FurtherﬁOre, since the bond
- angles in the trigonal pﬁase are around 100° w;-would_suspect that
Fhe.most likely ring structures would be of fype fivefold and siﬁfold
. or sixfold and sevenfold. We, therefore, propose thét amorphous Se
coptains a substantial number of atoms in ring-like configurations
with the rest of the atoms being members of chains.

In amorﬁhous Te the structural information obtained from the s-like
states is a bit more difficult to discern. As we have already mentioned,
a filling up of the dip could be obtained in many ways? such as a simple
cubic structure, fourfold, eightfold, five and sevenfoid rings, and broken

chains. The simple cubic structure could, however, be dismissed since
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it would‘merge-the p—like’bonding s;ates wifh the ﬁon—bonding or lone-
pair sﬁates. ‘What remains, therefqre, is to discern bétWeén a structure’
which most'likély would cohtain only brbRenvchaiﬁsiOr.broken chains_andv
rings.'_

Thévdifféfeﬁces between amorphous Se and Te may lie in the different
téchniqueéjépplied for this preparation. Amorphous Se samples wefe
prepéred by sputtering and forming a thin filﬁ whereas the amorphous Te

samples were obtained by Argon bombardment on a single crystal. Under

' these conditions the formation of rings may be more likely in Se rather

. than in Te.
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_ABPENDIX A. THE EMPIRICAL PSEUDOPOTENTIAL METHOD

Here we shall give a brief description of the various aspects of
the Empiricai Pseudopotential Theory which are relevant to our calculation..
A much more ﬁhofough and exteﬁsive treatment canAbe‘found in Reference 2.

In the pseuaopotenti;l theory and other one electron theories one
assumes that the crystal is made up'pf rigid tightly bound spherical ions
‘and a system of valence or conduction electroms. It is thevlattef group
of electrons which are of interest sincé they are reéponsible for the
physical and cheﬁical nature of the crystal. One now separates the
total one électron crysfalline potential into two parts: (1) a set of
spherical potentials centgred on the atoms which makes up the "cores",
and (2) thevpotential everywhere else in a régioﬁ outside the spheres
called the interstitial region. In region (1) the pétentials are strong
in the sense that they have bound core and valence wave functions. In
region (2)»the potential is comparably weak and slowly varying. Thus
inside.the core, the valence electron wave functions will be atomic;like
with many oscillations due to the large kinetic energy caused by the
deep potential well, whereas, in the interstitial region the valence electron
wave functions can be taken to be plane-wave like..

In the pseudopotential theory one begins by expanding a Bloch
valence wave function wv K(;) in terms of orthogonalized plané waves

>

(OPW)'s: - f ﬁ
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> > > _
L (Y = o Jdk-G)er.
Vo 8 = L 9 g Yopy,k-g(®) %aﬁ-c e : | (a-1)
-2y g @[Ty e@
Y, 2@ =6, 2@ - TG p @D p @ @ (4e2)

. where'¢i is defined from Eq; (A-1) and WC E is a tight}binding Bloch

core wave function which is a solution of the total Hamiltonian with
energy EC. If one now operates on Eq. (A-2) with this Hamiltonian one
obtains a Schrodinger equation for ¢E,in terms of an effective potential

of f which has two contributions: (1) a local attractive potential due

to the atoms and (2) a nonlocal repulsive potential which projects ¢ﬁ

on to the core states. In most cases, it is a good épproximation to take
repulsive potentials to be local which in turn simplifies matters

éonsiderably. This Veff which is now presumably small throughout}thek:

chstal and can be considered as an empirical pseudopotential which can

be described usually in terms of a sméll,set bf-parameters called formv

factors. The pseudopotential is tﬁen obtained by fitting the form factbfé
to experimeﬁtal optical'data.2 This is called the Empirical Pseudopotential
Method (EPM). The ¢E is called a pseudowavefungtion and, although

Eq: (A-2) is now no longer valid,:¢§-f6; all practigal.purposeé is:

faken equél to WV > outsidevthe region of the core. Thus, the essence

sk

of the pseudopotential method is to remove the strong negative core

_poﬁgﬁtial and substitute it with a much weaker potential which will

give the correct valence energy eigenvalues of the crystal. At the same

time ‘it acts so as to remove the atomic like wiggles of the valence wave

K
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functioﬁs inside the core leaving the corréct_vaience wave functions
outside the core. Since the core is_usually very small, approximately

0.2 of the nearest neighbor distance; ﬁhe.pseudowévefunctions should be
capable of providing relevant information aBout bonding character,rsymmetry,
and long rahge interactions;‘

Let us now set up the secular equation for the pseudopotential

Hamiltonian. The Schradinger equation is taken as:

2 S .
> . h® 22 > > >
W, 2 = -5V ¢n,§(r) + V(r?¢n’§(r) v (A-3)
and, using Bloch's Theorem:
-> jjz P4 > > a -)
_ °r | -iGer _
¢n,§(r) = e _zan(G,k) e (A-4)

where the set {G} is the set of reciprocal lattice vectors for the partic-
ular lattice in question.
. R .
Now V(r) is the total crystalline pseudopotential so that it can

be written as a sum of atomic speudopotentials:

> . —>. > -+ .
V(r) = Vk(r - R - TA) ‘ . ' (A-5)
+
R,T)
. > ' > th
where R is a real space lattice vector, TX is the position of the A

. N o

atom in the primitive cell andv,vk(;) = vl(r) or vz(;), depending on
: " >

whether A denotes an atom of type 1 or type 2: Since V(r) has

the periodicity of the lattice we can take:

V@ =L v©) 6T (a-6)

z
>
G
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and if we use Eq. (A-5), V(E) can be expressed as:
v = s°@ v (&) + 152 (S (A-7)

e 55 and SA .
where S~ and S are the symmetric and antisymmetric structure factors and

stand VA are the symmetric and antisymmetric form factors given by:

S@ =11 e—iE.ﬂ ' ' - (A-8a)

n) ' o , 4
| T2
Ao i B | -

HORESSEN - | ~ (a-8b)

S n .1 > s —1Ger 3> .

Ve =gt 5 vy +v,] e d’r (4-9a)

: >
(8] = Br vy () - v, @] 16T 437 (A-9b)

where n is the number of atoms in the primitive cell of volume  and
PA is +1 or -1 if A denotes an atom of type.l or type é7 Here we'haQe
assume& that the form factors are independent of energf, and since the
- atomic potgntials.are taken to be éphericai; the form fa§tors'are
functions of IEI only. If in addition we place the'center of our
céordinate system in such a way that the atoms of type 1 interchange
their positions with atoms of type 2 under spacial inverstion, then SS

and SA are both real. :The secular equation is now easily obtained

from Eq. (A-3) using Eqé. (A-4), (A?G) and (A-7) and has the form:

|36 20 (k) - E_(k) 83z, =0 _ (4-10)
where
h . :
oz () = 5 @+ O g, + V(& - 8D S@ -8y )

+ 138 -] S£E -8y .
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In the:zinc blende structures Cohen and Bergstressef3l used only
three symmetric and three antisymmetric form factors to obta;h a good
agreement of calculated optical properties with experiment. Once one
ﬁas a good set of’form factors, the atomic potentials can be oﬁtained i
in principle form Eds. (A-9a) and (A-9b). If one now assumes that
the atomic potentials do not change very much from‘one type of crystal
‘structure to the next;‘the form factors can be used for a variety
of crystallinevstructures. In this.sense the EPM is extremely useful.
The procedure essentially involves obtéining a ‘continuous VS(IZI) and
VA(|3|) by a suitable interpolation scheme and reading off the. ..
VS(IEI) and VA(IEI) for the set of E spanning the reciprocal lattiée of

the particular structure.
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APPENDIX B. CHARGE DENSITY AND WAVE FUNCTION‘TRANSFORMATIONS
Cﬁarge density calculations are particularly useful in studying
the natufe of the bonding properties of a solid. Tﬁey can also give
us information about thg'distfibution of electrons‘in‘various regions
of the density of states and, therefore, how disorder might affect
thgse various regions.
We can obtain a charge density'p(g) using the wave functions
¢n’K(;) that we get from our EPM calculations. Since the wave functions
are known as a function of band index n or energy E,we can postulate
a "band" charge density pn(;) or an average ﬁenergy" charge density

DE(;). In the former case we would have

‘ -> % > >
P (D) = el p@o 3@ =Ip (kD) (3-1)
k k
‘and in the latter
o (@) = e LI SE ® - B)o SO e @D (B-2)
. n E n n,k : -l: E

> :
where the,En(k) are the one electron valence energies. Therefore, in
o >
principle in order to obtain pn(r)_or DE(;) it is necessary to integrate
> > > > ’
pn(k,r) or-pE(k,r) over the entire BZ.
For our calculations on ZnS in the wurtzite or 2H-4 structure we
used the two k point scheme described in Section II-2 and the following

"alternate approach. Our procedure was to calculate the ¢n T in 1/24
i s ,k

n,k

of T/3, inversions and mirror reflections in k-space. In order to find

of the zone at 48 points and obtain the rest of the ¢ = by rotations

how the ¢n K:transform one must go back to real space and study the
’ ) .
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symmetry operations of the crystal. Since the wurtzite crystél has a
symmetry classification of P63mc,_any rotationsvof T/3 in real space must
be accompanied by certain translations. dnce the'spacebgroup elements
are found, the procédure to find the transfo:ﬁédiwavé functions is now
’éimple. Let ué assume that_Rfllisvsome_rotation in-the point group

in the negative sense. 1In order to make U a symmetry operator of the

wurtzite crystél we must take generally:
-1 o ,
U =TR : _ (B-3)
->
where T 1s the appropriate translation operator with eigenvalue TR._

Now ¢ *(;) has the form:
n,k v

> _1: 7 > > E z B
6 >() =e T La (Gk) e F . o (B-4)
n,k ) > R

G
However

-> +o]j+ > > ‘E U—) .
¢ >Ur) =e - T Za (Ck) e T - (B-5)
n,k" > N :

G

. " . +
. is also a solution to ¥ with exactly the same eigenvalue as ¢n ﬁ(r).
. ’ .

