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MULTIPLE FREQUENCY EFFECTS IN WAVEGUIDE FREE-ELECTRON LASERS 

by 

Efrem J. Sternbach 

ABSTRACT 

For a wide variety of Free Electron Laser(FEL) applications, waveguides are used 

to confme and guide the radiation produced. In many of these applications, the dispersive 

effects in these waveguides can significantly alter the FEL physics from the case of free 

space propagation where the radiation phase and group velocity are both equal to c. The 

eikonal approximation usually used in FEL calculations breaks down in the regime where 

dispersion is an important effect. A formalism is developed with both integral and 

differential forms for dealing with an FEL in a dispersive waveguide. It is shown that in 

the limit of no dispersion and only a single radiation frequency, this formalism reduces to 

the standard FEL evolution equations. A computer code developed from the differential 

formalism is used to simulate waveguide FEL's . 

The effects of dispersion on FEL sidebands are examined in depth. The dispersion 

caused by the waveguide can affect both the position and the gain of FEL sidebands. It is 

also possible to suppress the sideband instability completely. 
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The generation of FEL sidebands is shown to be a process similar in all respects to 

stimulated scattering. A theory based on .the equati<?ns for parametric amplification in 

nonlinear optics is used to describe sideband generation. It is found that no more than 

four waves are necessary to explain the spectrum of FEL sidebands. Dispersion 

equations for three-wave. and four-wave processes are derived and these are found to 

accurately predict sideband growth rates for the full waveguide computer simulation. 

It is found that both upper and lower FEL sidebands can exhibit more than one peak 

in a waveguide. The FEL sideband instability is found to be primarily a three-wave 

process that drives the lower si4eband. The upper sideband is not driven by a stimulated 

scattering process. It is found that the beating between the lower sideband and the 

fundamental is what drives the upper sideband spectrum. 

*Work perfonned under the auspices of the U.S. Department of Energy by the Lawrence 
Berkeley Laboratory under contract No. DE-AC03-76SF00098. 
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1 Introduction 

It has been just over a dozen years since the operation of the first Free-Electron 

Laser(FEL) by John Madey and his group at Stanford[ 59]. In that time, great strides have 

been made in building and understanding FEL's. FEL~s of high efflciency[61] and short 

wavelength[ 60] have been demonstrated. The potential of the FEL is only just now 

beginning to be tapped and a greater theoretical understanding of FEL physics is necessary 

to design future applications. 

• 

An FEL uses some mechanism to induce a periodic transverse velocity modulation 

in an electron beam. This has several advantages over conventional lasers. First of all there 

is no medium to heat up and destroy. Therefore FEL's should be capable of unusually 

high powers. Since the FEL interaction does not involve transitions between quantum 

mechanical energy levels, the FEL can be tuned to a wide range of radiation frequencies. 

FEL's of various configurations have been demonstrated from the microwave regime[61] 

to the near UV regime[60]. 

.. 
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Generally, magnetic fields are used to modulate the electron beam in a device called 
.. 

a wiggler. There are two general types of magnetic wigglers. Helical wigglers consist of 

two wires wrapped around a cylindrical guide. These wires are wrapped in a helix such 

that alternate wires along the length of the cylinder carry current in opposite directions. 

These helical wigglers are limited in strength by the current that can be carried by the wires 

and therefore tend to be used in small experiments. In a linear wiggler, a set of magnetic 

dipoles are arranged in a line with each successive dipole pointing in the opposite 

direction. Since ferromagnetic materials can be used in the manufacture of these wigglers, 

. . 
the fields can be made quite large. However it is harder to make linear wigglers with small 

periods, i.e. the spacing between the magnets can't be too small. Thus linear wigglers are 

a good choice for applications with large wiggler periods and fields. 

An FEL can be run as either an amplifier or an oscillator. In regimes where good 

mirrors exist, an oscillator configuration can be desirable. This has the advantage of 

needing smaller gain in the FEL and therefore smaller beam current. In regimes where 

there are cheap low power radiation sources, the FEL might be run as a high gain 
.. 

amplifier. This gives one the advantage of using the low power source to achieve a 

radiation beam of high spectral purity which can then be amplified to extremely large 
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powers by the FEL. In the regimes where there are neither low power sources or good 

mirrors, the FEL can amplify the spontaneous emmision of the electron beam. This 

requires large beam currents to be practical. An FEL operating in this manner is analogous 

to a traditional laser acting as a superradiant amplifier. 

As far as the electron beam interaction with the radiation is concerned, there are 

two general regimes of FEL operation. When electrostatic oscillations play a large roll in 

the longitudinal motion of the electrons, it is necessary to calculate the collective interaction 

of the. electrons. This regime is called the Raman FEL re.gime. When the electron beam 

current is small, or the beam is sufficiently relativistic, space charge effects can be ignored. 

Relativistic effects can reduce the space charge interaction. In the electron's rest frame the 

electron density is smaller than the density in the lab frame. In the case that space charge 

effects can be neglected, the motion of each electron can be thought of as independent The 

electron motion is determined only through external fields. This regime is known as the 

Compton FEL regime. 

The theory of FEL's has evolved to a relative maturity. Some highlights are 

described here briefly. It was demonstrated by Colson that the FEL equations for particle 

motion can be written in the form of a pendulum equation[6]. This is really the basis for 
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almost all analyses of the electron motion in an FEL. The pendulum potential is the 

"' ponderomotive potential formed by the radiation field and the wiggler field. Kroll, Morton, 

and Rosenbluth took the formalism from accelerator physics where "buckets" of electrons 

are accelerated and applied it to FEL' s where the electrons are bunched in FEL buckets and 

can be decelerated in a "tapered" wiggler[ I]. The self consistent set of equations they 

derived are known as the KMR equations. Recently, Jonathan Wurtele extended these 

KMR equations to describe transverse modes in waveguides[5][21]. 

Waveguides are important since they provide an external means of guiding 

radiation. In real devices, waveguides are used for wavelengths down to 400JJ.[62]. This 

encompasses a wide range of frequencies of interest. For practical purposes, 2-D effects 

can be included for the radiation fields by expanding in a finite number of transverse 

modes. The interaction can be complicated since the modes have different transverse 

profiles and each transverse mode will move at a different velocity. Even for a single 

transverse mode, different frequencies can move at different speeds. This dispersion can 

have interesting effects since the group velocity and the phase velocity of the radiation are 

now different. 

Of major importance in any coherent radiation source is the spectral purity of the 

output. Depending on the application, there will be some constraints on the linewidth of 
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the radiation produced. Also the coherence can effect the FEL performance. A large energy 

spread in the electron beam or some other effect reducing coherence can limit the total 

possible output power of a device. It is possible in some FEL' s for parasitic frequencies to 

grow that widen the output spectrum. These parasitic frequencies are known as sidebands 

after the terminology of Kroll and Rosenbluth[ 42]. Aside from widening the spectrum, 

these sidebands can cause the electron motion to turn stochastic and thereby degrade FEL 

performance[47]. These sidebands are expected mostly to occur most often in FEL 

oscillators where they can grow easily from noise, although high power amplifiers should 

also be susceptible to sidebands. 

One application that was expected to be susceptible to the sideband instability is the 

Tw<rBeam Accelerator(TBA). In this scheme, a microwave FEL was configured to power 

an accelerator structure. The FEL is meant to be long enough that any significant sideband 

growth would be catastrophic. It was noted that in a waveguide, the group velocity of the 

radiation could be set to be the same as the electron beam velocity. In this case, 

longitudinal instabilities would be expected to be suppressed since it would be difficult for 

information to travel along the beam. These observations were the motivation for the work 

in this thesis. 

• 
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In this work, the longitudinal effects due to waveguides are studied for FEL's. The 

goal is to provide physical insight into multiple-frequency effects for FEL's in dispersive 

waveguides. Special emphasis is placed on the physics of FEL sidebands in waveguides. 

In chapter 2, a review of general FEL physics is gtven. Using the KMR 

formalism[ I], the basic equations of evolution for FEL's are derived. The dynamics of 

these equations are examined and it is shown that the equations can be written in a form 

analogous to the equations for a pendulum. It is shown that the entire set of FEL equations 

can be derived from a single Hamiltonian. Computer simulations are performed with the 

derived equations of evolution and some basic properties of FEL' s are illustrated. Some 2-

D effects in FEL's are described with special emphasis on the effect known as "optical 

guiding." 2-D computer simulations are used to illustrate the principles of optical guiding. 

In chapter 3, a formalism is developed to systematically deal with a range of 

frequencies in each transverse mode in a waveguide. It is shown that a Green's function 

can be derived for the evolution of each transverse mode in a waveguide. From the integral 

equation that has been derived, a differential form of the equations is developed to follow 

discrete frequencies. The evolution for each frequency is described by two first order 

differential equations representing the radiation amplitude and phase for that frequency. 
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This differential form is shown to reduce to the KMR equations for radiation in an FEL 

when only a single radiation frequency is allowed. 

In chapter 4, it is shown that the size of the waveguide can strongly affect FEL 

parameters. It is shown that the waveguide dimensions affect the resonance wiggler field, 

the gain, and the efficiency of the FEL. It is shown how waveguides can limit the 

efficiency of FEL' s and how one might design a waveguide FEL to improve efficiency. 

In chapter 5, sidebands in waveguides are studied in great depth. A review of 

previous work on sidebands is presented. A computer simulation based on the formalism 

of Chapter 3 is described. This computer simulation is used to show that the production of 

sidebands is a process analogous to that of stimulated scattering. F9llowing this analogy, 

the FEL equations are altered to be similar in form to the equations used to study 

parametric amplification in nonlinear optics. It is shown that the physics of the sideband 

instability can be described as a combination of processes that involve three or four waves. 

In a waveguide it is shown that there can be more than the two sidebands that can be 

observed in free space. Lastly, the results of an attempted sideband experiment at the ELF 

facility at Livermore are explained. The use of the formalism for parametric amplification 

allows greater physical insight into the sideband process than previous analyses. 



.. 

.. 

Chapter 2 

Review of FEL Physics 

9 

" 
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2.1 Basic Description of FEL Physics 
" 

" 
To begin,. we start with a heuristic description of FEL physics. This physical picture 

will be used to motivate the calculations to be performed. 

Wiggler 

t + t + 

~ Radiation 

t + t + 
Generic FEL XBL 895-2040 

Figure 2.1 Diagram of configuration common to all FEL schemes. The wiggler is any 

scheme for modulating the transverse velocity of the electron beam in a periodic fashion. 

In Fig. 2.1 is a general schematic of an FEL. It consists of an electron beam that is 

propagated through a periodic wiggler field. This wiggler field generally consists of a 

periodic magnetic field, although electromagnetic and electrostatic wigglers have also been 

proposed[ 40][ 41]. In the most general of terms, the purpose of the wiggler field is to 



11 

impart a periodic transverse velocity modulation to the electron beam. This transverse 

velocity modulation allows the electron beam to interact with a radiation field 

copropagating with the electron beam. 

An FEL becomes interesting when there is a resonance between the electron beam 

modulation and the radiation field. In Fig. 2.2 there is a graphical representation of the 

primary FEL resonance. Here, in the distance required for an electron to undergo a single 

oscillation, one radiation wavelength passes over the electron. For the electron in the 

diagram, the force from the electric field of the radiation always opposes the motion of the 

electron. This electron will therefore lose energy. An electron that is one half oscillation 

behind the first electron will always experience a force from the radiation fields in the same 

direction as its motion. This electron will gain energy. With electrons gaining or loosing 

energy depending on their phase relative to the radiation field, bunches in the electron 

beam will be formed. These bunches are the basis for the strong coherent interaction in an 

FEL. If the electron beam energy is slightly too high for the resonance pictured in Fig. 

2.2, then on average, more electrons will loose energy than will gain energy. This is the 

basis for FEL gain. 
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FEL Resonance 

~~-i;]j]--lt!i]iili~ili!:::ill~!~': <-..:1 

-r:r' ~=~=~=~'~n=~=~=!=~=H~= ..--. ndiat.iaD "'~-in,.; ~ 

XBL 895-2041 

Figure 2..2 Diagram illustrating FEL resonance. One radiation wavelength passes 

over the electron for each oscillation of the electron. 
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2.2 Derivation of Highly Relativistic KMR Equations 

We will use this simple one dimensional model to derive a set of equations to 

describe FEL evolution. The normalizations and approximations we use will produce a set 

of equations known in the FEL literature as the K,MR(Kroll, Morton, and Rosenbluth) 

equations[ I]. Other equivalent formulations have been derived[2][3], but here we will use 

the notation of the KMR equations. We will begin with 

dp = 1 E + Y. x u] 
dt 1 c ' 

(2.2.1) 

and (2.2.2) 

where (2.2.1) is just the Lorentz force law for charged particles, and (2.2.2) is the 

electromagnetic wave equation in radiation gauge[4]. 

There are two types of magnetic wigglers that are normally used. A linear wiggler 

causes the electron trajectories to be confined to a plane. The electron trajectories and 

radiation modes are simple in this case, but the interaction of the two adds an extra term to 

the equations of motion. A helical wiggler has a cylindrical symmetry and the electron 

wiggles are in the radial direction. This type of wiggler has a more complicated geometry, 
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but the equations are simpler if a particular form of the fields are used. For the discussion 

here we will use the linear wiggler because the physical picture is simpler. 

