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ABSTRACT

For a wide variety of Free Electron Laser(FEL) applications, waveguides are used
to confine and guide the radiation produced. In many of these applications, the dispersive
effects in these waveguides can significantly alter the FEL physics from the case of free
space propagation where the radiation phase and group velocity are both equal to c. The
eikonal approximation usually used in FEL calculations breaks down in the regime where
dispersion is an important effect. A formalism is developed with both integral and
differential forms for dealing with an FEL in a dispersive waveguide. It is shown that in
the limit of no dispersion and only a single radiation frequency, this formalism reduces to
the standard FEL evolution equations. A computer code developed from the differential

formalism is used to simulate waveguide FEL'’s.

The effects of dispersion on FEL sidebands are examined in depth. The dispersion
caused by the waveguide can affect both the position and the gain of FEL sidebands. It is

also possible to suppress the sideband instability completely.



The generation of FEL sidebands is shown to be a process similar in all respects to
stimulated scattering. A theory based on the equations for parametric amplification in
nonlinear optics is used to describe sideband generation. It is found that no more than
four waves are necessary to explain the spectrum of FEL sidebands. Dispersion
equations for three-wave and four-wave processes are derived and these are found to

accurately predict sideband growth rates for the full waveguide computer simulation.

It is found that both upper and lower FEL sidebands can exhibit more than one peak
in a waveguide. The FEL sideband instability is found to be primarily a three-wave
process that drives the lower sideband. The upper sideband is not driven by a stimulated
scattering process. It is found that the beating between the lower sideband ar.xd the

fundamental is what drives the upper sideband spectrum.

*Work performed under the auspices of the U.S. Department of Energy by the Lawrence
Berkeley Laboratory under contract No. DE-AC03-76SF00098.
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Chapter 1

Introduction



1 Introduction

It has been just over a dozen years since the operation of the first Free-Electron
Laser(FEL) by John Madey and his group at Stanford[59]. In that time, great strides have
been made in building and understanding FEL’s. FEL’s of high efficiency[61] and short
wavelength[60] have beeﬁ demonstrated. The potential of the FEL is only just now
beginning to be tapped and a greater theoretical understanding of FEL physics is necessary

to design future applications.

An FEL uses some mechanism to induce a periodic transverse velocity modulation
iﬂ an electron beam. This has several advantages over conventional lasers. First of all there
is no medium to heat up and destroy. Therefore FEL’s should be capable of unusually
high powers. Since the FEL interaction does not involve transitions between quantum
mechanical energy levels, the FEL can be tuned to a wide range of radiation frequencies.
FEL’s of various configurations have been demonstrated from the microwave regime(61]

to the near UV regime(60].



Generally, magnetic fields are used to modulate the electron beam in a device called
a wiggler. There are two general types of magnetic wigglers. Helical wigglers consist of
two wires wrapped around a cylindrical guide. These wires are wrapped in a helix such
that alternate wires along the length of the cylinder carry current in opposite directions.
These helical wigglers are limited in strength by the current that can be carried by the wires
and therefore tend to be used in small experiments. In a linear wiggler, a set of magnetic
dipoles are arranged in a line with each successive dipole pointing in the opposite
direction. Since ferromagnetic materials can be used in the manufacture of these wigglers,
the fields éan be made quite large. However it is harder to make linear wigglers with small
periods, i.e. the spacing betw'een.the magnets can’t be too small. Thus linear wigglers are

a good choice for applications with large wiggler periods and fields.

An FEL can be run as either an amplifier or an oscillator. In regimes where good
mirrors exist, an oscillator configuration can be desirable. This has the advantage of
needing smaller gain in the FEL and therefore smaller beam current. In regimes where
there are cheap low power radiation sources, the FEL might be run as a high gain
amplifier. This gives one the advantage of using the low power source to achieve a

radiation beam of high spectral purity which can then be amplified to extremely large



powers by the FEL. In the regimes where there are neither low power sources or good
mirrors, the FEL can amplify the spontaneous emmision of the electron beam. This
requires large beam currents to be practical. An FEL operating in this manner is analogous

to a traditional laser acting as a superradiant amplifier.

As far as the electron beam interaction with the radiation is concerned, there are
two general regimes of FEL operation. When electrostatic oscillations play a large roll in
the longitudinal motion of the electrons, it is necessary to calculate the collective interaction
of the electrons. This regime is called the Raman FEL regime. When the electron beam
current is small, or the beam is sufﬁciently relativistic, space charge effects can be ignored. -
Relativistic effects can reduce the space charge interaction. In the electron’s rest frame the
electron density is smaller than the density in the lab frame. In the case that space charge
effects can be neglected, the motion of each electron can be thought of as independent. The
electron motion is dcterinined qnly through external fields. This regime is known as the

Compton FEL regime.

The theory of FEL’s has evolved to a relative maturity. Some highlights are
described here briefly. It was demonstrated by Colson that the FEL equations for particle

motion can be written in the form of a pendulum equation[6]. This is really the basis for



almost all analyses of the electron motion in an FEL. The pendulum potential is the
ponderomotive potential formed by the radiation field and the wiggler field. Kroll, Morton,
and Rosenbluth took the formalism from accelerator physics where “buckets” of electrons
are accelerated and applied it to FEL's where the electrons are bunched in FEL buckets and
can be decelerated in a “tapered” wiggler{1]. The self consistent set of equations they
derived are known as the KMR equations. Recently, Jonathan Wurtele extended these

KMR equations to describe transverse modes in waveguides[5][21].

Waveguides are important since they provide an external means of guiding
radiation. In real devices, waveguides are uéed for wavelengths down to 400u[62]. This
encompasses a wide range of frequencies of interest. For practical purposes, 2-D effects
can be included for the mdiaﬁon fields by expanding in a finite number of transverse
modes. The interaction can be complicated since the modes ha?e different transverse
profiles and each transverse mode will move at a different velocity. Even for a single
transverse mode, different frequencies can move at different speeds. This dispersion can

have interesting effects since the group velocity and the phase velocity of the radiation are

now different.

Of major importance in any coherent radiation source is the épectral purity of the

output. Dcpevnding on the application, there will be some constraints on the linewidth of



the radiation produced. Also the coherence can effect‘ the FEL performance. A large energy
spread in the electron beam or some other effect reducing coherence can limit the total
possible output power of a device. It is possible in some FEL’s for parasitic frequencies to
grow that widen the output spectrum. These parasitic frequencies are known as sidebands
after the terminology of Kroll and Rosenbluth[42]. Aside from widening the spectrum,
these sidebands can cause the electron motion to turn stochastic and thereby degrade FEL
performance[47]. These sidebands are expected mostly to occur most often in FEL
oscillators where they can grow easily from noise, although high power amplifiers should

also be susceptible to sidebands.

One application that was expected to be susceptible to the sideband instability is the
Two-Beam Accelerator(TBA). In this scheme, a microwave FEL was configured to power
an accelerator structure. The FEL is meant to be long enough that any significant sideband
growth would be catastrophic. It was noted that in a waveguide, the group velocity of the
radiation» could be set to be the same as the electron beam velocity. In this case,
longitudinal instabilities would be expected to be suppressed since it would be difficult for
information to travel along the beam. These observations were the motivation for the work

in this thesis.



In this work, the longitudinal effects due to waveguides are studied for FEL’s. The
goal is to provide physical insight into multiple-frequency effects for FEL's in dispersive

waveguides. Special emphasis is placed on the physics of FEL sidebands in waveguides.

In chapter 2, a review of general FEL physics is given. Using the KMR
formalism([1], the basic equations of evolution for FEL’s are derived. The dynamics of
these equations are cxamined and it is shown that the equations can be written in a form
analogous to the equations for a pendulum. It is shdwn that the entire set of FEL equations
can be derived from a single Hamiltonian. Computer simulations are performed with the
derived eqﬁations of evolution and some basic properties of FEL’s are illustrated. Some 2-
D effects in FEL’s are described with special emphasis on the effect known as “optical

guiding.” 2-D computer simulations are used to illustrate the principles of optical guiding.

In chapter 3, a formalism is devcloped to systematically deal with a range of
frequencies in each transverse mode in a waveguide. It is shown that a Green’s function
can be derived for the evolution of each transverse mode in a waveguide. From the integral
equation that has been derived, a differential form of the equations is developed to follow
discrete frequencies. The evolution for each frequency is described by two first order

differential equations representing the radiation amplitude and phase for that frequency.



This differential form is shown to reduce to the KMR equations for radiation in an FEL

when only a single radiation frequency is allowed.

In chapter 4, it is shown that the size of the waveguide can strongly affect FEL
parameters. It is shown that the waveguide dimensions affect the resonance wiggler field,
the gain..and the efficiency of the FEL. It is shown how waveguides can limit the

~ efficiency of FEL’s and how one might design a waveguide FEL to improve efficiency.

In chapter §, sidebands in waveguides are studied in great depth. A review of
previous work on sidebands is presented. A computer simulation i)ased on t.he formalism
of Chapter 3 is described. This computer simulation is used to show that the production of
sidebands is a process analogous to that of stimulated scattering. Fgllowing this analogy,
the FEL equations are altered to be similar in form to the equations used to study
parametric amplification in nonlinear optics. It is shown that the physics of the sideband
instability can be described as a combination of processes that involve three or four waves.
In a waveguide it is shown that there can be more than the two sidebands that can be
observed in free space. Lastly, the results of an attempted sideband experiment at the ELF
facility at Livermore are explained. Thg use of the formalism for parametric amplification

allows greater physical insight into the sideband process than previous analyses.



Chapter 2

Review of FEL Physics
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2.1 Basic Description of FEL Physics

To begin, we start with a heuristic description of FEL physics. This physical picture

will be used to motivate the calculations to be performed.

Wiggler

bvtoy

Electron ‘Beam!

-;;;-;.-'-‘--~-

%; Radiation 77/ //// // 7 4
Generic FEL XBL 895-2040
Figure 2.1 Diagram of configuration common to ail FEL schemes. The wiggler is any

schema for modulating the transverse velocity of the electron beam in a periodic fashion.

In Fig. 2.1 is a general schematic of an FEL. It consists of an electron beam that is
propagated through a periodic wiggler field. This wiggler field generally consists of a
periodic magnetic field, although electromagnetic and electrostatic wigglers have also been

proposed[40][41]. In the most general of terms, the purpose of the wiggler field is to
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impart a periodic transverse velocity modulation to the electron beam. This transverse
velocity modulation allows the electron beam to interact with a radiation field

copropagating with the electron beam.

An FEL becqmes interesting when there is a resonance between the electron beam
modulation and the radiation field. In Fig. 2.2 there is a graphical representation of the
primary FEL resonance. Here, in the distance ;'equired for an electron to undergo a single
oscillation, one radiation wavelength passes over the electron. For the electron in the
diagram, the force from the electric field of the radiation always opposes the motion of the
electron.This electron will therefore lose energy. An electron that is one half oscillation
behind the first electron will always experience a force from the radiation fields in the same
direction as its motion. This electron will gain enérgy. With electrons gaining or loosing
energy depending on their phase relative to the radiation field, bunches in the elvcctron
beam will be formed. These bunches are the basis for the strong coherent interaction in an
FEL. If the'eléciron beam energy is slightly too high for the resonance pictured in Fig.
2.2, then on ;iverage, more electrons will loose energy than will gain energy. This is the

~ basis for FEL gain.
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FEL Resonance

distance electron travels in s period
rediation ) (=)

Figure 22  Diagram illustrating FEL resonance. One radiation wavelength passes
over the electron for each oscillation of the electron.



2.2 Derivation of Highly Relativistic KMR Equations

We will use this simple one dimensional model to derive a set of equations to
describe FEL evolution. The normalizations and approximaﬁons we use will produce a set
of equations known in the FEL literature as the KMR(Kroll, Morton, and Rosenbluth)
equations[ 1]. Other equivalent formulations have been derived[2][3], but here we will use

the notation of the KMR equations. We will begin with

%:-=q{E+%-xB], | (2.2.1)
Qi“l-.l_a_zﬁ—-_@:.)
wd oG = (2.2.2)

where (2.2.1) is just the Lorentz force law for charged particles, and (2.2.2) is the

electromagnetic wave equation in radiation gauge([4].

There are two types of magnetic wigglers that are normally used. A linear wiggler
causes the electron trajectories to be confined to a plane. The electron trajectories and
radiation modes are simple in this case, but the interaction of the two adds an extra term to
the equations of motion. A helical wiggler has a cylindrical symmetry and the electron

wiggles are in the radial direction. This type of wiggler has a more complicated geometry,
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but the equations are simpler if a particular form of the fields are used. For the discussion

here we will use the linear wiggler because the physical picture is simpler.

Let’s start by defining the fields. We write the wiggler field as

By = Bu, (@)Y cogkz + ¢u] , (2.2.32)
and the radiation field as

E; = E; (z.)X cos[ksz -t + ¢s(z,t)] , (2.2.3b)

and B, =B (z)7 codkaz- t+ 0@t . (2.2.3¢)

For these definitions of the fields, the electron motion will be confined to the xz plane. The
fields have all been defined with amplitudes that are allowed to vary slowly in z. By

slowly varying amplitude we mean explicitly that if a field is defined a(u)sin¢(u), then

da(u) dé(u

du <a(u )-—— .We now write (2.2.1) in terms of its nonzero components

dp" --q{Es cos(k z- mt+¢s)

%2 (B, cos(ks z- @t +0,) + Buy cos(kwz+ou)] } . (2.2.4a)
and 9& = q{ —&[Bsy cos(ksz t + ¢s) + B, COS(sz + %)]} (2.2.4b)
If we use q=-¢, and the relations for the vector potential E, = - }:a:t X ,and By= aaAz .,



then we can solve (2.2.4a). Thus

Px = %[Asx sin(ksz -t + ¢,) + Aw, sin(sz + W)] , (2.2.5)

where E;, = %l Asy Bsy =k Asy.and Bw, = kw Aw, . The transverse momentum is just
proportional to the total vector potential. With an appropriate choice of coordinates, the

same result would have been obtained for a helical wiggler.

We now utilize the relativistic energy-momentum relationship

€ L¥mict=m2ct +p2k? , (2.2.6)
, 1L
- P2 2
or Y—[Hm%cz} ’

If we take the derivative of Y with respect to t and substitute from relations (2.2.4) and

(2.2.5), we obtain

Q

Y _ . aw [ .. ] . ) . ]

t- 2y {sm{(k, +Kky) Z- @t + @ +¢w] sm[(ks kw) z - 0t + @ ¢w]} , 22D

where we have introduced the normalizations as = ;Sc—z A, ,and ay = _.L..z Aw, , and we
meC

have used an approximation for (2.2.5)
Pr =S Ay, sin(kuz+0w) | (2.2.8)

which is almost always valid.
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We define a phase, ¥ = (ks + kw) z - @t + 05 + , for the electron trajectories. An
electron moving along with this phase will interact strongly with the radiation field. This
phase is usually referred to as the ponderomotive phase of the electron since the right side
of (2.2.7) is a direct result of the ponderomotive force. For simplicity, it is usually
assumed that the electron beam is traveling somewhere near the velocity of the
ponderomotive phase. Thus, the second sin term in (2.2.7) can be ignored since it will
oscillate rapidly compared to the first sin term and therefore will ndt contribute on the
average(For a more complete discussion of averaging, see section 2.4 of this chapter, or
see ref. 5 chaptc_r'3). At this point we would also like to change independent variables.
One usually wishes to foilow FEL evolution as a function of distance down the wiggler.
’I'hereforc‘we write d._ Vz—d— . For most FEL’s it is sufficient to set v, = c in this

dt dz

derivative. We obtain

d :
&Y 038w gy, (2.2.9)

dz 2c ¥

To complete the equations for particle motion, we need an equation for the evolution

of y. Differentiating with respect to z gives
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d‘V d¢s o v . '
E'z"k“’+k’+g'vz . (2.2.10)
If we simply set v, = c in this equation we will remove all the physics. Therefore we will
expand v, and take the first order term. We note that Pz =Y MeVz, so along with the
e}cpression for p, (2.2.8) and the relativistic energy-momentum relation(2.2.6) we can
write v, in terms of yand z as

{1 1+ a&sinz(sz + W) 3
Vz = - -
P

(2.2.11)

For most FEL parameters it is a good approximation to say that a,<< ¥. In that case we

can expand 1/, ,in eci. (2.2.10) to obtain

Z—"z’=kw+‘;¢: ;cm;-[l +a3 sinz(sz+¢w)] , (2.2.12)

where we have used %1 = k. If we now average over a wiggler period (kyz), we obtain

dy dos [ a2J
L =ky +— - 1+S2 : -
- e el 2] (2.2.13)



18

To complete the set of equations, we need to derive equations for the evolution of
the radiation field. If we use (2.2.3) to describe the radiation field, then we need only use

the x component of (2.2.2). We can define Jx as

Jx =- enej Vx fe(Y7W) dY d‘l’ R

where f, is the normalized distribution of the electron beam. If we use the normalizations

for the fields introduced in (2.2.7), and if we use vx = YI:;e where px is given by (2.2.8),

then the wave equation for the fields in an FEL is

3% 13 .
[a? - ;1{&-2-} {_as(z,t) sm[ksz - t+ ¢s(z,t)}} =

smnee? ay sin(kuz + O )
Me c2 Y

fe(v,y) dydy , | (2.2.14)

where we are allowing the amplitude of the vector potential to be slowly varying in z. On

2
the right side of (2.2.14) we can substitute (0,2,, =ﬂté£—:9—' , where . is the plasma

frequency of the unbunched electron beam.

We now invoke the the eikonal approximation[28] which allows us to drop second

derivatives. Then (2.2.14) becomes
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dos(z,t)

da;(z 1) cos[ksz ot + ds(z, t)] as(z t)——— 51 n[ksz -t + ¢s(z,t)] =

2a, | sin(kwz+Ow
Dpe? ( 7 )fe(v,\v) dydy | (2.2.15)

2k c?
Next, both sides are multiplied by cos[ ksz - @t + ¢5]. We then use the definition of y and

perform an average over z. This gives

das(2) ay [siny
= °:’Zz< > (2.2.16)
Multiplying (2.2.15) by sin{ ksz - wt +0s(z)] and averaging gives
d0s(z) _ Opeaw fcoSY
dz a,kscz\ Y (2.2.17)

The brackets in (2.2.16) and (2.2.17) represent an average' over the particles.

We have now derived a full set of equations for following FEL evolution in one

dimension. Rewriting them in one place for reference, they are

dY . () 3aw )
P = Y siny; , (2.2.18a)
dy; _ dos [ a2 }
=kw + 2.
mpeaw/sm\u ’ ,
dz kcz\ Y > , (2.2.18¢)
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dos - m%eaw /COS‘II>
dz 5 kscz\ Y ’

where the subscript j refers to the fact that there are many particles to follow in an ordinary

(2.2.18d)

FEL. If there are N particles to follow, then egs. (2.2.18) represent 2N+2 equations of

motion. These equations are known as the KMR equations(1].



21

2.3 Dynamics of the KMR equations

In this section we will examine the dynamics of particle motion in an FEL. We will
assume for the time that the electric vector potential a; is a constant parameter. Treating the
electric field as constant is not generally a good approximation, but it will allow us to
introduce several useful concepts.

dydl

The first step is to search for equilibria by setting d—= 3 = 0 . From egs.
‘ z dz

(2.2.18a) and (2.2.18b) we see that these conditions can be met if ¥ = 0 or &, and if

2
=0 (]+3w

T 2Ckw 2 ’ (2.3.1)

where we have neglected %93 compared to ky, and we have denoted the value of y at
z

equilibrium as 7,. If we expand ¥ around ¥, and keep only the largest nonzero terms, we

obtain a set of equations identical to that of a pendulum. Using the notation y=y,+3Y, these

equations become

dS‘Y._ Wasdw v
-dT—-Zc m smy | » (2.3.2&)

dv _ (.057[“_&]

dz 3 2

dz Gfr

(2.3.2b)
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For some analyses, the egs. (2.3.2) are combined to form the “pendulum equation.” This

can be written

2 2 2
dv , a2 [1 +EW-]simy=o : (2.3.3)
dz?2  2c%; 2

These equations have been analysed in great detail by Colson [6] and Kroll, Morton , and

Rosenbluth[1].

The equations (2.3.2) have the following Hamiltonian

2 2 '
H= —@——[1 +ﬂ] §y) - Q28w o0y | (2.3.4)
ZCY;‘ 2 ( ) x %
where ds =.- —a—li, and dy _H .
dz oy dz 3%y

Since the form of these equations are identical to that of a pendulum, we can take
the results from the standard analysis of a pendulum. If we have the following
Hamiltonian

dp JdH dq oJH
H= FZ_G , —_— —_— 2.3.6
P cosq - 3 o | ( )

then the phase space orbits of the system are as shown in fig 2.3.
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The first important point is that one equilibrium can be shown to be stable and one
can be shown to be unstable. Around the stable equilibrium, the orbits are called center
orbits. Those orbits close to the resonance point have a frequency of ® =¥2FG . As one
goes further from the resonance point, one reaches the separarrix. All orbits inside of the

separatrix close in upon themselves. All orbits outside the separatrix are open orbits. This

separatrix has a height which is given by pmax = \/%" (7.