. -> :
Thus we wish to find k' such that:

0 2@ =0 20D . I (B-6)

>
n,k
From Egqs. (B-3) and (B-5) we have:

> > )
?oo-1 ik-T
¢ >(Ur) =(e1k'R F) R - ' (=7)
n’k .
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= iRker R : © (B-8)
¢n’k(Ur) e e | .
> > ‘R-]‘a ’-{ l
. iR TG
5o (R la,z) elG r . R
E n

and Eq. (B-8) follows from the fact—thét_the set {6} is equal to the set
{R-l,a}. Now since

a G,k T - (B-9)

.a comparison of Eq..(B—9) with Eq. (B~8) reveals that if we let E' = Rﬁ

we obtain::

an(E,RE) =e a (R7C,K) e R (B-10)

which is the required transformation expression.

~To 05;§in a transformation expression involving the inversion
operatién we must use-the'conceﬁt of‘thevreﬁersal symmetry. Thus we .
léok at | |

@G,K) e . . (B-11)

>

1f we now compare Eq. (B-9) and Eq. (B-12) and take k' = kK = -k we

obtain:

a (G,-k) = én(—c,k) E : | (B-12)

which is the desired expressidn.
Finally, we need to find the transformation expression for the
mirror reflection operator. If»wé choose the mirror plane to be the

plane defined by I', M and A then we will have all the transformations
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necessary to span all of k space inside the Brillouin zone. In real
space this mirror plane becomes plane I shown in Fig. 1. It is clear
that this mirror operator M is by itself a symmetry operator of the

crystal. Thus proceeding as before:

o ey o R o 2 B
o ) = oM 5o @) L6 (B-13)
n,k "~ » 5. N '

3 .
TR 2 T e ,

N o oiMker 5 iGer ,

P, pMr) = e Lo (MG,k) e (B-14)
: G
From this it follows that:

> > o > '

a (G,Mk) = o (MG,k) -(B-15)

and we now have all the transformations equations neédéd to obtainvthe
wave functions throughout #he Brilloﬁin zone,

In our calculationé related to amorﬁhous'III—V compounds we have
taken GaAs as a prototype and used the 2H-4 (2/2) structure as a simple
typical examﬁle_ofba structure with like-atom bonds. 1In this case we
ha?e used the Chadi and Cohen9 twelve point SChemé (see Section I1-2)
to calculate pn(;). In addition, we have calculaped Dé(;) using the

+ hc .
E B (r) w 1ch is

aforementioned transformations in order to obtain 0O

defined by

DE ’E.(r) = DE(r) dE (B-16)
f2 i » ‘
'E_
i

for various intervals [Ei’Ef]'
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o APPENDIX Cf‘.STRUCTURES AND STATISTiCS

In this section we shéll describe and discuss the structure énd
. parameters of the crystals we have used throughout this work. These
crystal sfructures include the 2H-4 (wurtzite), 4H-8 (hexagonal 4H),
" BC-8 (SiIII), ST-12 (GeIII) and SC-16 .'(Bc—ﬂs taken as a simple cubic -
léttice) structures. We shail also discuss ﬁhat'GaAs sub-structures
we made and the criteria used in their selection for the work‘on the
amorphéus binary compounds{
1. 2H-4
| The 2H-4 structure.is a wurtzite—like 2H structure with four atoms
in a érimitive cell and is descfibed coﬁpletély by'twp lattice constants
constants a and ¢ and an\interﬁal paraﬁeter u. If we make c/a = 1.633
and u = 0}375 then we have an ideal wurtzite ovaILA structure and
an ideal tetrahe&ral arrangement of atoms. For ZnS we took the ideal
2B-4 structure with a = 3.811A and ¢ = 6.223A7

Si‘haé been found experimentally to'éxisg in'évZH—Q structure by
Wentorf and Kasper15 with a 2% increase in densify'aébcompared to Siv
FC;Z. The lattice constants they obtained were a =. 3.80A and ¢ ='6.£8A.
In our caiculations, Qe assume in addition an ideal u = 0.375. Ge on
the othervhand‘haslnot\yet been‘found, to our knowledge, to exist in
" a hexagonalvstructure.so that Qe assumed anvideal Ge 21&4 with the séme
’dgnsity and nearest ngighbor distancé (2.45A> aé.that of Ge in the
diamondvstructure. | |

For the work on the amorphous binary'compounds we took Ga and As

. atoms and made an ideal 2H-4 structure with lattice constants a and c
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chosen in such a way as to make the bulk density of GaAs 2H-4 the same
as that of GaAs in the zipc.blendé structure. .This assured a nearest B
neighbor distance which was equal to that of.GaAs in zinc blende.
Out QthHé.possible substruéturés that can be made with the 2H-4
structure ﬁe shall be interested only in two. Theée can be designated
by (1,1/1,1) and (2/2). 1In the first case we have the-wurtzite structure
with zero like-atom bohds,aﬁd in the second case we have.a fractién
of 1/4 1ike—atom.bonds with the Ga—Ca and As-As ands occupying the two._
Qertical bond positions in the unit cell. fhe firsﬁ strucfure can be
‘'used as a starting point for the study of disorder (U) while the second
can be used fo study the effects of like-atom bonds on structure
.c0ntains fhe smallest fréction, other than zero,/of like-atom bonds
that can be made in the 2H-4 structure. ‘
2. _ZL_H_"ﬁ | . : . '7 '
The 4H—8 étruéturé‘is a 4H structure with eight atoms in a primitive
cell. The lattice constants and internal'pafameter'that describe it are’
the same ésrthdse of 2H-4 except that we now take the lattice constant
Chp-8 = 2¢2H—4'v Again.w? have an ideal tetrahedral.arrangement of
atoms except thatAwe now have a bit more topological‘disorder in the
i;directidn. This is of interest in our study of amorphous binary
compounds. In particular the 2H-8 structuré presents two useful options.
First the (1,1,1,1/1,1,1,1) substructure can be aﬁ aid in the study.
- of disorder (U) since it contains some topological variations. Seqondly;.
the (2,1,1/2,1;1) substructure pontains only a ffaction of 1/8 of like-

atom bonds and thus contains the smallest fraction of like-atom bonds
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other than zero that can be obtained from any of the substructures of
all the basic five structures we are Studying.. The (2,1,1/2,1,1)
structure has Ga-Ga and As-As bonds occupying twd‘of the four vertical

bond positions in the unit cell.

——

3. BC-8
| The BC-8 or Si IIIl structure is body centeréd'qubic with eight
~atoms in the primitive cell and if is completeiy‘specified by a lattice
éoﬁstant a’ and an internal ?arameter X. Si and Gé hgve.both been found
to exist in the BC-8 structure after retrieving samples which had been
under 120 kbars preséure.15 The lattice constant for §i is a = 6.636A
‘and for Gévwe have a = 6.92A. The ihterﬁal paramegef X was taken to
be x = 0.1. Each linked pair of Si (Ge) atoms has one bond length
2;30A (2;40A) and three bonds of length 2.40A (2.508), with an averagé
bond length approximately equal to 2.37A (2.48A); fheré are also two
types-bf.bond‘angles approximately equal to 118° and 100° for both'Ge.
and Si. All the eight atoms in the primitive_cell'ére of one type in
that they exist in the same type of environment wifh fhe same relative
arfangement of neighboring atoﬁs. For Si (Gé) thére.is one next
nearest neighbor at 3;45A (3.608), six at 3.57A (3;73A), six at
3.87A (4.064), etc. | |

To study the amorphéus binary compounds we took GaAs BC-8 with ..
a-= 6;896A and x-¥ 0.l.vvFrom a topologi;al point of:Qiew an interesting{
feature of thé BC-8 structure -is that'although it only haé even numbered
rings of bonds we cannot create any substructureé.wifh a total of zero

like-atom bonds. In the first group containing the smallest fraction
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(1/4) of like-atom bonds there are six substructures and they are all
of the type_(2,2/2,2). Tﬁé second group containiﬁg the next largest
fraction (3/8) of like-atom bonds contains 32 substrucfures. This
group can be.divided further into two subgroups containing 24 and
substructures respectively. .The former contains foﬁr‘atoms with’Qﬁé
like—atom ﬁearest neighbbr and four atoﬁs with two like—atom nearest
neighbors_wﬁile the latter conéains six atoms and two like-atom
nearest néighbor and two atoms with zero like—atom nearest neighbors.
We used stability considerations to choose one structure out of the
first group of six and'one structure out of the second group of 32
which is of the type‘(4/4). These two structures will be studied
using the tighting binding model and we shall single”out the (2;2/2,2)
strﬁctufe for an EPM caiculation usingvstaﬁility"égain as a discerningv
factor, |
4. sc-ls

This structure can be obtained by just considering the BC-8 structuré
as avsimpie cubic lattice with a basis of 16 atoms and is very useful
in studyiﬁg disorder in binary compounds. All the BC-S substructures
can, therefore, be obtained from the SC-16 structure. Thé purpose and
usefulness of the SC-16 structures is that it provides us with a
substructure that has zero like—;tom bonds along with'short rénge
disorde?.’ It is, therefore, very useful in studying disorder (U). The
substructure that we chose was necessarily of the ty?e
(,1,1,1,1,1,1,1/1,1,1,1,1,1,1,1).