Let's start by defming the fields. We write the wiggler field as 

(2.2.3a) 

and the radiation field as 

Es = Esx(z,t)x co{ k5z- oot + <j>5(z,t)] (2.2.3b) 

and 8 5 = Bsy(z,t) y co{ ksz- oot + <l>s(Z.t)] (2.2.3c) 

For these ~efmitions of the fields, the electron motion will be confined to the xz plane. The 

fields have all been defined with amplitudes that are allowed to vary slowly in z. By 

slowly varying amplitude we mean explicitly that if a field is defined a(u)sin<j>(u), then 

da(u) d<j>(u) . . . 
~ << a(u) du .We now wnte (2.2.1) m terms oflts nonzero components 

d~x = q{ Esx cos( ks z- C.Ot + <l>s)-

~[ Bsy cos{ k5 z- C.Ot + <l>s) + Bwy cos( kw z + 4>w )]} , (2.2.4a) 

and dJtz = q { ~ [ B sy COS { k5z - COt + <l>s) + Bwy COS { kwZ + <l>w)]} (2.2.4b) 

If we use q=-e, and the relations for the vector potential Ex = - b a~x , and By = a~x , 
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then we can solve (2.2.4a). Thus 

Px = ~ [ Asx sin( ksz- C.Ot + cl>s) + Awx sin( kwz + cl>w)] , (2.2.5) 

where Esx = ~ Asx• Bsy = ks Asy. and Bwy = kw Awy . The transverse momentum is just 

proportional to the total vector potential. With an appropriate choice of coordinates, the 

same result would have been obtained for a helical wiggler. 

We now utilize the relativistic energy-momentum relationship 

(2.2.6) 

or r=[l +__e:_]} . 
mtc2 

If we take the derivative of y with respect tot and substitute from relations (2.2.4) and 

(2.2.5), we obtain 

: =- ~as;w { si~ (k5 + kw) z- C.Ot + cl>s +c!>w]- si~ Ocs- kw) z- C.Ot + cl>s -c~>w]} , (2.2.7) 

where we have introduced the normalizations as = ~ Asx , and aw = ~ Awx , and we 
llleC IIleC 

have used an approximation for (2.2.5) 

(2.2.8) 

which is almost always valid 
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We define a phase. 'If= (k5 + kw) z- rot+ <Ps +<Pw. for the electron trajectories. An 

electron moving along with this phase will interact strongly with the radiation field. This 

phase is usually referred to as the ponderomotive phase of the electron since the right side 

of (2.2.7) is a direct result of the ponderomotive force. For simplicity, it is usually 

assumed that the electron beam is traveling somewhere near the velocity of the 

ponderomotive phase. Thus, the second sin term in (2.2. 7) can be ignored since it will 

oscillate rapidly compared to the first sin term and therefore will not contribute on the 

average(For a more complete discussion of averaging, see section 2.4 of this chapter, or 

see ref. 5, chapte.r 3). At this point we would also like to change independent variables. 

One usually wishes to follow FEL evolution as a function of distance down the wiggler. 

Therefore we write 9t' = Vz~ • For most PEL's it is sufficient to set Vz = c in this 

derivative. We obtain 

dy = - (J) asaw sin"' 
dz 2c 'Y 

(2.2.9) 

To complete the equations for particle motion, we need an equation for the evolution 

of 'l'· Differentiating with respect to z gives 



•. 

d'lf dcps 
-= kw + k, +-- .m_ 
dz dz Vz 
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(2.2.10) 

If we simply setvz = c in this equation we will remove all the physics. Therefore we will 

expand Vz and take the first order term. We note that Pz = y meVz, so along with the 

expression for Pz (2.2.8) and the relativistic energy-momentum relation(2.2.6) we can 

write Vz in terms ofyand z as 

{ 

1 + a¢,sin2( kwz + cj)w )] f 
Vz = 1 - ____ f.;.._ __ .:... (2.2.11) 

For most FEL parameters it is a good approximation to say that aw<< y. In that case we 

.• 

can expand 1fvz in eq. (2.2.10) to obtain 

d'lf = kw + d«Ps - -"L[1 +a~ sin2( kwz + «Pw )] , 
dz dz 2cf 

(2.2.12) 

where we have used~ = k5• If we now average over a wiggler period (kwz), we obtain 

d'lf d«Ps ,,, [ aa. ] -=kw+----W- 1 +-
dz dz 2cf 2 · (2.2.13) 
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To complete the set of equations. we need to derive equations for the evolution of 

the radiation field. If we use (2.2.3) to describe the radiation field, then we need only use 

the x component of (2.2.2). We can defme Ix as 

where fe is the normalized distribution of the electron beam. If we use the normalizations 

for the fields introduced in (2.2.7), and if we use Vx = ..1.!._ where Px is given by (2.2.8), 
'Yffie 

then the wave equation for the fields in an FEL is 

4 2 f sin(kwz + <Pw) ':e :~ y fe(Y,'If) dy d'lf (2.2.14) 

where we are allowing the amplitude of the vector potential to be slowly varying in z. On 

the right side of (2.2.14) we can substitute ~ = 41t r:;:e
2 

, where rope is the plasma 

frequency of the unbunched electron beam. 

We now invoke the the eikonal approximation[28] which allows us to drop second 

derivatives. Then (2.2.14) becomes 
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da (z t) j ] d<!>s(Z,t) · .• J ] 
dz' CO., ksz - OOt + $s(Z,t) - as(Z,t) dz Slul. ksz - CJlt + <j)5(z,t) = 

(2.2.15) 

Next, both sides are multiplied by cos[ k,z- CJlt + $5]. We then use the definition of'JI and 

perform an average over z. This gives 

da,(z) = ~a.,(sin"') 
· dz k

5
c2 1 · 

(2.2.16) 

Multiplying (2.2.15) by sin[ k5z- CJlt +<j)5(z)] and averaging gives 

(2.2.17) 

The brackets in (2.2.16) and (2.2.17) represent an average over the particles. 

We have now derived a full set of equations for following FEL evolution in one 

dimension. Rewriting them in one place for reference, they are 

d1j =- (J) asaw sin 'If· 
dz 2c 1j 1 

d'lfj = kw + dc!>s - __!!)__ [ 1 + a; l 
dz · dz 2~ 2 ' 

da, = ~('in"') 
dz ksc2 1 ' 

(2.2.18a) 

(2.2.18b) 

(2.2.18c) 
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dq,, = ~ (COS'IJ!) 
dz a5 ksc2 Y ' 

(2.2.18d) 

where the subscript j refers to the fact that there are many particles to follow in an ordinary 

FEL. If there are N particles to follow, then eqs. (2~2.18) represent 2N+2 equations of 

motion. These equations are known as the KMR equations[l]. 



21 

2.3 Dynamics of the KMR equations 

" In this section we will examine the dynamics of particle motion in an FEL. We will 

assume for the time that the electric vector potential as is a constant parameter. Treating the 

electric field as constant is not generally a good approximation, but it will allow us to 

introduce several useful concepts. 

The first step is to search for equilibria by setting dy = tnv = 0 . From eqs. 
. ~ ~ 

(2.2.18a) and (2.2.18b) we see that these conditions can be met if 'V = 0 or 1t, and if 

(2.3.1) 

d<!>s where we have neglected -compared to kw. and we have denoted the value of y at 
dz 

equilibrium as 'Yr· If we expand y around Yr and keep only the largest nonzero terms, we 

obtain a set of equations identical to that of a pendulum. Using the notation "f='Yr+By, these 

equations become . 

d8y Q) asaw . -=- Stn'\V 
dz 2c Yr ' 

(2.3.2a) 

dw = ro By [ 1 +a~] 
dz c:?r 2 (2.3.2b) 
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For some analyses, the eqs. (2.3.2) are combined to form the "pendulum equation~" This 

can be written 

d2 2 [ 2] _!. + a,awro 1 + aw sin'lf = 0 
dz2 2c'l.y: 2 

(2.3.3) 

These equations have been analysed in great detail by Colson [6] and Kroll, Monon, and 

Rosenbluth[ 1]. 

The equations (2.3.2) have the following Hamiltonian 

H = ~[1 +a:.]< &y )2- roasaw COS'If 
2crr 2 'k Yr 

(2.3.4) 

dBy . aH d'lf aH 
where-=·--. and-=-

dz av dz a&y 

Since the form of these equations are identical to that of a pendulum, we can take 

the results from the standard analysis of a pendulum. If we have the following 

Hamiltonian 

H = Fp2 - G cosq , (2.3.6) 

then the phase space orbits of the system are as shown in fig 2.3. 
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The first imponant point is that one equilibrium can be shown to be stable and one 

can be shown to be unstable. Around the stable equilibrium, the orbits are called center 

orbits. Those orbits close to the resonance point have a frequency of ro = "i2"rn . As one 

goes further from the resonance point, one reaches the separatrix. All orbits inside of the 

separatrix close in upon themselves. All orbits outside the separatrix are open orbits. This 

separatrix has a height which is given by Pmax = {Zf [7]. 

Separatrix 

q 
Untrapped orbits 

XBL 895-2042 resonance 
q..O 

resonance 
q-Jt 

Figure 2.3 Pendulum Phase Space. Phase space for the Hamiltonian of (2.3.6). 

Orbits inside the separatrix are self connected and are therefore periodic. Orbits outside 

the separatrix are unconnected. 

• 
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"Bucket" 

Bucket-::r--

~' [_ _____ .:• 

"' Untrapped electrons 
XBL 895-2043 

Figure 2.4 FEL Bucket. linearized FEL equations produce a phase space like that 

of a pendulum. The use of the term "bucket• comes from accelerator physics. 

Fig. 2.4· shows the same physics as Fig. 2.3. but the terminology has been altered 

to that used in the FEL literature. In accelerator physics. the area inside the separatrix, 

which is shaded in Fig. 2.4, is known as a bucket. All electrons inside the bucket are 

trapped in the ponderomotive well. These electrons can bunch on the length scale of the 

ponderomotive well and therefore interact coherently with the radiation. All electrons 

outside the bucket are untrapped. These electrons cannot interact coherently with the 

radiation. The frequency (actually wave number) at which electrons deep in the bucket 

orbit in phase space is known in the FEL literature as the synchrotron frequency. From 

(2.3.4), we can write down the synchrotron frequency and the bucket height as 



and 

j_ 

ksynch = kw [ 2¥;] 2 

1 + aw 
2 

1. 
5W -[~]2 vrmax- ckw ' 

where we have used the expression foryr from (2.3.1). 
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(2.3.7) 

(2.3.8) 

At this point it is useful to introduce the concept of a tapered wiggler. The equations 

for a tapered wiggler FEL have been derived by Kroll, Morton, and Rosenbluth[l], and 

have been shown to be valid over a wide range of tapers[8] The location of the resonance . 

point is determined by the relation (2.3.1). In a coherent FEL interaction, the electrons 

become bunched in the bucket and follow the phase space trajectories indicated in Fig. 2.4. 

Despite the fact that the bucket height increases as the radiation field increases, there will 

come a point at which the electrons on average collect in the bottom of the bucket. This 

point is where the average of the ponderomotive phases of the electrons becomes zero. 

From eq. (2.2.18c) one can see that the derivative of the electric field amplitude also 

becomes zero. Since the electrons are now lower in energy on the average than the 

resonance point, they will fall behind and the average over the ponderomotive phases will 

become negative. The electric field amplitude will then decrease. If the wiggler field aw is a 
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constant, then this point marks the maximum amount of energy that can be removed from 

the electrons, or in other words, the FEL radiation field reaches saturation. 

If we now allow the wiggler field to drop slowly( tapering the wiggler), thus slowly 

lowering the resonance point, then we find that most of the orbits inside the FEL bucket 

remain nearly periodic. What this means in practice is that if electrons are trapped in the 

bucket and the wiggler is then tapered, then the electrons will be decelerated along with the 

bucket. Since the resonance point can in practice be lowered a distance of many times the 

bucket height, a great deal more power can be extracted from the electrons. This will be 

demonstrated later in section 2.5 on FEL computer simulations. 

Since we are discussing the dynamics of the FEL, it is worthwhile to note that the 

system of equations (2.2.18) can be rewritten so that all of the equations can be derived 

from a Hamiltonian, not just the particle equations[9][10][11]. One such Hamiltonian is 

# particles { 2 [ . _ . J } 
H = ~ kw Yj + fct 1 + i' + i ~· ~ 5le1

C!); + i~e-t<P; 
J 

(2.3.9) 

where we have defined 

(2.3.10a) 
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(2.3.10b) 

with 

and (2.3.10c) 

Here the definition for y is unchanged. The canonical conjugates are 'Yj and <pj for each 

particle, and J.'t and J.'t for the radiation field. J.'t* in eqn (2.3.10c) represents the complex 

conjugate of J.'t. The variable <p is the ponderomotive phase, 'Jf, minus the term for the 

slowly varying radiation phase cj)5• The equations of motion are obtained by the relations 

d<p aH 
dz = Oy ' 

g.a_aH 
dz - oJ'l 

These can be seen to give the original equations (2.2.18) by substituting the original 

variables for the canonical variables . 