Separatrix

Separatrix Height

p__=af =2
. § F ,
l“:‘:n
P :
Center orbits
Untrapped orbits @ :
XBL 895-2042 resonance resonance

q.o . Q=T

Figure 2.3 Pendulum Phase Space. Phase space for the Hamiltonian of (2.3.6).
Onbits inside the separatrix are self connected and are therefore periodic. Orbits outside
the separatrix are unconnected.
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"Bucket"”

Bucket Height

Y

v Trapped electrons Untrapped electrons
XBL 895-2043

Figure 24  FEL Bucket. Linearized FEL equations produce a phase space fike that

of a pendulum. The use of the term “bucket” comes from accelerator physics.

Fig. 2._4'shows the same physics as Fig. 2.3, but the terminology has been altered
to that used in the FEL literature. In accelerator physics, tﬁe area inside the separatrix,
which is shaded in Fig. 2.4, is known as a bucker. All electrons inside the bucket are
trapped in the ponderomotive well. These electrons can bunch oh the length scale of the
ponderomotive well and therefore interact coherently with the radiation. All electrons
outside the bucket are untrapped. These electrons cannot interact coherently with the
radiation. The frequency (actually wave number) at which electrons deep in ~thc bucket
orbit in phase space is known in the FEL literature as the synchrotron frequency. From

(2.3.4), we can write down the synchrotron frequency and the bucket height as



25

st

Keynch = Kw %;- L 2.3.7)
1+2% | ‘
2
a. L |
and 87"‘“=[%w_w]2 , (2.3.8)

where we have used the expression for y; from (2.3.1).

At this point it is useful to in_troduce the concept of a tapered wiggler. The equations
for a tapered wiggler FEL have been derived by Kroll, Morton, and Rosenbluth[1], and
have been shown to be valid over a wide range of tapers[8] The location of the resonance
point is determined by the relation (2.3.1). In a coherent FEL interaction, the electrons
become bunched m the bucket and follow the phas;a space trajectories indicated in Fig. 2.4.
Despite the facf that the bucket height increases as the radiation field increases, there will
come a point at which the electrons on average collect in the bottom of the bucket. This
point is where the average of the ponderomotive phases of the electrons becomes zero.
From eq. (2.2.18c) one can see that the derivative of the electric field amplitude also
becomes zero. Since the electrons are now lower in energy on the average than the
resonance point, they will fall behind and the average over the pondcromotive‘phases will

become negative. The electric field amplitude will then decrease. If the wiggler field a, is a
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constant, then this point marks the maximum amount of energy that can be removed from

the electrons, or in other words, the FEL radiation field reaches saturation.

If we now allow the wiggler ﬁcld to drop slowly(tapering the wiggler), thus slowly
lowering the resonance point, then we find that most of the orbits in‘side the FEL bucket
remain nearly periodic. What this means in practice is that if electrons are trapped in the
bucket and the wiggler is then tapered, then the elec&ons will be decelerated along with the
bucket. Since the resonance point can in practice be lowered a distance of many times the
bucket height, a great deal more power can be extracted from the electré)ns. This will be

demonstrated later in section 2.5 on FEL computer simulations.

Since we are discussing the dynamics of the FEL, it is worthwhile to note that the
system of equations (2.2.18) can be rewritten so that all of the equations can be derived

from a Hamiltonian, not just the particle equations[9][10][11]. One such Hamiltonian is

# particles

2 . —_
H= kwyj+—gl-{l+ 2—i-""-+ia—‘iﬁ[ﬂm“*’i-r-iﬁ!e'“"i]r} , (2.3.9)
i 2cy; 2 2
where we have defined

@; = (kw + ks)z; - 0t (2.3.10a)
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-1 .
aA=ip a0 (2.3.10b)

=
P= oc ks N particles :

and =

(2.3.10c)

Here the definition for y is ﬁnchanged. The canonicﬁ conjugates are v; and ¢; for each
particle, and 2 and A for the radiation field. 4" in eqn (2.3.10c) represents the complex
conjugate of 4. The variable ¢ ils the ponderomotive phase, y, minus the term for the

slowly varying radiation phase ¢s. The equations of motion are obtained by the relations

dv_ oH do _oH
dz dp dz—aY ’
da__ oH da _oH
dz o4 dz 32

These can be seen to give the original equations (2.2.18) by substituting the original

variables for the canonical variables.
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2.4 FEL Equations in the Low Energy Limit

In this section the we develop a modified set of FEL equations. The standard KMR
equations are the high energy limit of these modified equations[12]. The modified FEL
equations are shown to be transformable to Hamiltonian form and to conserve energy. The
equations developed here also include waveguide dispersion. For the sake of comparison to
the KMR equations, we will confine the equations here to follow é single radiation

frequency.

Most formulations of FEL equations assume that the velocity of the electron beam is
approximately equal to c, the velocity of light, in the lab frar_ne. For the equations to be
developed here, we avoid this approximation. This is the regime where the dimensionless
wigglexf amplitude a,, is not extremely small compared to the 7y of the electron beam. The

ELF experiment at Livermore falls into this category[13].

A set of equations can be derived where the only assumption is that the

dimensionless radiation amplitude a, is much less than a,, . It is also possible to produce a
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relatively simple set of equations that have been averaged over a wiggler period. These
averaged equations can be shown to produce essentially the same results as the unaveraged

equations, and to preserve energy conservation.

The high energy approximation in the KMR equatiops consists primarily of an
expansion where Vx/c « 1. Here v, is the x component of the electron velocity. The set of
equations describing FEL evoluﬁ_on with z as an independent variable all have a factor of
vz in them. Explicitly
.

]-2~ l_[l-li_"@}_; ' (2.4.1)
o ,

,YZ

where a,, is the dimensionless vector potential of the wiggler field. In the KMR
equations(section 2.2), a,, is considered small compared to ¥y, so the square root is
expanded and the series is truncated after terms that go as ¥’ 2, This approximation is valid

only when the wiggle velocity is a negligible fraction of c.

If we follow the derivation of the KMR equations without expanding v,, and without

performing any averages, then we arrive at thc following low energy equations
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dy _ %1 ay a5 [siny - sin(y - 2ky2)]

dz 1/72 -1-a%sin?ky z , (2.4.2a)
0]

.dl=-(kw+ks+9-2)‘ CY

dz dz° Vp-1-agsinkyz (2.4.2b)

dz  c%ks - |\Wy2-1-adsinkwz/ \VY-1-a§sin’kyz

., (2.4.20)
dos _ ﬁﬂ pndw|/ ____ COSY _ ] cos(y - 2ku2)
daz ¢, % <‘\/yz-l-a\2.,sin2kw z> <ﬂ/72- 1-a% sin?ky z> @2.424)
with )
m%'eff _dmle  anq  pe 2 cosn—g‘- sinﬂzﬂ-
mecab 1+ dmo

Here we have used the notation for an FEL in a waveguide. In free space, wp e¢f would take
the regular form for the plasma frequency of the electron beam and F™" would go to 1. The
only appfoximations made for these equations are that only a single radiation frequency is

followed, and that a; << ay, .

At this point we would like to average the above equations. This is important since if we
wish to calculate a v, for this set of equations, we can only do so on the average. The

equations can be averaged, but one must be careful because of the explicit z dependence in
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the denominator of each equation. To begin, we expand the square root in the particle
equations and keep only those terms where there is no explicit z dependence or where the z
dependence goes as 2kwz. There are terms that go as multiples of 2kyz, but computer

studies show that these terms are much smaller than the 2k, z term. Thc'expahsion gives

L
2 in2 2
[1- 1+aw0s;n Kw 2 =K; - K3 cos 2ky z
Y : (2.4.3)
where
: ' 3.4 9.2 +3.4 4.3 46
1+%-'a% 3(1+a3,+8aw) 15(l+8a&+2aw+16aw) )
Ki=1+ - 4 + + ... , (2.4.4a)
2y 8y ' 48 S
and
2 .14 32 .34 .15 .6
a2 3(3w+2 aw) 15( 2aw-o-2 aw+32 aw)
Ky= =2+ + + ... (2.4.4b)
4y 8v* 48 5
The particle equations can then be written as
‘:‘—Y=F[sin\y-sin(\41-2kw 2)][H; - Hz cos 2kw Z]
dz , (2.4.52)
dy ( d¢s)
L =|ky+tks+— |- 2[K;-K 2k 2] ‘
dz s+ g ) clKi-Kacos kw2 , (2.4.5b)
where
H|2=——l— d F=-masaw
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From these equations we expect that the solutions for ¥ and  are of the form

Y="Y0+ Yac c0s(2kw z) + Y25 sin(2kw z) (2.4.62)

W =Vo + Y25 sin(2kw z) (2.4.6b)
where the coefficients are average values over a wiggler oscillation. For the current
analysis, we will assume that yp >> Y25 ,Y2c . Substituting eqgs. (2.4.6) into egs. (2.4.5)

and using the following Bessel function identities[14]

sin (rsin®)=2 X, Jansq (r)sin((2n+1)0) | (2.4.72)
n=0
cos(rsin9)=Jg (r)+2 Zjh(r)cos(Zﬁe) , (2;4.7b)
n=0

we can perform a straightforward average on the equations of motion. Ignoring terms that

depend explicitly on ¥ and Y2, we obtain

dy _ { 1 } i
4 =F 1 Hi[owa) -1 (wal + SHalo (w) (siny , (2.4.82)
dy ( d¢s]
dz ] d.z (o} 1 , (2,4.8b)
with
= 0Ky
V2 2cky

These are the appropriate, averaged particle equations that include the case of a low y FEL.

Through similar manipulations, the averaged field equations are found to be



33

w2
das _ __gf_EEanaw<{H1[Jo(‘Vz)-11(\Vz)]+%H210(W2)}SiﬂW> '
dz c<kg . (2.4.9a)

d¢s_ “)%.eff Aw { '1— }
2. Z_gpmﬂz Hl[Jo(\Vz)-Jx(\Ifz)]"’zHZJO(‘Vz) cosw> . (2.4.9b)

If we set Hy =0, and if we truncate H and K after their first terms, this reduces to the

proper average for the regular KMR equations for a linear wiggler{5].

The low energy FEL equations have the.same invariants as the high y equations. For

instance, eqs. (2.4.2) can be written in Hamiltonian form. If we make the following

transformations
-1 . —_
4=if a;e® ,and aA=i" , (2.4.10)

4mp eff F™"
with B = \/ &CksNorices

where 2" is the complex conjugate of A4, then 4 and A will be canonical conjugate

variables.

The Hamiltonian for an FEL without space charge is
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# particles
H-= Z (Ku +ks) ¥ -
J
Sg{y,-z - 1- adsin(ky 2) +ia,B [z(ei% cel® -2e7]) 4 7o - oo Zkz])]}é-

(24.11)

where the variable ¢ is the same as that defined in (2.3.10a). This Hamiltonian is an
invariant for the system and is valid for both high and low Y regimes. The equations of
motion yield 2N equations for the particles and 2 ¢quations for the fields. These equations
can be seen to be physically identical to egs. (2.4.2) by substituting the original variables

VY, a5 and ¢ into the equations.

The energy can also be shown to be an invariant of the system of egs. (2.4.2).
Through a careful integration of the fields, it can be shown that the energy in an FEL bucket

is given by

N .
2 \
£=.4_X.ijc2+mc43b(l+8m0)qks

2
16 o2 as (2.4.12)

J

where the sum is over all the electrons in the bucket.
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2.5 Gain in an FEL

In this section we write down some results for gain in an FEL. This subject has
been covered exhaustively by others[6][{15][16]. Here we will use the notation of Colson

and Sessler{17].

* The procedure is to take a set of equations for an FEL, eqs. (2.2.18) for instance,
and to perturb these equations-ébout an equilibrium. qut analyses take an unbunched
electron beam with no energy spread as the equilibrium. Colson and Sessler start wi;h the
pendulum equation and the radiation field equation written in complex form with a

normalized time as the independent variable.

From this analysis they derive a cubic dispersion relation with the form
o - woof - =0 (2.5.1)
3
where the assumed form of the complex radiation field was a =ag eV ), e™° . Here vq
r=1

is the initial phase velocity of the electron relative to the ponderomotive well, j is a

normalized form of the current, and t is a dimensionless time. Explicitly



Vo =-I‘?_‘-[('kW +kg) vo- 0] ,

j= 8N(ﬂ:eawL)2ne
¥ mec?

and T= -E t . To define a few more terms, L is the length of the wiggler, N is the

?

number of wiggler periods, n. is the electron number density, and vq is the original

velocity of the electron beam.

To start, we wish to examine the regime where j is large. This is the high gain

: YA
regime where the vg term is negligible. Here, the important real root is o, = YZI (%—)

which gives exponential growth. This is an important regime of interest for waveguide
FEL’s where one usually wishes to run as a high gain amplifier rather than as an

oscillator.

There are, however, FEL’s for which the high gain assumption is not valid. The

full solution of (2.5.1) is necessary. The solution is given by

2
2 - 2cosvg - Vosin_\/o] d [Si“vo/Z] (2.5.2)

| )
G(vg) = =
0) =) V?) 2 dvg Vo/2

with G(vg) given by
G(vo) =[a%mal - a%nitial] / atnitial -

The phase shift given by this solution is



V0) = [ 2sinvg - vo3(l+ cosvp)] N (2.5.3)
Vo

The gain function and the accompanying phase shift are illustrated in Fig. 2.5.

G/j -N ------------- - 0.135
+ ——
-12.0 12.0
as  ssssesscesessrnsesessesnaasacese -0.135
¢/j - PPUTVSRRR T 0 135
-12.0 . 12.0
- sessasesasresecssnassrsoransen . <0.135
Vo = XBL 895- 2044

Figure 2.5 Plots of the reai and imaginary parts of the gain in an FEL.

The first result from (2.5.2) is that the FEL gain goes as the derivative of the

2
. VO
. sin . .
spontaneous emission spectrum {-—1—/2-] . This result is usually referred to as Madey’s

Voh
theorem(18]. Another theorem for small signal gain attributed to Madey is that
) 2
<’Yﬁnal - Yinitial ) = 'L_—_< (Yeinal - Yinilial) > , (2.5.4)
2 Yinitial
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where the brackets < > represent an ensemble average of the particles. This relates the
energy extracted by the FEL to the resulting spread in electron energies. This means that
even a completely cold electron beam will have a temperature after transferring energy in

an FEL.

It is worth noting that the results in this section can be arrived at through many
different methods. Some have achieved the small gain results by following the particle
trajectories and averaging over the initial electron distribution[6]. Others have used a
Vlasov perturbation scheme([15]. This lends credibility to the idea that these results are

physically correct and not just the result of a particular mathematical approximation.
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2.6 1-D Numerical Simulations of FEL’s

In this section we perform a numerical integration of the KMR equations
(2.2.18). The integration is performed on a CRAY 2 computer at the Magnetic Fusion
Energy Computer Center(MFECC) at Livermore California. The GEAR integration
package utilizing the Adam’s method was used. The simulation described in this section
is used to illustrate some general features of FEL physics. The code used is similar to

that developed by Prosnitz, Szoke, and Neil{19]

The parameters used for the simulation are similar to those of the ELF -
experiment at Livermore, California{13}[20]. These are tabulated in Table 1. The
magnetic field value is a calculated quantity rather than an input parameter. It is

calculated from the resonance gamma by eq. (2.3.1).

Some small modifications need to be made to equations (2.2.18) to model an FEL
in a waveguide. The equations for a single transverse mode in an FEL waveguide are

almost identical to (2.2.18)[5][21]. The changes are
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Table!
Beam Energy 3.68 Mev
Beam Energy iny 7.2
Beam Current 800 amperes
Wiggler wavelength 9.8 cm
Radiation frequency 34.6 GHz
Waveguide width 9.8 cm
Waveguide height 29cm
Input radiation power 60 KWatts / TE?! mode
Wiggler Peak Field 4.09 KGauss
[ €O mzﬂ sin %3-
= —_——e (2.6.1)

. 2
and i‘ﬂ=kw+5k,+d¢s-—m-[1+&] ) (2.6.2)
dz dz ZCY'Z 2

Here, following Wurtele’s notation, we substitute (2.6.1) for the plasma frequency in the
radiation equations. It is to be substituted for w?,. in eqs. (2.2.18c) and (2.2.18d). This is
to make the form of the FEL equations in a waveguide the same as the form of the

equations for free space. The expression (2.6.1) is not actually the effective plasma
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frequency for an electron beam in a waveguide. In this expression, a is the waveguide
width, b is the waveguide height, I vis the beam current, and m and n represent the
waveguide mode indices. eq. (2.6.2) is identical to (2.2.18b) with the addition of the term
8k, = k, - @/ . This term accounts for the fact that the phase velocity of the radiation in a
waveguide is different from that of radiation in a vacuum. In other words, ok, results

because k, # ¥/ in a waveguide.

In order to demonstrate the effect of energy spread on FEL gain, two cases are
used. In the first case, Ay = 0, and in the second case Ay = + 0.4 . These cases are run for
an untapered wiggler with the parameters from Table I. These parameters are in the

high gain regime as described in section 2.5. The results are shown in Figs. 2.6 -2.9.

Starting with Fig. 2.6, we can identify some general phenomena associated
with FEL phase space evolution. In the beginning of the wiggler in Fig. 2.6a we see
the particles take the shape of an inverted sine wave. This follows directly from eq..
(2.2.18a) where the y derivative goes as -siny. In Fig. 2.6b we see the FEL as it
reaches saturation. The bulk of the electrons have reached the bottom of the bucket

and are beginning to be reaccelerated. The diagram in Fig. 2.6d shows the phase



42

Z = 1.200 METERS

Z - 0.800 METERS

8.5

St
0°¢
154
(U4
St
0t
S0
00
5°0-
01
s't-
0°2Z-
s'2Z-
0°€-
S°¢-

PHRASE

(b)

PHARSE

METERS

Z - 3.800

METERS

SR

Z = 1.600

-

S’
o't
154
154
s
0¥
S0
0'0
5'0-
0 -
S't-
0°Z-
$°Z-
[
S'€-

St
0t
ST
0T

E

i

[}

150

l

00

4 s0-

0'l-
S't-

{02

A

7.7

7.50 b

ol
8.7%

LU

6.50 |

6.00

§'z-
0'%-
S°t-

PHASE

(d)

PHRSE

(©

XBL 895-2045

Phase space evolution for an FEL with an input electron beam with no

Figure 2.6

initial energy spread.



®

=10’

[ WATTS

@

20.0
(\ o N2 EVNIA
17.s | = —— X
/\ /\ 4 ‘\ l‘ \ - II ‘\
N L AV4 Aol L \
15.0 [ \ A A
12.5 10’
: =
10.0 § /
7.8 F = 0 ,/
5.0 1
V \/ i
2.5 + v \ 10° |
0.0 ; . . 410" E T } : T T ; ]
e w 2 @ = v a2 w g 2 @ @ w 9 w o w <
(=3 (=3 - - ~ ~ L2 L] - o o - - ~ re [ L] -
Z-METERS Z-METERS
(b) |
17.5
15.0 /
12.s }
10.0 /
z s} /
a /
5.0 /
2.5 -/
O.o L s Il i
2 w 2 w e w o w 9
o [=] - Laad ~ ~ L2 Ll -
(c) Z-METERS
XBL 895-2046
‘Figure 2.7 Radiation fields for an FEL with an input electron beam with no initial

energy spread.

43



Z - 1.200 METERS

Z - 0.800 METERS

St
0t
L4
0e
st
0t
S0
0’0

S°0-
0'l-
S't-
0°Z-
$°Z-
o't-
S'€-

S'E
0'¢
sz
U4
st
L]
S0
00
5°0-
0°l-
s'1-
0°Z-
$'ZT-
0°g-
Sg-

PHASE
Z = 3.800 METERS

8.00
7.75
7.50
7.25. .
7.00 |
6.75 |-
6.50
6.25 -

(b)

PHASE
- 1.600 METERS

A

8.00

7.78
5.50 |
6.35 |-

(a)

S'e
0t
S
0°C
Sl
[}
S0
00
$°0-
0°4-
S t-
0°Z-
sz
0°¢-
S't-

PHASE

St

(c)

XBL 895-2047

PHASE

(@)

Phase aevolution for an FEL with an input electron beam with a large
anergy spread.

Figure 2



45

©
< 2.0 10*
10.0 /\ f;r
| [ i
8.0 : At 10 -
: VN e =
£ 8.0 a = /
=4
—_ / :_‘. 10° r[
1.0 : 7=
[I
/ ]
2.0 / g Z
a.0 e d o '1"10' N T n 1
e § 2 2 3 & 3 4 32 s & 2 2 3 S 2 2 3
(a) Z-METERS (b) 2-METERS
14.0
. 12.0 - - / .
10.0 } /
- 8.0 /
T s.0f
Q.
4.0 / va
2.0 -/
O-D i d i |
2 v o w 9o w g uw Q9
Z-METERS XBL 895-2048
Figure 2.9 Radiation fields for an FEL with an input electron beam with a large

energy spread.