The atomé were then allowed to relax slightly to‘a state of lower

energy by a random prbcessés described in.Appendix E. This resulted



-123-

in a'sméll inc;ease invrandomness in the bond lengﬁhs and angles. 1In
particﬁlarvwe obtained bond lengtﬁs that were ﬁp to 3% smaller and .
5% 1arger»§hanvthe ideal bond lengths and bqnd angies that varied from
97° to 119°. | o

Uhfortunétely, there ié no SC-16 substructure thatvéan be found
with a fraction of 1like-atom boﬁds which is smaller than 1/4 other than
zero. | | |
5. SI-12

The ST;12 or Ge III1 structure is.a simple tetragonal uni; cell with'
12 atoﬁs'as a basis. It is completely specified by‘twO lattice constants
a and c andvfourvinterhal parametérs X1 Xy, xé and X, |

Ge has been found to exist in the SI—lZ'strugfure‘whereas Si has not.
For Ge (Si) we used a = 5.93A (5.69A) and é = 6.98A (6.708). The Si
lattice constants were chosen so that the c/a ratio is the same as that
of Ge ST-12 and the f:aCtionai density change frém Si FC—2.to Si ST-12
is .the same as Ge FC-2 to Ge ST—lZ. For Ce and Si the internal pafameters
were taken to be x; = 0.09, x, = 0.173, x4 = 0.378 and x4 0.25. 1In this
structure the bond 1engths.afe all about the same length and
approximately equal to 2.492 (2.393) for Ge (Si);r The bond angles,
however,‘are quite dissimilar.-_They range from 262 léss to 257 greater
than the ideal tetrahedral éngle‘(109° 28_in.); In this structure the
. Ge or Siﬁatoms are poéitioned in two diffefent tfpés of environment.
In the pfimitive éeil fhere are féur atoms of type (1) and eight atoms"

of type (2). The atoms of type (2) form long fourfold spiral chains

along the z direction while atoms of type (1) form bonds between atoms
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in the different spirals. For Ge atoms of type (1) have two next
nearest neighbors at 3.45A, two at 3.64A, two at 3.81A4, eté. Kasper

- and Richardsl negiected to mention the presence of the first two pairs
of next neérest neighbors. Atoms of tybe (2) fof Ge ST-12 have one

. next nearest neighbor at 3.45A, two at 3.565, one af 3.64A,'etc.
Finéily, the ST—12 Structﬁre is quite unusual becéusévof the presence
of fivefold rings of bonds.

For our work on amorphous biﬁary compounds wevéoék GaAs ST-12
with a = 5,914, ¢ = 6.955X with all the internal parameters the same

‘as for Ge and Si.  Since this structure contains'oddfnumbered.rings of
bonds there are néceSsarily no subétructures with a‘totalvof zero like—
atom bonds. The smallest fraction of like-atom béhds that can be

found in these substfuctures is 1/3. The size of tﬁé-groub of sub-
struétures.with a fraction of 1/3 likeiatom'bonds is 216. This can

be broken into three éubgroups containing‘the'fdliowing statistics.

(l)_Twent&—four substructure with four atoms having two like-atom
nearest neighbors and eight atoms wi;h.bne like—atom_nearestineighbor.

(2) Forty—eight‘substructures with six atoms‘having two - like-atom
nearest qeighbors, four atoms with one like-atom neafest neighbors.

(3) One hundred/and forty~-four substructures with five atoms haVing
two like—atoﬁvnearest neighbofs, six atoms with one like-atom nearest
neighbor and one ;tom with zero like-atom nearest'neighbors.

In the fifst subgrouﬁ the substructures are all of type (3,3/3,3)
while in the second subgroup we can find subétructurés of types

(5,1/5,1), (3,3/41,1,1) and (41,1,1/3,3). Finally, in the third
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subgroup we find four types of substructures (3,1/3;3),-(3,3/5,1)
(4,2/5,1) and (5,1/4,2).. We have chosen one distinct substru;tdre from

each of these eight types. These will be studied using our tight

~ binding model and we shall again single out one substructure (4;2/5,1)

using stability considerations, whose atomic positions we shall relax.

' This structure will then be.studied by the EPM.

Although the fraction 1/3 of like-atom bonds.in_these structures is

rather large from a realistic point of view, nevertheless, the ST-12

structure provides us with a series of substructures whiéh have atoms
in a variéty of topological configurations and this 'is useful for
studying the effects of these configurations in a simple and realistic

way.
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APPENDIX D. EXTENSION OF THE WEAIRE TIGHT BINDING MODEL

In this section we extend the model discussed in Section II to
include all the interactions befweén nearest neighbor atoms. This
introduces th?ee additional parameters as shown in Fig. 60a. 1In this
figure the lobes (labeled 1 to 8) representV3p3 like orbitais, four
for each atom. The Hamiltonian matrix elements Eétweén these orbitals
are represepted by V;, V2, V3, V4 and V5. The parameter V, represents
the iﬁteraction between‘orbitals on the same atom. V, represents the
‘ interaction between orbitals on,different atoms but along the same

bond. These are the same parametefs as those used-by Weaire and Thorpe.12

3

én orbital along the bond.and one of the other three orbitals on a

In addition we introduce V_, which represents the interaction between
nearest neighbor atom which do not lie along the: same bond. Vl’ V2 and

V, still do not give us any information about the dihedral angle. so

3
that we would stiil get a delta function of pure p-like bondiﬁg states
at the top of the valence band. To remedy this we introduce V4'and V5
which bring in effects of dihedral angle explicitly énd_saturate the
pumber of interactions between nearest neighbor‘atoﬁé; |

Using this complete model, the Hamiltonian métrix for the diamond
structure can be written as

JC = ~x N - (D"l)
r
X v ’ :

1
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where

o v v V) |
=[N % 1N (D-2)
-' 1 0V
VvV o
and

v2+75(£1f£2+€3) v3(1+£1)+v4(€2+£3) y3(1+£z)+v4<£1+€3> v3(1+£3)+v4(€2+€1)
v3(1+£3)+v4(€1+£2) v3(€1+£3)fv4(1+€2)' V3G )V, (145 VBV (146,4E)
V3 (E14Ey) Vy(B HE )1, (40 V E 4V (16 40y V(B HE )+, (14E)

Va(LHE Y, (BtEg)  VoEHVg (HE4E5) V(B 464V, (14E,) v3<51+£3)fv4(i+£2)

where

ik a/2 ik a/2 ik_a/2 ik a/?2 ik a/2 ik_a/2 '
E. = e e 7 _ 52 =e 7 e Z '_53 =e 2 e *% . (D-4)

The density of etates for Ge obtained from this model is shown in
Fig. 60b. The agreement with the EPM calculations is surprisingly good.
This is especially true for the &élence bands, whereas; the conduction
bends should not be taken too seriously. Thevp-like staees, hqwever, are
not yet c0mplete1y correct éinee we have not been able to reﬁroduce the

dip bet:ween_Elill'r-1 and X4 which would lie near -4 eV. This could be

accomplished, however; by introducing explicit interactions with second
nearest neighbors. Nevertheless, the model can be quite useful as it

stands. The parameters we used in the above calculations are V1=-—2.0 eV,

= 0.6 eV. These parameters

V, = -4.8 eV, V, = 0.2 eV, V, = -0.4 eV and V

3 4 5

can also be related to Slaters parameters for the interactions between
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nearest neighbor s and p basis functions.47 If we.change from a basis

of sp3 orbitals to s and p functions and if we let s; P> py, P, and

', p; denote the new basis functions associated with nearest

y

neighbor atoms respectively, then we obtain the following transformation

o - )

s's Pyr P

equations

| Ass, =_v2 + §v3 + 6V, + 3V, ‘

Bopp = v, + 2Vy = 2V, = Vg ey
| APxpé =V - év3 2V, = Vs - |

Apxp; =V, - 2V, = 2V, + 3v5 /

Here, As represents the difference in energy between an s and p orbital
and the rest of the Aab's represent Slater's interaction‘or overlap
intergals47 for the basis functions a and b. From (D-5) we notice that

the p—like‘delta'funCtion will broaden out if Ap .' # Ap Pt This ‘is

equivalentvfo introducing a V4 and/or a V5 as wexhzvé al:eZdy mentioned.
Since.this model is in general not in such bad agreément with

fealistic Hamiltonians it»might be interesting'fo do a caiculation

of‘the imagin;ry parf of the dielectric function €2kw),' This is given

2 }E: , | -
1 e - >

2
™ W o v

> >
J(kclplkv>| d’k

> > : '
where Ikc> and lkv) represent Bloch states for the conduction and valence

*

bands respectively. The only additional function that we would now need
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> > > 2 .
to evaluate is the matrix element l(kclplkv)l . This can be done
in the following manner. It is much simplér to make a transformation
. : o S o ‘ '
to the matrix element,(kclr]kv) which is given by:

> >
E (k) - E_(k) ‘
> > o Cc v > -*“_». _
lplk,) = & m ¢k |r]k.? _ (D-7)

(x
C

Let us now write k as a sum over tight bindiﬁg Bloch sp3 like orbitals
X7 (;) where

k,l,mz

X7 (x) = — E;e S ¢(r-R, =T, ~pP_ ) (D-8)
k,l,ml N 3 | |

' -
where N is the number of primitive cells, ¢ is an sp3—1ike orbital, Rj
-> : :
is a lattice vector, T, is the position of the«fl'th atom in the primitive
. . - .
cell, and pm represents the center of mass of the»m'th orbital on the

L. : .
grth atom. Using Eq. (D-8) (Eclz|kv) becomes

TAIEERES 5>
m

C v
m'

: > >
. % ik. (Rj—Rj | )
%':g: _>Z ‘% mVe (0~9)
R. R
j 3!

e
ymn

‘ > %k > > - -->' > > > 2 3
J.r¢ (r - Rj' -1 pm,) ¢(r Rj T, =98 ) d°r

where C,, , and V represent the coefficients of Eq. (D-8).for a
. 2',m 2,m .

conduction and valence state respectively obtained By.solving the secular

equation with the Hamiltonian (Eq. (D-1)). Expression (D-9) is exact

but can be simplified considerably if we assume that the strongest

terms one those that contain (slzlp) where |s) and |p) are s and p-like

functions on the same atom. This should not be a bad approximation and
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' - : *
it implies that we should consider in Eq. (D-9) only terms where ¢ and
¢ are also on the same atom. If we do this then there are only two intergals '“

in Eq. (D-9) that we need to consider. The first is of the type

* R
Iw -8 )@ -5 ) Srzpa | (D-10)
_ 2 oy omy
and the second is
* -> . ~ .
.I+¢ (r -6 )o@ -0,) a3 = o, A, (D-11)
2 2 22" _

In Eq. (D-10) bo is just the distance between an atom and the center of

e 3 . . A :
mass position of one of its sp~ orbitals. The unit vector n points

along the m'th orbital of the Z'th atom. In Eq. (D-11) ﬁm . is a unit
: 2272

vector pointing along the bisector of the angle formed by the m't and

m"ﬂlorbital of the.lfth atom and P. represents the value of the integral.