.. 
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2.4 FEL Equations in the Low Energy Limit 

In this section the we develop a modified set of FEL equations. The standard KMR 

equations are the high energy limit of these. modified equations[12]. The modified FEL 

equations are shown to be transformable to Hamiltonian form and to conserve energy. The 

equations developed here also include waveguide dispersion. For the sake of comparison to 

the KMR equations, we will ·confine the equations here to follow a single radiation 

frequency. 

Most formulations of FEL equations assume that the velocity of the electron beam is 

approximately equal to c, the velocity of light, in the lab frame. For the equations to be 

developed here, we avoid this approximation. This is the regime where the dimensionless 

wiggler amplitude aw is not extremely small compared to the y of the electron beam. The 

ELF experiment at Livermore falls into this category[ 13]. 

A set of equations can be derived where the only assumption is that the 

dimensionless radiation amplitude a5 is much less than aw . It is also possible to produce a 
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relatively simple set of equations that have been averaged over a wiggler period. These 

averaged equations can be shown to produce essentially the same results as the unaveraged 

equations, and to preserve energy conservation. 

The high energy approximation in the KMR equations consists primarily· of an 

expansion where Vxfc « 1. Here vx is the x component of the electron velocity. The set of 

equations describing FEL evolution with z as an independent variable all have a factor of 

Vz in them. Explicitly 

(2.4.1) 

where aw is the dimensionless vector potential of the wiggler field. In the KMR 

equations(section 2.2), aw is considered small compared to y, so the square root is 

expanded and the series is truncated after terms that go as y 2• This approximation is valid 

only when the wiggle velocity is a negligible fraction of c. 

If we follow the derivation of the KMR equations without expanding Vz, and without 

performing any averages, then we arrive at the following low energy equations 
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dy = _ .cg. aw 3s [ sin'lf - sin('!' d 2kwz)] 

dz ,.,J 'f - 1 - a~ sin2 kw z (2.4.2a) 

(2.4.2b) 

(2.4.2c) 

(2.4.2d) 

with 
• 

,,,2 _ 47tle d 
u.~p.eff - IIleCab ' an 

2 cos.m.K sinnlt 
pnn= 2 2 

1 + Bmo 

Here we have used. the notation for an FEL in a waveguide. In free space, COp,eff would take 

the regular form for the plasma frequency of the electron beam and Fmn would go to 1. The 

only approximations made for these equations are that only a single radiation frequency is 

followed, and that as << aw . 

At this point we·would like to average the above equations. This is imponant since if we 

wish to calculate a Yr for this set of equations, we can only do so on the average. The 

equations can be averaged. but one must be careful because of the explicit z dependence in 
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the denominator of each equation. To begin, we expand the square root in the particle 

equations and keep only those terms where there is no explicit z dependence or where the z 

dependence goes as 2kwz. There are terms that go as multiples of 2kwz. but computer 

studies show that these terms are much smaller than the 2kwz term. The expansion gives 

where 

and 

[ ] 

.1. 
1 2 . 2k 2 

1- +a;,osm wZ -K K 2k _ ___:::=.... _ ___;,;,._ = 1 - 2 cos w z 
y2 

The particle equations can then be written as 

dy = F(sin 'If- sin('lf- 2kw z)][H1- H2 cos 2kw z] 
dz , 

d'lf = (kw + ks + d<Ps)- ~(Kt- K2 cos 2kw z] 
dz dz c 

where 

Ht2=Kt.2 and F=·(J)asaw 
. y ' 2c . 

(2.4.3) 

(2.4.4a) 

(2.4.4b) 

(2.4.5a) 

(2.4.5b) 
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From these equations we expect that the solutions for y and 'If are of the form 

'Y =Yo+ 'Y2c cos(2kw z) + 12s sin(2kw z) , (2.4.6a) 

'If = 'Jfo + 'l'2s sin(2kw z) 
' 

(2.4.6b) 

where the coefficients are average values over a wiggler oscillation. For the current 

analysis, we will assume that Yo >> Y2s ,"f2c . Substituting eqs. (2.4.6) into eqs. (2.4.5) 

and using the following Bessel function identities[14] 

+oo 

sin ( r sin e ) = 2 .L J 2n + 1 ( r ) sin (( 2n + 1) e ) . (2.4.7a) 
n=O 

-too .-
cos ( r sin e ) = J 0 ( r ) + 2 .L J 2n ( r ) cos ( 2~ e ) . (2.4.7b) 

n=O 

we can perform a straightforward average on the equations of motion. Ignoring terms that 

depend explicitly on 12s and Y2c , we obtain 

:: = F { Ht [Jo ('lf2)- J1 ('lf2)] + tH2Jo ('lf2) } sin 'If 
(2.4.8a) 

d'lf ( d<l>s) -= kw + ks+- -~ Kt dz dz c 
• (2.4.8b) 

with 

These are the appropriate, averaged particle equations that include the case of a low y FEL. 

1brough similar manipulations, the averaged field equations are found to be 



33 

das = ~.eff f1Maw ({ HI(Jo ( '1'2) -it ( '1'2 )] + t H2 lo ( '1'2) }sin 'II) 
dz c2k5 (2.4.9a) 

dq,, = ~.elf pnn '!" ( { Ht [Jo ( ljf2) - lt ( '1'2 )] + i H2 Jo ( '1'2 ) }cos 'I') 
dz c2 ks 5 • (2.4.9b) 

If we set H2 = 0, and if we truncate H and K after their first terms, this reduces to the 

proper average for the regular KMR equations for a linear wiggler[S]. 

The low energy FEL equations have the. same invariants as the high y equations. For 

instance, eqs. (2.4.2) can be written in Hamiltonian form. If we make the following 

transformations 

-1 .... 
jl = i~ as 9 1

""' , and jl = i;t' ' 

with ~ = 
4m~ pmn -p.eff 

WCksN particles 

(2.4.10) 

where ji* is the complex conjugate of~ then jl and jl will be canonical conjugate 

variables. 

The Hamiltonian for an FEL without space charge is 



I# particles 

H = L ( kw + ks) Yi -
j 
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l. 
~ { Jf -1 - a; sin2(kw z) + i awJ3 [ jl( ei«A - et «A -2k.. zJ) + ijl( e·i<PJ - e·{ <Ill • 2k. z] )]}2 , 

(2.4.11) 

where the variable <p is the same as that defined in (2.3.1 Oa). This Hamiltonian is an 

invariant for the system and is valid for both high and low"( regimes. The equations of 

motion yield 2N equations for the particles and 2 equations for the fields. These equations 

can be seen to be physically identical to eqs. (2.4.2) by substituting the original variables 

'If, as and <Ps into the equations. 

The energy can also be shown to be an invariant of the system of eqs. (2.4.2). 

Through a careful integration of the fields, it can be shown that the energy in an FEL bucket 

is given by 

N 
'E. =; ~ vJ. m c2 + m2 c4 a b ( 1 + Bmo ) ks a2 

L fl 16 e2 s ' 
(2.4.12) 

j 

where the sum is over all the electrons in the bucket 
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2.5 Gain in an FEL 

In this section we write down some results for gain in an FEL. This subject has 

been covered exhaustively by others[6][15][16]. Here we will use the notation of Colson 

and Sessler[ 17]. 

· The procedure is to take a set of equations for an FEL, eqs. (2.2.18) for instance, 

and to penurb these equations about an equilibrium. Most analyses take an unbunched 

electron beam with no energy spread as the equilibrium. Colson and Sessler stan with the 

pendulum equation and the radiation field equation written in complex form with a 

normalized time as the independent variable. 

From this analysis they derive a cubic dispersion relation with the form 

(2.5.1) 

3 
where the assumed form of the complex radiation field was a= ao e-•vo't L, ea..-r . Here vo 

r =1 

is the initial phase velocity of the electron relative to the ponderomotive well, j is a 

normalized form of the current, and tis a dimensionless time. Explicitly 



Vo = t[(kw + ks) vo- oo] , 
2 . _ 8N(7teawL) ne 

J - A.3 2 ' 
1r IlleC 
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and 't = t t . To define a few more terms, L is the length of the wiggler, N is the 

number of wiggler periods, ne is the electron number density, and vo is the original 

velocity of the electron beam 

To start, we wish to examine the regime where j is large. This is the high gain 

(
. )1/3 

regime where the v0 term is negligible. Here, the important real root is <Xr = q. i 
which gives exponential growth. This is an important regime of interest for waveguide 

FEL's where one usually wishes to run as a high gain amplifier rather than as an 

oscillator. 

There are, however, FEL's for which the high gain assumption is not valid. The 

full solution of (2.5.1) is necessary. The solution is given by 

G(vo) = j [2- 2cosvo- vosinvo] = _l__.d_(sinvo/2]
2 

, 

v~ 2 dv0 voj2 

with G(vo) given by 

G(vo) ~ aftnal - aTnitial] I arnitial 

The phase shift given by this solution is 

(2.5.2) 



.. ( ) 
. [ 2sinvo - Vo(l + cosvo)] 

4> vo = J · 
vij 

The gain function and the accompanying phase shift are illustrated in Fig. 2.5. 

G/j 

-12.0 

q>/j 

-12.0 

12.0 

-o.135 

-··----······-··· 0.135 

12.0 

-Q.135 
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(2.5.3) 

XBL 895- 2044 

Figure 2.5 Plots of the real and imaginary parts of the gain in an FEL. 

The first result from (2.5.2) is that the FEL gain goes as the derivative of the 

spontaneous emission specttum ( si::hlz J. This result is usually referred to as Madey's 

theorem[18]. Another theorem for small signal gain attributed to Madey is that 

( 'Yfmal- '¥initial)= 1.
2 

-::,.'V·~. ( {'Yfinal- 'Yinitial)
2
) , 

a un1t1al 
(2.5.4) 
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where the brackets < > represent an ensemble average of the particles. This relates the 

energy extracted by the FEL to the resulting spread in electron energies. This means that 

even a completely cold electron beam will have a temperature after transferring energy in 

an FEL. 

It is worth noting that the results in this section can be arrived at through many 

different methods. Some have achieved the small gain results by following the particle 

trajectories and averaging over the initial electron distribution[6]. Others have used a 

Vlasov penurbation scheme[15]. This lends credibility to the idea that these results are 

physically correct and not just the result of a particular mathematical approximation. 
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2.6 1-D Numerical Simulations of FEL's 

In this section we perform a numerical integration of the KMR equations 

(2.2.18)~ The integration is performed on a CRAY 2 computer at the Magnetic Fusion 

Energy Computer Center(MFECC) at Livermore California. The GEAR integration 

package utilizing the Adam's method was used. The simulation described in this section 

is used to illustrate some general features of FEL physics. The code used is similar to 

that developed by Prosnitz, Szoke, and Neil{l9] 

The parameters used for the simulation are similar to those of the ELF 

experiment at Livermore, California{13][20). These are tabulated in Table I. The 

magnetic field value is a calculated quantity rather than an input parameter. It is 

calculated from the resonance gamma by eq. (2.3.1). 

Some small modifications need to be made to equations (2.2.18) to model an FEL 

in a waveguide. The equations for a single transverse mode in an FEL waveguide are 

almost identical to (2.2.18){5][21]. The changes are 



and 

Beam Energy 

Beam Energy in y 

Beam Current 

Wiggler wavelength 

Radiation frequency 

Waveguide width 

Waveguide height 

Input radiation power 

Wiggler Peak Field 

Table I 
3.68 Mev 

7.2 

800 amperes 

9.8cm 

34.6 GHz 

9.8cm 

2.9cm 

60 KWatts I TE01 mode 

4.09 KGauss 

.JJ:m.. . n.K 
2 2 _~cos 2 sm 2 

Olpe ~ Olp,eff - llleCab ( ) 
1 + Omo 

d'Vj dl\>5 [ ~ ] -=kw+Ok5 +--_JQ_ 1 +-
dz dz 2~ 2 
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(2.6.1) 

(2.6.2) 

Here~ following Wurtele's notation, we substitute (2.6.1) for the plasma frequency in the 

radiation equations. It is to be substituted for co2pe in eqs. (2.2.18c) and (2.2.18d). This is 

to make the form of the FEL equations in a waveguide the same as the form of the 

equations for free space. The expression (2.6.1) is not actually the effective plasma 

.. 



'"' 

.. 

41 

frequency for an electron beam in a waveguide. In this expression, a is the waveguide 

width, b is the waveguide height, I is the beam current, and m and n represent the 

waveguide mode indices. eq. (2.6.2) is identical to (2.2.18b) with the addition of the term 

ok5 = k5 - 00/c . This term accounts for the fact that the phase velocity of the radiation in a 

waveguide is different from that of radiation in a vacuum. In other words, ok5 results 

because k5 * 00/ c in a waveguide. 

In order to demonstrate the effect of energy spread on FEL gain, two cases are 

used. In the. first case; tiy = 0, and in the second case tiy = ± 0.4 . These cases are run for 

an untapered wiggler with the parameters from Table I. These parameters are in the 

high gain regime as described in section 2.5. The results are shown in Figs. 2.6 -2.9. 

Starting with Fig. 2.6, we can identify some general phenomena associated 

with FEL phase space evolution. In the beginning of the wiggler in Fig. 2.6a we see 

the particles take the shape of an inverted sine wave. This follows directly from eq. 