46

space far down the wiggler. Note that in the center of the bucket, the original phase
distribution can be seen. By this we mean that the electrons are still more or less
distributed along a line. The electrons near the separatrix seem to be scattered about
relatively randomly. This is because the neighborhood of the separatrix contains
islands due to nonlinear terms and the electron orbits can become rather chaotic

there.

In Fig. 2.7 we can see those features relevant to an FEL in the exponential
gain regime. In Fig. 2.7b, we see a log plot of the radiation field amplitude versus
distance. This confirms that after an initial bunching period, the gain for the
radiation field is exponential. The oscillations seen in Figs. 2.7a and 2.7b after
saturation are known in the literature as “synchrotron oscillations.” The period of
these oscillations is given in linear theory by eq. (2.3.7). The other important point
to notice is that after the iﬁitial bunch.ing period, the slowly varying phase ¢ is
linear as shown in Fig. 2.7c. It is not only linear in the exponential growth region as
one would expect from section 2.5, but its slope is essentially unchanged after

saturation.
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Now turning to Figs. 2.8 and 2.9, we see the effects of a finite energy spread
on FEL evolution. The observations just made for the cold beam case are still

generally true with the following differences.

Firstly, the gain has been reduced. The energy spread reduces the coherence
of the interaction and therefore the gain must be lower. This also has the effect that
the FEL takes longer to saturate. Note in Fig. 2.8 that the electron distribution now
fills the bucket relatively uniformly. This has the effect of washing out the
synchrotron oscillations as can be seen in Fig. 2.9a. In the case where the beam had
no initial energy spread, the electrons form a relatively tight bunch. When these
electrons follow their phase space orbits in the bucket, they produce very distinct
oscillations in the radiation field. In the case of an initial energy spread, the

oscillations are still there, but they are very much reduced.

We now examine the effect of tapering the wiggler after saturation. We use a
taper that starts at 1.4 meters (just before satﬁration), and reduces the peak magnetic ﬁéld
strength to half its initial value by the end of the wiggler at 4 meters. We will start with
the parameters with the finite energy spread in order to illustrate the importance of

trapping the electrons in the bucket. The results are illustrated in Figs. 2.10 and 2.11.
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(a) shows untrapped and trapped electron populations. (b) shows the

fraction of trapped electrons as a function of distance.
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In Fig. 2.10a one can see a plot of the phase space near the end of the wiggler.
The electrons that were trapped in the bucket were decelerated along with the resonance
point. These electrons remain bunched and continue to interact coherently with the
radiation field. The electrons that were not trapped were not decelerated, and since the
bucket has been moved away from these electrons, they can no longer interact coherently
with the radiation. The untrapped electrons smear out and become uniformly distributed
in phase. This illustrates the importance of tight bunching for the successful operation of

a tapered wiggler FEL.

In Fig. 2.11b, one can see the radiation power as a function of distance. At the
end of the wiggler, the FEL has achieved an output power of about 850 MWatts.
Compare this to the untapered case where the radiation saturates at about 85 MWatts(fig
2.9a). By doing nothing more than tapering the wiggler field one has achieved a factor of

10 increase in the output power. Similar results have been observed experimentally[20].

The radiation phase in Fig. 2.11c shows a change in slope at the point where
tapering begins. This is primarily because of the loss of the untrapped electrons. Since

the untrapped electrons no longer interact strongly with the radiation they no longer
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contribute to the source term for the radiation. Thus the effective current is less after

tapering and the change in the slope of the radiation phase is correspondingly decreased.
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2.7 Transverse Effects in FEL’s

The physics of an FEL is affected by the fact that the electron beam and the radiation
envelope both have a finite cross section. Physical quantities can and usually do vary
across this cross section and this can affect FEL performance. For the purposes of the
brief discussion of this section we will separate thcsg transverse effects into two general
categories. We first discuss those effects due to the finite width of the electron beam. We

will then discuss some effects due to the finite width of the radiation envelope.

Perhaps the most important consideration for the electron beam in an actual device is
the need for focussing. An electron beam in a vacuum with no focussing will tend to
spread out over time. This is because of both space charge and the fact that in any
physically realizable beam the electrons will have some small but finite velocity in the

transverse direction.

InFig. 2.12 is an example of a distribution of an electron beam in x-py phase space.
The standard analysis of beam transport involves modelling the focussing elements as

producing linear transformations of the phase space ellipse modelling the beam. The area
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of the ellipse divided by = is the standard definition for the beam emittance. The larger the
emittance is, the more important beam transport is to the physics of an FEL. In principle,
since it’s the total phase space volume that is a constant by Liouville’s theorem, focussing
elements can transform phase space area in x-py space to z-p, space or y-py space. The
particular cross sections of the beam used are chosen mainly for convenience (A good

general reference for beam transport is ref. 29).

Px
Transverse phase space

distribution
- '
X
XBL 895-2051
Figure 2.12 Emittance of an electron beam is defined by its area in phase space.

Let us now make some observations concerning beam transport. We need to
describe an equilibrium orbit for the beam. This orbit is the path that would be followed by

a beam with zero emittance, i.e. an infinitely thin beam with no energy spread. For real
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beams with a phase space like Fig. 2.12, there must be a restoring force for those particles
in phase space that do not exactly follow the equilibrium orbit, otherwise beams with finite
emittances cannot be transported. For small excursion from the equilibrium orbit, the
restoring force can be treated as linear. In this case the particles will perform sinusoidal
oscillations around the equilibrium orbit. These oscillations are known as betatron

oscillations.

A real wiggler might have a sinusoidal dependence of the field only along a

particular axis. As an example, the so called ideal wiggler field for a linear wiggler is

B, =|B.J {cosh.(kwy)cos &sz)s" - sinh (kwy)sin (sz)i} . (27.1)

This is a simple field where the curl and the divergence of the magnetic field are both zero.
It is idealized since it can only be realized in a two-dimensional plane. If one sets y=0, then
this wiggler field is identical to that used previously for the purely one-dimensional

calculations.
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Note that the ideal field (2.7.1) increases off axis in the yz plane. This produces
focussing in that plane. However, no focussing is provided by this field in the xz plane, so
clearly additional focussing is required. For some systems such as the original ELF
experiment at Livermore, quadrupole magnets are used to produce the required focussing.
However, Ted Scharlemann has noted that if the pole faces of the wiggler magnets are
curved in an appropriate manner, such as in Fig. 2.13, then focussing in the xz plane can

be achieved without additional focussing elements.

i él_é';_l.‘pb|a' face

XBL 895-2052

Figure 213  “Ted" poles in a wiggler magnet.

The betatron oscillations in an FEL are important for more reasons than just a
description of focussing. Back in section 2.3, we defined a resonance energy ¥; by setting

%‘Vz— = 0. Physically what this corresponds to is setting the parallel velocity of the electron
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beam equal to the phase velocity of the ponderomotive potential. If the electrons now also
have a finite transverse betatron velocity, then the parallel velocity of electrons with a given
energy will be decreased. This will affect the FEL resonance condition. With a finite
betatron velocity, an electron with a given energy will have a slower parallel velocity since

some of its energy now goes into the betatron oscillation[31].

Different particles with the same energy, ¥, can have different betatron oscillation
amblitudes. This is because these particles can occupy different parts of the phase space
ellipse of Fig. 2. 12. This adds an “effective” energy spread to the electron beam. We noted
in_secti;)n 2.4 that a longitudinal energy spread in the electron beam can significantly
reduce the FEL gain and saturated amplitude. If a beam has a large emittance, then this too
will tend to reduce FEL performance. Thus the production of low emittance beams are vital
for high FEL efficiency. Ted Scharlemann has calculated an estimate of the contributions

of transverse effects to the apparent energy spread of the electron beam([31]. It is

iYﬂ= a% k3 b ’
i 4(1+a\2v)

where v,, is the parallel gamma of the electrons, a,, is the normalized wiggler field

(2.7.2)

amplitude as defined in section 2.2, k., is the wiggler wave number, and ry, is the electron
beam radius. This estimate is valid for a helical wiggler or a linear wiggler with curved

pole faces.



57

Let us now discuss some of the implications when the finite width of the radiation
envelope is considered. In a waveguide for instance, there actually isn’t a radiation beam
“envelope,” but the radiation can be described as a sum of transverse modes of the
waveguide. These modes vary in intensity over the transverse cross section of the
waveguide. Those modes that interact strongly with the electron beam in an FEL have a
peak of intensity on axis (assuming the electron beam is sent through the center of the

waveguide). This theory is described in detail in the Phd. thesis of Jonathan Wurtele[5].

The propagation of radiation without a waveguide is another matter. If a beam of
light is propagating in free space, then diffraction will cause the beam envelope to spread
out and the light would eventually. become very diffuse. A measure of how fast this
happens is the Rayleigh range which is given by

Zp= M , (2.7.3)

A
where A is _the radiation wavelength, and uy is the minimum diameter of the radiation
envelope called the waist. For very short wavelength FEL’s where this Rayleigh range is
small compared to the length of the wiggler, one might suppose that tﬁc FEL wouldn’t
work very well since the radiation would diffract away from the electron beam too fast. In

fact, in an FEL, the radiation can become “trapped” by the electron beam so that it doesn’t

diffract away. This phenomenon is call optical guiding and is described in detail
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elsewhere[32][33][34]. Here we will seek only a general understanding of the

phenomenon.

The first type of guiding is called gair guiding. This is similar to effects in regular
lasers. It occurs when the gain length of the medium is shorter than the Rayleigh range.
Physically this corresponds to the radiation being produced faster than it diffracts away so

there is a peak of the radiation intensity on axis.

The second type of guiding, and the most interesting from the point of view of FEL

physics, is call refractive guiding. Even well after saturation, the ;L: equation gives a
nonzero value for the slowing of the radiation phase. From the simulations shown in'
section 2.4, one can see that the value of z;: is essentially unchanged throughout the
operating distance of the FEL. Physically this slowing of the radiation wavefront can be
said to correspond to an index of refraction » For a linear medium, the phase velocity is

related to the index of refraction by vppase = - If this is the case, then the index of

refraction in an FEL can be written
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d¢s '
=1+L—= 2.7.4
" ® dz ( )
where %?;s- , given by (2.2.18d), is the equation for the slowly varying phase in an FEL.

One can see that if this description is accurate, then the index of refraction in the center of

the FEL beam will be greater than 1.

ni<n,
light
rays
XBL 895-2053
Figure 2.14 Radiation guiding in an optical fiber. Radiation strikes the fiber

cladding at less than the angle required for total internal reflection.

To see how this property can lead to guiding, let’s examine the analogous case of
an optical fiber. In an optical fiber the index of refraction of the fiber, usually some type of
glass, is higher than that of the air around it. One can imagine that if the fiber was thin
enough, then the light rays traveling in the fiber will always strike the surface of the fiber
at less than Brewster’s angle, which is the condition for total internal reflection. This is a
somewﬁat oversimplified picture, but it conveys the gencrill physics. In general, in order
to guide lig_ht, the fiber or dielectric waveguide must have a higher index of refraction on
axis than off axis. In his book Quantum Electronics [30], Yariv demonstrates guiding for

a dielectric medium where the index of refraction falls off quadratically from the axis.
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Since the 9

term in the index of refraction is directly proportional to the current
density, this in some ways might be a better model since simulations have shown that a

quadratic fit to the current density distribution is a good description.

One other note is for those that feel uncomfortable with the notion of a plasma, the
electron beam, guiding radiation. Those who work with plasmas know that they have the
opposite effect of guiding on radiation, at least as long as only linear susceptibilities are
concerned. However, in those sitﬁations, one usually deals with a fairly uniform plasma.
In an FEL, one has a case where the plasma has density modulations on the same lengt}} '
scale as the radiation waveléngth. This is then an entirely different regime than ordinary
plasma calculations. Also if one calculates nonlinear susceptibilities, one can create a
situation where the index of refraction at the center of the radiation beam is higher than at
the edges. This can result from ponderomotive forces or from the relativistic increase in
mass of the electrons. While these effects in a uniform plasma are different from the FEL
interaction, an FEL is a highly nonlinear optical medium and one should not be surprised

that linear optics theory is no longer valid.
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2.8 2.D FEL Simulations

Here we will present some results of 2-D numerical simulations of FEL’s. The
simulations in this section were performed by the FRED code developed by Bill Fawley
and Ted Scharlemann at the Lawrence Livermore National Laberatory. This code has

been described in great detail elsewhere[35]{36][37], so here we give a brief description.

The FRED code follows the electron motion in a single FEL bucket. Ihcluded are
the effects of transverse motion such as betatron oscillations. The field solver solves the
paraxial wave equation( second derivatives in the wave eéuation are ignored). This field
solver is for two dimensions. For the cases here, the second dimension is the radial

coordinate.

The cases here illustrate the effect of optical guiding. Figure 2.16 shows an
isometric plot of the radiation intensity. It show that even well after saturation, the
radiation is trapped by the electron beam. The remainder of the plots demonstrate the
importance of guiding to FEL operation. Using the parameters in Table II, two computer

runs were performed using the FRED simulation code. In one of the runs, optical
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guiding was turned off. A direct comparison of the output in Fig. 2.16 shows that without
~ optical guiding, FEL performance seriously deteriorates( note that the power plot has a
log scale). Figs. 2.17 - 2.20 show profiles of radiation power and radiation phase with
and without optical guiding. A comparison of the power profiles (Fig. 2.17 and 2.19)
demonstrates that without optical guiding, the radiation rapidly diffracts away from the
axis of the beam. Also, the beam with optical guiding is closer to a diffraction limited
beam as indicated by the fact that the phase profile is closer to a spherical fit (Fig. 2.18

and 2.20).
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Figure 2.15 (ref. 32) Radiation intensity profile demonstrates that the radiation
is trapped long after saturation(reproduced by permission).
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Figure 2.16 (ref. 32) Power(a) and spot size(b) vs. wiggier length for the 21 um
amplifier with and without optical guiding(reproduced by permission).
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Figure 2.17 (ref. 32) Output intensity profile of the 21 um amplifier(reproduced
by permission).
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Figure 2.18 (ref. 32) Output phase profile of the 21 um amplifier(reproduced by
permission).
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Figure 2.18 (ref. 32) Output intensity profile of the 21 pm amplifier when optical
guiding is removed(reproduced by permission).
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Figure 2.20 (ref. 32) Output phase profile of the 21 mm amplifier when
refractive guiding is removed(reproduced by permission).
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Tablell

Beam energy

Current

Emittance (normalized)
Wavelength

input power

input spot radius
Wiggler period

Wiggler length

Initial magnetic field

38

0.1
21
100
0.25
5.5
1200
4.93

Mev

rad-cm
um
kW
cm
cm
cm
KG
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3.1 FEL’s in Dispersive Media

In this chapter we will develop a formalism for dealing with FEL’s in dispersive
media. This formalism will be capable of dcscﬁbing FEL evolution for an arbitrary number
of frequencies. What makes this approach different from previous calculations is the

inclusion of all the effects of dispersion on FEL evolution.

In a waveguide, the evolution of the FEL radiation field can be quite complicated
due to the effects of dispersipn. Calculadoﬁs of the frequency output of waveguide FEL's
can be rather tedious if the field cvolutioﬁ is described by differential equations. A separate
set of equations would be needed for each frequency and in addition, each frequency must
be associated with a different ponderomotive well, which in a highly dispersive waveguide
move at vcry different s@eeds. Another complication is that in a waveguide, group velocity

and phase velocity are quite different quantities.

In response to these concerns I have derived an integral formulation for the field

evolution in a waveguide FEL[22][27]. This formulation is quite general. The only
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assumption made is that the field can be decomposed into a relatively small number of

transverse modes.

From this integral formulation it is also possible to derive a set of differential
equations suitable for integration on a computer, which doesn’t mind if a calculation in
tedious. The reason that this is desirable is that computer integration packages generally

require a set of coupled differential equations as input.

The last section of this chapter demonstrates that the differential equations derived
can, under certain approximations, be reduced to a set of differential equations identical to

the KMR equations for an FEL in a waveguide.
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3.2 Derivation of the Waveguide Green's Function

In this section, a Green's function will be derived for a linear wiggler FEL in a
rectangular waveguide. The derivation is easily generalized to include helical wigglers and
waveguides of arbitrary geometry. The only requirement is that the radiation field must be

such that it can be expanded in transverse modes.

X
‘B :
. !
. ‘B : z
waveguide H :
wiggler magnets
alectron beam
trajectory in xz plane XBL. 895-2054

Figure 3.1  Linear Wiggler FEL in a rectangular waveguide.
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The geometry of the particular FEL configuration used is shown in Fig. 3.1. Since
the wiggler field is in the y direction, the electron trajectories will remain in the xz plane.

The radiation field evolution is described by

2 38 @ -4z
Vvt+5;-2--—-2—a—2Ax(x,t)= 4T ), (x, 1) | (3.2.1)
c<gt

where Ax(x,t) is in radiation gauge, and Vt2 is the transverse Laplacian.

At this point it is worth saying a few words about the choice of gauge. For this
calculation we use radiation gauge, sometimes called transverse gauge. In‘this gauge, the

equations for the electric and magnetic potentials are

[vz-czi;;}ux,z):%mt(x,t) , (3.2.22)
and  LvI2ED _dm gy , (3.2.2b)
where V-J; =0, (3.2.2¢)
and V x ; =0, (3.2.2d)

where J, is called the transverse current and J; is called the longitudinél current. It is
always possible to separate the current in this manner as indicated by Helmholtz’ theorem.

This separates out those components of the current that actually radiate[23]. Here we are
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primarily interested in creating a 1-D formalism(i.e. deriving equations that depend only on
z and t). If we ignore the thickness of the electron beam, then J(x,t) = J(z,t). If this is true
then J, does not contribute to the radiation source term even for a TM mode where E, #
0.This can be seen from eqs. (3.2.2a) and (3.2.2¢). J; only contributes to the longitudinal
current. Thus, to calculate the radiation fields we need only cohccm ourselves with the
transverse component of the current, which is Jy in our example(although the radiation E,

can act on J, and thus affect the FEL evolution).

" We now wish to expand the radiation fields in transverse modes. For the current
discussion we set Ay = 0, since for the geometry we have chosen Jyy = 0. It is simple in
principle to expand in the most general waveguide modes for an arbitrary geometry, but

the algebra can become quite tedious.

We make a particular expansion in transverse modes:

Ax(x,t)= X A" (z,1) coslBE sinml | (3.2.3)

mn=0

Here the form of A, is the same for TE and TM modes. For a TM mode, there is also an
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A, component, but from the argument just made over eqns (3.2.2), we need not follow A,
for radiation field evolution. In fact, if we have the transverse components of A at any
point, the longitudinal component is uniquely determined. To see this, remember the
justiﬁcaﬁdn for separating waveguide modes into TE and TM modes. If both E, and B, are
known, then Maxwell’s equations and the boundary conditions determine all the field
components. The separation into TE and TM modes allows one to solve a single equation
for all the radiation components. For the case here, it is simply more convenient to go in

the other direction and calculate the transverse components first{4].

This expansion reduces the wave equation to one space and one time dimension.

2 2
[ﬁ-a_+ ° 2v

922 29t

AT (z,1) =2 J00 (z, 1)

, (3.2.4)
where
¥ - mﬁﬁ + %12‘3 , (3.2.5)
a b
smnizt) = E(T?S_mo; | de; dy cost—n-a—nx— sinm;y_ Ix(x,t) (3.2.6)

At this point it is worth noting that if we had started with a different geometry ( a

circular waveguide for instance), the form of eq. (3.2.6) would be identical. The terms ¥y,
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and J,™" contain all the information relating to the transverse geometry. Thus the
derivation from this point on is quite general.

We now make the following substitutions:

A,{“"(z,t):‘" %Kf'" ) e | (3.2.72)
+oc0
Iz = j %‘i;fxm(k.t) C i | (3.2.7b)
This leads to
3 _ . _ ‘
= AP () +c? (¥ +K2) A (ke = 2™ (k) (3.2.8)
t. .

which is the inhomogeneous Helmholtz equation for a dispersive medium in one

dimension:

The homogeneous solution to this equation just corresponds to modes propagating
in a current-free waveguide[4]. The inhomogeneous solution is where the FEL physics is
contained. This equation has the form of a forced harmonic oscillator. The solutions to this
type of equation are well known[24]. The initial conditions of the particular solution we
are seeking are given by requiring that causality be maintained. We also require that the

solution be everywhere continuous and smooth. Specifically, if Jy™"(k,t) = 0 for t < 0,
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then we require[25]

Ag(k,t=0) = g—tz,i“"(k,t:m =0 .