1

The parameter pl, however, is not independent of DO. This is shown by

transforming back to a basis set with s and p functions. We obtain simply

/3 ' '
P, = —2—<SIX|pX> o ’ (D-12)
and’
p, = l(slg[p ) (D-13)
1 2 X . .
thus
pp=—= b (D-14)
V3

Therefore, we have only one parameter PO which can be taken physically
to be about 1/3 of the nearest neighbor distance. Equation (D-9) now

becomes
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> ' X _ :
Cklrlk» = ,’E f,:l Te,m'e,m - (D-15)

]

Mgy

- where the prime on the summatidn in the third term signifies that

A * . 1 B * ) oA
+ po E E} nmzcﬂ,mvl,m + ;_:—;- Do SZL Z CR,m'vlv,mI_lm;L,mz

m, # mi . Expression (D-15) can more be used even if we include
more interactions in our Hamiltonian since it 1is baéed on the
aésu‘mption that the most. important terms are of the type (slrlp)

- where s and p refer to the same atom.
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APPENDIX E. STABILITY AND RELAXATI‘ON

In the process of selecting and studying varioﬁs distinct substrucﬁures,
from substructures with similar like-atom bond clustering configuratioﬁs
it was useful to use stability as a final criteriQn. ‘To calculate the
energy U cf a particulér configuratioﬁ of atoms which has both ionic
and covalent character we must have a short range contribution and a
caulomb contribution.. For the short range energy Qe take a répulsive
term due to thé iﬂteraction betweén the ionic cores and an attractiQe
term to take account of_the éovalent bonding nature of the atoms. With
a small extension of the work of Keating48 and Martin49‘he can get the |
following approximate but simple expression fér U'when expressed

relative to the cohesive energy of the zinc blende structure

n 4 n 4 G Lt 013
1 _3 s,i s,1
v=3 2 Z fs,1%s,1 ¥ T6 2‘1 2 s,i o 2
s=1 i=1 : s=1 4=] (rS ,i) ,
| o (E-1)
> 2 . '
n [AGE .*r )] n % 2
3 s,i s, 1 (e ) - o
+ 8 Z Bs,i,j (e} o + 2 Z Er (@ OLZB)
s=1 1i,j ( s,i S,J) s=1 o

Here U is the energy per primitive cell. The sum over s is over atoms
in the primitive cell, the sums over i and j are bver the bonds 1 and

j of a particular atom s, fs i is a parameter describing the linear
) H

term of the repulsive ion core potential, GS i and Bs.i . are essentially
! ’ s >

bond stretching and bond bending force constants respectively, énd
rz i is one of the three equilibrium nearest neighbor bond lengths
3

(since we can have like and unlike atom bonds). Forithe coulomb part

' . ‘ *
of the energy we assume rigid point ions with charges *e which are the
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effective charges on the atomé whiqh interact vié a screened coulombv
potenfiél with the eléctronic_dieiectric constant €, dz is the Madelungl
constant of a'particﬁlar atom s;_dlgB is the-Madeluné éonstant of the
zinc blende structure and'ro is the equilibrium neéfést neighbor

distance for atoms in the zinc blende structure. For simplicity we

take all the O = 0. and all the B = B and we also assume that
8,1 o S’k9j
the fS i f. The condition that the zinc blende structure be in
b4 . . . .
. 1 M * 2 2 *
equilibrium requlres_f = - Z_aZB(e ) /Ero and we can take e to be the

~ dynamic effective charge.' Then we have from Martin49 for GaAs in the

zinc ‘blende structure: O = 41,2 103 dyn/cm, P = 8.95'10; dyn/cm,

. %*
r = 2,44 A and (e )2/6 0.441 ez which, along with the r:

o i.equal to

. s

-twice Paulings covalent radii for Ga and As;’are the values we éssumed

for the parameters used in Eq. (E-1) to study our various‘GaAs-structures.

We ignore the changes in effective charge when we have like-atom bonds.’
EqUation’(E?i) works fairly well in comparing fhe:differences in

coﬁesiVe eﬁergy of various substrﬁctures of the séme basic structure.

In particular, the most important term in Eq. (E-1) for structures

with like-atom bonds is the coulomb term.b For example, the Madelung

'ene:gy ﬁer.primitive céll of the ST-12 subétructures’which have

33#1/3% like;atom bonds can vary by more.thén 10 eV. In addition, the

-largest Médelung energy'of theseVST—12:substructurés is énly 20% smgller

than the Madelung energy of GaAs in ‘the zinc blendé éfructure. On the

other hand, ﬁith'our aﬁproximations the shorf range energy term will

vary only by about 0.1 eV_and if we take the Bs,i’g'and the di;jnot.

"all eaual respectively we would expect a variation_bylnot mofe_than

1 ev.
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We selected one substructure to study with the tight Bindiné model
" from each set of substructures with similar like-atom clustering
cenfigurations. The.selection of one substructurenéut of a particular
set was cérried out in two simple steps. First, we found the particular
atom A in the primitive cell with the least binding energy for each
substructure in the set. Secondly, we picked the substructure with the
largest. binding enérgy for the atom A as our choice for that particﬁlar
set.

We chose one substructure from eaéh of the five basic structures
to study with the EPM. The selection was carried out in.a similar
fashion as we just described above. In addition, we allowed the energies
vof these substructures to relax to a local minimum. The procedure was
similar to that used by Heﬁdefson and-Ortenbu‘rgerso and consisfed of
moQing'each_atom by a small random amount. If the'energy‘was lowered
the move was accepted, if not then it was rejected.’.This process
was carried out about 2000 times until a local minimum in the cohesive
‘energy wasvrgached. Thé conséquences of this'relaxation were to
lower slightly the energy of the subétfucturevand'to add a small

randomness to the distribution of bond angles and bond lengths.
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Table I. Reciprocal lattice vectors, their magnitudes dnd.form factors for Ge in the 2H-4, BC-8,

and 5T-12 structures. The reciprocal lattice vectors are expressed with respect to the
primitive translation vectors for each structure and the magnitudes of .these vectors
are in units of (2M/ap)? where ap 1s the lattice constant for Ge in the FC-2 structure.
The form factors are in Ry and should be multiplied by a factor equal to the ratio of
bulk densities of the particular Ge structure to the Ge FC-2 structure. Some of the
form factors of Ge 2H-4 are omitted since the structure factors are zero for these G's

Ge 2H~4 Ge BC-8 . 'Ge ST-12
[ ¢t Vg 2 - ¢? Ve I 62 Ve G c? Ve

001) | 0.750 ' (100) | 1,338 | -0.380 | (001) | 0.658 | -0.470 | (310) | 9.110 | 0.040
(100) | 2.667 | -0.255 | (11-1)| 2.676 | -0.255 | (100) | 0.911 | -0.435 | 203 | 9.562 | 0.048
(002) | 3.000 | ~0.230 | (110) | 4.014 | -0.165 | (101) | 1.569 | -0.350 | (311) | 9.768 | 0.050
o1) | 3.417 | -0.200 | (200) | 5.352 | -0.093 | (110) | 1.822 | -0.325 | (222) | 9.918 | 0.053
o2) | s.e67 | -0.075 | (21-1)| 6.690 | -0.035 | (111) | 2.480 | -6.270 | (213) | 10.473 | 0.060-
(003) | 6.750 | }. (a11) | 8.028 | ~0.010 | (002) | 2.630 | -0.258 | (004) | 10.521 | 0.060
(110) | 8.000 | 0.000 | (210) | 9.366 | 0.045 | (102) | 3.541 | -0.193 | (302) | 10.829 | 0.060
11y | s.750 (22-2)| 10.704 | 0.060 | (200) | 3.644 | -0.188 | (104) | 11.432 | 0.060
(103) | 9.417 | 0.045 | (300) | 12.042 | 0.053 | (z01) | 4.302 | -0.148 | (312) | 11.740 | 0.055
(200) { 10.667 | o0.060 | (31-1)| 23.380 | 0.038 | (112) | 4.522 | -0.140 | (320) | 11.843 | 0.055
(112) | 11.000 | 0.060 | (211) | 14.718 | 0.018 | (210) | 4.555 | -0.135 | 114) | 12.343 | 0.050
(201) | 11.417 | 0.060 A (211) | 5.213 | -0.098 | (321) | 12.501 | 0.048
(004) | 12.000 003) | 5.918 | =0.065 | (223) | 13.206 | 0.040
(202) | 13.667 | o0.035 (202) | 6.274 | -0.050 | (303) | 14.117 { 0.025
(104) 14.667 ) (103) 6.829 -0.030 (204} 14,165 0.025
(113) | 14.750 _ (212) | 7.185 | -0.018 | (322) | 14.473 | 0.023
' ' (220) | 7.288 | <0.013 | (400) | 14.576 | 0.020

(13 | 7.740 | 0.003 | (313) | 15.028 | 0.013

(221) |'7.946 | 0.010 | (214) | 15.076 | 0.013

(300) |8.199 | 0.018 | (401) { 15.234 | 0.010

(301) 8.857 0.035 (410) 15.487 0.008

-8€T-



Table II, Reciprocal lattice vectors, their magnitudes and form factors for Si in the 2H-4, BC-4
and ST-12 structures. The convention 1s the same as Table I.