(2.2.18a) where the y derivative goes as -sinv. In Fig. 2.6b we see the FEL as it 

reaches saturation. The bulk of the electrons have reached the bottom of the bucket 

and are beginning to be reaccelerated. The diagram in Fig. 2.6d shows the phase 
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Rgura2.6 Phase space evolution for an FEL with an input electron beam with no 
initial energy spread. 
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space far down the wiggler. Note that in the center of the bucket, the original phase 

distribution can be seen. By this we mean that the electrons are still more or less 

distributed along a line. The electrons near the separatrix seem to be scattered about 

relatively randomly. This is because the neighborhood of the separatrix contains 

islands due to nonlinear terms and the electron orbits can become rather chaotic 

there. 

In Fig. 2.7 we can see those features relevant to an FEL in the exponential 

gain regime. In Fig. 2.7b, we see a log plot of the radiatio~ field amplitude versus 

distance. This confirms that after an initial bunching period. the gain for the 

radiation field is exponential. The oscillations seen in Figs. 2.7a and 2.7b after 

saturation are known in the literature as "synchrotron oscillations." The period of 

these oscillations is given in linear theory by eq. (2.3.7). The other important point 

to notice is that after the initial bunching period, the slowly varying phase <l>s is 

linear as shown in Fig. 2.7c. It is not only linear in the exponential growth region as 

one would expect from section 2.5, but its slope is essentially unchanged after 

saturation. 
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Now turning to Figs. 2.8 and 2.9, we see the effects of a finite energy spread 

on FEL evolution. The observations just made for the cold beam case are still 

generally true with the following differences. 

Firstly, the gain has been reduced. The energy spread reduces the coherence 

of the interaction and therefore the gain must be lower. This also has the effect that 

the FEL takes longer to saturate. Note in Fig. 2.8 that the electron distribution now 

fills the bucket relatively uniformly. This has the effect of washing out the 

synchrotron oscillations as can be seen in Fig. 2.9a. In the case where the beam had 

rio initial energy spread, the electrons form a relatively tight bunch. When these 

electrons follow their phase space orbits in the bucket, they produce very distinct 

oscillations in the radiation field. In the case of an initial energy spread, the 

oscillations are still there, but they are very much reduced. 

We now examine the effect of tapering the wiggler after saturation. We use a 

taper that starts at 1.4 meters (just before saturation), and reduces the peak magnetic field 

strength to half its initial value by the end of the wiggler at 4 meters. We will start with 

the parameters with the fmite energy spread in order to illustrate the imponance of 

trapping the electrons in the bucket. The results are illustrated in Figs. 2.10 and 2.11. 
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In Fig. 2.10a one can see a plot of the phase space near the end of the wiggler. 

The electrons that were trapped in the bucket were decelerated along with the resonance 

point. These electrons remain bunched and continue to interact coherently with the 

radiation field. The electrons that were not trapped were not decelerated, and since the 

bucket has been moved away from these electrons, they can no longer interact coherently 

with the radiation. The untrapped electrons smear out and become uniformly distributed 

in phase. This illustrates the importance of tight bunching for the successful operation of 

a tapered wiggler FEL. 

In Fig. 2.11 b, one can see the radiation power as a function of distance. At the 

end of the wiggler, the FEL has achieved an output power of about 850 MWatts. 

Compare this to the untapered case where the radiation saturates at about 85 MWatts(fig 

2.9a). By doing nothing more than tapering the wiggler field one has achieved a factor of 

10 increase in the output power. Similar results have been observed experimentally[20]. 

The radiation phase in Fig. 2.11 c shows a change in slope at the point where 

tapering begins. This is primarily because of the loss of the untrapped electrons. Since 

the untrapped electrons no longer interact strongly with the radiation they no longer 
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contribute to the source tenn for the radiation. Thus the effective current is less after 

tapering and the change in the slope of the radiation phase is correspondingly decreased . 

.. 
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2. 7 Transverse Effects in FEL 's 

The physics of an FEL is affected by the fact that the electron beam and the radiation 

envelope both have a finite cross section. Physical quantities can and usually do vary 

across this cross section and this can affect FEL performance. For the purposes of the 

brief discussion of this section we will separate these transverse effects into two general 

categories. We first discuss those effects due to the finite width of the electron beam. We 

will then discuss some effects due to the finite width of the radiation envelope. 

Perhaps the most important consideration for the electron beam in an actual device is 

the need for focussing. An electron beam in a vacuum with no focussing will tend to 

spread out over time. This is because of both space charge and the fact that in any 

physically realizable beam the electrons will have some small but finite velocity in the 

transverse direction. 

In Fig. 2.12 is an example of a distribution of an electron beam in x-px phase space. 

The standard analysis of beam transpon involves modelling the focussing elements as 

producing linear transformations of the phase space ellipse modelling the beam. The area 
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of the ellipse divided by 1t is the standard definition for the beam emittance. The larger the 

emittance is, the more important beam transport is to the physics of an FEL. In principle, 

since it's the total phase space volume that.is a constant by Liouville's theorem, focussing 

elements can transform phase space area in x-px space to z-pz space or y-py space. The 

particular cross sections of the beam used are chosen mainly for convenience (A good 

general reference for beam transport is ref. 29). 

rse phase space 
distribution 

X 

XBL 895-2051 

Figure 2.12 Emittance of an electron beam is defined by its area in phase space. 

Let us now make some observations concerning beam transport. We need to 

describe an equilibrium orbit for the beam. This orbit is the path that would be followed by 

a beam with zero emittance, i.e. an infinitely thin beam with no energy spread. For real 
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beams with a phase space like Fig. 2.12, there must be a restoring force for those panicles 

in phase space that do not exactly foUow the equilibrium orbit, otherwise beams with finite 

emittances cannot be transported. For small excursion from the equilibrium orbit, the 

restoring force can be treated as linear. In this case the particles will perform sinusoidal 

oscillations around the equilibrium orbit. These oscillations are known as betatron 

oscillations. 

A real wiggler might have a sinusoidal dependence of the field only along a 

particular axis. As an example, the so called ideal wiggler field for a linear wiggler is 

Bw ~ IB~ {cosh (kwy)cos {kwz)y- sinh (kwy)sin (kwz)z} . ( 2.7.1) 

This is a simple field where the curl and the divergence of the magnetic field are both zero. 

It is idealized since it can only be realized in a two-dimensional plane. If one sets y=O, then 

this wiggler field is identical to that used previously for the purely one-dimensional 

calculations. 
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Note that the ideal field (2.7.1) increases off axis in the yz plane. This produces 

focussing in that plane. However, no focussing is provided by this field in the xz plane, so 

clearly additional focussing is required. For some systems such as the original ELF 

experiment at Livermore; quadrupole magnets are used to produce the required focussing. 

However, Ted Scharlemann has noted that if the pole faces of the wiggler magnets are 

curved in an appropriate manner, such as in Fig. 2.13, then focussing in the xz plane can 

be achieved without additional focussing elements. 

Electron beam 

XBL 895-2052 

Figure 2.13 "Ted• poles in a wiggler magnet. 

The betatron oscillations in an FEL are important for more reasons than just a 

description of focussing. Back in section 2.3, we defined a resonance energy Yr by setting 

d'lf = 0. Physically what this corresponds to is setting the parallel velocity of the electron 
dz 
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beam equal to the phase velocity of the ponderomotive potential. If the electrons now also 

have a finite transverse betatron velocity, then the parallel velocity of electrons with a given 

energy will be decreased. This will affect the FEL resonance condition. With a finite 

betatron velocity, an electron with a given energy will have a slower parallel velocity since 

some ofits energy now goes into the betatron oscillation[31]. 

Different particles with the same energy, y, can have different- betatron oscillation 

amplitudes. This is because these particles can occupy different pans of the phase space 

ellipse of Fig. 2.12. This adds an "effective" energy spread to the electron beam. We noted 

in. section 2.4 that a longitudinal energy spread in the electron beam can significantly 

reduce the FEL gain and saturated amplitude. If a beam has a large emittance, then this too 

will tend to reduce FEL performance. Thus the production of low emittance beams are vital 

for high FEL efficiency. Ted Scharlemann has calculated an estimate of the contributions 

of transverse effects to the apparent energy spread of the electron beam[31 ]. It is 

Orn a;. k!. ti 
11• = 4( 1 + a;.) ' 

.(2.7.2) 

where y11 is the parallel gamma of the electrons, aw is the normalized wiggler field 

amplitude as defined in section 2.2, kw is the wiggler wave number, and rb is the electron 

beam radius. This estimate is valid for a helical wiggler or a linear wiggler with curved 

pole faces. 
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Let us now discuss some of the implications when the finite width of the radiation 

envelope is considered. In a waveguide for instance, there actually isn't a radiation beam 

"envelope," but the radiation can be described as a sum of transverse modes of the 

waveguide. These modes vary in intensity over the transverse cross section of the 

waveguide. Those modes that interact strongly with the electron beam in an FEL have a 

peak of intensity on axis (assuming the electron beam is sent through the center of the 

waveguide). This theory is described in detail in the Phd. thesis of Jonathan Wunele[5]. 

The propagation of radiation without a waveguide is another matter. If a beam of 

light is propagating in free space, then diffraction will cause the beam envelope to spread 

out and the light would eventually become very diffuse. A measure of how fast this 

happens is the Rayleigh range which is given by 

Z:R=~ ' 
A. 

(2.7.3) 

where A. is the radiation wavelength, and u,-, is the minimum diameter of the radiation 

envelope called the waist. For very shon wavelength FEL's where this Rayleigh range is 

small compared to the length of the wiggler, one might suppose that the FEL wouldn't 

work very well since the radiation would diffract away from the electron beam too fast. In 

fact, in an FEL, the radiation can become "trapped" by the electron beam so that it doesn't 

diffract away. This phenomenon is call optical guiding and is described in detail 
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elsewhere[32][33][34]. Here we will seek only a general understanding of the 

phenomenon. 

The flrst type of guiding is called gain guiding. This is similar to effects in regular 

lasers. It occurs when the gain length of the medium is shorter than the Rayleigh range. 

Physically this corresponds to the radiation being produced faster than it diffracts away so 

there is a peak of the radiation intensity on axis. 

The second type of guiding, and the most interesting from the point of view of FEL 

physics. is call refractive guiding. Even well after saturation. the ~! equation gives a 

nonzero value for the slowing of the radiation phase. From the simulations shown in 

section 2.4, one can see that the value of dq, is essentially unchanged throughout the 
dz 

operating distance of the FEL. Physically this slowing of the radiation wavefront can be 

said to correspond to an index of refraction n. For a linear medium, the phase velocity is 

related to the index of refraction by Vphase = ~ . If this is the case, then the index of 

refraction in an FEL can be written 
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n = 1 + .k. d<!>s 
0> dz ' 

(2.7.4) 

where ~~ , given by (2.2.18d), is the equation for the slowly varying phase in an FEL. 

One can see that if this description is accurate, then the index of refraction in the center of 

the FEL beam will be greater than 1. 

light 
rays 

XBL 895-2053 

Figure 2.14 Radiation guiding in an optical fiber. Radiation strikes the fiber 

cladding at less than the angle required for total internal reflection. 

To see how this property can lead to guiding, let's examine the analogous case of 

an optical fiber. In an optical fiber the index of refraction of the fiber, usually some type of 

glass, is higher than that of the air around it. One can imagine that if the fiber was thin 

enough, then the light rays traveling in the fiber will always strike the surface of the fiber 

at less than Brewster's angle, which is the condition for total internal reflection. This is a 

somewhat oversimplified picture. but it conveys the general physics. In general. in order 

to guide light, the fiber or dielectric waveguide must have a higher index of refraction on 

axis than off axis. In his book Quantum Electronics [30], Yariv demonstrates guiding for 

a dielectric medium where the index of refraction falls off quadratically from the axis. 
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Since the ~~ term in the index of refraction is directly proportional to the current 

density, this in some ways might be a better model since simulations have shown that a 

quadratic fit to the current density distribution is a good description. 

One other note is 
0 

for those that feel uncomfortable with the notion of a plasma, the 

electron beam, guiding radiation. Those who work with plasmas know that they have the 

opposite effect of guiding on radiation, at least as long as only linear susceptibilities are 

concerned. However, in those situations, one usually deals with a fairly uniform plasma. 

In an FEL, one has a case where the plasma has density modulations on the same length 0 

scale as the radiation wavelength. This is then an entirely different regime than ordinary 

plasma calculations. Also if one calculates nonlinear susceptibilities, one can create a 

situation where the index of refraction at the center of the radiation beam is higher than at 

the edges. This can result from ponderomotive forces or from the relativistic increase in 

mass of the electrons. While these effects in a uniform plasma are different from the FEL 

interaction, an FEL is a highly nonlinear optical medium and one should not be surprised 

that linear optics theory is no longer valid 
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2.8 2-D FEL Simulations 

Here we will present some results of 2-D numerical simulations of FEL's. The 

simulations in this section were performed by the FRED code developed by Bill Fawley 

and Ted Scharlemann at the Lawrence Livermore National Laberatory. This code has 

been described in great detail elsewhere[35][36][37], so here we give a brief description. 

The FRED code follows the electron motion in a single FEL bucket. Included are 

the effects of transverse motion such as betatron oscillations. The field solver solves the 

paraxial wave equation( second derivatives in the wave equation are ignored). This field 

solver is for two dimensions. For the cases here, the second dimension is the radial 

coordinate. 