Given these conditions, the solution of equation (3.2.8 ) can be written

t
AP (k1) =2 de I,™ (k,t')
0

sincVy2 +k2 (t-t)
e : (3.2.9)

If we now use the inverse transform of (3.2.7b), and substitute (3.2.9) into (3.2.7a ), we

can write
t +oo . . ’
A‘,{‘“(z,t)=j dt’j dz' ;™ ,t')G(z-2z,t-t') | (3.2.10)
0 -0
where[26]
N sy S [cv Y+ (t-t')J
G(z-z't-t) = & dk e™*2 ' 2.1
- W , (3.2.11a)
=Jo {Ym/cz(t-t' ¥-(z-2 )2} clt-t]|-lz-2'|] (3.2.11b)

where Jy is the zero order Bessel function, and 0 is the step function which is equal to 1

for arguments greater than zero and is equal to zero for arguments less than zero.
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3.3 Derivation of Differential Equation Form

The integral formulatipn derived in the previous section is useful in that it provides a
single integral equation for the radiation field evolution of a particular transverse mode.
The effects due to waveguide dispersion are automatically included. However, it we wish
to perform numerical calculations on a computer, most numerical integration packages
require a set of differential equations as input. In this section we reduce the integral
equation (3.2.10) to a set of differential equations suitable for folloyving many frequencies

in an FEL.

To find the field at this point,
we need to integrate the
current over the shaded area

light rays
traveling at ¢

XBL 895- 2055

{=x- 00

Figure 3.2  Domain of integration for integral equation.
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To calculate As™"(z,t) at a point (z,t), one needs to integrate over the region

indicated in Fig 3.2. To facilitate this integration, we first perform a change of variables as

follows.
tT=c(t-t') , n=z-z ,
dt=-cdt , dn =-dz’

After this substitution and an exchange in the order of integration, eq. (3.2.10) becomes

““‘(z,t)=%J‘ dnj dtJ,{'“‘(n,t,z,t)Jo{%Vtz-nz}. (3.3.1)
- o0 T] .

Since we need a finite number of equations for our computer integration we will
expand Jx"(z',t') as a sum of components at different frequencies. This corresponds to a
discrete fourier transform or if the system is periodic it corresponds to a fourier series.

This expansion can be written

) =, (C}""(z') cosw;t’ + BI'™(2) sinmjt') _ (3.3.2)
J

Transforming to the variables n and t, and substituting into (3.2.1) gives

AZ(z,b) =2%J dnj dv/o {}iV Z-n } a, "z’ t)cosco,l+ B (z, tsine; T
j

(3.3.3)
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where
of"™(zZ't) = C" () cos w; t + BI"(2) sin w;t (3.3.4a)

ﬁgm(z',t) =C™ (z') cos w; t - B{"() sin w;t . (3.3.4b)

If we wish to perform the integration over t, we have two integrals to do. The
integral containing the cosine term will give a nonzero answer only if ®; is below cutoff in
the waveguide. We can ignore this term because in an FEL, only those waves that
propagate down the waveguide are of interest. Performing the integration over the sin term

gives

o 0 for 0 < < Y
. O <
J‘ dv/ o{YzV -’ } sinl-=9 o\ S (3.3.5)
sj n @
n N for v < = <=
sj
w?
where kg; = "ZL'YE . If we now substitute (3.3.5) into (3.3.3) and express the
c

answer in terms of the original variables we obtain

z

AMan =L L
J

sj_“

dz' [B}""(z’) cosa;t' - CJ'"(z') sincojt'] cos(ksj(z - 2)) (3.3.6)



In a 1-D computer simulation of an FEL , one usually follows the evolution of the
radiation as it travels along the wiggler. In a normal FEL only forward traveling waves are
interesting. We can then restrict the integration over z' as follows:

+oo z
dz'! —> J‘ dz' .
This is illustrated graphically in Fig. 3.3. The integration only needs to include the left side

of the integration region since forward traveling waves emitted in the right side of the

integration region can't communicate with the point of interest.

light rays
traveling at ¢
from v from
forward t=- oo backward
waves waves XBL 895-2056

Figure 3.3 Integration region for forward and backward traveling waves.
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To derive the differential equation form we integrate (3.3.6) over an infinitesimal

distance §, and calculate the change in A;™.

2+

SAx (zt) = -}:- z l—(ls-J- dz' [B;-“"(z') cosojt' - G(z) sinmjt'] cos(ksj(z - 2)
| j z

=1y EL [B"(@) coswjt - C™(2) sinwjt] 5
~ ks . (3.3.7)

Going back briefly to (3.3.2), we see that J," could have been written

Iy =, 13‘,-"(z)cos(d>,,-(z) - a;z) = Ja‘;‘(z)[cos¢,j (z)coswyt + sindy; (z)sin(njt] , (3.3.8)
j ' i _
where from the previous definition of J,™"(3.3.2) we have

Ci™(2) = Jgj (2)cos®ji(2) . (3.3.9)

B"(z) = I§j (2)sin®y;(2) . (3.3.9b)

Here ®y;(z) is not necessarily a linear function. The term Joj'““ depends on z only for a

linear wiggler. In a linear wiggler it contains a term that goes as sin(kwz + Ow).

Now we make some definitions for the phases of the various quantities in the
calculation. For convenience we temporarily drop the j subscripts. The following holds for

all frequency components. We define the radiation phase as
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Vs =ksz - ot + ¢5(2) A (3.3.10a)

=Py (z) - 0t , : (3.3.10b)
from AY" = A%p sin s . We define the wiggler phase as

Dy, =kwz + Ow . (3.3.11)
From these we define the ponderomotive phase as previously defined in section 2.2 as

Y=Y+ Dy (3.3.12)

For a strong FEL interaction, the particles must move about the same speed as the
ponderomotive well. We can then define a phase factor 6, such that

B1(2) = Dy(2) + Pu(2) - é,,(zi . C(33.13)

The definition of 0p(z) is useful only if it varies slowly.

If we use our definitions to rewrite (3.3.7) we can obtain

SATn = %{zj—a[sin\ys cos(d)w - ep) + COsYs sin(<!>w - Op)] . (3.3.14)

If we write 2, for the field after the integration, we obtain

I8 @)cos(w - 0,) 8 i+ I8 @sin(®w - 0,) 8

mn mn
Ay (z,t) =| Ayg +
X ( ) x0 Cks Cks

cosy

(3.3.15)

The new amplitude is



a =
x0 Cks cks

mn «/ [ATE N JTB‘(z)cos(<Dw - ep) 8] 2 . [J',I'(')'(z)sin(cbw - gp) 5

. .I',:‘é'(z)cos(<l>W - ep) 5

AT0 ck

= AT {1 ] , ford >0

“Thus the equation of evolution for the radiation amplitude becomes

AT _ tim A - AT _ IEk0s(Ou -6p)
dz 50 S - cks |

The change in the radiation phase ¢s(z) after the integration is given by

158 (@)sin( D -.e,,) 5

- k
8¢s =tan 1 CK¢
Amn JTS(z)cos(fbw -9,,) 5 .

- x0 Cks

From this one obtains the equation of evolution for ¢s(z),

do, _ J'{'é'(z)sin(tbw - ep)
dz ASocks .

T

-
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(3.3.16)

(3.3.17)

(3.3.18)

(3.3.19)

To complete the reduction to a usable differendal equation form, we need an explicit

form of Jxo™". Returning to the specific case of a TE mode in a rectangular waveguide, we

can evaluate J,""(z.t) explicitly using (3.2.6). We define



jx(x,t)= Ix(zvt) fj(x’y) 9 (3.30203)

a b
with' f dxj dyfy (xy)=1 |, (3.3.20b)
0 0

where I,(z,t) is the electron beam current, and fs(x,y) is the normalized transverse
distribution of the electron beam. We have assumed that the transverse distribution of the

electron beam is independent of z.

We can express I,(z,t) as

Lz = - eMzt) @D | | (3.3.21)
where A(z,t) is the one dimensional nu‘mber density of electrons and vx(z,t) is the average
electron velocity at a particular z and t. We can write

vy (2,1) = F—@Lc Ag(z,t) = y—“_cax (zb) = ;-Tcaw sin(sz + q;w) , (3.3.22)
where small letter.a’s represent dimensionless vector potentials, as in section 2.2. These
are obtained by multiplying the vector potential by €/ ¢2. In (3.3.22), ax is the total vector
potential, including the radiation fields and the wiggler field, and a,, is the amplitude of the

vector potendal of just the wiggler field.
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If we assume that the transverse distribution of the electron beam is a delta function

in the center of the waveguide, then we obtain

cos Migin AT
I (z) = 888 0y Aer—2—2-sin(kuz +0w) (3.3.23)
(1 + 3mo)
" where
# particles
Aetr (Zt) = -8-(-5—';{—21‘—(9—)- (3.3.24)
1

One can see that the expansion of J, ™ in (3.3.8) is equivalent to the expansion of At in

(3.3.23). With this identification we can write

cos MEgin O o
]OJ 2) = &E_Qs. aw M’TZE)— sm(sz + q)w) R (3.3.25)
+

where Ao is the amplitude of the jth component in the expansion of Aet.

Now if we normalize the vector potentials by —~— = and if we use (3.3.25), then the
meC

equations of evolution for the radiation fields, (3.3.17) and (3.3.19) can be written

d:’i;n - jjfﬂ“ [Sinepj - sin (epj - 2sz)] . (3.3.26a)




with

dosi
dz

i

mn

n

a;" = [cosepj - cos (()pJ - 2sz)] ,
5]

cos MZigjn O

=4ne? , a2 2

Aoj

mecab " (1 4+ §n0)
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(3.3.26b)

(3.3.26¢)
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3.4 Reduction of Differential Equations to KMR Form.

Only one substitution really needs to be made to reduce the radiation evolution
equations to the form of the KMR equations derived in section 2.2. We will drop all j
subscripts in this section since the KMR equations follow only a single frequency. For
convenience we will also drop all the mn superscripts and follow only a single transverse

mode. To start, we view fig 3.4,

)‘eﬂ

<¢\/ \/

I/\ N\
O

XBL 895-2057

Figure 3.4 Change of coordinates. Primed frame has t" = 0 when y = 0.

In Fig. 3.4, A is plotted. In the top plot, the coordinates are chosen so that only

the cosine component of A is nonzero. In this case
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Aegi(z(1)) = Ag(z) cos wt (3.4.1a)
2%
(3]
and Ao(2)= %J- dt Aemr(2(t)) cos Wt . (3.4.1b)
0

If we use the t' coordinates instead, then

Aetr(z(t) = Mo(2) cos (ot - 8;)

= Ao(2) cos B cos wt' + Ao(2) sin Op sin wt' (3.4.2a)
So
2K
(0] .
Ao(z) cosBp, = %J‘ dt’ Aesr(z(t)) cos ot | ' (3.4.2b)
0
2w
[
and Ag(2) sinBp = %J‘ dt' Aegr(z(t)) sinwt’ . (3.4.2¢)
0

Substituting eq. (3.3.24) and performing the integration gives

Ao(2) cosOp = 57% Y Qfl—oﬁt—l , (3.4.3a)
1

g @Y sin ot
Ao(z) sin6, ng_—'lvm , (3.4.3b)

where v, is the velocity of the 1th electron. Noting that t'=0 corresponds to the point where

y=0, and noting that the time dependence of y goes as wt, then we can replace w in egs.

(39) with y, where v is the ponderomotive phase of the Ith electron. Thus
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M(Z) cosep = %Nbuc <C(:IS‘Y\V > ’ (3.4.4a)
. sin
Ao(z) -Slnep = %Nbuc< v ‘;V > . (3.4.4b)

where Npyc is the total number of electrons per period , and < > denotes an average over
particles. For reduction to the KMR form of the equations, we set v=c although this is not

a good approximation in all cases. Combining eqs. (3.4.4) with egs. (3.3.26) gives

mE g 08 /..
das __gmle O 2 Mo /sinw) (3.4.52)
dz mecikab (1+8mo) Y
IE ¢jn OE ' '
g 0s__8nle %5 M5 a, feosyl 7 (3.4.5b)
dz mclkab (1+8mg) 2\ Y
where I=E@-§M .
2

Eqgs. (3.4.5) are just the KMR equations for FEL radiation in a waveguide[S][21].
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Chapter 4

Effect of Dispersion on
Single Frequency FEL’s
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4.1 Waveguide Corrections to the KMR FEL Theory

In this chapter we will examine some of the effects waveguides have on FEL’s that
can be described by a .modified KMR theory. In his thesis, Jonathan Waurtele has
considered those effects that occur because of multiple transverse waveguide modes([5].
Therefore, we will confine ourselves here to effects cause by dispersion on a single

transverse mode.

We begin by considering how the particle dynamics of the electrons are changed
because of interactions with the waveguide. The particle equations of motion for an FEL in

a waveguide are

dy; Aw
aﬁ:%smw , | (4.1.1a)
. 2
and %-=kw+8k,+d—¢i-—ﬂ-[l+9ﬁ] . -~ (4.1.1b)
dz dz 9.y 2

‘The only change from the free space FEL particle equations is the introduction of the term

ks in the y equation. Explicitly 8ks = ks - ®/. , which we set to zero for free space
propagation in section 2.2. The term 8k, is negative in magnitude and is absolutely

necessary for describing an FEL in a‘waveguide. The magnitude of dks compared to ky, is

to some extent a measure of the dispersion of the waveguide.
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We now examine the FEL resonance condition of (2.3.1). Modified for a
waveguide, this becomes

2
r=—-m—-(1+"7w . (4.1.2)
2c(kw+8k,)

If we solve this for the magnetic field strength a,,, we get

2 =’\/ el ;8"’)7'2' -2 . (4.1.3)

As the dispersion increases, 0ks becomes more negative and therefore a,, decreases. One

consequence of dispersion is that the magnetic field required to maintain resonance is.
decreased. Physically the larger-a,, is, the more the parallel velocity of the electrons are
sléwed. The resonance condition has to do with the phase of the radizﬁion, so the radiation
phase velocity is the important quantity here. In a waveguide the phase velocity of the
radiation is increased as the dispersion is increased. Therefore , a,, doesn’t need to be as

large to match the electron parallel velocity to the radiation phase velocity.

One interesting consequence of (4.1.3) is that it sets a minimum ¥, for an FEL. We

must have

Yt>“/—_@— , (4.1.4)
2c(kw+8ks)

for the FEL resonance to be possible. This sets a limit on the amount of energy that can be
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extracted from tapered wiggler FEL’s. In a waveguide this constraint can be much more
severe. The term ky + 8k; can approach zero(remember 8k, is negative) which means that

the lower limit for ¥, can become quite large.

If one carries out the linear analysis of section 2.3 with the FEL equations (4.1.1),
one obtains a modified value for the synchrotron wave number keyncn(2.3.7) and the

bucket height 8Ymax(2.3.8). These are
L

ksynch= (kw +8ks) —2—3-53!;— 2 » (4.1.5)
1+%
2
L .
and Smax =| ——2sdw__|2 ' (4.1.6)
c(kw + SkS)

In the expression for Ksynch, as the dispersion increases both a,, and the term (ky, + 6k;)
decrease. Thus one result of dispersion is that synchrotron periods become longer. The
expression for the bucket height is less obvious because there are terms in both the
numerator and denominator that decrease with dispersion. We can note however from
(4.1.3) that ay goes roughly as 4/l(v.,+_8ks so that on balance, the bucket height ought to

increase as dispersion increases.
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Waveguide dispersion also has an effect on FEL gain. Using the results of section
2.5 we can see that approximately, the only particle quantities ;hat affect the gain are a,,
and ¥, which we keep fixed. From section 2.5 we know that in the exponential gain
regime the output power goes as ¢8%, where g is proportional to [aw]Z/ 3. In the linear gain
regime, the change in output power goes as a2. Since we have already determined that a,,
decreases as the dispersion is increased, then one would expect to find that the gain

decreases as the dispersion is increased.

From all the previous analysis, one might conclude that something important if not
catastrophic happens when ky, + 8k = 0. If this condition occurs, then all ouf calculated
quantities are undefined. Physically, this condition is the same as setting the
ponderomotive phase velocity equal to c. Since the electrons can never actually go at the
speed of light, the FEL resonance is impossible to achieve. This can only occur in a
waveguide since the FEL ponderomotive potential always moves at less than the speed of
light in a vacuum. The condition that the ponderomotive velocity should be less than ¢
leads to the following inequality:

k2 - m%utoff) 4.1.7
> + . -1
@ J—‘ka W= ( | )
This inequality is more restrictive than just requiring the frequency in the waveguide to be

above cutoff. For the ELF experiment at Livermorev kw = 0.641 cm’!, and
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Ocurofr=3-24%1010 rad/sec. The condition (4.1.7) requires that ® > 3.69 x 1019 rad/sec. If
kw becomes small ( the wiggler wavelength becomes large), then this inequality can give a

much higher value of ® than the cutoff.

The dispersion in a waveguide can also cause two resonances to exist for a_

particular set of physical parameters. To see how this can occur, please view Fig. 4.1.

Dispersion Curve for Waveguide FEL Resonance

resonance

.

W= (k.*'k')c&

resonance

Ks XBL 895-2058
Figure 4.1 Black denotes the waveguide dispersion curve and
grey denotes the .FEL dispersion relation.

Here we have plotted the waveguide dispersion curve and the FEL dispersion curve. The

FEL dispersion curve consists of setting the ponderomotive phase velocity equal to 3,
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which is the parallel velocity of the electrons divided by c. Note that for most parameters
these curves will intersect in 2 points. In principle it is possible to have only a single
intersection, but this would mean that kycPBy > Wcuwogs  Which is difficult to realize in

practice. The points of intersection can be calculated. They turn out to be
k_wi/\/k%’_mzutoff L-l
By ¢ \ga
(—1_- - )
2
Bll

For the parameters of the ELF experiment at Livermore the resonances occur at 34.6 GHz

Q-
C

(4.1.8)

and 6.5 GHz[38]. Using a computer simulation, to be described in great detail in the next
chapter, the output spectrum of the ELF experiment was calculated for an initial input of

white noise. The results are plotted in Fig. 4.2.

Note that since the scale is a log scale, the lower resonance has a significantly lower
gain. The lower resonance is also much narrower. These peaks can be amplified
simultaneously only in the linear growth regime. The resonances each have a different
bunch length, so as the interaction of the radiation with the beam becomes nonlinear, each
resonance will interfere with the amplification of the other. If an FEL is started from noise,

one would expect to measure only the upper resonance because of its higher gain.
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Radiation Spectrum from Noise for ELF

1111l

Power

L1
——

0.0 1.0 2.0 3.0 4.0 5.0

0.
Frequency x1d in Hz  xBL 8952059

Figure 4.2 Radiation spectrum amplified from white noise. The fact
that there are two peaks is due 0 waveguide dispersion. The
frequency at each peak has the same phase velocity.

g
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4.2 Efficiency Enhancement in Waveguide FEL’s

In section 2.6 a simulation was run of a tapered wiggler FEL modeled on the ELF
experiment at Livermore. It was demonstrated that the efficiency of a tapgred FEL is
limited by the percent of the current trapped in the bucket (ponderomotive well). For the
parameters in that simulation, one can see that the trapping efficiency was on the order of
68%(see Fig. 2.10). This leaves considerable room for improvement. In this section, we
will describe a scheme for improving this trapping efficiency by altering the wavegﬁide

in the middle of the FEL.

In the last section we saw that the waveguide can have a significant effect on the
FEL gain and bucket height ( eq. 4.1.6). To see how these properties can be used, let’s

consider the desirable characteristics of a tapered FEL.

In preparing for the taper it is desirable to have a tightly bunched electron beam.
Now as a general rule, nonlinearities tend to cause the electron distribution to fill the
entire bucket during bunching. Therefore, during bunching, it is better to have a small

bucket. This implies that a bunching section should have as small an amount of
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dispersion as possible. Since small dispersion also implies higher gain, a less dispersive
bunching sectidn has more than one feature to recommend it. This is subject to practical
considerations such as the gap in the wiggler magnets and the maximum attainable field

in the wiggler magnets.

When tapering is started, it is desirable to have the largest bucket possible and the
elec&on beam bunched as tightly as possible in the center of the bucket. If the beam is
not tightly bunched, then a taper will not suéceed in decelerating most of the eleéu'ons.
- The large bucket implies that a large amount of dispersion would be beneficial in this -

region.

Bunching wiggler Tapered wiggler
\ L o \
e P —
N|S|N|S|N|S region STSTN]S NG

Electron beam

STNISINISTN \ /"NSNSN

Waveguide
XBL 895-2060

Figure 4.3 Configuration for ef;lhandng the extraction efficiency of a waveguide FEL.
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One possible scheme to maximize FEL efficiency is shown in Fig. 4.3. The FEL
is split into two parts. First we have a bunching wiggler section. The waveguide size and
wiggler parameters are chosen so as to maximize the gain and to minimize the bucket
height. The second wiggler section is tapered and its parametefs and the waveguide are
chosen so as to maximize the bucket height. The drift region is used to match betwéen
the two sections. In this drift region the waveguide is tapered and any necessary magnets

are added to match between the two wigglers.