-

Si 2H-4 S1 BC-8 / Si sT-12
G G2 Vf G Gz Vf G G2 Vf G Gz Vf

(001) | 0.748 | -0.510 | (100) | 1.339 | -0.420 | (001) | 0.658 | -0.520 | (310) | 9.110 | 0.068
(100) | 2.723 | -0.245 | (11-1)| 2.678 | -0.250 | (100) | 0.911 | -0.480 | (203) | 9.562 | 0.073
(002) | 2.991 | -0.210 | (110) | 4.017 | -0.120 | (101) | 1.569 | -0.380 | (311) | 9.768 | 0.075
201) | 3.470 | -0.165 | (200) | 5.356 | -0.050 | (110) | 1.822 | ~0.350 | (222) | 9.918 | 0.078
(102) | 5.713 | -0.035 | (21~1)| 6.696 | -0.001 | (111) | 2.480 | -0.270 | (213) {10.473 | 0.080
(003) | 6.729 | ©0.001 | (211) | 8.035 | 0.041 | (002) | 2.630 | -0.255 | (004) |10.521 | 0.080
(110) | 8:168 | ©0.045 | (210) | 9.374 | 6.070 | (202) | 3.541 | -0.160 | (302) |10.829 | 0.080
(111) | 8.915 | 0.063 | (22-2)(10.713 | 0.080 | (200) | 3.644 | -0.153 | (104) |11.432 | 0.080
(103) | 9.451 | 0.073 | (300) [12.052 | o.078 | (201) | 4.302 | -0.105 | (312) {11.740 | 0.078
(200) |10.890 | 0.080 | (31-1)[13.391 | 0.065 | (112) | 4.522 | -0.093 | (320) |11.843 | 0.078
(112) {11.158 | 0.080 | (211) [14.730 | 0.040 | (210) | 4.555 | -0.090 | (114) |12:343 | 0,075
(201) [11.638 | 0.079 (211) | 5.213 | -0.058 | (321) {12.501 | 0.075
(004) [11.962 | 0.078 (003) | 5.918 | -0.030 | (223) | 13.206 | 0.068
(202) {13.881 | - 0.058 (202) | 6.274 | ~0.015 | (303) |14:117 | 0.0s5
(104) [14.686 | 0.040 (103) | 6.829 | 0.005 | (204) | 14.165 | 0.054
(113) {14.896 | 0.035 (212) | 7.185 | 0.015 | (322) | 14.473 | 0.047

(220) | 7.288 | 0.020 | (400) | 14.576 | 0.045

(113) | 7.740 | 0.033 | (313) | 15.028 | 0.030

(221) | 7.946 | 0.040 |. (214) | 15.076 | 0.030

(300) | 8.199 | 0.045 | (401) | 15.234 | 0.025

(301) | 8.857 | 0.063 | (410) |15.487 | 0.015

—6ET-
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Theoreticel €, structure and identifications, including the location in the BZ, »,

.cry and energy of critical points for Ge and 51 in the

Table III.
2H-4 structure, Details are given in the text.
Ge 2H-4 51 2H-4
C‘z Peaks (eV) Bands Location 1in Zone Symmetry  Energy (eV) €, Peaks (eV) Bands Lo;{nﬁon in Zone Symmetty  Energy
1.46 1 7,8-10 - -k _ My 1.46 . 2.60 1 7-9 %-%,(0.3,0,0) ¥, 2.60
.77 6-10 L-5 My 1.77 2.60 1l 79 5.y 2.60
2251 59 Lo “b 2.08 3.10 ¥ 7-9 (0.25,0,0.25) My 3.02
AG-A:‘ . 2.23 3.35 0 7-9 U,-U,(0.5,0,0.35) M 3.34
&9 88y - My . 226 3.35 1 5-9 LT My 3.0
2.50 1 7-9  (0.25,0,0.25) M 2.48 80y 3.31
2.50 1 §-10 . AS-Ai(o,o,o.J) My 2.51 (;-9 . AgmAp M, 3.35
2.68 1 8-9 : u“-uz(o.s,o,o.as) ~My 2.68 © 360 L 8-10 4-8,(0,0,0.25) My 3.59
2,751 7-9 U,-0,(0.5,0,0.4) My 2.78 4.10 1L 6-9 Moy 4.08
3150 7<10 (0.08,0.08,0.2) ' My 3.03 55 4.09
79 (0.11,0.11,0.2) ’ ~M, 3.14 u3—ul('o.5,o,0425) M, 4.11
3.35 1 69 (0.2,0,0.25) : ) My 3.35 7-9 R,~R, (0.15,0,0.5) M, 413
3.57 0 89 (0.2,0.2,0.35) ~My 3.57 6.251 8-9 (0.2,0.2,0.35) ~M, 421
3.60 1 6-9 om 3.61 - st 4.26
' LA 3.59 4.38 1 8-10 (0.2,0,0.4) ¥, 4.38
u3-u1(o.'5,o,o.1s) ' ~H, 3.60 ' R,k (0.2,0,0.5) 4.30
8-10 (6.2,0,0.4) M, 3.80 Y48y 8-10 u,t ~M, 4,64
nzfgl(o.zs,o,o.s) 3.60 8-9 0.3,0.1,0) M 4.68
3720 8-9 (0.3,0.3,0.45) My 3.72 7-11 (0.4,0,0.35) My 4.61
4.521 -8-11 Ly-Ly, U0, ' ~H, 4.40 7-9 T(0.2,0.2,0) an 4.74
8-9 T(0.23,0.23,0) ~My ' .45 %.69 1 8-9 T(0.2,0.2,0) M, 4.57
7-11 (0.25,0,0.25) o ~My 4.53 5,6-10 As-as(o;o,o.a) ~My 4.69
4.52 1) 711 (0.25,0,0.25) My 4.53 4.89 1 7-9 K ~H, 4.87
8-9 g7 ", 4.52 8-9 (0.3,0.25,0.25 ~t, 4.89
4.70 1 7-9 x,11 ) ~H, 4.67 4.91 11 7-10 2(0.2,0.08,0) ~M, 4.91
, 8-9 .(0.4,0.15,0.15) oM 4.72 8-10 (6.2,0.1,0) ~M, 4.93
812" . AjAy, §)-5,(0.03,0.03,0.45) ~M, 4.71 4.96 1 8-11 £(0.35,0.05,0.05) ~N, 4.96
4701 -1 wrt Lo My 4.67 5501 8-14 I~ rl'é w 5.47
7-9 K, P(0.33,0.33,0.15) ~My 4.90 5.55 0 8-12 M-t 5.61
5.231° 8-14 . l"s- I‘u M, 5.23 Iy-%, 5.54
8-11 (0.08,0.08,0.35) : ) My 5.30
5.290 812 MM, S 5.33
-3, ) - : 5.31

8-11 €0.3,0.1,0.15) 5.29




Table IV.

and Si in the BC-8 structure,

'!‘heoreu.cal €y structure and identiﬂutions. including the location in the BZ, -ymetry and energy of criticol poinn for Ge
Details are given in the text.

Ge BC-8 S1 BC-8

ei Peaks (eV) Bands Location in Zone Symmetry Energy (ev) ) Peaks (eV). ‘ ‘Bands Location in Zone . Symmetry hergy.
2,03 16-17 21-2"7(0.37,0.3_7,0) l(l 2.63 . 0.#3. ’ 15,16-17 H3-H4 Ho 0.43
2.46 ‘ 15-17 22-22(0.6,0.4,0) 2.46 1.?0 16-17 AL—AQ(O'SS'O'O) Ho, . 1.65
13-17 Aa-Aa(O.SG.0,0) MO 2.41 2.04 16-17 (0.3,0.55,0) ~Mz 2.04

2.70 13-17 (0.2,0.8,0.15) HO 2.67 2.60 16~18 21—21(0.4,0.10,0) Hz 2.62
14-18 G -G (0 15 0.85 0). ~Ho 2.65 i5-17 . (0.3,0.5,0) Ho 2.54

3.21 16-19  (0.25,0.35,0.25) Ho 3.19 3.00 13-17 (0.2,0.7,0.15) Ho 2.96
13-17 -G -G (0.4,0.6,0) H2 3.24 3.45 13-17 .(0.1,0.5,0.1) .3.66
(0.3,0.4,0.15) 3.23 14-17 (0.2,0.4-,0.15) ~Hz 3.45

14-17 (0.2,0.4,0.15) ~H2 3.21 16-19 » (0.3,0.4,0.2) Hl 3.43

13-18 (0.3,0.45,0) Ml 3.21 16-17 rl- l"6 Ho 3.38

C (0.22,0.78.0) 3.23 3.70 13—17. —62(0.45,0.55,0) H2 3.70

3.76 15-19 N, G -G (0.4,0.55,0) H3 3.78 15-19 -D1(0.5,0.5,0.15) My 3.68
12-18 'GZ-G1(0.35,0.65,0) Hl 3.76 4.05 16-21 . - (0.2,0.6,0.15) 4.05

15;{1’7. - n, 3.7 8,-4,(0.5,0,0) X, 4.04

3.98 11;—19 (0.25,0.65.,0.15) ‘ 4‘.09 15-21 0.2,0.6,0.1) Ho 4.02°
4.50 12-19 (0.26,0.63,0.i5) ) 4.50 13-18 ’Gl(O.Z,O.ﬂ.O) 4.02
16-21 (0.15,0.2,0.1) HZ 4.48 14-19 (0.25,0.65,0.1) ~H1 4.07

14-20 (d.l',O._S.O.l) -‘;.50 4.20 16-22 (0.2,0.5,0) ~H2 4.20

. 15-19 -44(0.25,0,0)» 'Ho 4.42 12-18 (0.15;0.7,0.15) Hz 4,22

15-22 (0.15,0.7,0) HO 414

5.05 14-21 0.2,0.6,0.1) M, 5.05

13-20 -D1(0.5,0.5,0.1) ‘ 5.00

~THT-
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Table V. Theoretical €; structure, with perpendicular polarization, and {dentifications. including the location in the BZ, symmetry and

energy of critical points for Ge ST-12.

Details are given in the text.