The cases here illustrate the effect of optical guiding. Figure 2.16 shows an 

isometric plot of the radiation intensity. It show that even well after saturation, the 

radiation is trapped by the electron beam. The remainder of the plots demonstrate the 

importance of guiding to FEL operation. Using the parameters in Table II, two computer 

runs were performed using the FRED simulation code. In one of the runs, optical 
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guiding was turned off. A direct comparison of the output in Fig. 2.16 shows that without 

optical guiding, FEL performance seriously deteriorates( note that the power plot has a 

log scale). Figs. 2.17 - 2.20 show profiles of radiation power and radiation phase with 

and without optical guiding. A comparison of the power profiles (Fig. 2.17 and 2.19) 

demonstrates that without optical guiding, the radiation rapidly diffracts away from the 

axis of the beam. Also, the beam with optical guiding is closer to a diffraction limited 

beam as indicated by the fact that the phase profile is closer to a spherical fit (Fig. 2.18 

and 2.20). 



c.<r-
E u -.... 
~ 
(!' ._.. 

~ ·-t/) 
c s c -

4 

3 

2 

1 

-1 0 

x(cm) 
1 

63 

<o 

To I 
~ ~ 

'v 

Figure 2.15 {ref. 32) Radiation intensity profile demonstrates that the radiation 
is trapped long after saturation(reproduced by permission). 
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Figure 2.16 (ref. 32) Power(a) and spot size(b) vs. wiggler length for the 21 ~m 
amplifier with and without optical guiding(reproduced by permission). 
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Figure 2.17 (ref. 32) Output intensity profile of the 21 JJ.m amplifier(reproduced 
by permission). 
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Figure 2.18 (ref. 32) Output phase profile of the 21 ~ amplifier(reproduced by 
permission). 
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Figure 2.18 (ref. 32) Output intensity profile of the 21 J.LITl amplifier when optical 
guiding is removed(reproduced by permission). 
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Figure 2.20 (ref. 32) Output phase profile of the 21 mm amplifier when 
refractive guiding is removed(reproduced by permission). 
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Table II 

Beam energy 38 Mev 

Current 1 kA 

Emittance (normalized) 0.1 rad-cm 

Wavelength 21 ~m 

Input power 100 kW 

Input spot radius 0.25 em 

Wiggler period 5.5 em 

Wiggler length 1200 em 

Initial magnetic field 4.93 KG 
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Chapter 3 

Formalism for Multiple · 
Frequencies in a 
Waveguide FEL 
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3.1 FEL 's in Dispersive Media 

In this chapter we will develop a formalism for dealing with FEL' s in dispersive 

media. This formalism will be capable of describing FEL evolution for an arbitrary number 

of frequencies. What makes this approach different from previous calculations is the 

inclusion of all the effects of dispersion on FEL evolution. 
I 

In a waveguide, the evolution of the FEL radiation field can be quite complicated 

due to the effects of dispersion. Calculations of the frequency output of waveguide FEL's 

can be rather tedious if the field evolution is described by differential equations. A separate 

set of equations would be needed for each frequency and in addition, each frequency must 

be associated with a different ponderomotive well, which in a highly dispersive waveguide 

move at very different speeds. Another complication is that in a waveguide, group velocity 

and phase velocity are quite different quantities. 

In response to these concerns I have derived an integral formulation for the field 

evolution in a waveguide FEL[22][27]. This formulation is quite general. The only 



72 

assumption made is that the field can be decomposed into a relatively small number of 

transverse modes. 

From this integral formulation it is also possible to derive a set of differential 

equations suitable for integration on a computer, which doesn't mind if a calculation in 

tedious. The reason that this is desirable is that computer integration packages generally 

require a set of coupled differential equations as input. 

The last section of this chapter demonstrates that the differential equations derived 

can, under certain approximations, be reduced to a set of differential equations identical to 

the KMR equations for an FEL in a waveguide. 
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3.2 Derivation of the Waveguide Green's Function 

In this section, a Green's function will be derived for a linear wiggler FEL in a 

rectangular waveguide. The derivation is easily generalized to include helical wigglers and 

waveguides of arbitrary geometry. The only requirement is that the radiation field must be 

such that it can be expanded in transverse modes. 

y 

z 

XBL 895-2054 

Figure 3.1 linear Wiggler FEL in a rectangular waveguide. 
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The geometry of the particular FEL configuration used is shown in Fig. 3.1. Since 

the wiggler field is in the y direction, the electron trajectories will remain in the xz plane. 

The radiation field evolution is described by 

[ 
iP iP ] v; + -- -· -

2 
A'K. (x , t ) = -~1t Ix (x , t ) 

oz2 c2ot 
(3.2.1) 

where Ax.(x,t) is in radiation gauge, and V? is the transverse Laplacian. 

At this point it is worth saying a few words about the choice of gauge. For this 

calculation we use radiation gauge, sometimes called transverse gauge. In 'this gauge, t.he 

equations for the electric and magnetic potentials are 

[
V

2 
- _t__] A (X , t ) = •4c7t Jt (X , t ) 

c2ot2 , 
(3.2.2a) 

and ~ vo<I>(x,t) = ~ J < > 
C Ot C t X,t , (3.2.2b) 

where V·It = 0, (3.2.2c) 

and V x It= 0, (3.2.2d) 

where It is called the transverse current and It is called the longitudinal current. It is 

always possible to separate the current in this manner as indicated by Helmholtz' theorem. 

This separates out those components of the current that actually radiate[23]. Here we are 
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primarily interested in creating a 1-D formalism(i.e. deriving equations that depend only on 

z and t). If we ignore the thickness of the electron beam. then J(x,t) = J(z,t). If this is true 

then Jz does not contribute to the radiation source tenn even for a TM mode where Ez * 

O.This can be seen from eqs. (3.2.2a) and (3.2.2c). Jz only contributes to the longitudinal 

current. Thus, to calculate the radiation fields we need only concern ourselves with the 

transverse component of the current, which is Jx in our example( although the radiation Ez 

can act on Jz and thus affect the FEL evolution). 

''· 
·We now Wish to expand the radiation fields in transverse modes. For the current 

discussion we set Ay = 0, since for the geometry we have chosen Jty = 0. It is simple in 

principle to expand in the most general waveguide modes for an arbitrary geometry, but 

the algebra can become quite tedious. 

We make a particular expansion in transverse modes: 

-
"" Amn ( ) _m1rY . n1ty Ax ( x , t ) = k x z , t cos-a-s1~ (3.2.3) 

m.n;tO 

Here the form of Ax is the same for TE and TM modes. For a TM mode, there is also an 
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Az component. but from the argument just made over eqns (3.2.2), we need not follow Az 

for radiation field evolution. In fact, if we have the transverse components of A at any 

point, the longitudinal component is uniquely determined. To see this, remember the 

justification for separating waveguide modes into TE.and TM modes. If both Ez and Bz are 

known, then Maxwell's equations and the boundary conditions determine all the field 

components. The separation into TE and TM modes allows one to solve a single equation 

for all the radiation components. For the case here, it is simply more convenient to go in 

the other direction and calculate the transverse components flrst[4]. 

This expansion reduces the wave equation to one space and one time dimension. 

(3.2.4) 

where 

(3.2.5) 

(3.2.6) 

At this point it is wonh noting that if we had staned with a different geometry ( a 

circular waveguide for instance), the form of eq. (3.2.6) would be identical. The tenns 'Yt 
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and Jx mn contain all the information relating to the transverse geometry. Thus the 

derivation from this point on is quite general. 

We now make the following substitutions: 

mn k -mn ikz 

J
-+-

Jx (z,t) = .- ~]" (k,t) e 

This leads to 

1 • 

a 
2
. A:"' (k,t) + c2 (it + k2) A:"' (k,t) = 2cJ "mn (k,t) 

dt 

which is the inhomogeneous Helmholtz equation for a dispersive medium in one 

dimension; 

(3.2.7a) 

(3.2.7b) 

(3.2.8) 

The homogeneous solution to this equation just corresponds to modes propagating 

in a current-free waveguide[4]. The inhomogeneous solution is where the FEL physics is 

contained. This equation has the fonn of a forced harmonic oscillator. The solutions to this 

type of equation are well known[24]. The initial conditions of the particular solution we 

are seeking are given by requiring that causality be maintained. We also require that the 

solution be everywhere continuous and smooth. Specifically, ifJxmn(k,t) = 0 for t < 0, 



then we require[25] 

-mn a-mn 
Ax (k,t=O) = ot Ax (k,t=O) = 0 

Given these conditions. the solution of equation (3.2.8 ) can be written 

A:u' (k,t) = 2 f.' dt' lxmn (k,t') sin~ ( t- t') 

.../it+ k2 
0 
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(3.2.9) 

If we now use the inverse transform of (3.2.7b), and substitute (3.2.9) into (3.2.7a ), we 

can write 

A'l"' ( z, t) = l'dtJ: dz' ;, ... (z', t' ).G ( z- z', t- t') (3.2.10) 

where[26] 

J
- sin cV It + k2 (t-t') 

G(z-z',t-t') 2 .l dk e"'l'-''l [ · ] 

1t v It+ k2 

-
(3.2.lla) 

= J o { Yt .../ c2 ( t - t' )2 ·- ( z - z' )2 } ~ c I t - t' I -I z - z' I ] 
' 

(3.2.11b) 

where J o is the zero order Bessel function, and e is the step function which is equal to 1 

for arguments greater than zero and is equal to zero for arguments less than zero. 
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3.3 Derivation of Differential Equation Form 

The integral formulation derived in the previous section is useful in that it provides a 

single integral equation for the radiation field evolution of a particular transverse mode. 

The effects due to waveguide dispersion are automatically included. However, it we wish 

to perform numerical calculations on a computer, most numerical integration packages 

require a set of differential equations as input. In this section we reduce the integral 

equation (3.2.10) to a set of differential equations suitable for following many frequencies 

in an FEL. 

z 

t•·-

To find the field at this point, 
we need to integrate the 
current over the shaded area 

light rays 
traveling at c 

XBL 895- 2055 

Figure 3.2 Domain of integration for integral equation. 
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To calculate Ax mn(z,t) at a point (z,t), one needs to integrate over the region 

indicated in Fig 3.2. To facilitate this integration, we fU'St perform a change of variables as 

follows. 

t = c ( t- t') • 11 = z- z' , 

dt = -c dt' , d11 = -dz' 

After this substitution and an exchange in the order of integration, eq. (3.2.1 0) becomes 

(3.3.1) 

Since we need a finite number of equations for our computer integration we will 

expand Ix mn(z',t') as a sum of components at different frequencies. This corresponds to a 

discrete fourier transform or if the system is periodic it corresponds to a fourier series. 

This expansion can be written 

J~n(z',t') = L ( Cj(z') cosrojl' + Bjn(z') sinrojl') 
j 

Transforming to the variables 11 and t, and substituting in_ to (3.2.1) gives 

-

(3.3.2) 

A~(z,t) = ~ t r:- dll r- dt/ 0 { Yt~ .(- -112 
} [ ajn(z',t)COS(J)j ~ + prn(z',t)sinOlj ~] , 

J Jo J., 
(3.3.3) 



.. 
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where 

a.jm(z',t) = cj (z') cos Cllj t + Bj(z') sin Cllj t , (3.3.4a) 

mn 
J3j (z' ,t) = · cj (z') cos Cllj t - Bj(z') sin Cllj t (3.3.4b) 

If we wish to perform the integration over t, we have two integrals to do. The 

integral containing the cosine term will give a nonzero answer only if Cllj is below cutoff in 

the waveguide. We can ignore this term because in an FEL, only those waves that 

propagate down the waveguide are of interest Performing the integration over the sin term 

gives 

0 

COS ksj 11 
ksj 

(I)· 

for 0 < -f <'Yt 

(I)· ' 
for 'Yt < - 1 < oo c 

(3.3.5) 

where ksj = A ~ • If we now substitute (3.3.5) into (3.3.3) and express the 'V ~-rt 
answer in terms of the original variables we obtain 

A~n(z,t) =]_I, __Lk .J.z dz' [ Bjn(z') cosCil/ - Cjn(z') sinCiljl'] cos(ksj(Z - z')) 
C . SJ 

J -

(3.3.6) 
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In a 1-D computer simulation of an FEL, one usually follows the evolution of the 

radiation as it travels along the wiggler. In a normal FEL only forward traveling waves are 

interesting. We can then restrict the integration over z' as follows: 

This is illustrated graphically in Fig. 3.3. The integration only needs to include the left side 

of the integration region since forward traveling waves emitted in the right side of the 

integration region can't communicate with the point of interest. 

z 

from 
forward 
waves 

t:a- 00 

waves 

light rays 
traveling at c 

XBL 895-2056 

Figure 3.3 Integration region for forward and backward traveling waves. 
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.. To derive the differential equation form we integrate (3.3.6) over an infinitesimal 

distance o, and calculate the change in Ax mn. 