Before showing a numerical example, we will derive the matching conditions for
the radiation and the electron beam across the drift region in a rectangular waveguide.
For the radiation, the change in phase across the drift region can be written

L Lo 2 2 2
A¢dﬁa=J- dzky(z) = dz\/ (sg) -nz{(a‘%) +(an_)” . @42)
0

0

where m and n are the transverse mode numbers, a and b are the width and height of the
waveguide, and L is the length of the drift region. If we have an electron bunch entering
the waveguide at t = 0, then the change in radiation phase relative to the electron bunch
at the exit of the drift region is given by

Adrei = Adrift - Oty = Addrife - %L 1-v? , (4.2.2)
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where t, is the time required for the electron bunch to traverse the drift region. The
condition for matching then becomes A¢,; = 2%tn, where n is any integer. Most of the
parameters are already determined by design considerations for the two wiggler sections.
However, the length of the dritt region, L, can always be adjusted to satisfy the matching

condition.

For a 1-D FEL simulation, the matching condition is all we require. In a real FEL
there are further considerations necessary in the drift region. The waveguide taper must
be designed to avoid unwanted mode conQersion. Also in a real FEL, the wjggler end
fields from both wiggler sections will intrude into the drift region. Additional focussing
elements may be necessary, making the relation (4.2.2) overly simplistic. While the
actual implementation of the scheme described in this section might be m<;re complicated

than a 1-D analysis would suggest, there seem to be no major impediments.

In addition to allowing one to alter the bucket height, the scheme of Fig. 4.3
allows one to introduce a phase shift before entering the tapered wiggler. This follows
from (4.2.2) where we need not set Ad,.; = 2na. When tapering is initiated, particles tend

to be lost from the tail end of the bunch. If we introduce a phase shift so that the electron
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bunch is slightly advanced relative to the FEL bucket, then this tendency can be

minimized.

One potential problem with this scheme is that we noted in the last section that
for a particular set of physical parameters there was a limit to how low the resonance
energy can get in a waveguide(4.1.4). If the waveguide is fairly dispersive then this value
could be rather high. Whether this is a problem or not will depend on the panicﬁlar
application. The dispersion lowers the necessary wiggler field strength to achieve
resonance. with the electrons. ?f‘ the dispersion is too high then resonance might not be
achievable at the desired energies with any finite Wiggler field. However, magnets at
lower field strengths are generally cheaper to manufacture. This might produce a tradeoff
_between the amount of energy extraction and costs. At any rate, the highest bucket height
possible is desirable at the entrance of the tapered wiggler. If the minimum resonance
energy is reached further down the wiggler it should be possible to taper the waveguide
to ease this restriction, since by the time it becomes a problem the radiation field should

be large enough to provide a rather large bucket.
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A simulation has been peﬁomed to demonstrate the scheme of Fig. 4.3. The
results are shown in Figs. 4.4 - 4.7. The design is not optimal for the scheme, but is
modeled on the ELF experiment at Livermore and uses the parameters from Table ITL
The two simulations are identical up to 1.6 meters where the untapered FEL reaches -
saturation. In both cases the second wiggler section is 2.4 meters in length. The first
simulation is just that of ELF for the particular taper used with no drift region. The tapef
was chosen so as to lower the energy to ¥, = 4.3 at the end of the wiggler. This value was
chosen so as to avoid any problem with minimum resonance energies. This first
simulation is shown in the (a) frames of the plots. The second simulatien used a drift
region that reduced the height of the waveguide from 2.9cm to 2.0cm. It also introduced
a phase shift of the electrons of 0.7 radians relative to the ponderomotive well. This
simulation is shown in the (b) frames of the plots. The distances in the plots show the

distance from the start of the second wiggler.

Beam Energy 4.14 Mev

Beam Energy iny 8.1

Beam Current 800 amperes

Wiggler wavelength 9.8 cm

Radiation frequency 34.6 GHz

Waveguide width 9.8 cm

Waveguide height 7 29cm

Input radiation power 60 KWatts / TEQ' mode

Wiggler Peak Field 4.67 KGauss
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Y
(a)
(b) v XBL 895-2061
Figure 4.4 The smalier waveguide in (b) has a larger bucket area allowing

increased trapping of electrons. Electrons closest to the separatrix are likely to be lost.
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The first thing to notice is the size of the bucket heights for each simulation at the
beginning of the second taper. This is shown in Fig. 4.4. The separatrices drawn in the
 figures are just to estimate the actual bucket since in reality an FEL is a highly nonlinear
device. One can see that for the more dispersive waveguide, the bucket is significantly
larger. This can be seen in Fig. 4.5 to lead to a higher degree of trapping and therefore in
Fig. 4.6 to a larger amount of radiated power. In Fig. 4.7 we can see that the wiggler
fields required in the (b) simulation are less than half of what was required in t‘he (a)

simulation.

For the ELF-like parameters used in these simulations, the trapping efficiency
improvement is from about 65% to 75%. This is significant but not tremendoﬁs. FEL’s
like ELF arenot designed to be efficient and reliable power sources but are meant to be a
flexible experimental apparatus. In the future as FEL power sources become routine,
designers will need every trick available to make the FEL more efficient and

inexpensive.
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Chapter 5

Sidebands in Waveguide
FEL’s
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5.1 General Description of the FEL Sideband Instability

In this chapter, the FEL sideband instability will be studied in great depth. An
analysis based on formalism from nonlinear optics will be developed and the results will
be compared with computer simulations. Of primary interest are the structure of the
sideband spectrum and those conditions that can lead to suppression of the sideband

instability.

Before discussing the details of sideband research we will introduce the subject
with a heuristic model of FEL sidebands. An FEL that is saturated introduces an
additional frequency to the electron motion. Bunching and subsequent trapping of
electrons in an FEL can be described by electron interaction with a ponderomoﬁve
potential. In an FEL this potential is formed by a beat wave between the wiggler field
and the radiation field. This beat wave forms a train of potential wells that travel at a
uniform velocity. If the initial electron velocity is close enough to the velocity of the
potential wells then there will be a strong interaction and the particles will bunch as they
give up energy to the radiation field. When the radiation field saturates, there will be

some electrons with insufficient energy to escape from the potential wells. These
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trapped electrons oscillate in potential wells

Ponderomotive p potentlal XBL $95-2065

Figure 5.1 Electrons trapped in the ponderomotive potential undergo small
oscillations at the synchrotron frequency. These oscillations modulate the original electron
current and therefore can interact strongly with radiation frequencies that have
appropriate matching conditions,

electrons are said to be trapped. For deeply trapped electrons, the ponderomotive
potential appears the same as a pendulum potential. These electrons oscillate in the well
at what is known in the FEL literature as the synchrotron frequency. This is analogous to

the bounce frequency used in plasma physics.

Synchrotron oscillations are only apparent in the regime of a saturated FEL.
When the radiation is growing rapidly, the ponderomotive potential steepens and
therefore the synchrotron frequency changes too rapidly to be well defined. The
synchrotron oscillations modulate the electron beam so as to produce additional current
components at the radiation fundamental plus and minus the‘ s?nchrotron frequency.
These current components can producé an instability that grbws exponentially. This is a

parametric amplification process and it is important since it can lead to degradation of
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the FEL output spectrum and it can cause the electrons to be detrapped from the original

ponderomotive well.

Figs. 5.2 and 5.3 show some computer simulations to illustrate the nature of the

synchrotron oscillations.

Yave

Distance XBL 895-2066

Figure 5.2 Typical evolution for the average energy of the electrons in an FEL.
This simulation was chosen for the pronounced synchrotron oscillations after saturation.
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Figure 5.3 Simulations of the bunching and subsequent oscillation of the electrons

in an FEL. The oscillation is represented in phase space as an orbit around the FEL
resonance. The separatrices are caiculated according to a linearized FEL analysis and
are plotted to give an idea of the region in which electrons are trapped.
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5.2 Description of Previous FEL Sideband Research

In this section we briefly review vprevious sideband research. FEL sidebands have
been the subject of many studies because of the potential impact on FEL performance.
Research has mostly concentrated on FEL’s in an oscillator configuration, though
sidebands can also occur in high-gain amplifiers. In either case the physical mechanism is

the same.

One of the first papers on FEL sidebands was written by Norman Kroll and
Marshall Rosenbluth[42]. It is an impressive work, since it predicted many properties of

sidebands that were subsequently confirmed.

Kroll and Rosenbluth begin by writing a set of two frequency equations for the
particle evolution in terms of 'y and y, with one frequency being the FEL fundamental and
the other being the FEL sideband. Assuming t-hat the amplitude of the sideband is much
smaller than that of the fundamental, one can derive a pendulum equation(as in eq. (2.3.3))
where there is a perturbative forcing term due to the sideband frequency. The phase of the
particles is expressed in terms of y and YR, with YR being the phase defined by the

wiggler field and the sideband wave.
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The gains of the fundamental and the sideband are written

g = Zwscasj (S“‘ (sin V) Y)dz (5.2.1a)

and gp= 2chaa J- (sin \VR/ )z  (5.2.1b)

where these are integrals over the equations for the field amplitudes of the fundamental and
the sideband. The R represents sideband quantities and the bar over the integrand indicates
an average over parﬁcles. The equations are the same in all respects to (2.2.16) except for
slightly different normalizations. The authors do not state so explicitly, but the averages
are equivalent to picking out the respective Fourier components of the fundamental and the

sideband.

Next, the authors calculate the quantity G = gR/gs, which is the relative gain of the
sideband and the fundamental. Since the sideband is being treated as a small perturbation
in the pendulum equation, the particle orbits can be integrated to first order in the sideband
amplitude. Assuming perfect bunching, i.e. all the particles enter the wiggler exactly ona
single point, the orbits are inserted into. the expressions (5.2.1) and integrated. The result

is



118

__ o ag|sin® (Qr-QLR) sin® (Qr + QLA)
dsin 2y @5 | o -on [+ e

where Q is equivalent to kynch in (2.3.7), L is the length of the wiggler, y, is the resonant

, (5.2.2)

ponderomotive phase, and QR = % kw . The result they achieve is somewhat
worrisome because of the siny, in the denominator. Since v, is nonzero only in tapered
wigglers this would imply that something qualitatively different happens in an untapered
wiggler, which is not actually true. However, their result allows them to draw some of the
following conclusions.

~ This e;cpression shows a resonance at Qg =£ Q. These resonances correspond to
the lower and upper sidebands. The relative gain for the upper and lower sidebands are
opposite in sign. This means that in a situation when the lower sideband is amplified, the
upper sideband should be damped. From this result, they make the assertion that sideband
generation is a process similar to stimulated Raman scattering where the lower sideband is

the Stokes wave and the upper sideband is the anti-Stokes wave. This is a correct

assertion, but they make no further use of the analogy.

In the latter part of their paper, Kroll and Rosenbluth perform a kinetic analysis for

FEL sidebands. They conclude that for most reasonable particle distributions where the
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particle density is higher in the center of the FEL bucket, it is the lower sideband that will
be driven by the instability. If the particle distribution increases in amplitude away from the

center of the bucket, then the upper sideband should be unstable.

Another useful study of the FEL sideband instability was made by Colson[43]. He
examines three regimes: the short pulse oscillator, the long pulse oscillator, and the high
gain amplifier. To generalize his results he expresses the equations of evolution in terms of

dimensionless parameters and uses a numerical simulation to draw conclusions.

In short pulse oscillators it is important to match the light pulse and the electron
pulse for each pass of the oscillator. Due to “laser lethargy” effects, however, the gain is
preferentially deposited at the tail of the light pulse. Therefore the optimum gain would be
achieved by making the resonator a little bit shorter than matching conditions would
indicate. Colson finds that when this “desynchronism” is set to maximize the gain of the
fundamental, then the sideband instability can grow. This causes sharp spikes in the
radiation pulse and produces a broad optical power spectrum. If the dcsynchrdnism is
large enough to reduce the gain. of. the fundamental, then the sideband instability can be
suppressed.. Thus one way to suppress sidebands is to alter the slippage between the

electron pulse and the optical pulse for each pass through the oscillator.
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For an FEL, there is a characteristic slippage length. This is determined by the
relative velocities of the electrons and the radiation pulse. If both pulses started at the same
point at the beginning of the wiggler, they would be separated by this slippage length at the
end of the wiggler. For modeling long pulse oscillators, where one can have electrqn
pulses that are many slippage distances long, Colson introduces a useful numerical
concept. It is somewhat redundant to follow the entire electron beam in a simulation since
sections in different parts of the beam will exhibit the same behavior. The initial noise
might be somewhat different, but in an oscillator this is not very important. Colson uses
only a small slice of the electroﬁ beam with periodic boundary conditions. These “wrapped
window” simulations are able to capture the sidebandlbehavior with a great savings in
computer time. The size of the window is essentially a limit on the nuﬁlber of modes that

can be examined.

Some properties of FEL sidebands are observed in both the short and long pulse
regimes. Increasing the current or increasing the Q of the resonator also increases the
sideband instability. Using a tapered wiggler decreases the production of sidebands.
Colson attributes this to the fact that tapering decreases the depth of the ponderomotive

wells and a smaller number of electrons are trapped in the FEL bucket.
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Colson also produces a few conclusions for sidebands in FEL amplifiers. He finds
a current threshold for the sideband instability. Also, in an amplifier, the initial noise is
quite important as opposed to an oscillator where it is not. The lower the input noise level

in an amplifier, the lower the sideband power should be.

Another intéresting contribution to the FEL sideband literature has been made by
Davidson and Wurtele. They develop their own formalism that allows them to examine
sideband stability with a dispcrsion’ analysis[44]. Using this formalism they are able to
study the effect of untrapped electrons on the si;ieband instability[45]. This is important
since in any real FEL, the trapping of electrons is imperfect. Some electrons are always
untrapped. Their analysis suggests that if the fraction of untrapped electrons remains less
than about 0.2, then the sideband instability is relatively unchanged. When the fraction of
untrapped electrons becomes greater than 0.2, then there can be substantial modification of
the sideband spectrum. Generally, the untrapped electrons seem to produce power on the
opposite side of the fundamental from the normal sideband instability, i.e. if the lower
sideband is usually unstable then the untrapped .popula'tion wili add to the upper sideband

spectrum.
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Another contribution to the FEL sideband literature was made by Riyopoulos and
Tang[47]. Their general approach to the sideband problem is similar in nature to that of
Kroll and Rosenbluth{46]. Using kinetic theory, they examine the effect of sidebands on
electron trapping. When the sideband power passes a certain threshold, then the electron
orbits no longer quite close on themselves and the system becomes stochastic. Riyopoulos
and Tang estimate the diffusion rate of thes;e electrons and compare this to numerical
simulations. The theory and the simulation seem to match quite well. The detrapping of
electrons due to stochastic diffusion can limit FEL performance, though only in tapered

wiggler FEL’s will the performance degradation be severe.

The analyses mentioned here have all used 1-D equations to predict the behavior of
FEL sidebands. Sharp and Yu have performed an analysis that predicts the effects of finite
beam size on sideband generation[48][49]. They use a 2-D Vlasov equation to describe
particle motion in a helical wiggler FEL. While the effects of a 2-D geometry are included,
the effects of betatron motion on sidebands are ignored. They find that 2-D effects can be
ignored when the following conditions are satisfied: the slowly varying radiation phase is
close to the value predicted by 1-D theory, the sideband mode is largely confined to a
region where the electron beam density variation is small, and the wall radius of the beam

pipe enclosing the system is more than twice that of the electron beam radius. They also
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derive an analytic expression that is an inequality which estimates when 2-D effects are

negligible.

Finite radius electron beams seem to decrease the growth of the sideband instability.
Sharp and Yu have numerically observed as much as a 40% drop in sideband growth over
the 1-D case. Another effect is that the peaks for the sideband gain are further from the

fundamental than in the 1-D case.
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5.3 Previous Work on FEL Sidebands in Waveguides

As work progressed on the Two-Beam Accelerator project, where electron bunches
undergo many synchrotron oscillations in the device, people became interested in the
physics of sidebands in waveguides. It was suggested by myself that if the group velocity
of the radiation was equal to the electron velocity, then no information could travel along

the beam and therefore no longitudinal instabilities would be able to develop.

The physics of the regime where the radiation group velocity and the electron
velocity are equal is not well described by FEL equations that use the usual paraxial or
eikonal approximaﬁdn. Since the éikonal approximation neglects second derivatives, the
radiation dispersion is completely absent from the evolution equations. Another problem
involves the estimate of the sideband location. The usual way to estimate sideband location
is to say that the sidebands will be separated from the fundamental by an amount equal to
the synchrotron wavelength(50]. Explicitly

[(k, £ AK) + ko) z- (@ Aw) t = Keynen z (5.3.1)
where Ak and Aw are the shifts of the sideband from the fundamental. If v,, is the parallel

electron velocity then z = v,,t. If we use the resonance condition s = (ks + kw)vy,, and use
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Aw = gil?- Ak = VgroupAk, then one can express Aw as

Aw = ksynchc

£ (5.3.2)
l- v"/vgroup

This would indicate that as the electron velocity approached the radiation group velocity,
the sidebands separate further from the fundamental. This sideband shift has been
experimentally observed by the Columbia FEL research group{52]. This relation works
well when the dispersion is relatively small, but it breaks down as vy = Vgroup. This is not
surprising since we expanded in small Ak. As the sideband frequency gets further from

fundamental this assumption breaks down.

To examine the effect of dispersion on sideband gain, Yu et al. perform an analysis
where the second derivatives of the radiation field quantities are kept[51]. The radiation

equations used were

da o da 3’ ] 3% o e

(32+Vs -37)+§1‘<:(5;-c2 ot -n(sm (W+¢)) ’ ¢33
3 a¢) a1 d%a)|_

a(az*vgé? 2k 32 2 a2 =n{cos (w+9)) , (5.3.3b)

where the new terms have been boxed and the following terms and normalizations are

used:

ngk—sq-z— n:ﬂilw v"=__m$_ a___agawﬂ)z (l+a3’)
s mcz Vi ‘YE kw + Ks 02 Y:
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2
po=a ] LeAltas) (1+ad) ,and Sk=k-& (5.3.4)
2¢(ky + 8k)

Other than these definitions, the terms are the same as the notation of Kroll, Morton and
Rosenbluth(Chapter 2). Some cross terms have been dropped, but the equations (5.3.3)

produce the identical dispersion relation as when all terms are kept.

Using the new radiation equations, a dispersion analysis was carried out to
determine sideband stability and location. Some results are lplotted in Figs. 5.4 and 5.5. To
read these plots we have to define

8=1-(Y4,) « . ©(5.3.5)

- Y
and  §o= 4B Llwdy 1 (5.3.6)
mc” " ﬁ l(synch

where 8 is a measure of the dispersion and 5’0 is a factor that can be thought of as a
normalized current density. Fig. 5.4 shows that adding dispersion to the radiation
equations produces quite different results in a waveguide than the usual paraxial wave
equation. Fig. 5.5 shows regions of stability and instability for FEL sidebands depending
only on the parameters 5’0 and 8 Achieving v, = v, is not necessary to stabilize the
sidebands. The analysis performed indicates that one need only come relatively close to

this condition to stabilize the sidebands.
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While this theory provides some useful insight into the effects of dispersion on FEL
sidebands, it is somewhat limited. There are some implicit assumptions of slowly varying
amplitude and phase in the source terms of egs. (5.3.3). The dispersion analysis of these
equations also always give sidebands that are symmetric around the fundamental which is
not always accurate. The analysis also makes it hard to produce a simple physical picture
of sideband processes. A more detailed analysis is necessary and is the subject of the rest

of this chapter.
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5.4 Multiple Frequency Waveguide Simulation

The computer simulation described in this section was written to examine sideband
generation in a highly dispersive waveguide. Instead of using a single electromagnetic
wave equation with the slowly varying amplitude and phase approximation, this code
calculates an amplitude and phase at each frequency it follows. In effect, instead of
following a range of frequencies, the code follbws many discrete frequencies. The
radiaton field at each frequency is moved at the correct phase velocity so that dispersion is

properly included.

The radiation equations that are integrated are those shown in (3.3.26). The particle
equations are just the Lorentz force equation reformulated in suitable variables. The
equations are integrated with z as the independent variable so that each frequency is well

defined. For convenience we rewrite the equations here. They are

5)

d:rfn i jj""[sine;‘,-"~sin (e:‘,-"-zsz)] , (5.4.12)
d%rs;;ié iéfnl-:-[coser}:l;l - cos (6:‘,-" - 2sz)] , (5.4.1b)

with

n dmel mncos Mlsin O _
g = A0, Aoj —=——2— . (5.4.1¢)
Meca 1+ 8mO)
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These are the radiation equations for each ®; and are just those given in (3.3.26). The
particle equations are

dYi _aw(2) aax(z,t)'
dz  Yc ot |i=t ° (5.4.2a)

R 1 | | (5.4.2b)

dz [ 1+al@)
¥

where a,, is the normalized wiggler vector potential and ax is the normalized vector

potential of the radiation field. The fields are written in this fashion to include all of the

Fourier components. Explicitly we can write

azZn =2, >, a*;;“sin(kj““z - ot + ¢'s'}") : (5.4.3)

m,n _]

where we have summed over all waveguide modes and radiation frequencies.