> >
Ge ST-12 El e

EI Peaks (eV) Bands Location in Zone Symmetry Energy (eV) 52 Peaks (eV) Bands Location in Zone Symmetry Energy
:_s - -
1.46 23,24-25  %-%(0.35,0.35,0) Hy 1.46 20-25  §,-8,(0.06,0.06,0.5) ¥ 3.45
2.10 24~25 (0.4,0.1,0.3) - ~M, 2.08 $,-5,(0.45,0.45,0.5) ~M 3.45
23-25 (0.4,0,0.3) M, 2.18 17-25 - 1%(0.5,0.5,0.3) ~My 3.53
2,55 24-26 (0.5,0.1,0.3) M, 2.48 24~27  (0,0.1,0.25) ~M, 3.47
T,-T,(0.5,0.5,0.4) 2.52 Tl-T1(0.§,0.3,0,5) 3.50
t4 Z : A
U1-U3(0.5,0,0.3) 2.50 20-26  T,-T,(0.5,0.35,0.5) SN, 3.47
23-26 (0.4,0.15,0.25) 2.62 22-27 (0.3,0.1,0.3) M, 3.54
22-25 (0.4,0,0.25) ;"z 2.62 a,-8,(0.45,0,0) 3.50
M 2.60 3.65 17-25  (0.5,0.25,0.3) M, 3.67
21-25 (0.4,0.15,0.25) M 2.60 z2,-2, My 3.65
26425 0.1,0.1,0.4) . My 2.54 23-27  (0.1,0,0.25) 3.65
2.80 23,24-26  §,~5,(0.4,0.4,0.5) M, 2.87 24-29  U%(0.22,0,0.5) My 3.60
21-25 (0.4,0.15,0.25) My 2.60 24-30  R;-R; My 3.60
,Al-zll(o.z.,o,o) 2.80 4.20 24-30  U%(0.3,0,0.4) 4.18
2425 v%(0.2,0,0.4) M 2.70 M 4.20
24-27 0.5,0.1,0.3) My 2.76 21-27  (0.15,0.15,0.2) M, 4.22
ry-I My 2.75 23-28  4,-4,(0.1,0,0.05) 4.20
3.00 20-25 (0.4,0.15,0.25) Hy 2.93 21-28  U%(0.15,0,0.4) . 4,20
-
22-25 2,72, . M, 2.98 20-25  Z,-Z (0.07,0.07,0) My 4,21
T,~T,(0.25,0.5,0.3) 3.00 2332 5,-5,(0.22,0.22,0.5) - 4.20
24-27 . 1%(0.5,0.5,0.45) M, 3.1 4.50 23-31 u;-u;(o.s,o,o.z) ~My 4.57
19-25 (0.35,0.18,0) 2.97 21-33 X)=3(0.4,0.4,0) 4.48
z_.2 ~ — Y
MM M, 3.00 22-30  1¥7(0.5,0.1,0.05) My 4.36
22-27 (0.5,0.15,0.3) M, 3.04 (0.3,0.15,0.4) Hy 4.52
3.20 24—.27 z-2) My 3.18 20-26  (0.15,0,0.1) My 4.54
X X
z)-2] M, 3.20 20-28  (0.15,0.15,0.25) My 4.47
21-25 v*(0.2,0,0.5) M 3.21 14-27 . MI-M2 M 6.46"
2 37 0
23-28 R, T* ~M 3.20 23-34  %,-T,(0.36,0.36,0) 4.48
19-25 (0.5,0.15,0.3) M, 3.21 23-35 . ¥-%(0.5,0.35,0) 4.48
4,-4,(0.38,0,0) 3.20 2129 4%:4{(0,0,0.22) 4.50
. - ) R Z_.Z.5
3.50 19-25,26  Rj~R; L 3.46 22-31  81-87(5,0,0.3) 4.50
18-25 T,-T,(0.5,0.22,0.5) ~M 3.49 24-33 u{-u{(o.s,o.z,m 4.52
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Table VI. Theoretical 82 structure, with parallel polarization, and identifications including the location in the BZ, symmetty and energy
of critical points for Ge 8T-12. Detatlls are given in the text.
‘ Ge 5T-12 E Nl ¢
€, Peaks (eV) Bands Location in Zone Symmetvry Energy (eV) ez Peaks (eV) Bands Location in Zone Symmetry Energy
1.60 24-25 52-21(0.35,0.35,0) 3 MO 1.46 —U;(O.S,0,0.Z) 3.71
’ .
Az—Al(O.lo,g,O) . ~M; 1.70 3.90 19-25  (0.2,0.15,0.3) My 3.92
2.15 21-25 -21(0.37,0.37.0) Ho 2.07 24-29 | AZ-A;(0,0,0.18) M, 3.94
24-25 (0.4,0.1,0.3) . My 2.08 23~29 AI-A2(0'37’0'0) it 3.90
23-25 (0.4,0,0.3) . My 2.18 Sl-Sl_(0.26,0.26,0.5) 3.90
2,65 21-25 (0.4,0.15,0.25) L 2.60 21-26 A2-Al(0.15,0,0) ’ ~M; 3.88
X_,X i .~ .
21-2) M, 2.65 4.20 24~29 F3- 14 M3 4,22
Y_y¥ N
lJ1 U1 2.63 20-25 13 I‘A 4 4.16
22-26 (0.5,0.2,0.25) My 2.74 —21(0.07,0.07,0) My 4.21
)
22-25 3 Hl . ~M2 2.70 21-28 l‘z- n Mo 4.22
y b . . . Zz_,Z
24-25 F3- I‘l‘ My 2.64 A1 8y 4.23
3.20 24-27 24-2y Ho 3.18 Ux(O.IS.O,O.Io) 4.20
X_ %
B2 2 H3 3.20 51-81(0.25,0.25,0.5) 4.20
Az Al(O.-’cS,0,0) ~H2 3.18 22-29  (0.15,0.15,0.2) My 4.21
21-25  1U%(0.2,0,0.5) .o, 3.2r oy M, 4,24
(0.2,0.2,0.3) 3.20 24-30  (0.1,0.1,0.3) My 4.26
. 26~26 -51(0.26,0.26,0.5) H3 3.26 22-30  (0.3,0.25,0.25) 4.21
23-28 Rl Ry 3.20 4.40 20-26 (0.17,0.17,0.1) M, 4.42
24-28 22-21(0.25,0.25,0) . ~M1 3.20 18-27 21—21 Mo 4,36
3.50 20-25 2,72, 3.48 23-28 22—_21(0.110,0.14,0) 4.40
51—51(0.06,0.06,0.05) Ho 3.45 22-27 21-22(0.16,0.16,0) 4.37
22-27 (0.3,0.1,0.3) M, 3.54 Al-Az(O.ZS,0,0) 4.40
. _ Z_y 2 ~ .
‘l's l‘5 » Ho 3.44 23-34 M, My o, 4.40
. ©.20-26 ° (0.3,0.1,0.3) 3.53 2 -- (0.35,0.35, 0) . 4.40
24-29 22-21(0.35,0.35,0) . 3.45 16-26 22— ' ~M1 4.37
z_ .2
24-26 AI-AZ(O.J,O,O) 3.48 A2-A3 4.40
3.70 24-28 AI-A2(0.26.0.0) 3.70 23-30  (0.35,0.15,0.3) M, 4.42
$,-5,(0.2,0,0) ~M, 3.70 4,-8,(0.37,0,0) 4.40
21-27 282 M 3.69 22-31 13-0}(0.5,0.3,0) 4.40

Z- 1 1

b
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Table VII. Theoretical E, structure, with perpendicular polarization, and identifications, including the location in the BZ, symmetry and
energy of critical points for Si §T-12. Details are given in the text. .

$1ST-12 EL ¢

57 Peaks (eV) Bands Location in Zone Symmetry Energy (eV) 82 Peaks (eV) Bands . .Location in Zone Symmetry Energy
1.76 24-25  (0.4,0.2,0) M 1.76 3.60 - 20-25  z,U%(0.1,0,0.5) M 3.60
.o : 0.
2.33 23-25  (0.4,0,0.3) My 2.31 . 21-26  (0.3,0.2,0.25) ~My 3.60
24-25  (0.4,0,0.45) M 2.33 . 22-27  I,-L (0.3,0.3,0) M 3.50
1 Xt . [{]
2.50 23, . M ~M 2.50 - ' 21-29  R,-R, - M 3.59
24-26 1 1 0
T,-T,(0.5,0.15,0.5) £ 2.52 23-27  (0.1,0.1,0.25) M, 3.56
ui-ui 2.51 23-28  (0.5,0.15,0.3) M 3.58
X Y oY - _ Z_,2 . .
2, ul-u) 2.45 22-26 87-47(0,0,0.3) 7 3.60
2.80 T 23, 5-5,(0.4,0.4,0.5) 2.76 : 22-28  £,-1,(0.32,0.32,0) 3.60
 24-26 i . . :
N X X
(0.4,0.4,0.4) . M, 2.80 _ 3.85 2-29  2}-7] M 3,92
21-25  (0.45,0.15,0.3) M 2.73. 23-28 T -T) My n
z z
8,70, (0.45,0,0) . 2.80 4,-81(0,0,0.24) M, 3.85
21-25 u{-u{(o.s,o.z,o) My 2.79 23-29  (0.35,0.15,0.25) 3.85
22-26) (0.5,0.3,0.15) 2.82 17-25  U7-U5(0.5,0,0.33) 3.85
23-28  2,-7; M, 2.78 22-27  (0.15,0.15,0.2) ~M 3.81
22-25  (0.4,0,0.25) M, 2.74 21-29° £,-1,(0.42,0.42,0) . 3.88
- 3.20 20-25  4,-,(0.39,0,0) ] My 3.17 20-26  (0.15,0.1,0.4) Tao~M 3.89
. 2z z
£,-£,(0.37,0.37,0) M, 3.21 16-25 MM . My 3.86
19~25 £,-E, (0.4,0.4,0) ~M 3.18 23-30  (0.35,0.35,0.25) ~M 3.81
2742 b 1 1
22-25 2,2, ) M, 3.18 4.45 20-26  (0.1,0,0.1) ~M, 4.48
(0.2,0.2,0.25) N 1.16 I,-I,(0.12,0.12,0 : 4.4
20-26  ©v7(0.5,0.35,0.05) My S 3.17 23-35 M;-H; 4.46
. i _ Z_\Z ’ -
-2, (0.4,0.4,00 - 3.20 . 15-27 - Mo-My M 4.45
22-28  U]-U3(0.5,0.4,0) 3.20 15-26  I,-I,(0.44,0.44,0) 4.42
z . Z
. R -Ry . 3.20 ) ]-13(0.5,0,0.36) R
21-26  1%(0.5,0.5,0.4) ¥, 3 ‘ 1-26  MI-M; 4.41
3.38 20-25  R,T%(0.5,0.5,0.45) M 3.39 T,-T,(0.5,0.28,0.5) . 4.45
19-25  R,T%(0.48,0.48,0.4) ~My 3.45 21-27  (0.2,0,0.2) ~M, 4.40
Z,-,(0.35,0.35,0) 3.35 - 43-87(0,0,0.27) 4.45
22-26  (0.25,0.25,0.3) ~H, 3.36 22-33 " L,~F,(0.44,0.44,0) 4.45
18-25  (0.4,0.2,0) My 3.35 . : £-£,(0.4,0.4,0) 4.45
. v}~y (0.5,0.38,0) 3.40 " 19-27  (0.35,0.15,0.3) M, WY
24-27  (0.15,0,0.3) Hy 3.38 21-28 A;-Af(o,o,o.za) » 4.43
v%-U%(0.5,0,0.15) 3.38 22-29  vY-0Y(0.5,0.11,0) 4.61
171 . 1™
22-28 2,2, ¥, 3.37 19-25  £,-%,(0.15,0.15,0) 4.45
(0.45,0.4,0.3) M 3.35 ) 17-28 M 4.42