J
z+3 

oA:n (z,t) = .l L _Lk . dz' [ Bjn(z') COSOljt' - cj(z') sinrojl'] cos(ksj(Z - z')) 
C . SJ 

J z 

= ~ L .l...k . [ Bj(z) coSOljt - y(z) sinrojt] o 
C . SJ 

J • (3.3.7) 

Going back briefly to (3.3.2), we see that Jx mn could have been written 

J~(z,t) = L, JSj(z)cos( <l>Jj(Z)- filjt) = L, JOj(z)( cos<l>Jj (z)COSClljt + sin<l>Jj (z)sinWjt] , (3.3.8) 
j j 

where from the previous definition of Jx mn(3.3.2) we have 

y(z) = foj(z)cos<I»Jj(Z) , (3.3.9a) 

Bj(z) = foj(z)sin<I»Jj(Z) (3.3.9b) 

Here <I»1j(z) is not necessarily a linear function. The term Jojmn depends on z only for a 

linear wiggler. In a linear wiggler it contains a term that goes as sin(kwz + cl>w). 

Now we make some definitions for the phases of the various quantities in the 

calculation. For convenience we temporarily drop the j subscripts. The following holds for 

all frequency components. We define the radiation phase as 
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o/s = ksz - rot + $s(Z) , (3.3.10a) 

= <l>s(Z) - rot , (3.3.10b) 

from A~= A~ sin 'l's . We define the wiggler phase as 

<I>w = kwZ + <Pw . (3.3.11) 

From these we defme the ponderomotive phase as previously defined in section 2.2 as 

'V = 'Vs + <I>w • (3.3.12) 

For a strong FEL interaction, the particles must move about the same speed as the 

ponderomotive well. We can then define a phase factor 9p such that 

The definition of 9p(z) is useful only if it varies slowly. 

If we use our definitions to rewrite (3.3.7) we can obtain 

oA;r' = J~~~: O [ sin'lf5 cos( <l>w - 9p) + COS'Ifs sin( <l>w- 9p)] 

If we write jfx mn for the field after the integration, we obtain 

mn [ mn J~(z)cos{ ~w - 9p) 0] . J~(z)sin( ~w - ep) 0 
jfx (z,t) = Axo + k Stno/5 + k COSo/5 

c 5 c s 

The new amplitude is 

• 
(3.3.13) 

(3.3.14) 

(3.3.15) 



mn 
;.txo = 

[ 

mn J~(z)cos( <l>w- 9p) OJ 2 [J~(z)sin( <l>w- 9p) OJ 2 
Axo + k + k c s c s 

[ 

J~(z)cos( <l>w - 9p) OJ :: Ar:G 1 + mn , for 0 ~ 0 . 
Axo cks 

Thus the equation of evolution for the radiation amplitude becomes 

dAmn r ;.tmn _ Am
0
n J~(z)cos( <I>w- 9p) 

~~xO'- _ un xO x ____ ......;.. __ ...;..... 
dz - a -+ o 0 - cks 

The change in the radiation phase cf>5(z) after the integration is given by 

~ ·1 
V\1'5 =tan 

J~(z)sin( <l>w - ep) 
ck 

0 

mn J~(z)cos( <l>w - ep) 
Axo + k 0 
. c s 

From this one obtains the equation of evolution for cf>5(z), 

d<!>s J~(z)sin( <l>w- 9p) - = ___ __..;_ __ ~ 
dz Amn k xOC s 
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(3.3.16) 

(3.3.17) 

(3.3.18) 

(3.3.19) 

To complete the reduction to a usable differential equation fonn, we need an explicit 

fonn of Jxomn. Returning to the specific case of aTE mode in a rectangular waveguide, we 

can evaluate Jx mn(z,t) explicitly using (3.2.6). We define 



Ix(X,t)= lx(Z,t) fJ(x,y) , 

with l' dxlb dy f1 (x,y) = I 
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(3.3.20a) 

(3.3.20b) 

where lx(z,t) is the electron beam current, and fJ(x,y) is the normalized transverse 

distribution of the electron beam. We have assumed that the transverse distribution of the 

electron beam is independent of z. 

We can express lx(z,t) as 

lx(z,t) =- eA.(z,t) Vx(z,t) , (3.3.21) 

where A.(z,t) is the one dimensional number density of electrons and Vx(z,t) is the average 

electron velocity at a particular z and t We can write 

Vx (z,t) = -tlnfc Ax(Z,t) = y"1Cax (z,t) = "il caw sin( kwz + ~) (3.3.22) 

where small letter. a's represent dimensionless vector potentials, as in section 2.2. These 

are obtained by multiplying the vector potential by efmec2· In (3.3.22), ax is the total vector 

potential, including the radiation fields and the wiggler field, and aw is the amplitude of the 

vector potential of just the wiggler field. 
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If we assume that the transverse distribution of the electron beam is a delta function 

in the center of the waveguide, then we obtain 

cos Il¥Isin n1l 
J~(z,t) = ~ aw ~r 2 2 sin( kwz + <Pw) , 

(1 +Onto) 
(3.3.23) 

where 

## particles 
'I ( ) "" S( z -. Zt (t) ) 
ll.eff z,t = k 

1 'Yl 
(3.3.24) 

One can see that the expansion of Jx. mn in (3.3.8) is equivalent .to the expansion of "-err in 

(3.3.23). With this identification we can write 

cos Il¥Isin nz.. 
JW'(z) = ~ aw A.o· · 2 2 sin{kwz + <Pw) , 

J ab 1 (1 + Onto) 
(3.3.25) 

where Aoj is the amplitude of the jth component in the expansion of A.err. 

Now if we normalize the vector potentials by~· and if we use (3.3.25), then the 
ffieC 

equations of evolution for the radiation fields, (3.3.17) and (3.3.19) can be written 

d mn 

~~ = fjn [ sinepj - sin ( epj - 2kwz)] ' (3.3.26a) 



with 

mn ffn 
d~Psj = _j_[cos9pj- cos {epj- 2kwz)] , 

dz amn SJ 

m1f_· ll1l 
4 2 cos -r-sm 2 ~ = _7[e aw ~...------'---__...-~ 

J llleCab 1 
(1 + Omo) 

(3.3.26b) 

(3.3.26c) 
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3.4 Reduction of Differential Equations to KMR Form. 

Only one substitution really needs to be made to reduce the radiation evolution 

equations to the form of the KMR equations derived in section 2.2. We will drop all j 

subscripts in this section since the KMR equations follow only a single frequency. For 

convenience we will also drop all the mn superscripts and follow only a single transverse 

mode. To start, we view fig 3.4. 

:.c 9 ~ A. ! p ! 
eft 

• 
t. 

t' 

XBL 895-2057 

F1gure 3.4 Change of coordinates. Primed frame has f • 0 when 'I' • 0 . 

In Fig. 3.4, A-err is plotted. In the top plot, the coordinates are chosen so that only 

the cosine component of A.err is nonzero. In this case 



and 

Aeff(Z(t)) = AQ(Z) COS rot , 

Z1!. 

Ao(Z) = {,!1 . r (I) dt Aeff(Z(t)) COS rot 
7t Jo 

If we use the t' coordinates instead, then 

So 

Aen{z(t')) = Ao(z) cos (rot' - 9p) , 

= A.o(z) cos 9p cos rot' + A.0(z) sin 9p sin rot' 

ln. 

Ao(Z) cos9p = {,!1 r (I) dt' Aerf(z(t')) cos rot' ' 
7t Jo 

Z1!. 

and Ao(Z) sin9p = {1l r (I) dt' Aerf(z(t')) sinrot' . 
7t Jo 

Substituting eq. (3.3.24) and performing the integration gives 

Ao(z) cos9 = ~ L cos rot'I 
p 1t I VJ "ft ' 

Ao(z) sin9 = ~ L sin rot't ' 
p 1t I Vt "ft 
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(3.4.1a) 

(3.4.1b) 

(3.4.2a) 

(3.4.2b) 

(3.4.2c) 

(3.4.3a) 

(3.4.3b) 

where v1 is the velocity of the lth electron. Noting that t'=O corresponds to the point where 

'lf=O, and noting that the time dependence of 'V goes as rot, then we can replace rot in eqs. 

(39) with 'V!t where 'VI is the ponderomotive phase of the lth electron. Thus 



" 
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ro (cos "') A.Q(z) cos9p = -Nbuc -- , 
.1t V1 

(3.4.4a) 

A.Q(z) sm9p =,mNbuc· --. (sin"') 
. 1t V1 ' (3.4.4b) 

where Nbuc is the total number of electrons per period , and < > denotes an average over 

particles. For reduction to the KMR form of the equations, we set v=c although this is not ' 

a good approximation in all cases. Combining eqs. (3.4.4) with eqs. (3.3.26) gives 

das = 87tle COS 2 . SID 2 aw Sin 'JI nm.·n.K \ ) 
dz IIleC3 k5ab ( 1 + Onto ) 1 

and _dq,_s = 8ztle . cos IDf sin 1 aw I cos."') 

dz IlleC3 ksab ( 1 + 8mo ) a, \ 1 

where 1 = eroNbuc . 
21t 

(3.4.5a) 

(3.4.5b) 

Eqs. (3.4.5) are just the KMR equations for FEL radiation in a waveguide[5][21]. 



Chapter 4 

Effect of Dispersion on 
Single Frequency FEL's 
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4.1 Waveguide Corrections to the KMR FEL Theory 

In this chapter we will examine some of the effects waveguides have on FEL's that 

can be described by a.modified KMR theory. In his thesis, Jonathan Wunele has 

considered those effects that occur because of multiple transverse waveguide modes[5]. 

Therefore, we will confine ourselves here to effects cause by dispersion on a single 

transverse mode. 

We begin by considering how the particle dynamics of the electrons are changed 

because of interactions with the waveguide. The particle equations of motion for an FEL in 

a waveguide are 

and 

dyj =- ro a,aw sin 'If· 
dz 2c 'Yj J 

d'lfj = kw + ok, + dc!»s - .J.IL [ 1 + a; l 
dz dz 2ci 2 

(4.l.la) 

(4.l.lb) 

·The only change from the free space FEL particle equations is the introduction of the term 

ok, in the 'If equation. Explicitly ok, = k5 -
00/c , which we set to zero for free space 

propagation in section 2.2. The term ok, is negative in magnitude and is absolutely 

. 
necessary for describing an FEL in a waveguide. The magnitude of ok5 compared to kw is 

to some extent a measure of the dispersion of the waveguide. 
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We now examine the FEL resonance condition of (2.3.1). Modified for a 

waveguide, this becomes .. , 

(4.1.2) 

If we solve this for the magnetic field strength aw. we get 

(4.1.3) 

As the dispersion increases, ok5 becomes more negative and therefore aw decreases. One 

consequence of dispersion is that the magnetic field required to maintain resonance is 

decreased. Physically the larger ·aw is, the more the parall'el velocity of the electrons are 

slowed. The resonance condition has to do with the phase of the radiation, so the radiation 

phase velocity is the important quantity here. In a waveguide the phase velocity of the 

radiation is increased as the dispersion is increased. Therefore , aw doesn't need to be as 

large to match the electron parallel velocity to the radiation phase velocity. 

One interesting consequence of (4.1.3) is that it sets a minimum 'Yr for an FEL. We 

must have 

(4.1.4) 

for the FEL resonance to be possible. This sets a limit on the amount of energy that can be 
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extracted from tapered wiggler FEL's. In a waveguide this constraint can be much more 

severe. The term kw + Bks can approach zero(remember Bks is negative) which means that 

.. the lower limit for Yr can become quite large . 

If one carries out the linear analysis of section 2.3 with the FEL equations (4.1.1), 

one obtains a modified value for the synchrotron wave number ksynch(2.3.7) and the 

bucket height B"tmax(2.3.8). These are 

(4.1.5) 

and (4.1.6) 

In the expression for ksynch• as the dispersion increases both aw and the term (kw + Bk5 ) 

decrease. Thus one result of dispersion is that synchrotron periods become longer. The 

expression for the bucket height is less obvious because there are terms in both the 

numerator and denominator that decrease with dispersion. We can note however from 

(4.1.3) that aw goes roughly as .Jkw + Bks so that on balance, the bucket height ought to 

increase as dispersion increases. 
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Waveguide dispersion also has an effect on FEL gain. Using the results of section 

2.5 we can see that approximately, the only particle quantities that affect the gain are aw 

and "fr, which we keep fixed. From section 2.5 we know that in the exponential gain 

regime the output power goes as egz, where g is proportional to [aw]
2
h. In the linear gain 

regime, the change in output power goes as aw2. Since we have already determined thiu aw 

decreases as the dispersion is increased, then one would expect to find that the gain 

decreases as the dispersion is increased. 

From all the previous analysis, one might conclude that something important if not 

c~tastrophic happens when kw ~ Ok5 = 0. If this condition occurs, then all our calculated 

quantities are undefined. Physically, this condition is the same as setting the 

ponderomotive phase velocity equal to c. Since the electrons can never actually go at the 

speed of light, the FEL resonance is impossible to achieve. This can only occur in a 

waveguide since the FEL ponderomotive potential always moves at less than the speed of 

light in a vacuum. The condition that the ponderomotive velocity should be less than c 

leads to the following inequality: 

Ol > d k~ + ~;" J (4.1.7) 

This inequality is more restrictive than just requiring the frequency in the waveguide to be 

above cutoff. For the ELF experiment at Livermore kw = 0.641 cm· 1, and 
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rocuton=3.24xl010 rad/sec. The condition (4.1.7) requires that ro > 3.69 x 1010 rad/sec. If 

kw becomes small ( the wiggler wavelength becomes large), then this inequality can give a 

much higher value of ro than the cutoff. 