Just as all the radiation components must be summed in the particle equations, the
particle orbits must be summed so as to produce the source term for the radiation
equations. The two factors that must be calculated from the particle equations are Ag; and

8p;. They can be calculated from eqs. (3.4.4) which we rewrite

mn
Ao; (2) cosb; = DNy, <°°s v > : (5.4.4a)
T vz Y

. N n
Aoj (2) sinBp; = DNy <s"’ L > : (5.4.4b)
T v Y
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where y;™" is the ponderomotive phase corresponding to the frequency w;, and v; is just

the inverse of the right side of (5.4.2b).

Since the equations contain the term v,, they will show oscillations at 2kyz for a
linear wiggler. It is desirable to average these equations for the purpose of calculating FEL
resonance and for a simpler comparison to theory. This can be performed in the same
manner as the averaging done in section 2.4. Resonance can be calculated from the

ponderomotive phase equation (2.4.8b) which gives

O=(kw+ks+%t—s)-%K1 , | (5.4.5)
with
1+1a2 3(1+a§,+§-a{‘,) 15(1+%a3,+%a3+-—156-33)
Ki=1+ + + + .. . (5.4.6)

8 v, 48

Numerically, this can be solved to an arbitrary accuracy, however in general one only
keeps a small number of terms. Because of the number of terms necessary for reasonable
accuracy, and because of the Bessel functions that must be calculatéd, the averaged
equations actually take more computer time to integrate than the unaveraged equations. The
averaged equations are useful primarily as a check that the equations are consistent. Also
since the form of the averaged linear wiggler equations is the same as the form of the
equations for a helical wiggler, then results for one type of wiggler can be carried over to

the other type with the inclusion of the proper Bessel function terms.
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In order to illustrate the differences between results from the averaged and
unaveraged équations, a simulation was performed where the FEL fundamental and its
first two harmonics were allowed to interact with the electrons. In one simulation, the
exact unaveraged equations were -integrated, and in the other simulation the averaged

equations using the first four terms in the expansion of v,-! were integrated.

The simulation parameters are shown in Table IV. The relativistic energy factor y
is small enough that the ratio aw/Y is not negligible. In fact, for the parameters used, this
ratio is just over 0.3. This means that at least several terms in the expansion of v, 1 are

necessary to achieve numerical accuracy.

The average value of y is plotted in Fig. 5.6. The first feature to notice is the

oscillations in the unaveraged simulation. These oscillations have a period of half the

Table IV Simulation parameters

Relativistic energy v 7.2
Wiggler peak fieid 3.80 kG
Wiggler wavelehgth 98 cm
Radiation frequency 346 GHz
Beam current 800 amps
Waveguide size 98x29 cm

Initial radiation power(TEm) 60 kW
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Figure 5.6 A plot of the relativistic energy factor y versas distance. The solid black
line represents the unaveraged equations. The thick gray line represents the averaged

equations.
wiggler wavelength. These' are directly due to the modulation of the transverse electron
velocity in a linear wiggler. The averaged equations produce a curve that is close to that
produced by the unaveraged equations. The fact that these curves are not exactly aligned
means that more terms in the expansion of v,”! are necessary for that additional
numerical accuracy. Given the highly nonlinear nature of the FEL equations, the

agreement in Fig. 5.6 is actually quite good.

There are other concemns in averaging besides strict numerical accuracy. The
averaging can obscure what is actually occurring. Figure 5.7 shows the 2nd harmonic

radiation from the FEL simulation. Here the curve for the averaged equations follows
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Flgure 5.7 Plot of radiation power vs. distance for 2nd harmonic radiation.

The black curve represents the unaveraged equations. The thick gray curve represents
the averaged equations.

about where it should. However, the unaveraged curve shows additional physics. Just

from looking at the curve from the averaged equations one might interpret this to show

that the 2nd harmonic is amplified depending on the relative phases of its ponderomotive

well and the ponderomotive well of the fundamental. While this relation might give the

strength of the interaction, the fact is that any radiation emitted at the 2nd harmonic is

reabsorbed by the electron beam by the time the electron beam undergoes a quarter of a

wiggler oscillation. Thus we would not expect to measure any 2nd harmonic from FEL

interaction. Any power at the second harmonic would be incoherent radiation produced

by end fields in the wiggler. This is a different prediction than if we used only the

averaged simulation.
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Flgure 5.8 Plot of 3rd harmonic vs. distance for the unaveraged equations.

Another pitfall of averaging that we must look out for is averaging out something
by accident. In Fig. 5.8 the 3rd harmonic for the unaveraged equations is plotted. The
equivalent plot for the averaged equations is not shown since the values for the averaged
equations are 3 orders of magnitude smaller. This enhancement of the 3rd harmonic in
the unaveraged equations is due to the fact that the 2k,,z oscillation in v, interacts with
the kz oscillation of the wiggler field to produce a 3k,z oscillation in the radiation
source term. This enhances the production of incohereﬁt radiation at 3 times the

fundamental frequency. .
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For some of the simulations to be performed, we will be interested in the
~ amplification of radiation from noise. There are two possible sources of noise in a 1-D

simulation. These are in the electron distribution and in ambient radiation.

The noise from the electron beam results from the fact that a realistic electron
distribution will not fill phase space completely uniformly. Due to this, there will initially
be a small but finite value of the Fourier component of the current at each frequency.
These frequency components will lead to incoherent emission of radiation that can then

be amplified by the FEL process.

There are several possible origins for incoherent radiation that can be amplified
by the FEL process. Already mentioned are the nonunformities of the electron beam.
There is also the incoherent radiation emitted by the electron beam from interaction with
the wiggler magnetic field. Also present is shot noise from the accelerator used to
produce the electron beam. The shot noise can be estimated by writing down a circuit

equation for the accelerator.
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Realistic estimates of the noise present in an FEL amplifier can be important in
some FEL designs and this subject has been treated in detail elsewhere[53]. For the
purpose of the study to be performed here, the actual levels of noise are not so important
as long as we can get a reasonable measure of the FEL gain at the frequencies of
interest. To this end we provide our 1-D simulation with the simplest reasonable way of

including noise in the calculation.

Since we don’t wish to include noise in the electron distribution, we must make
“sure that no unwanted frequencies are introduced by the initial particle loading. It is
necessary to use'what is known as a quiet load. The simplest method of loading the
particles is to place them on a rectangular grid. This is adequate as long as one wishes to
examine. frequencies that have periods far from the particle spacing. The periodicity of
the grid can be broken by offsetting the particle positions. This must be done sﬁbject to
the constraint that no Fourier components be added to the distribution. In tﬂe simplest

form of particle offsetting, particles must then be moved in pairs.

We will include noise only in the initial radiation spectrum and not in the initial

particle distribution. Since inhomogeneities in the electron distribution result in
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incoherent radiation, this is not unreasonable. In any case, any tractable computer
simulation based on the equations used here would have too few particles to accurately
model the noise in the distribution. In addition, the equations (5.4.1) make it necessary to
have some - initial radiation at all frequencies. This is because of the radiation amplitude

in the denominator of (5.4.1b). -

Since we are primarily interested only in the gain, we will assume that the initial
radiation spectrum consists of white noise, i.e. the radiation power spectrum is the same
at all frequencies. The particle distribution will be initialized so that all Fourier
components of the current are initially zero. The radiation has an input for the power in
the noise such that the initial power is spread over all frequencies to be followed in the

simulation.

In Fig. 5.9, the spectra from several simulations are plotted. In these simulations,
the total power in the noise spectrum was respectively 0.5, 5.0, and 50.0 watts. One can
see from the log scale that each peak is 10 times the previous one. This would seem to
confirm that the gain was the same in each simulation. The spectrum has a roughly

parabolic shape which is what one would expect from the discussion of section 2.5.
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Figure 5.9 Spectra at 2 meters for various amounts of ambient

electromagnaetic noiss.
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5.5 Physics from FEL Sideband Simulations

In this section we will examine some sideband simulations to illustrate some
physics from full many-particle-per-bucket simulations. We will also compare some of
these results with a single particle per bucket simulation to study the validity of a single

~ particle per bucket model.

The simulations that follow use the parameters of Table V for inputs. One
simulation will be in an' untapered wiggler. The second simulation will use a tapered
wiggler that starts its taper at 1.4 meters and reduces the wiggler field to 55% of it’s
original value by the end of the wiggler. A spectrum of random noise in the radiation was
used as input. It was assumed to be shot noise with a power of about 150 mW per GHz.

This was about 5 watts total noise input for the frequencies followed.

TableV
Beam Energy 3.68 Mev
Beam Energy iny 7.2
Energy spread iny +0.5
Beam Current 800 amperes -
Wiggler wavelength 9.8 cm
Radiation frequency 346 GHz
Waveguide width 9.8 cm
Waveguide height 29 cm
Input radiation power 60 KWwatts/ TEO' mode
Wiggler Peak Field 3.80 KGauss
Particles/bucket 272
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Figure 5.10 Total radiation power vs. distance for (a) an

untapersed wiggler, and (b) a tapered wiggler.
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Figure 5.11 Plot of the slow radiation phase of the

fundamental FEL frequency for (a) an untapered wiggler, and (b) a
tapered wiggler. The fact that the curve for the tapered wiggier changes
slope soon after the tapering begins shows that particles are being
detrapped from the ponderomotive welil.
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Figure 5.12 Spectrum at 3.5 meters for (a) an untapered
wiggler and (b) a tapered wiggler. The powsr in the sidebands in the
tapered wiggler is less in magnitude than the untapered case. The
sideband power is also relatively smaller, since the fundamental power
is much greater in the tapered wiggler.
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Fig 5.10 shows the total radiation power produced. In each simulation, the
sideband power is always several orders of magnitude less than the fundamental, so this
power is essentially the power in the fundamental frequency. Since this is an unaveraged
1-D simulation, the power exhibits small oscillations on the length scale of 2k,z. The
tapered wiggler FEL produces almost an order of magnitude more power than the

untapered wiggler.

Fig. 5.11 shows the slowly varying radiation phase of the fundamental frequency.
Even though the simulation is unaveraged, the plot for the untapered wiggler is almost a
straight line. In the plot for the tapered wiggler, the curve changes slope soon after the
tapering is initiated. This is because electrons are being detrapped from the FEL bucket.
As the electrons are lost, the interaction with the radiation is weaker and the slope of the

curve decreases.

Fig. 5.12 shows the radiation power spectrum at 3.5 meters for both cases. The
power in the sidebands for the tapered wiggler is significantly less than the power in the
sidebands in the untapered case. This has several causes. First of all there was significant

electron detrapping in the tapered case. By 3.5 meters only about a half of the original
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electrons are still in the bucket undergoing synchrotron oscillations. Not only can
substantial detrapping occur in tapered wiggler FEL’s, but the bucket itself is
smaller(narrower) when the wiggler is tapered. Also in a tapered wiggler FEL, the -
synchrotron wave number can change substantially. If the power during the tapering
changes by say a factor of 10, then the synchrotron wavenumber which goes as the fourth
root of the power will change by 1.8. The sideband instability depends on the coherence
of the synchrotron oscillation. If this oscillation varies over distance, then sideband

growth will be inhibited.

In order to demoﬁstrate that sufficient accuracy was obtained by the computer
simulation, two more untapered runs were performed. The number of particles that were
used varied in each simulation. If a sufficient number of particles are used, then the
results will not depend greatly on the initial conditions. Fig. 5.13 shows a comparison of
the spectrum of these runs. It can be seen that the 528 and 272 particle/bucket runs give
essentially the same results. The 528 particle/bucket run give slightly better resolution
near the fundamental. The 144 particle/bucket run starts to show some erratic behavior
since there weren’t enough particles to achieve good resolution, however, the major

features of the spectrum are shown reasonably clearly.
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Figure 5.13 Comparison of simulations with different number of

particles. The results don't depend too much on the number of particles as long
as a certain threshold number are used.

The simulations shown exhibit complicated behavior. In order to reach an
understanding of the physics involved, we wish to study a simpler system that can
reproduce the general behavior of the full system. To do this, a version of the FEL
simulation can be run that has only a single particle per bucket. This simulation can only
study saxura_ted FEL’s since the single particle represents a bunch of electrons and the
electrons are tightly bunched only after saturation. The equilibrium of the single particle

per bucket simulation can be chosen so that the particle starts at the exact center of the

-
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bucket, or at any other position. If the particle is not centered in the bucket, the

equilibrium will display synchrotron oscillations at some chosen amplitude.

In order to understand how the single-particle-per-bucket simulation relates to the
full simulation, we have to understand its limitations. First of all, its accuracy is limited
to the situation where the fundamental is the dominant frequency. If any other frequency
has a power on the order of the fundamental, then the FEL bucket is no longer well
defined. Therefore, to study saturation effects in sidebands one must use a more complete

simulation.

Another limitation is that in a realistic simulation, the bunching of the electrons is
imperfect. One way this shows up is in the evolution of the slowly varying radiation
phase. The single-particle-per-bucket simulation gives the maximum slope possible for
that particular current, since in the many-particle-per-bucket simulation the term that
drives the slow radiation phase has an average over the particles. Fig. 5.14 shows the
evolution of the radiation phase in the case where the parameters are chosen to be the
same as that of the untapered simulation shown earlier at saturation(Fig. 5.11a). Note that
the slope is larger. This will produce a shift in the output spectrum from the many-

particle-per-bucket simulation.
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Figure 5.14 In the single-particle-per-bucket simulation, the

bunching is at a maximum. Note that the slope here is larger than that
of the equivalent many-particle-per-bucket simulation of Fig. 5.11a.

Also in the many-particle-per-bucket simulation, the electron distribution will be
spread around the bucket. This means that different parts of the distribution will have
different synchrotron wave numbers. Remember that in a pendulum, the larger the
amplitude of the oscillation, the more nonlinear terms contribute and the slower the
frequency gets. The many particle simulations in this section were chosen purposely to
have a large energy spread so that the electron distribution fills the entire bucket. This
shows clearly that large synchrotron amplitudes are not necessary to drive the sideband
instability. What matters is the shape and depth of the ponderomotive well that confines

the electrons.



gain coefficient ( cm' )

149

0.05

0.04 1

0.03

0.02 1

0.01

gain coefficient ( cm' )

0.00 A

-0.01 T T——T T T T T
15.@®0.0 25.0 30.0 35.0 40.0 45.0 50.0 S5.0

9
frequency *10° xBr 8952077
Figure 5.15 Exponential gain coefficients calculated for the

untapered many-particle-per-bucket simulation. Only the part of the plot
to the left of the dashed line were a good fit to an exponential.
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Flgure 5.16 Exponential gain coefficents calculated from the single-

particle-per-bucket simulation. The different curves are for differant synchrotron
oscillation amplitudes. The particles are started at different phases relative to
the center of the bucket. As the amplitude increases, so does the gain. As the
electron approaches the adge of the bucket, its synchrotron period changes and
therefore the peaks move relative to the fundamental.
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To see how the two types of simulations compare, exponential gain coefficients
were calculated for both. An exponential curve was fitted to the radiation amplitude at
each frequency. One must always check that the result is believable, since a curve that
was far from an exponential would give a spurious result. A gain curve was calculated
for the many-particle-per-bucket simulation in the regime after saturation. The result is
plotted in Fig. 5.15. Only the lower sideband curve was a good fit to an exponential, so

‘we will use only that part of the curve as the basis for comparison.

In Fig. 5.16 there are gain curves for the single-particle-per-bucket simulation.
All the curves here are a reasonable fit to an exponential. Each curve represents a particle
with a different initial synchrotron oscillation amplitude. One can see that as the paﬁicle
starts further from the center of the bucket , the spectrum of the lower sideband becomes

wider and the peak moves further from the fundamental.

The spectrum for the éarticles that are far from the bucket center looks very much
like the spec&um of the many-particles-per-bucket simulation. The gain is smaller in the
many-particle-per-bucket simulation, but this is to be expected since the many competing
frequencies would inhibit sideband gain. It would seem that a single-particle-per-bucket

simulation would be a legitimate way to gain insighi into FEL sideband physics.
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5.6 FEL Sidebands as Stimulated Scattering

In this section, it is demonstrated that sideband generation in FEL’s is a process
completely analogous to stimulated scattering. The upper and lower sidebands
correspond respectively to the anti-Stokes and Stokes waves in a stimulated scattering

process. For a more detailed discussion of stimulated scattering processes see refs. [54]

and [55].
Three Wave Scattering Processes
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Figure 5.17 Three-wave scattering processes. (a) is the Stokes scattering

case where an initial pump wave scatters into a Stokes wave and an oscillation
in the scattering medium. (b) is the anti-Stokes case where an anti-Stokes wave
and an oscillation in the scattering medium combine to create the pump wave.

To start let’s describe the types of stimulated scattering processes we will be
examining. Fig. 5.17 shows the possible three-wave scattering processes. By media
oscillation, we mean any oscillation or wave that can interact with the radiation. These

could be molecular vibrations in a gas, phonons in a crystal, plasma oscillations, sound
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waves or quantum levels in an atom. The case of Stokes scattering is always possible in
such a medium. However, for anti-Stokes scattering, there must be some energy already
present in the media oscillation, or in other words the medium must have a finite
temperature or a nonthermal excitation. These pfocesses must conserve energy and
momentum. This means that in most systems the Stokes wave is a backscattered wave.

Four Wave Scattering Processes
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Flgure 5.18 Four-wave scattering process. The pump wave scatters into a

Stokes and anti-Stokes wave through a “virtual” media oscillation.

Another scattering process important to our discussion is a four-wave process.
Here the pump wave scatters into a Stokes and an anti-Stokes wave. The media
oscillation is a vital part of this process, but on balance no energy or momentum are
transferred to the medium. It is then possible to” create an anti-Stokes wave in a “cold”

medium in a four-wave process.
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Model of Stimulated Scattéring for FEL Sidebands

y//////'////////,

incident radiation scattered radiation
XBL 895-2081
Figure 5.19 Electron bunches in the ponderomotive well performing synchrotron

oscillations can be modeled as charged harmonic oscillators. The radiation scatters into
lower sidebands(Stokes wave) and upper sidebands(anti-Stokes wave).

In an FEL, sidebands are seen only when the electron beam is tightly bunched
and the fields at the fundamental frequency are rather large. For the purposes of
modeling sideband growth we wﬂl assume that the electron bunch can be represented by -
a single macroparticle with equivalent mass and charge. Our system then begins to look
like Fig. 5.19 -where the electrons oscillate in a harmonic oscillator potential that is
driven by the FEL radiation. The radiation is scattered by this interactidn into upper and
lower sidebands. In a three-wave interaction, the lower sideband(Stokes wave) can grow
when there is no initial synchfotron oscillation in the electrons. If there is some
synchrotron oscillation initially, then scattering to the upper sideband(anti-Stokes wave)
is allowed and the sideband will grow at the expense of the synchrotron oscillation. For
the case where there is no initial synchrotron oscillation, the upper sideband can only

grow in a four-wave process.



154

To demonstrate that sideband generation in FEL’s is just stimulated scattering,
computer simulations were performed with a single macroparticle per FEL bucket to
model the electron bunch. The simulation parameters are almost identical to those in

Table I, except that the input power is 200 Mwatts.

The plots in Fig. 5.20 are simulations where there was no initial synchrotron
oscillation. These plots demonstrate just what one expects for stimulated scattering in a
cold medium for a three-wave process. In Fig. 5.19a only the lower half of the spectrum

is allowed to grow in the simulation. Since we expect this to be the Stokes wave, there

Spectrum at 3 meters
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Figure 520a When only the lower sideband is allowed to grow, there is
substantial gain. This is consistant with Stokes scattering in a three-wave
process.



155

Spectrum at 3 meters
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Figure 520b When only the upper sideband is allowed to grow, there is no
gain at ail. This is consistant with anti-Stokes scattering in a three-wave process.

shofxld be plenty of sideband growth, which is what one observes. In Fig. 5.20b only the
upper half of the spectrum is allowed to grow. We would expect that there would be no

growth for these initial conditions and that is in fact what one observes.

In the case where there is an initial synchrotron oscillation, the uppevr sideband
can grow. In Figs. 5.21 and 5.22, the simulation is started with a large synchrotron
oscillation, but otherwise the inputs are the same as for the simulations in Fig. 5.20. One
can see that there is growth in the upper sideband spectrum. As the upper sideband
grows, the synchrotron oscillation is damped out. This is also consistent with our picture

of stimulated scattering.
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Figure 5.21 When there is somae initial synchtrotron oscillation, the upper

sideband can grow in a three-wave process.
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Figure 5.22 In a three-wave procass, the upper sideband (anti-Stokes
wave) must grow at the expense of the synchtrotron oscillation.
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If we now allow both upper and lower sidebands, i.e. four-wave processes are
now possible, then it is possible to get upper sideband growth when there is no initial

synchrotron oscillation. Fig. 5.23 contains a simulation that illustrates that this is in fact

what occurs.
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Figure 5.23 In a four-wave process, both upper and lower sidebands can

grow whaen there is no initial synchrotron oscillation.