»
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Table VIII. Theoretical €, structure, with parallel polarization, and identifications, including the location in the BZ, symmetry and energy

of critical points for Si ST-12.

Details are given in the text.

>
Si ST-12 E W ¢

Bands

Ez Peaks (eV) éands Location in Zone Symmetry | Energy (eV) 52 Peaks (eV) Location in Zoue- Symmetry Enervgy
1.76 264-25 0.4,0.2,0) M, 1.76 3.90 24- 30 (0.5,0.22,0.25) M 3.92
-~ 2.32 23225 (0.4,0,0.3) M 2.31 24-29,  2%-7¢ M 3.93
(] e 174 0
24-25 (0.4,0,0.45) M 2.33 ' oo} 3.95
2 z
. 24-26 u-ui ", 2.46 264-29 ‘ T, M, 3.98
22-25 L, My 2.32 23-29 (0.2,0,0.3) "y 3.91
2.80 24-26 (0.1,0.1,0.4) ¥, 2.81 18-25 (0.3,0,0.4) 3.90
(0.2,0.2,0.5) ¥, 2.79 8,-4,(0.35,0,0) 3.90
21-25 (0.45,0.15,0.3) M, -2.73 21-26 £,-2,(0.16,0.16,0) My 3.92
21-25 u{-u{(o.s,o.z,o) N 2.78 22230 (0.35,0.35,0.1) : My 3.81
22-26 (0.5,0.3,0.15) 2.82 23-28 43-83(0,0,0.22) ’ 3.88
_ M N 2.65 4.26 20-25 T, M, 4.07
24-27 2,72, M, 2.79 22-29 o . ~M 4.28
2425 €0.3,0.05,0.4) M, 2.81 22-32 . ng-ng 4.30
' 3.30 21-25 v¥(0.2,0,0.5) M, 3.33 0-17(0.5,0.3,0) 4.26
23-27 (0.35,0.15,0.3) M 3.31 20-28 (0.4,0.2,0.25) 4.30
22-26 (0.25,0.25,0.3) ~M, 3.36 18-27 2.2 N 4.25
23-26 T84 3.30 24-30  U7-U7(0.5,0,0.15) 4.26
24-26 (0.12,0.12,0.25) M, 3.25 §,-5,(0.3,0.3,0.5) 4.27
21-28 £,-E,(0.4,0.4,0) 3.30 4,-4,(0.36,0,0) » 4.26
3.65 22-27 . 2,5(0.15,0.1,0.45) ~¥, 3.64 (0.3,0.1,0.2) My 4.41
- (0.2,0,0.4) ~¥, 3.69 19-25, . (0.25,0.25,0.3) 4.28
. 26 v

21, ¥,v"(0.37,0.1,0.4) ~uy 3.62 4.96 20-28,  (0.3,0,0.25) 4.95

22-27 29
2127 €0.3,0.3,0.25) My 3.60 N 20-28 v3-13(0.5,0,0.2) 4.96
19-25 2,8,~5,(0.1,0.1,0.5) My 3.65 19-33 T,-L,(0.43,0.43,0) 4.94
20-25 z,0%(0.1,0,0.5) Mg 3.60 19-26 8,-4,(0.18,0,0) 4.95
. . : (0.2,0.1,0.3) ""o. 3.62 21-29 §,-5,(0.3,0.3,0.5) 4.98
24-28 5,75,(0.25,0.25,0.3) 3.65 ' ui-ui(0.5,0,0.2) 4.96
T, My 3.74 17-31 | E,-L,(0.42,0.42,0) 4.97
23-28 T(0.5,0.15,0.4) M 3.60 23-33 U;-ui(o.s,o,o.zs) 4.96 .
24-27 4,-8,(0.35,0,0) 3.65 . 23-31 ., I,-Z,(0.18,0.18,0) 4.94

)
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Table IX. The number and type of p-like functions that can
' be made for a certain atom given the configuration
of nearest neighbor atoms.

Number of unlike~  Number of p-like Number of p-like |
atom nearest functions of type functions of type III-
neighbors ITI-V IIT or V-V

4 3 0

3 2 -0

2 1 1

1 0 2
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FIGURE CAPTIONS
(a) Wurtzité and (b) zihéfblende-crystal structures. The
wﬁrt?ite struéture is aligned with the.c_axis along the z
direction and zinc blende is priented with the_(lll)fdirection

pointing along the z direction.

" Total charge deﬁsity for ZnS in zinc blende structure, (110)

plane.

nystalline ﬁSeudopotential for ZnS in zinc blende structure,
(110) plane. | | |
ZnS wurtzite éharge density-bands ‘1 and 3, (110) plane.

ZnS wurtzite charge density-bands 4 and 5, (110) plane.

'ZnS wurtzite charge density-bands 6 and 7, (110) plane{

ZnS wurtzite charge demsity-bands 8 and 9, (110) plané.

ZnS wurtzite total charge density in plane I, (110) plane.

ZnS Wuftzife total charge density -in plane II, (101) plane.
Zns wurtzite fotal charge density in plane III, (001) plane.
Only the S atoms lie in this plaﬁe. _ gﬁ

ZnS wurtzite total cﬁarge densit& in planeQIV; (100) blane.
Ohly the S and Zn atoms in the center of the figure lie in

this plane.

Crystalline pseudopotential for ZmnS in wurtzite structure in

plane I, (110) plane.‘
Brillouin zones and associated symmetry points and lines for
the 2H-4, BC-8 and ST-12 structures.

Band structure Ge in the 2H-4 or Wurtzite structure.
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Fig. 15. Bahd.struéture of Si in the 2H-4 or wurtzite stfucture.

Fig. 16. Band structure of Ge in thé BC-8 or Si III structure. .

Fig. i7. Band structure of Si in the BC—8ﬁor.Si ITI structure.

Fig. 18. Band structure of Ge in the ST-12 or Ge'III’structurei

Fig..lg. Band structure of Si in the ST-12 or Ge iII:Sffucture.

Fig. 20. Deﬁsity of states for fhe (a)»BC—8 and (b) STfiZ structures
calculated from-the tight bindiﬁg modei used by'&eéire. AThe
BC-8 structure is shifted slightly to lower energies with
respect to the ST-12 structufe so as to agree,bétter wiﬁh
Ge BC-8 (EPM). The dotted Iine in (b) repreéents the bottom
of the condition band for the FC-2 structure using the Weaire
model.

" Fig. 21. -Density‘of states of Ge in the (a) FC-2, (b)'ZH-4, (c) BC-8

~and (d) ST-12 structures using the Emﬁirical Pseudopotentiél
'Methbd, The dotted line in (a) repreéents a sketch of the
amorphous dénsity of states obtained by Donovan et al.~(R¢f. 10).
Thé dotted line iﬁ (d) represents the évgraging.of Bragg gaps
for Ge ST-12 in this calculation. ‘

Fig. 22. Dénsity of states of Si in the (a) FC-2, (b) 2H-4, (c)'BC—S
and (d) ST-12 structurés using the Empirical Pseudopotential
Method.  The dotted line in (a) represents a sketch of the
éﬁorphous density of ététes‘obtained by fierce and Spicer
. (Ref. 10). The dotted line in (d) représeﬁts the averaging

of Bragg gaps for Si ST-12 in this calculation.



Fig. 23.