The dispersion in a waveguide can also cause two resonances to exist for a 

particular set of physical parameters. To see how this can occur, please view Fig. 4.1. 

Dispersion Curve for Waveguide FEL Resonance 

k s XBL 895-2058 

Figure 4.1 Black denotes the waveguide dispersion curve and 

grey denotes the FEL dispersion relation . 

Here we have plotted the waveguide dispersion curve and the FEL dispersion curve. The 

FEL dispersion curve consists of setting the ponderomotive phase velocity equal to ~" 



98 

which is the parallel velocity of the electrons divided by c. Note that for most parameters 

these curves will intersect in 2 points. In principle it is possible to have only a single 

intersection, but this would mean that kwc~11 > rocutoff which is difficult to realize in 

.. 
practice. The points of intersection can be calculated. They turn out to be 

kw ± I<;, _ .;..toll( _l_ _ 1 ) 
A c2 A2 m =·_..,_ .. ______ ___;::..;....,_ .. _..:-__ 

c (;.~-I) 
(4.1.8) 

For the parameters of the ELF experiment at Livermore the resonances occur at 34.6 GHz 

and 6.5 GHz[38]. Using a computer simulation, to be described in great detail in the next 

chapter, the output spectrum of the ELF experiment was calculate(;! for an initial input of 

white noise. The results are plotted in Fig. 4.2. 

Note that since the scale is a log scale, the lower resonance has a significantly lower 

gain. The lower resonance is also much narrower. These peaks can be amplified 

simultaneously only in the linear growth regime. The resonances each have a different 

bunch length, so as the interaction of the radiation with the beam becomes nonlinear, each 

resonance will interfere with the amplification of the other. If an PEL is started from noise, 

one would expect to measure only the upper resonance because of its higher gain. 



.. 
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CD := 
0 a. 

Radiation Spectrum from Noise for ELF 

0.0 1.0 2.0 3.0 4.0 5.0 

F X1do t"n Hz requency XBL 895-2059 

Figure 4-2 Radiation spectrum amplified from white noise. The fact 

that there are two peaks is due to waveguide dispersion. The 

frequency at each peak has the same phase velocity . 
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4.2 Efficiency Enhancement in Waveguide FEL's 

In section 2.6 a simulation was run of a tapered wiggler FEL modeled on the ELF 

experiment at Livermore. It was demonstrated that the efficiency of a tapered FEL is 

limited by the percent of the current trapped in the bucket (ponderomotive well). For the 

parameters in that simulation, one can see that the trapping efficiency was on the order of 

68%(see Fig. 2.10). This leaves considerable room for improvement. In this section, we 

will describe a scheme for improving this trapping efficiency by altering the waveguide 

in the middle of the FEL. 

In the last section we saw that .the waveguide can have a significant effect on the 

FEL gain and bucket height ( eq. 4.1.6). To see how these properties can be used, let's 

consider the desirable characteristics of a tapered FEL. 

In preparing for the taper it is desirable to have a tightly bunched electron beam. 

Now as a general rule. nonlinearities tend to cause the electron distribution to fill the 

entire bucket during bunching. Therefore, during bunching, it is better to have a small 

bucket. This implies that a bunching section should have as small an amount of 
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dispersion as possible. Since small dispersion also implies higher gain, a less dispersive 

bunching section has more than one feature to recommend it. This is subject to practical 

• considerations such as the gap in the wiggler magnets and the maximum attainable field 

in the wiggler magnets. 

When tapering is started, it is desirable to have the largest bucket possible and the 

electron beam bunched as tightly as possible in the center of the bucket. If the beam is 

not tightly bunched, then a taper will not succeed in decelerating most of the electrons. 

· The large bucket implies that a large amount of dispersion would be beneficial. in this 

region. 

Bunching wiggler 

" 
Tapered wiggler 

\ 

[siNisiNisi~TI 
Electron beam 

Waveguide 
XBL 895-2060 

Rgura 4.3 Configuration for enhancing the extraction efficiency of a waveguide FEL. 
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One possible scheme to maximize FEL efficiency is shown in Fig. 4.3. The FEL 

is split into two parts. First we have a bunching wiggler section. The waveguide size and 

wiggler parameters are chosen so as to maximize the gain and to minimize the bucket 

height. The second wiggler section is tapered and its parameters and the waveguide are 

chosen so as to maximize the bucket height. The drift region is used to match between 

the two sections. In this drift region the waveguide is tapered and any necessary magnets 

are added to match between the two wigglers. 

Before showing a numericll;l example, we will derive the matching conditions for 

the radiation and .the electron beam across the drift region in a rectangular waveguide. 

For the radiation, the change in phase across the drift region can be written 

(4.2.1) 

where m and n are the transverse mode numbers, a and b are the width and height of the 

waveguide, and L is the length of the drift region. If we have an electron bunch entering 
.. 

the waveguide at t = 0, then the change in radiation phase relative to the electron bunch 

at the exit of the drift r~:gion is given by 

~<Prel =~<!>drift- C.Otb =~<!>drift- ~L~ 1 - "{2 
(4.2.2) 



.. 
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where tb is the time required for the electron bunch to traverse the drift region. The 

condition for matching then becomes ~cl»rel = 2xn, where n is any integer. Most of the 

parameters are already determined by design considerations for the two wiggler sections. 

However, the length of the drift region, L, can always be adjusted to satisfy the matching 

condition. 

For a 1-D FEL simulation, the matching condition is all we require. In a real FEL 

there are further considerations necessary in the drift region. The waveguide taper must 

be designed to avoid unwanted mode conversion. Also in a real FEL, the wiggler end 

fields from both wiggler sections will intrude into the drift region. Additional focussing 

elements may be necessary. making the relation (4.2.2) overly simplistic. While the 

actual implementation of the scheme described in this section might be more complicated 

than a 1-D analysis would suggest, there seem to be no major impediments. 

In addition to allowing one to alter the bucket height, the scheme of Fig. 4.3 

allows one to introduce a phase shift before entering the tapered wiggler. This follows 

from ( 4.2.2) where we need not set ~cl»rel = 2xn. When tapering is initiated, particles tend 

to be lost from the tail end of the bunch. If we introduce a phase shift so that the electron 
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bunch is slightly advanced relative to the FEL bucket, then this tendency can be 

minimized. 

One potential problem with this scheme is that we noted in the last section that 

for a particular set of physical parameters there was a limit to how low the resonance 

energy can get in a waveguide( 4.1.4 ). If the waveguide is fairly dispersive then this value 

could be rather high. Whether this is a problem or not will depend on the particular 

application. The dispersion lowers the necessary wiggler field strength to achieve 

resonance. with the electrons. If the dispersion is too high then resonance might not be 

achievable at the desired energies with any finite wiggler field. However, magnets at 

lower field strengths are generally cheaper to manufacture. This might produce a tradeoff 

between the amount of energy extraction and costs. At any rate, the highest bucket height 

possible is desirable at the entrance of the tapered wiggler. If the minimum resonance 

energy is reached funher down the wiggler it should be possible to taper the waveguide 

to ease this restriction, since by the time it becomes a problem the radiation field should 

be large enough to provide a rather large bucket. .. 
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A simulation has been performed to demonstrate the scheme of Fig. 4.3. The 

results are shown in Figs. 4.4 - 4.7. The design is not optimal for the scheme, but is 

modeled on the ELF experiment at Livermore and uses the parameters from Table m. 

The two simulations are identical up to 1.6 meters where the untapered FEL reaches · 

saturation. In both cases the second wiggler section is 2.4 meters in length. The first 

simulation is just that of ELF for the particular taper used with no drift region. The taper 

was chosen so as to lower the energy to 'Yr = 4.3 at the end of the wiggler. This value was 

chosen so as to avoid any problem with minimum resonance energies. This first 

simulation is shown in the (a) frames of the plots. The secon~ simulatien used a drift 

region that reduced the height of the waveguide from 2.9cm to 2.0cm. It also introduced 

a phase shift of the electrons of 0. 7 radians relative to the ponderomotive well. This 

simulation is shown in the (b) frames of the plots. The distances in the plots show the 

distance from the start of the second wiggler. 

Beam Energy 
Beam Energy in y 
Beam Current 
Wiggler wavelength 
Radiation frequency 
Waveguide width 
Waveguide height 
Input radiation power 
Wiggler Peak Field 

Table Ill 
4.14 Mev 
8.1 
800 amperes 
9.8cm 
34.6 GHz 
9.8cm 
2.9cm 
60 KWatts I TE01 mode 
4.67 KGauss 
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Rgure 4.4 The smaller waveguide in (b) has a larger bucket area allowing 
increased trapping of electrons. Electrons closest to the separatrix are likely to be lost. 
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The first thing to notice is the size of the bucket heights for each simulation at the 

beginning of the second taper. This is shown in Fig. 4.4. The separatrices drawn in the 

· figures are just to estimate the actual bucket since in reality an FEL is a highly nonlinear 

device. One can see that for the more dispersive waveguide, the bucket is significantly 

larger. This can be seen in Fig. 4.5 to lead to a higher degree of trapping and therefore in 

Fig. 4.6 to a larger amount of radiated power. In Fig. 4.7 we can see that the wiggler 

fields required in the (b) simulation are less than half of what was required in the (a) 

simulation. 

For the ELF-like parameters used in these simulations, the trapping efficiency 

improvement is from about 65% to 75%. This is significant but not tremendous. FEL's 

like ELF arenot designed to be efficient and reliable power sources but are meant to be a 

flexible experimental apparatus. In the future as FEL power sources become routine, 

designers will need every trick available to make the FEL more efficient and 

inexpensive. 

.. 
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5.1 General Description of the FEL Sideband Instability 

In this chapter, the FEL sideband instability will be studied in great depth. An 

analysis based on formalism from nonlinear optics will be developed and the results will 

be compared with computer simulations. Of primary interest are the structure of the 

sideband spectrum and those conditions that can lead to suppression of the sideband 

instability. 

Before discussin_g the details of sideban? research we will introduce the subje~t 

with a heuristic model of FEL sidebands. An FEL that is saturated introduces an 

additional frequency to the electron motion. Bunching and subsequent trapping of 

electrons in an FEL can be described by electron interaction with a ponderomotive 

potential. In an FEL this potential is formed by a beat wave between the wiggler field 

and the radiation field. This beat wave forms a train of potential wells that travel at a 

uniform velocity. If the initial electron velocity is close enough to the velocity of the 

potential wells then there will be a strong interaction and the particles will bunch as they 

give up energy to the radiation field. When the radiation field saturates, there will be 

some electrons with insufficient energy to escape from the potential wells. These 

" 
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trapped electrons oscillate in potential wells 

...... . .... 
Rgure 5.1 Electrons trapped in the ponderomotive potential undergo small 
oscillations at the synchrotron frequency. These oscillations modulate the original electron 
current and therefore can interact strongly with radiation frequencies that have 
appropriate matching conditions. . 
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electrons are said to be trapped. For deeply trapped electrons, the ponderomotive 

potential appears the same as a pendulum potential. These electrons oscillate in the well 

at what is known in the FEL literature as the synchrotron frequency. This is analogous to 

the bounce frequency used in plasma physics. 

Synchrotron oscillations are only apparent in the regime of a saturated FEL. 

When the radiation is growing rapidly, the ponderomotive potential steepens and 

therefore the synchrotron frequency changes too rapidly to be well defined. The 

synchrotron oscillations modulate the electron beam so as to produce additional current 

components at the radiation fundamental plus and minus the synchrotron frequency. 

These current components can produce an instability that grows exponentially. This is a 

parametric amplification process and it is imponailt since it can lead to degradation of 
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the FEL output spectrum and it can cause the electrons to be detrapped from the original 

ponderomotive well. 

Figs. 5.2 and 5.3 show some computer simulations to illustrate the nature of the 

synchrotron oscillations. 

Yave ~-~~ 
\ \; 

~ 

Distance XBL 895-2066 

Figure 5 . .2 Typical evolution for the average energy of the electrons in an FEL. 
This simulation was chosen for the pronounced synchrotron oscillations after saturation. 
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Figure 5.3 Simulations of the bunching and subsequent oscillation of the electrons 
in an FEL. The oscillation is represented in phase space as an orbit around the FEL 
resonance. The separatrices are calculated according to a linearized FEL analysis and 
are.plotted to give an idea of the region in which electrons are trapped. 

115 



116 

5.2 Description of Previous FEL Sideband Research 

In this section we briefly review previous sideband research. FEL sidebands have 

been the subject of many studies because of the potential impact on FEL performance. 

Research has mostly concentrated on FEL's in an oscillator configuration, though 

sidebands can also occur in high-gain amplifiers. In either case the physical mechanism is 

the same. 

One of the first papers on FEL sidebands was written by Norman Kroll and 

Marshall Rosenbluth[ 42]. It is an impressive work, since it predicted many properties of 

sidebands that were subsequently confirmed. 