It can be seen that FEL sidebands exhibit all the expected behavior of a
stimulated scattering process. Thus the formal methods for calculating gain that are used
in nonlinear optics should be directly applicable to FEL sidebands. In section 5.7, a set of
coupled wave equations are derived and expressions for sideband gain are calculated and

compared to the single-particle-per-bucket computer simulation.
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5.7 FEL Sideband Dispersion Analysis

In this section we will derive the dispersion relation for sideband gain in an FEL.
The methodology that will be used closely parallels that of parametric amplification in
nonlinear optics. Here our nonlinear medium is the bunched electron beam. We will derive
a wave equation for eéch radiation frequency. The different frequencies will couple to each
other through the electron beam whose motion will be described by a modified pendulum
equation. The advantage to this type of analysis is that the equations for free space and for
a waveguide are identical. The physics of sidebands in a waveguide can be understood by

examining the phase matching conditions determined by the set of equations.

From chapter 3 we can write a 1-D wave equation for each radiation mode in a

waveguide. Rewriting egs. (3.2.4),(3.2.5), and (3.2.6) gives

3 ¥ 2| . '
| = —- " A';‘“(z,:)=-2c=1;““(z,:) , (5.7.1)
' c“ot
where
2.2 2.2
ym™?_m’n” ,n'n” (5.7.2)
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a b
Jmn(zp) = —8E de‘ dy cosTX iy g (x,t) |
* ab(1 + 8mo) Jo 0 a b ™ (3.7.3)

If we wished to do a plane wave analysis in free space we would just set ¥,™ = 0, and set
Ix™(z,t)=21tJx(z,t). The form of the wave equation is therefore the same. Since we are
primarily interested in FEL’s in waveguides we will keep all the waveguide notation. For
convenience we will drop the waveguide superscripts m and n since the analysis is valid

for a single waveguide mode.

We can now write A, and J as a Fourier series to obtain

2 2 .
3_+(94-sz don@ =BT (@ (5.7.4)

022 | ¢? meC

where we have normalized the vector potential by ©/m,c2, and where = is a subscript that

labels a particular frequency. Explicitly Jon is

21:/mo
Jon(2) = %)EOJ. dt J,(z,t) & o4 , (5.7.5)
0

where we have defined a periodic interval with angular freqﬁency wg. If we follow a
section of beam with Ny, FEL buckets and if w, represents the fundamental FEL
frequency, then wg = Npyc®s. This period does not entc?r the final answer and so in
principle can be as larée as necessary to achieve any arbitrary frequency resolution. The

periodic boundary conditions are used to make the calculation as close to the computer



160

simulation as possible, but the same answers can be achieved with a continuous Fourier
transform. We can write the current density as

Izt = %2{; 8(z- zV)vs(2) (5.7.6)
where [is the index for each particle and ap is either the beam cross sectional area in free

space, or a filling factor in a waveguide that is given by

MK i AN
cos sin
1 2

=4 2
a8 ab (1+5m0)

where once more a and b are respectively the x and y dimensions of the waveguide and m

(5.7.7)

and n represent the waveguide modes. We can now write J, explicitly as

=- o &Y Y ginua
Jon(z,t) mo%; o e | (5.7.8)

Since we are assuming that the particle motion is determined to zeroth order by the
ponderomotive well formed by the wiggler field and the fundamental radiation frequency,
it will be convenient to change variables. From chapter 2 we know that we can write the
ponderomotive phase as ¥ = (kw + ks)z - st + ¢4(z), where k,, is the wiggler wave
number, k, is the radiation wave number for a vacuum filled waveguide, and ¢ is the
slowly varying phase from the radiation interaction with the electron beam. We can solve
for t in terms of \, but to be consistent with the many bucket model we cannot restrict y to

be between -x and ®. We will write ¢ = 2np( + y’, where p; is an integer giving the
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bucket index and y’ is between -x and . The expression for J,, can now be written

- (m./o;{(k. +k)z+ ¢.(z)] Z veA2) ei (/e )V g (/e )2mpy

- . .L
Jon(z,¥) = - o = e o VD) (5.7.9)
where once more (is a particle index. From eq. (2.2.8) we know we can write
vadz) = "—a‘"-;’-(fl sinkuz , (5.7.10)
t

where a0 is the amplitude of the dimensionless wiggler vector potential. We will also
" reexpress v, as cf,;. At this point we will also assume that y; and B, are essentially the
same for all the particles. This is very nearly true and it will allow us to express the current

entirely in terms of w/ and z. So dropping the £'s on Y and 3, we obtain

Jodz,y) = - 0o £ 30 sin (kuz) € (“‘“’0%{(“' k)2 6 Y € (Naa)¥: g (@la)2mee
B {

z

(5.7.11)

Since we are deriving equations for a linear wiggler, we expect from section 2.4 to

have terms in the current that vary from each other by factors that go as a sine or cosine of

2kwz. Tf’ average (5.7.11) over this length scale, we will first write the sinkyz term in
complex form. Then in analogy with the averaging procedure of section 2.4 we will write

V(= Vor+ 2 sin(Zkw 2) o (5.7.12)

and L=K;-Kycos2kwz , | (5.7.13)

z
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where
1+1ag 3(1"'33/4'%&‘&) 15(1+%ﬂ&+%a€v+%a®)
Ki=1+—2—+ + + e, (5.7.14a)
: 2y 8 v 48 y® ’
and '

{22 41,4 3.2.3.4 156
2 3("‘"*23‘”) 15(22‘“”'2*“"‘“323‘“")

AP R 48

The factors of (5.7.11) that we wish to average can then be written

+ ... (5.7.14b)

- (@Ja)w,sin 2sz>

Fle =<(K1 - Kycos 2k,z) (1- €2%) e wgoverz - (5.7.15)

If we express the exponentials in terms of sines and cosines, we can use the identities

sin (rsin®)=2 2, Joae1 (r)sin((2n+1)8) , (5.7.162)
n=0
cos (rsin@)=Jg (r)+2 2, J2, (r)cos(2n8) , (5.7.16b)
n=0

where the J’s represent Bessel functions. We will keep only leading terms so the average

becomes
no_ 0.K,] ,[0.K ) K, m,.Kz]
Fr. KI(JG[-TW] J‘[_z'ukw +B2ggeal (5.7.17)

The Fourier component of the current J, can now be written

= g &30 pn K2 o (“’-/o;{(k-*-k.)z*-o.(z)] (O ) o i (0=l )270P:
Ton(z W) = - 0 2 =280 Flveto— @ [Z e e :

(5.7.18)
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We need to make one more approximation before the radiation equation is in a
suitable form for the subsequent analysis. Since the particles are considered to be deeply
trapped in the bucket we will assume that yo; << 1. We can now expand the exponential
containing Yo, The first term of the expansion is 1 and since ; e'i (Olea2me 0, this
term can be ignored. It can be seen that the sum adds to zero by remembéring that @, and
w, are frequencies defined in a Fourier series of the current. As long as W # M, this sum
vanishes. The next term in the expansion will just pull out the argument of the exponential.
We can then write
Ton(Z,W) = - %g % __aog;_ g_\;_o_ F;veeik.z et (co../m,{(k. +k) z+¢.(z)] ; We-i (@ufw,)2reP: ,(5.7..19)

We now wish to derive an equation of motion for y in terms of the radiation fields.
If we start with a more general form for the radiation field vector potential

a,(z,t) = aspsin (ksz - st +¢s) + z a,osin (k,.z - Wut +¢,|(z)) , (5.7.20)

s

then in a derivation following section 2.2, the particle equdtions of motion can be written

%=-%ﬂi$l|:sinw+z %sin\yn] , (5.7.21a)
mts
2
and ok, Q.30 o [1+"—w (5.7.21b)
dz ¢ dz ZCYZ 2

The factor y, is the ponderomotive phase determined by the nth radiation component. We
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wish to rewrite this in terms of the ponderomotive well of the fundamental since by

assumption, the field at the fundamental is much larger than at any other frequency. y, can

be written as
Ya=(kyt k) z-@qt , (5.7.22a)
= (kwt+ kn) z- On (kw+ k) z + 9‘& + 9—"\|/ . (5.7.22b)
(O dz (O

By taking the derivative of (5.7.21b) and substituting in (5.7.21a) we can derive a

modified pendulum equation. This becomes

42
dy 2. 2% Qo On
P + kgsin y = -koZ_‘,s 0.0, n (Gu(z) e w) , (5.7.23)

where 0,(z) = (kw+ ka) Z - %"— [(kw+ kiz+ q)s(z)] ,and ke is the synchrotron wave number
: S

and is given by

2 2
& = B 2w aso(l4 +ah) (5.7.24)
2¢c? Y

If we had used the low y equations of section 2.4 to start, the form of (5.7.23) would be
identical. The synchrotron wave number ks, however, would have a different form. Since
we are assuming that a, << a5, then we can treat the right side of (5.7.23) as a

perturbation.
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To use this equation we have to relate it to the radiation equation. Using (5.7.20)

and the fact that ay, is a Fourier coefficient for the radiation field we have

az)= Y agsin (kz- 0L +0,2) = Y, 20, , (5.7.25)

u=0 n= -00

where we now identify ag, = —2i-ao,. gi(kz+0.) ¢ we write ¥ = 21tp; + y’, and assume
that Y’ <<1 in order to expand the exponentials, and if everything is written in complex

form, then we have

2
d 2. s .2 i
—S+iGsiny(=IGY, Glen o
z s sa0s

x{[ei("-‘z’*("’*""-) m) _ ¢ o] +[eil®@r (a)2m) | ¢ c] Day } (5.7.26)

S

Here we have ignored the factor ¢, compared to k,z. This is also equivalent to absorbing

the exponential of ¢, into the factor a,,. This equation plus the radiation equation

2
d amn'f'[gzl-'ﬁ]am:

0z2 c?

o £ 230 1 gkt gt (alle vz raim] 3 om0,
provide the basis for all subsequent calculations. The total derivative in the y equation can
be written as a partial derivative since the ponderomotive phase is comoving with the

electrons which we have assumed are deeply trapped in the ponderomotive well. Thus the

system is identical to that of coupled harmonic oscillators.
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To see.which frequencies will couple with each other we need to change the form of
eqs. (5.7.26) and (5.7.27). We will separate out a fast phase that we will write out
explicitly, and a slow phase which will be calculated in the subsequent dispersion analysis.
We will write the fast phases as agy, = ag, " tkaz , and W= Yor g + \TIB[ e ** where
the * denotes qomplex -conjugate. The trick is now to match combinations of the fast'

phases to see which terms have strong interactions. Rewriting the particle equation gives

*Yor 21l OVor ek | az\%[ ) aﬂ;;[ ckez _ K2
{822 0z az2 - 2k 0z © —msaso

x{ 0,50 10+ 00+ @lazm) o],

2 . . ~ . ~
i2n do @K+ 040+ azm) ¢ ¢ (o 6 1 0 1?) } (5.7.28)
S

Remembering the definition of 6,, we now define the following phase factors

Ak, = kw+ k, - m_[(k“'+ ks) + %

+ks , (5.7.29a)
Ak = ko+ Kk, - _[(kw"" ks) + — ¢s - kG ’ (5.7.29b)
Ak - k O.),‘[ ¢S]
2u =kuwt k,-—2 (kw"' ks) + +2ks , _ (5.7.29¢)
Wt - dz

S . (5.7.29d)

Aot =kt Ky - [(kw k) + e

dz

Aky = 0 defines a frequency w, and similarly the zeros of the other phases define different
frequencies. A set of coupled equations can be derived by setting each phase in (5.7.29)

equal to zero and matching nonoscillating terms. The particle equations can be written as -
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207 ~ ~
0 Wor +2i kdi“_’% ko{‘J_’LEQL e iakuz e i(oufw,)2mp . Wudoy e- A\ %4 e i(@a/cn) 27py
az aZ msaso msasO

+ iy [ a1 Fa0L g idkaz g i(onlw)2mpr 4 D280y g- iBkaz g- i(@alo2mp| b (5.7.30a)
L Wsas0 Wsas0 ’ o

-

%yor Vor _ Olou o ik,
-2 gidkaz g i(@a/an)2mp; _ O)LaOL e iAkez e- i(wL/e,)2mpe
0z2 tko oz kd Wsaso Wsas0

+ i‘T’O ( _O_Q_m g ibdkauz g i(0/)2p: + O)ZLaZOL g-idkaz o- i(©n /e, )210p; . (5.7.30b)
| ®sas0 ) Wsaso

-

Similar manipulations on the radiation equation will produce

9%agu aa()u el awo 2 iAkuz@i(@/a)2
- Fu u TP
azz 21ku a c3 ‘Y averuc WO[ e e ’ (5.7.3 la)
0%, gL aaOL g2 AW E iAkLz@i(@/e,)27p, |
azz - 2ikp—=——= L5, = @y aveN - E \vo[e Lz Mlay)enpe | (5.7.31b)

where we have used g = Npycs.

The coupled equations (5.7.30) and (5.7.31) provide a basis for the study of FEL
sidebands. For now we will ignore the 2u and 2L terms in (5.7.30) and the radiation
equations we could derive for them. This will leave us with a system of four waves
described by asp, the fundamental, {flo[, the synchrotron oscillation, and 3o, and agL,
respectively the upper and lower sidebands. We can make this identification of the upper
and lower sidebands by examining the phase conditions (5.7.29). For free space these
conditions imply

Aky=0 => cou=cos(1 +Esz) ', (5.7.32a)
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and Akp=0 =) awL= cos(l - %’-) . (5.7.32b)
W
These turn out to be identical to the sideband location predicted in previous analyses.

However, if we use the waveguide dispersion relation in the phase matching condition, we

get morcvcomplicated formulas. Explicitly

[ 2
Aky=0 => = (k“’+k°)v" {1 1\/ —r %J } (5.7.33a)
(kw + ko) ¢

and

[ 2
Ak =0 = (oL-(k“' k")"" {11\/—2 -‘%’-}} ,(5.7.33b)
_ (kw - ko) c

where vp is the phase velocxty of the ponderomotive well defined by the fundamental

frequency and the wiggler field. Explicitly

Vp= = - (5.7.34)

¢s)
(k + kg +— I

Note that there is a £ in the expression for the frequency of the sidebands. In a waveguide
there can be two frequencies that have the same phase velocity. Therefore there can be two
lower sidebands and two “upper” sidebands. Upper is in quotes since one of the solutions
for Aky = O lies below the fundamental frequency. There will not necessarily be
ampliﬁcation at all of these frequencies, but in the next section it will be shown that at least

in the lower sideband spectrum, two peaks can be produced.
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To avoid confusion with the terminology of upper and lower sidebands we will
refer to the waves defined by Aky = 0 as the upper and lower Stokes waves, and the
waves defined by Ak, = 0 as the upper and lower anti-Stokes waves. Since the lower anti-
Stokes wave actually lies below the fundamental, it is somewhat misleading to call it an -

“upper” sideband.

If phase matching is impossible, there may be circumstances where Ak is small
enough to produce amplification. Phase matching is impossible if the relation inside the
square root in (5.7.33a) or (5.7.335) is negativc. In that case we expect gain to be a
maximum where Ak is at a minimum. The maximum gain, if there is any, is therefore at

W= — (5.7.35)

where vp is as defined in (5.7.34). Note that ks does not come into this relation. The gain

. in these circumstances will be small at best.
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5.8 Three-Wave Analysis

In our three-wave analysis we will assume that the FEL fundamental, or pump

dos

wave, is not depleted at all during the interaction. Thus we can take asg and —d-—- as
. dz
constants. Therefore only two equations are required. For Stokes wave gain we need the

equations with 3o (5.7.31b), and $5A5.7.30b). We will substitute ag, =agL €P1%, and

‘T’8t= Wor €°%, where the p’s are complex. The resulting equations are

(p} - 2ikypy )agLere = €2 30 gL O 3 35 gprgiskizgi@/ogte | (58.1a)
_ mec? a8Y Nbuc [
and  (p3- 2ikapz-)%£°ﬂ=-k%ﬁ;5% gpizg- ialzg- i@aamp: (5.8.1b)
Sas|

The equations (5.8.1) imply that p; = p, + iAky. Eliminating the coefficients 3oL, and Yo,
will produce an equation for py. The terms that go as €* i(@/a)27p: wil] cancel leaving a
factor of z:' 1. This is a sum over all particles and may be replaced by Npyclbunch, Where
Nbuc is the number of buckets and npunch is the number of particles per bucket. We can
also write Npunch @S Npunch = é%gj . The fourth order equation for p; then becomes
pt - 2i(ke + Ake + ko)p3 -

(Ak? + 2KsAkL + 4k Ak + dki ks )p? + 2ik (AkZ + 2koAkL)py +F=0 ,  (5.8.2)

where in free space
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2 2
F= %g_wg% F!;;,ew%lm , (5.8.3)

Jioe being the electron beam current density. In a waveguide

me ¢in I
Fe I COs 2 sin 2 a0 g-
e (o) 0 1

where I is the total beam current, m and n are waveguide indices, and a and b are

2
Fk. % : | (5.8.4)
waveguide dimensions.

Using the same procedure, a dispersion relation can be derived for the anti-Stokes
- wave. The result is
pt - 2i(ky + Aky - ke)p? -
(AK? - 2ksAky + 4k  Aky - 41;Lk<,)p% +2ik (Ak? - 2ksAk )py +F=0 , (5.8.5)

where the term FL, in F has been replaced by Fly., and @y has been replaced by .

Note that the choice of p; a real root means exponential growth or damping. Since
the complex factor i only appears for odd powers of p;, the dispersion equation can be
written with all real coefficients by writing p; = ip”;. This implies that real roots of p,
come in pairs of positive and negative roots. We will now compare roots calculated
numerically from the disperSion relations (5.8.2) and (5‘.8.5), with roots calculated from a

single particle per bucket computer simulation.



172

TABLE VI
Beam energy in y 72 ~ Waveguide
Radiation frequency 34.6 GHz l—il%ﬂggﬂ Lgﬁ)m::nm gler oozl
\éwggler “:v:e"g'h 8962 :':1 9.80 cm  2.90 cm 3.80 kG
eam curre ps 11.37 cm 250 cm 3.70 kG
Input radiation power 200 MW 4451 cm 200 cm  3.46 kG
Waveguide mode TEN

Table VI shows the input parameters to the simulations. Each simulatioh started
with a particle in the center of each FEL bucket. Four waveguide cases were used with
varying amounts of dispersion. All were chosen so that the total waveguide Cross
secﬁoqal area was the same in each case. In order to get a comparison for only a three-
wave process it is desirable to suppress all four-wave interactions. This is achieved by
only allowing one half of the spectrum in the simulation. Either the upper or lowér

sideband spectrum is allowed to grow.

For the anti-Stokes wave, both simulation and dispersion analysis show no
sideband gain. Only the Stokes wave shows gain and therefore the plots in this section

are only for the lower sideband.

The simulation calculates a gain coefficient by fitting an exponential curve to the

radiation fields at each frequency followed. Thus a curve that was far from an
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exponential would give spurious results. This had to be checked in each case. The factors

awe-Ks and ¢, used in the dispersion analysis are those calculated by the simulation.

Figs. 5.24 show a comparison of the simulation results and the dispersion.
analysis in the case where the slowly varying phaSe ¢ of the fundamental was ignored.
There is relatively good agreement for the larger Waveguide heights, although there is a
- frequency shift. As the waveguide height decreases and therefore as the dispersion
increases, there is less accurate agreement. This is partly because of the fact that as the
dispersion. increases the results are increasingly sensitive to the ?nputs. The 'largest cause
of the discrepancies, however, is that we need to include the slow radiation phase of the
fundamental .in_ the dispersion analysis. When this is done, the agreement between

simulation and theory is quite good.

Fig. 5.25 shows the real part of the gain for each frequency. Fig. 5.26 shows the
imaginary part of the gain or the slow radiation phase for each frequency. In the
dispersion calculation, the imaginary part of the gain was plotted only when the real part

was nonzero. This was to.make certain that the correct root was chosen.
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Figure 5.24 Comparisons of simulation and theory. The slow radiation phase ¢, was ignored in
the dispersion calculation, but is automatically included in the simulation. Note that the gain curves are
relatively close in (a) and (b) except for the frequency shift. In (c) there is a substantial discrepancy between
the curves aithough the size and location of the right hand peak is about right. The simulation exhibits two
lower sideband peaks, the leftmost just barely visible before the plot goes offscale. In (d) there is also a
discrepancy between the curves although the size and location of the peaks are about right. As the
waveguide height decreases, the dispersion increases and small variations in input parameters can have a
large effect.
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Figure 5.25 When the siowly varying phase of the fundamental is added to the dispersion

analysis, there is rather good agreement with the simulation. Note the double sideband peak in (c). This
shows both upper and lower Stokes waves. In (d) there is only rough agreement between the dispersion
analysis and the simulation. Not only are the results of the dispersion analysis more sensitive to inputs, but
the raggedness of the simulation curves suggest that the computer had a hard time fitting the data. The
simulation curves may not have been such good exponentials.
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Derivative of Slow Radiation Phase
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Figure 5.26 These are plots of the slope of the siowly varying phase of the various radiation

frequancies which correspond to the imaginary part of the sideband gain. The curve designated calcu/ated
shows points oniy where the gain was nonzero and a definite value for the phase can be assigned. Note
that where a peak is present in the gain curve, except for (d), the phase siope passes through zero. In (c)
the double peak is then visible. In (d), exact phase matching can never be achieved. The curve passes

* through zero, but it appears morae like noise in the simulation.
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Note that for the cases where phase matching is possible, i.e. (a) through (c), the
imaginary part of the gain passes through zero when there is a peak in the real gain
curve. This is an additional way to determine the location of the sideband peak. In (c) for
both figures, two Stokes wave peaks are visible. For the parameters given, one would
expect the lower peak to be at 11.6 GHz from the relation (5.7.33b). There is quite good
agreement. For (a) and (b) this peak exists, but is off the scale of the plots. For (d) there
is only rdug‘h agreement with the theory. The regime in (d), however, is one where phase
matching is impossible. Sideband gain can occur only becahse Ak is small enough. The
curves don’t match exactly because the dispersion analysis is rather-sensitive to the
inputs in this regime. Also the simulation curve looks somewhat noisy because the fit to
an exponential is not' as accurate as the other simulations. In all, the dispersion analysis

seems to do a rather good job for predicting behavior in a three-wave process.