Fig. 24.
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Experimental XPS results which are related to the density of

states for Ge and Si in the FC-2 and émorphoﬁs phases.‘ Top;

experimentél curve (dots) for Si and Ge iﬁ ﬁhe FC-2 struc;uré
along wiﬁh a sharp theéretical and a broadened‘theoretical

(EPM) calculation. Bottom, XPS résulfsvfor Si and Ge in

the.amorphous phase compared with the calculated density of

stateslfor Si and Ge in the ST-12 strucﬁure (EPM) from this
ﬁork.' The relative sizes of the humps in the Si experimentai'
curves differ from those iﬁ Ge because of the differences in
scattering cross-sections of the 3x, 3p and 4s, 4p electrons.
Density-of—-state calculations for the aiamqnd and one-class~
ring structures. (a) One—orbifal Hamiltonian.in'the diamond
structure: :Bethe lattice (dashed line), exact calculation

from Ref. 19 (light full line) and our resﬁlts (heavy full

Vline).“ (b) Four-Orbital sp3 Hamiltonian_iﬁ the diamond

structure: Bethe lattice (dashed line), exact calculation

from Ref. 19 (light full line) and our results (heavy full

line). (c) Structure with 6 n-fold rings around the central

atom ‘in the one-orbital Hamiltonian: 1 (full.liﬁe) n=6;

2 (dashed 1line) n = 5; 3 (dotted line) ﬁ = 7;:4 ‘(broken line)
n = 8. v(d) Structure with 6 n—fold_ringé.in the four orbital

sp3’Hamiltoniana Notation as in (). (e) The orbital energies -

. for isolated sixfold rings (full lines),. fivefold rings

~ (dashed lines), sevenfold rings (dotted lines) and eightfold

rings (broken lines) and eightfold rings (broken lines).
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Density~6f—state calculations for the BC-8 [(a) and (®)]

and ST-12 [(c¢) through (f)] structures. (a) Our calculation

for BC~8 with the one-orbital Hamiltonian. (b) Our calculation

for BC~8 with the four—orbital‘spB-Hamiltonian (full line)
and the exact calculation (dashed liné). (c) The LDOS for the
two different atoms in the one-orbital Hamiltonian for ST-12.

(d) The LDOS for ST-12 and the four-orbital sp3 Hamiltonian.

(d) The TDOS for ST-12 in our calculation for the one-orbital

Hamiltonian. (f) The TDOS (ST-12 structure, four—orbital’sp3
Hamiltoﬁién) according to our calculatioh (fﬁll line) and'to/the
exact results (dashed line).

Band structure of Ge in the 2H-4 or wurtzite structure.

Imaginary part of the dielectric function; 82, for Ge 2H-4 with

parallel (top) and perpendicular'(bottom) polarizations.

Band structure of Si in the 2H-4 or wurtzite structure.

" Imaginary part.of the dielectric function, €ys for Si 2H-4 with

- parallel (top) and perpendicular: (bottom polarizations.

Band structure of Ge in the BC-8 structure.

Imaginary part_of'the dielectric fdnction, 62, for Ge BC-8 (top)
and Si BC-8 (bottom).

Band'structuré of Si in the BC-8 strﬁcture.

Band étruéture of Ge in the ST-12 structure.

Imaginary part of the dielectric function, 82, for Ge ST-12
with parallel (top) and perpendiéular (bottom) polarizationms.

Band structure of Si in'the'ST—lz strucfure.

*;
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Fig. 36. AImaginary part of the dielectric function, Ez, for Si ST-12 with
parallel (top) and perpendicular (bottom) pdlarizations.

Fig. 37. Imaginary part of the dieleétrig fun;tion;'€2, averagé g;adient
matrix elément M; associated joint density df’statés J/Ez,
average dipole matrix element M/E2, and joiﬁt density of states
J for Ge in the FC-2, 2H—4, BC-8 and ST—lZ»structures. For
each row the product for the two.curves in thé second and
thifd columns gives the €2 épectrum in thehfirst column. The
_éz.for the 2H-4 and ST-12 structures was obtained by averaging

"over .parallel and perpendicular polarizations. The matrix
o o 2 .
element M is in units of (_2) where a is the smallest lattice

constant of .each crystal and J in the figufe is in units of
.2 ‘ : :
(E%) (eV)z. The unnormalized J(E) defined in Eq. (23) can

be obtained from the values of J in the'figure by taking J to

be in units of
2

372 <_§> o1
vezha 2m (cm)3 eV

is from Donovan and Spicer (Ref. 10).

The amorphous 82

Fig. 38. ;maginary part of the dielectric function'szs-associated
éverage matrix eiement M, associéted joiﬁt density of étatéé.
J/Ez?'average‘dipoie matrix elemént M/Ez, and.joint_density of
stateé'J for'Si‘in the FC-2, 2H—4, BC-8 an& ST-12 structures.

The cohvention is the Bamé as in Fig. 37. .The amorphous €2

is from Piefée and Spicer (Ref. 10).
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 Fig. 40.

Fig. 41.

Fig. 42.
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Density of states of GaAs in the (a) 2H-4, (b) 4H-8 and

SC- 16 structures u51ng the EPM. The dashed line in (a)

represents the consequences of dlsorder (U) as described
in the text.

Density of states of GaAs in the (a) 2H- 4 (l 1/1, l), (b) 2H-4

@/2), (c) BC-8 (2,2/2,2), (d) BC- 8 (4/4), (e) ST-12
(3,3/3,3) and (f) ST-12 (5,1/5,1) structures calculated from

the simple tight binding model discussed in the text. The

solid line at 0.0 eV represents a delta function peak in the

density of states. The bottom of the conduction_haﬁd is
desighatedvby EC and the numbers on top Of.the peeks represent
the apptoximate strength of these peaks. .

Density of states.of GeAs in the (a) sT-12 (5,1/3,3),

(b) ST-12 (4,2/5,1) and (c) ST-12 (3,3/41,1,1) structures

.ﬁsing the simple‘tight binding modelvdiScussed in the text.

The convention is the same as in Fig. 2.

Density of states of GaAs in the (a) ST-12 (4 2/5,1),

(b) BC-8 (2 2/2,2), (c) 2H-4 (2/2), and (d) 4H-8 (2,1 1/2 1,1)
structures using the EPM. There is an overlap of the valence and

condﬁction bands near 1 eV. Regions I, II and III represent

' the p-like region of the density of states where Region II

is analogous to the delta function peak using the tight
binding model. The small numbers on top of the densities of
states represent the approximate strength of various regions

and peaks in these densities of states.
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GaAs 2H-4 (2/2) charge density in the (110) plane for
bands 1 and 2.
GaAs 2H-4 (2/2) charge density in the.(lIO) plane for

bands 3 and 4.

GaAs 2H-4 (2/2) charge density in the (110) plane for

bands 5 and 6.
GaAs 2H-4 (2/2) charge density in the (110) plane for

bands 7 and 8.

"GaAs 2H-4 (2/2) charge density in the (llO)'plane for

bands 9 and 10.

GaAs 2H-4 (2/2) charge density in the (110) plane for the

‘regions of the density of states in the energy intervals

[-7.2 eV, -6.1 eV] and [-6.1 eV, -5.0 eV] designated by

~ arrows in Fig. 42(c).

GaAs 2H-4 (2/2) charge density in the (110)’plane for the
regions of the density of states in the energy intervals
[-5.0 eV, -3.7 eV] and [-3.7 eV, -1.3 eV] designated by arrows

in Fig. 42(c). -

‘GaAs_ZH—4 (2/2) charge density in the (110) plane for the

" regions of the density of states in the energy‘intervals

[-1.3 eV, 0.6 eV] and [0.6 eV, 2.2 eV] designed by arrows
in Fig. 42(c).
GaAs 2H-4 (2/2) total charge density in the (110) piane.

Density of states of GaAs in the (a) modified 2H-4 (2/2) and

~(b) FC-2 structures using the EPM. The modified 2H~4 structure

was obtained from the ideal 2H-4 structure by taking a 10%



Fig. 53.

Fig. 54..

Fig. 55.

Fig. 56.

Fig. 57.
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decrease in Ga-Ga bonding distances and a 3% increase in the
As—~As bonding'distances., This resulted in a merging of

Regions II and III and the formation of a nonzero energy gap.

. The dashed curve in (b) represents the consequences of disorder

V'(L)‘with 10% like-atom bonds as discussed in the text. The

dotted line distinguished between the low and high.energy .

.s~like peaks.

The electronic density of states of trigoﬁal Se (a) and Te (b) -
as obtained from the EPM. The filled valence Eand is at
negative-energies. |

Calculated densities of states (solid lihes) f§r frigonél Se
(a) and Te (b), which have .been broadéhed by . 1.2 eV for the

s-like states and by 0.7 eV for the remaining states.

'Superimposed are the experimental photoemission spectra

v(daéhed linés).

Electronic charge densities for trigonal Se in the energy
intérvals (a) [—6.0 ev, -3.6_eV] aﬁa M) [—3.6veV, -2.25 eV]
and for tfigonal Te in the intervals (c)r[i6.0 eV, -3.5 eV]
and (d) [-3.5 eV, -2.2 eV]. The units are e/f.

Bonding charge of trigonal Se for the (a) lower and (b)~upper
p-like bonding states, calculated as describéd in the text.
Only positivevcontqursvare shown, with values in units of e/S.
Bonding charge of trigonal Te for the‘(a) lower and (b)rupper
p-like bonding states, calculated as dgsc;ibéd in the text.

Only positive contours are shown, with values in units of e/Q.
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Fig. 58. Skétéh of the density éf states of a simple éubic lattice
(Solid line) and an infinite one;dimeﬁsionai.chain (dashed
line) for s-like states with only ;earest neighbor interactions;
" The Qi&ths of the bandSrwefé éhoSen;grbitréfily to be the
' éame. | o o
. Fig. ;9. iE#perimental photoemiséion measurémgnts for trigbnal‘(solid
S fiine)héﬁd.amorphous (déshed_line) Sé-(#éf; 42) éﬁd Te (Ref. 41).
Fig. 60. '(a).Schematic representat?bﬁ of the intefactions.v between
- fspéjlike“orbitals on twq';;ighboring azomé. AThelorbitals are
lag;led 1 to 8. We show only one represenféti&évpair of

orbitals fo;.each.interacﬁion. (b) The density of states

' for Ge obtained using the above model and described the text.
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LEGAL NOTICE

This report was prepared as an account of work sponsored by the
United States Government. Neither the United States nor the United
States Atomic Energy Commission, nor any of their employees, nor
any of their contractors, subcontractors, or their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness or usefulness of any.
Information, apparatus, product or process disclosed, or represents
that its use would not infringe privately owned rights.
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