In Fig. 5.27 is a plot of sideband location versus waveguide dispersion ¥,. It
shows both solutions of (5.7.33b) representing the upper and lower Stokes waves. For the
upper Stokes wave, the peak moves away from the fundamental as the dispersion is
increased. However, one eventually reaches a point at which phase matching is no longer

possible. In this regime, the sideband peak starts moving back towards the fundamental.
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Lower Sideband Position
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Figure 5.27 The various phase matching conditions for the lower FEL sideband are plotted. This

usas the parameters of Table VI. When phase matching can be achieved, two sideband peaks are possible.
For small dispersion, the lower peak is so close to the waveguide cutoff that it will probably not be seen.
When phase matching becomes impossible, the peak starts to move back towards the fundamental.

Note that just because the phase matching coﬁdition gives a location for a sideband it
doesn’t mean that the sideband will be actually unstable and grow. For the parameters used
here, the sidebax?d is unstable up to about y, = 1.6. From previous analyses one expects
something special to happen When Vgroup = Viarcle- This happens at a little over ¥, = 2.1.
We can see that-even if the sideband was unstable, the sideband location would be exactly
on top of the fundamental. Therefore, it is strictly impossible to see a sideband when v,

= Vpanicle though this is an unnecessarily strong condition for no sideband growth.
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5.9 Four-Wave Analysis

In the last section, it was shown that when the computer simulation was restricted to
interactions between three waves, the agreement between the complicated computer
simulation and the simple dispersion analysis performed was quite good. However, three-
- wave interactions cannot explain all of the phenomena of sideband generation in an FEL.
Most obviously, the upper sideband is _shown to grow when the FEL electron distribution
is well centered in the bucket. In the three-wave analysis, the upper sideband never grows.
In this section it will be shown that when four-wave interactions are allow;d as well as

three-wave interactions, then all the relevant physics of sideband growth can be explained.

We will start by utilizing all of the equations (5.7.30) and (5.7.31) to do a
dispersion analysis of the four-wave system. The four waves are the FEL fundamental, the
synchrotron oscillation, and the upper and lower FEL sidebands. If we assume that ag,,
and 2, both go as €P%, then we can derive a sixth order equation for p that is
p® - 2i(ky + ku)p® + 4(id - kik,)p* - 8ik3(ke + ko)p® + (FL + F, - 16kkika)p® +

2{Fu(ke - ku) - Fu(ks + k)]p + 4kg(Fky - Fikp) =0 (5.9.1)

where
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os ML gip AL 2
Footmle S5 277 5 ankopl of (5.9.22)
abmec® (1 + 5m0) a0 Y 0)3
and
mn nx 2 2
poomle 2 M Y gk o | (5.9.2b)
abmc® (1 +5mo) e 3

The analysis is a little tricky now since from the matching conditions (5.7.33), there
are two Stokes waves and two anti-Stokes waves. If we take the frequencies that people
usually associate with sidebands( the upper Stokes and anti-Stokes waves represented by
the +'s in 5.7.33), then the dispersion relation (5.9.1) has no real roots. This is not
entirely unexpected since in a four-wave analysis, the two resulting frequencies must grow
at the same rate, which is not what we observe in computer simulaﬁons of sidebands. As
will be shown later, the upper sideband is driven by a process that is not related to
exponential gain. However, if we examine roots at all the other possible combinations of
Stokes and anti-Stokes waves, we find that there are indeed some frequencies that exhibit
exponential growth in a four wave process. To actually observe this, the trick is to find a
part of the spectrum where we expect to see growth from a four-wave process, but not a
three-wave process. Otherwise the three-wave process, which generally exhibits higher
growth, wi}l completeiy overwhelm the four-wave process. According to the dispersion
equation, the combination of the lower anti-Stokes wave and the upper Stokes wave is

unstable. Also the lower Stokes wave and the upper anti-Stokes wave is unstable.
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One unexpected property of the lower anti-Stokes wave is that it occurs well
below the FEL fundamental. In fact for waveguides with small dispersion, it occurs near

the waveguide cutoff.

In Figs. 5.28 and 5.29 we look at a situation where a four-wave instability can be
easily distinguished from a three-wave process. Using the parameters of the previous
section, we find that the waveguide with a height of 2.5 cm has a lower anti-Stokes wave
at about 7.6 GHz. The three-wave dispersion relation predicts no exponential growth at
this frequency. The four-wave dispersion equations predicfs an exponential gain

coefficient of 0.017 at this frequency.

Two simulations were done for this comparison. In the first simulation, only
those frequencies below the fundamental were allowed to grow. Since the anti-Stokes
peak that we are looking for is actually below both Stokes peaks and the fundamental, a
four-wave process is still quite possible. This simulation should have a minimum of
additional complications to the physics.. The second simulation used the full spectrum

necessary to include the contributions from all possible sideband peaks.
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Half spectrum simulation
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Half spectrum simulation
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XBL 896-2094

Comparison of single-particle-per-bucket computer simulation and
three-wave dispersion analysis. In the simulation, only frequencies below the

fundamental were allowed to grow. (a) is the real root and (b) is the imaginary root. An

arrow in (a) marks where there is a substantial deviation between the simulation and the

three-wave theory. The peak’s location and height are just where they would be predicted

by a four-wave dispersion analysis.
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Comparison of single-particle-per-bucket computer simulation and

three-wave dispersion analysis. In the simulation, the full spectrum was aliowed to grow
although only frequencies below the fundamentai are plotted here. (a) is the real root and
(b) is the imaginary root. An arrow in (a) marks where an additional peak is expected from
a four-wave dispersion analysis. There is some discrepancy between the simulation and
the calculated curve, much more than in 5.28. The additional differences must be from
intaraction with frequencies above the fundamental.
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In Fig. 5.28, there is a comparison between a one pé.rticle per bucket computer
simulation and the three-wave dispersion equation. For most of the spectrum, there is
quite good agreement between the three-wave -analysis and the simulation. There is,
however, a major discrepancy below 10 GHz. The marked peak has a location close to
the 7.6GHz peak predicted by a four-wave dispersion analysis, and is a reasonably good
fit to an exponential. The height of the peak in the simulation is somewhat larger than the
0.017 predicted by the theory, though this is not unreasonable since this peak represents a
four-wave interactién that inclu;ies the upper Stokes wave. Since this Stokes wave is also
participating in a three-wave instability, it’s higher gro§vth rate should influence the gain.
of the lower anti-Stokes wave. The fact Vthat thé phase derivative curve passes through
zero near the peak is strong evidence that it is a sideband interaction and not just the

lower FEL resonance described in section 4.1.

The simulation in Fig. 5.29 is very similar to that of Fig. 5.28. In these
simulations, frequencies above the fundamental were allowed to interact with those
below the fundamental. There are small shifts in the location and height of the peaks on

the sideband gain curve. We need some additional physics to explain these shifts.
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Flgure 5.30 Full spectrum at 3.5 meters for the 2.5cm height waveguide. Dashed lines

identify a, lower anti-Stokes wave; b, lower Stokes wave; ¢, upper Stokes wave; d, fundamental; e,
upper anti-Stokes wave. The arrows show which peaks result from the beat wave of two strong
peaks acting on the beam current.

Theoretically, the upperkanti-Stokes wave and the lower Stokes wave can exhibit
a four-wave instability. This upper anti-Stokes wave is predicted to be at about 38.7GHz.
If we examine the spectrum of the full spectrum simulation shown in Fig. 5.30, this peak

is visible, but it is not the peak that people usually assume is the upper sideband.

We need only one more physical process to explain the structure of the spectrum

shown in Fig. 5.30. It is also a four-wave process, but it is not an exponential instability.
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If there are two waves at different frequencies that both have a fairly large amount of
power iq them, then the beat wave created by these frequencies will form a moving
ponderomotive well that can then act on the electron beam. The electron beam will be
modulated by this potential. Radiation will be emitted at new frequencies that go as the
old radiation frequencies plus or minus the frequency of the electron beam modulation. If
this electron beam modulation moves at a speed close enough to the ponderomotive
phase defined by the wiggler field and one of the new frequencies, then there will be
substantial amplification of the new frequencies. This is not an instability. It is rather
more similar to a pendulum forced. at a frequency quite different from it’s resonance
frequency. Those peaks that are a result of this forcing are marked with arrows in Fig.
5.29. Now the need for the Stokes and anti-Stokes terminology is apparent. In free space
where the sidebands are symmetric around the fundamental, there is no difference
between the anti-Stokes wave and the forced upper sideband. In a waveguide, what
people usually refer to as the upper sideband is actually a forced wave that is
symmetrically located around the fundamental with the lower sideband. Dispersion
causes the Stokes and anti-Stokes waves to be asymmectrically placed around the

fundamental.
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To illustrate the physics of what has just been described, a number of simulations
were performed. The results are shown in Figs. 5.31 and 5.32. In these simulations, the
single-particle-per-bucket simulation with the 2.5cm height waveguide was used. In
addition to the fundamental, a signal at SkW was injected at a frequency lower than thé
fundamental. To make the-interpretation of the results easier, only -those frequencies

larger than the fundamental were allowed to grow.

What was observed was that the frequency that was the “mirror image” of the
input frequency ar(?und the fundamental'was driven quite hard and achieve‘d large
amplitudes in just 50cm. This is just what one would expect if it was a beat wave
between the fundamental and the lower input frequency that was driving the current. This
effect was rather insensitive to the vélue of the lower input frequency, which should

indicate that this is not a resonance effect.

Fig. 5.32 shows the power in the forced frequency versus distance. Since the
forced modulation of the electron beam moves at a different speed than optimal for
amplifying the forced radiation frequency, the signal will be alternately amplified and

damped.
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Simulations all start with 200MW in the fundamental and SkW at a

lower frequency. Only frequencies larger than the fundamental are allowed to grow. The
input frequencies are 32.4GHz, (a); 28.1GHz, (b); 24.9GHz, (c); 20.5, (d). Note that by
50cm, the upper forced frequency is almost the same in magnitude as the input
freaquency. This is rather insensitive to exactly what the input frequency actually is.
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Flgure 5.32 Simulations all start with 200MW in the fundamental and SkW at a

lower frequency. Only frequencies larger than the fundamental are allowed to grow. The
input frequencies are 32.4GHz, (a); 28.1GHz, (b); 24.9GHz, (¢); 20.5, (d). Since the
electron beam modulation moves at a different speed than the frequency that is being
amplified, it will eventually get out of phase and the fraquency that had been amplified will
now be damped.
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The upper lobe of the saturated FEL spectrum that has generally been labeled the
upper sideband is in fact just frequencies that are amplified in this manner. Since the
“upper” sideband lobe is just forced by the lower sideband lobe, it will not attain tilc
same amplitude as the lower sideband unless the forced electron beam modulation is
moving at exactly the same speed as the ponderomotive phase of the forced frequency.
This amplification and subsequent damping can also explain why the upper lobe of the
sideband spectrum is often seen to disappear after initial amplification. While any two
frequencies with large power can interact in this fashion, it is more likely to observe
spectra that have a shape that is symmet;ic around thé fundamental, since initially the

fundamental has the largest power of any frequency.

This beating of two frequencies can amplify a third frequency at the startup of an «
FEL as well as in the saturated regime. This will be shown in the next section. It is also

further justification that this is not a process actually related to the sideband instability.

Thus we can see that sidebands are primarily driven by a three-wave instability,
with the upper sideband spectrum resulting primarily through the lower sideband

spectrum beating against the fundamental. In a waveguide, four-wave instabilities are also
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possible and complicate the spectrum. In all, this section and the previous one contain all

the physics necessary to describe the complicated spectrum shown in Fig. 5.30.
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5.10 Explanation of ELF Sideband Results

Experiments were performed intended to measure sideband growth at the ELF
facility at Livermore. In this section some simulations were performed to show that the

experiment was flawed in that no amplification of sidebands could have been measured.

The experiment had the parameters shown in Table VII. The peak wiggler field
was chosen to put the fundamental, at 36GHz, at the top of the gain-curve. A tunable
magnetron was used to inject ét a second frequency that varied between 31GHz and
34GHz. A set of tunable ﬁltcr§ was used to look at the spectrum from 31-36GHz and
from 34-40GHz. No apparent amplification of the sideband(lower frequency) was

observed.

Table VIL Simulation parameters

Relativistic energy vy 6.85

Energy spread Ay 0.4
Wiggler peak field 3.65 kG
Wiggler wavelength 98 cm
Beam current 900 amps
Waveguide size 9.8x29 cm

Input radiation:
SkwW at 36GHz (fundamental)
1-5kW at 31-34GHz
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To see why this happened, we first have to look at the FEL gain curve. The curve
in Fig. 5.33 is calculated by fitting an exponential curve to the radiation field amplitudes
in the startup section of the experiment just described. Since the-simulation used is 1-D,
the results may not be accurate as far as exact experimental measurements are concerned,

but the basic physics can be understood.

The first thing to note is that the gain curve fills the entire frequency regime that
the measurements were made in. It would therefore be rather difficult to separate the gain

due to the FEL sideband interaction and the gain due to FEL startup.
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Figure 5.33 Startup gain curve for the experimental parametars of Table VIi.
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A second problem with the parameters used is illustrated in Fig. 5.34a. The gain
curve for the lower sideband lies completely out of range of the lower input in the

experiment. The lower sideband curve has a peak at 29.3GHz.

In the simulations that follow, we calculate first what the expected results would
be if the tunable magnetron was set to give SkW at 33.8GHz. The physics of this case
has little to do Qith sidebands. In the next case, we will inject 5kW at the actual sideband
frequency of 29.3GHz. It will be seen from Fig. 5.33 that this frequency has a startup *
gaip close to zero. Therefore, if strong gain is observed it shquld be due to sideband

interaction.

Fig. 5.35 shows the power output of the simulation for the input signal at
33.8GHz. This shows a severe case of the forcing of new frequencies from the beating of
two strong radiation waves as described in the previous section. The forcing is strong
enough to create many frequencies since both input signals are high on the gain curve
and are strongly amplified. Note that in the plot of the total power ve?sus distance there
is a local saturation of the total power at a little over ISOMW near 1.5 meter into the

wiggler. This is the same as the case where only the fundamental frequency was
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thera is significant power only at the fundamental and the lower and upper sidebands.
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amplified. After this point the total power increases due to more power being pumped
into additional frequency components. A large proportion of the power produced could
not have been measured in the experiment since it is in frequencies outside the tunable

filters. Thus the experiment might have measured a decrease in total power produced.

It might have been possible to see sideband amplification if the correct lower
frequency was used as input. It is fortuitous that the peak of the sideband gain lies at a
point that has near zero gain in an unbunched beam. Fig. 5.36 shows the power of the
lower injected signal versus distance for both the previous example and for a 29.3GHz
lower input. One can see that the 33.8GHz input is amplified exponentially from the
beginning, just like the fundamental. The 29.3GHz case shows little gain before the
saturated regime is reached. After the electron bunching is complete, there is exponential
gain. Fig. 5.37 shows that for the given length of wiggler, there is significant power
primarily in the fundamental and the upper and lower sidebands. Thus the simulation
shows that if one looked at the right frequencies, one might have been able to measure

sideband gain.

L 4
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It has been pointed out by Bill Fawley, that in a simulation that included space
charge effects, the synchrotron wavelength would be increased. According to some
calculations he has made, this would place the lower sideband at about 32GHz which
was within the range of frequencies searched in the experiment. However, because the
lower frequency was on the gain curve and because the injected signals were of
comparable intensity, the beat interaction between the two frequencies would have

overpowered any sideband interaction. It might have been possible to measure sidebands

in this case, but only if the signal injected at the sideband frequency was many orders of -

magnitude less than thefundamental. Even then, a very careful measurement of the gain
curve in both the startup regime and the saturated regime would have been necessary to

establish sideband gain.

The sideband amplification experiment did not work because of the fact that the
injected signals were on the fundamental gain curve. If all radiation is injected at the
beginning of the FEL, then a sideband gain experiment is quite difficult. If one could
design an experiment such that the sideband signal to be amplified is injected after
saturation of the FEL, then the physics of the experimental results would be muc;‘h

clearer.
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6 Conclusion

In this work the sideband instability has been explained in a manner that gives a
direct physical interpretation. While the sideband instability in a waveguide has been

accurately described, it also provides insight into the FEL sideband instability in general.

For FEL sidebands in free space, it is difficult to use the output spectrum to
differentiate between a stimulated scattering process and a system of forced currepts. The
upper sideband is where the anti-Stokes wave is brcdicted to be and the lower sideband is
where the Stokes wave is predicted to be. The way to prove the case is to design a system
that can preferentially damp either the upper or lower sideband. If the lower sideband is
damped, then the sideband instability should be completely absent. If the upper sideband is
damped, the sideband instability should still cause amplification of the lower sideband. An
oscillator with some form of Fabry;Perot device in the optics might be able to accomplish

this experiment.

The analysis of this thesis produced some unexpected results that can be tested.

Fully four sideband peaks are possible from stimulated scattering processes in a
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waveguide. These consist of two Stokes waves and two anti-Stokes waves. Three of these
peaks are below the fundamental in frequency(two Stokes and one anti-Stokes) and one is
above the fundamental(one anti-Stokes). Because of waveguide dispersion, no pair of
frequencies are located symmetrically around the fundamental. Therefore, additional peaks
in the sideband spectrum are possible from beat wave interactions between any

combination of the FEL fundamentai and the four stimulated scattering peaks.

The primary driving force of the FEL sideband instability is a three-wave interaction
where the three waves are the FEL fundamental, the electroﬁ synchrotron oscillation, and
the étokes wave(lower sideband). What people have called the upper sideband is driven by
a beat wave interaction between the FEL fundamental and the Stokes wave. In free space,
all frequencies move at about the speed of light, and the sidebands tend to be rather close
to the fundamental. For these circumstances we would expect the lower gnd upper
sideband power to be roughly equal. In a waveguide where the upper and lower sidebands
can move at substantially different speeds and can be relatively far from the fundamental, it
has often been observed in computer simulations that the upper sideband is orders of
magnimde less in power than the lower sideband.The reason for this is that the beat wave
between the FEL fundamental and the lower sideband can no longer interact strongly with

the upper sideband.
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In a waveguide it is also possible to have instabilities between four waves. These
interactions are weaker than the three-wave instabilities and are therefore difficult to
observe unless the peaks are located reasonably far from the other peaks in the spectrum.

Not all combinations of Stokes and anti-Stokes waves can interact in this fashion.

The sideband instability disappears when the three-waves scattering process is no
longer possible. It was shown in sections 5.8 and 5.9 that at the frequency of the sidebaﬁd
peak, there is no slowly varying phase. This means that the frequency at the sideband peak
travels at thé same speed as it would travel in a waveguide without the electron beam. The
sideband peaks exist where this phase matching occurs or where the phase mismatch is at a
minimum. If the phase mismatch is too great, then no amplification of the sidebands is
possible. This occurs well before the group velocity of the FEL fundamental reaches the

electron beam velocity.

The work performed in this thesis suggests some possibilities for future studies of

FEL sidebands in waveguides. Some suggestions follow.

e
ohde
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~ Effects due to nonlinearities in the FEL bucket could be examined by deriving
equations similar to (5.7.26) and (5.7.27) where y’ is not assumed to be small. This
would be equivalent to studying the coupling between a harmonic oscillator(radiation
Helmholtz equation) and a fully nonlinear pendulum(particle motion). Effects due to finite:
electron distributions could be examined by using the equations of motion in a kinetic

analysis similar to Kroll and Rosenbluth{42] or Riyopoulos and Tang[46].

The work of section 5.7 could easily be expanded tc; include coupling between
transverse modes at different frequencies in the saturated FEL regime. This is different
than the thesis work of Jonathan Wurtele where the coupling between transverse modes of
the same frequency was examined[5]. This could be accomplished by writing ks and k, as
k;™" and k™", where the waveguide mode for each radiation wave is not necessarily thé
same. The phase matching conditions (5.7.29) would then be used to see which waves

could interact strongly.
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