Kroll and Rosenbluth begin by writing a set of two frequency equations for the 

particle evolution in terms of y and 'If, with one frequency being the FEL fundamental and 

the other being the FEL sideband. Assuming that the amplitude of the sideband is much 

smaller than that of the fundamental, one can derive a pendulum equation(as in eq. (2.3.3)) 

where there is a penurbative forcing term due to the sideband frequency. The phase of the 

particles is expressed in terms of 'If and 'I'R· with 'I'R being the phase defined by the 

wiggler field and the sideband wave. 
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The gains of the fundamental and the sideband are written 

2 iL g = cop aw (sin 'V~ )dz 5 2ro5c ~ 
0 

Y ' (5.2.1a) 

gR = ~ aw iL (sin '~'Pi )dz 
2~caR Y ' 

0 

and (5.2.1b) 

where these are integrals over the equations for the field amplitudes of the fundamental and 

the sideband. The R represents sideband quantities and the bar over the integrand indicates 

an average over particles. The equations are the same in all respects to (2.2.16) except for 

slightly different normalizations. The authors do not state so explicitly, but the averages 

are equivalent to picking out the respective Fourier components of the fundamental and the 

sideband. 

Next, the authors calculate the quantity G = gR/g
5

, which is the relative gain of the 

sideband and the fundamental. Since the sideband is being treated as a small perturbation 

in the pendulum equation, the particle orbits can be integrated to first order in the sideband 

amplitude. Assuming perfect bunching, i.e. all the particles enter the wiggler exactly on a 

single point, the orbits are insened into the expressions (5.2.1) and integrated. The result 

is 
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G = QL CllR [sin
2 (caR- Q)L/2) - sin

2 (cnR + Q)L/2) l 
4sin 2'Jfr ros [caR- Q)L/2]2 [cnR + Q)L/2]2 J , 

C5.2.2) 

where Q is equivalent to ksynch in (2.3. 7), L is the length of the wiggler, 'Vr is the resonant 

ponderomotive phase, and aR = Clls - CllR kw . The result they achieve is somewhat Clls 
worrisome because of the sin'Jfr in the denominator. Since 'Vr is nonzero only in tapered 

wigglers this would imply that something qualitatively different happens in an untapered 

wiggler, which is not actually true. However, their result allows them to draw some of the 

following conclusions . 

.. 
This expression shows a resonance at nR = ± n. These resonances correspond to 

the lower and upper sidebands. The relative gain for the upper and lower sidebands are 

opposite in sign. This means that in a situation when the lower sideband is amplified, the 

upper sideband should be damped. From this result, they make the assenion that sideband 

generation is a process similar to stimulated Raman scattering where the lower sideband is 

the Stokes wave and the upper sideband is the anti-Stokes wave. This is a correct 

assertion, but they make no funher use of the analogy. 

In the latter part of their paper, Kroll and Rosenbluth perform a kinetic analysis for 

FEL sidebands. They conclude that for most reasonable particle distributions where the 



119 

particle density is higher in the center of the FEL bucket, it is the lower sideband that will 

be driven by the instability.lf the particle distribution increases in amplitude away from the 

center of the,bucket, then the upper sideband should be unstable; 

Another useful study of the FEL sideband instability was made by Colson[ 43]. He 

examines three regimes: the short pulse oscillator, the long pulse oscillator, and the high 

gain amplifier. To generalize his results he expresses the equations of evolution in terms of 

dimensionless parameters and uses a numerical simulation to draw conclusions. 

In short pulse oscillators it is important to match the light pulse and the electron 

pulse for each pass of the oscillator. Due to "laser lethargy" effects, however, the gain is 

preferentially deposited at the tail of the light pulse. Therefore the optimum gain would be 

achieved by making the resonator a little bit shorter than matching conditions would 

indicate. Colson finds that when this "desynchronism" is set to maximize the gain of the 

fundamental, then the sideband instability can grow. This causes sharp spikes in the 

radiation pulse and produces a broad optical power spectrum. If the desynchronism is 

large enough to reduce the gain. of the fundamental, then the sideband instability can be 

suppressed. Thus one way to suppress sidebands is to alter the slippage between the 

electron pulse and the optical pulse for each pass through the oscillator. 
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For an FEL, there is a characteristic slippage length. This is determined by the 

relative velocities of the electrons and the radiation pulse. If both pulses started at the same 

point at the beginning of the wiggler, they would be separated by this slippage length at the 

end of the wiggler. For modeling long pulse oscillators, where one can have electron 

pulses that are many slippage distances long, Colson introduces a useful numerical 

concept. It is somewhat redundant to follow the entire electron beam in a simulation since 

sections in different parts of the beam will exhibit the same behavior. The initial noise 

might be somewhat different, but in an oscillator this is not very important. Colson uses 

only a small slice of the electron beam with periodic boundary conditions. These "wrapped 

window" simulations are able to capture the sideband behavior with a great savings in 

computer time. The size of the window is essentially a limit on the number of modes that 

can be examined. 

Some properties of FEL sidebands are observed in both the short and long pulse 

regimes. Increasing the current or increasing the Q of the resonator also increases the 

sideband instability. Using a tapered wiggler decreases the production of sidebands. 

Colson attributes this to the fact that tapering decreases the depth of the ponderomotive 

wells and a smaller number of electrons are trapped in the FEL bucket. 
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Colson also produces a few conclusions for sidebands in FEL amplifiers. He finds 

a current threshold for the sideband instability. Also, in an amplifier, the initial noise is 

quit~ important as opposed to an oscillator where it is not. The lower the input noise level 

in an amplifier, the lower the sideband power should be. 

Another interesting contribution to the FEL sideband literature has been made by 

Davidson and W urtele. They develop their own formalism that allows them to examine 

sideband stability with a dispersion analysis[44]. Using this formalism they are able to . . 
study the effect of untrapped electrons on the sideband instability[45]. This is important 

since in any real FEL, the trapping of electrons is imperfect. Some electrons are always 

untrapped. Their analysis suggests that if the fraction of untrapped electrons remains less 

than about 0.2, then the sideband instability is relatively unchanged. When the fraction of 

untrapped electrons becomes greater than 0.2, then there can be substantial modification of 

the sideband spectrum. Generally, the untrapped electrons seem to produce power on the 

opposite side of the fundamental from the normal sideband instability, i.e. if the lower 

sideband is usually unstable then the untrapped population will add to the upper sideband 

spectrum. 
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Another contribution to the FEL sideband literature was made by Riyopoulos and 

Tang[ 47]. Their general approach to the sideband problem is similar in nature to that of 

Kroll and Rosenbluth[46]. Using kinetic theory, they examine the effect of sidebands on 

electron trapping. When the sideband power passes a cenain threshold, then the electron 

orbits no longer quite close on themselves and the system becomes stochastic. Riyopoulos 

and Tang estimate the diffusion rate of these electrons and compare this to numerical 

simulations. The theory and the simulation seem to match quite well. The detrapping of 

electrons due to stochastic diffusion can limit FEL performance, though only in tapered 

wiggler FEL's will the performance degradation be severe. 

The analyses mentioned here have all used 1-D equations to predict the behavior of 

FEL sidebands. Sharp and Yu have performed an analysis that predicts the effects of finite 

beam size on sideband generation[48][49]. They use a 2-D Vlasov equation to describe 

panicle motion in a helical wiggler FEL. While the effects of a 2-D geometry are included, 

the effects of betatron motion on sidebands are ignored. They find that 2-D effects can be 

ignored when the following conditions are satisfied: the slowly varying radiation phase is 

close to the value predicted by 1-D theory, the sideband mode is largely confined to a 

region where the electron beam density variation is small, and the wall radius of the beam 

pipe enclosing the system is more than twice that of the electron beam radius. They also 
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derive an analytic expression that is an inequality which estimates when 2-D effects are 

negligible. 

Finite radius electron beams seem to decrease the growth of the sideband instability. 

Sharp and Yu have numerically observed as much as a 40% drop in sideband growth over 

the 1-D case. Another effect is that the peaks for the sideband gain are further from the 

fundamental than in the 1-D case . 
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5.3 Previous Work on FEL Sidebands in Waveguides 

As work progressed on the Two-Beam Accelerator project, where electron bunches 

undergo many synchrotron oscillations in the device, people became interested in the 

physics of sidebands in waveguides. It was suggested by myself that if the group velocity 

of the radiation was equal to the electron velocity, then no information could travel along 

the beam and therefore no longitudinal instabilities would be able to develop. 

The physics of the regime where the radiation group velocity and the electron 

velocity are equal is not well described by FEL equations that use the usual paraxial or 

eikonal approximation. Since the eikonal approximation neglects second derivatives, the 

radiation dispersion is completely absent from the evolution equations. Another problem 

involves the estimate of the sideband location. The usual way to estimate sideband location 

is to say that the sidebands will be separated from the fundamental by an amount equal to 

the synchrotron wavelength[50]. Explicitly 

[(ks ± 6k) + kw] z- (w5.± 6w) t = ksynch z , (5.3.1) 

where die and 6w are the shifts of the sideband from the fundamental. If v11 is the parallel 

electron velocity then z = v11 t. If we use the resonance condition (1)5 = (k5 + kw)v1 ~o and use 



.1c.o = d.m. .1k = v group.1lc. then one can express .1c.o as 
dk 

.1c.o := ksynchC 
1- Vul 

1Vgroup 
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(5.3.2) 

This would indicate that as the electron velocity approached the radiation group velocity, 

the sidebands separate funher from the fundamental. This sideband shift has been 

experimentally observed by the Columbia FEL research group[52]. This relation works 

well when the dispersion is relatively small, but it breaks down as v11 ---+ Vgroup· This is not 

surprising since we expanded in small .1k. As the sideband frequency gets funher from 

fundamental this assumption breaks down. 

To examine the effect of dispersion on sideband gain, Yu et al. perform an analysis 

where the second derivatives of the radiation field quantities are kept[ 51]. The radiation 

equations used were 

-+....a...-+ (aa aa) 
az vg at 12tl 

a2cp a2cp) 
az2 -~ at2 = (5.3.3a) 

t(ala l a2a) 
az2 c2 at2 

(5.3.3b) 

where the new terms have been boxed and the following terms and normalizations are 

used: 
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Yr= and Ok = k5 - COs ' c . (5.3.4) 

Other than these definitions. the terms are the same as the notation of Kroll, Morton and 

Rosenbluth(Chapter 2). Some cross terms have been dropped, but the equations (5.3.3) 

produce the identical dispersion relation as when all terms are kept. 

Using the new radiation equations, a dispersion analysis was carried out to 

determine sideband stability and location. Some results are plotted in Figs. 5.4 and 5.5. To 

read these plots we have to define 

(5.3.5) 

and (5.3.6) 

where o is a measure of the dispersion and <l>'o is a factor that can be thought of as a 

normalized current density. Fig. 5.4 shows that adding dispersion to the radiation 

equations produces quite different results in a waveguide than the usual paraxial wave 

equation. Fig. 5.5 shows regions of stability and instability for FEL sidebands depending 

only on the parameters <l>'o and 0. Achieving vg = v11 is not necessary to stabilize the 

sidebands. The analysis performed indicates that one need only come relatively close to 

this condition to stabilize the sidebands. 
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Figure 5.4(ref.52) Growth rate of the sideband instability as a function of S for 

vg - 0.9886c, kfkoyac.b = 79.5 , and ~'0 • 1.09. Note that the instability disappears well 

before S • 0. 
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Figure S.S(ref. 52) Regions of stability and instability for the sidebands as a function of 

Sand cp'0 . 

127 



128 

While this theory provides some useful insight into the effects of dispersion on FEL 

sidebands, it is somewhat limited. There are some implicit assumptions of slowly varying 

amplitude and phase in the source terms of eqs. (5.3.3). The dispersion analysis of these 

equations also always give sidebands that are symmetric around the fundamental which is 

not always accurate. The analysis also makes it hard to produce a simple physical picture 

of sideband processes. A more detailed analysis is necessary and is the subject of the rest 

of this chapter. 
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5.4 Multiple Frequency Waveguide Simulation 

The computer simulation described in this section was written to examine sideband 

generation in a highly dispersive waveguide. Instead of using a single electromagnetic 

wave equation with the slowly varying amplitude and phase approximation, this code 

calculates an amplitude and phase at each frequency it follows. In effect, instead of 

following a range of frequencies, the code follows many discrete frequencies. The 

radiation field at each frequency is moved at the correct phase velocity so that dispersion is 

properly included. 

The radiation equations that are integrated are those shown in (3.3.26). The particle 

equations are just the Lorentz force equation reformulated in suitable variables. The 

equations are integrated with z as the independent variable so that each frequency is well 

defined. For convenience we rewrite the equations here. They are 

da~n ;nn( . 9mn . ( mn )] dz = Jj SID pj - SID 9pj - 2kwz , (5.4.la) 

mn :Jr'n 

d<!>dsj ·= _j- [cos a;;' -cos ( e:;' -2kwz)] ' 
z a"'n SJ . 

(5.4.lb) 

with 

0 m1l. Im. 
n 4 2 mnC S 2 SID 2 :t' = zte aw A.o· --=-"----"-"-

J IlleCab J ( 1 + Bmo) 
(5.4.lc) 
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These are the radiation equations for each Olj and are just those given in (3.3.26). The 

particle equations are 

dyi aw(Z) dax(Z,t) 
-=---~~.:.j 

dz 'YiC at t=tt 
(5.4.2a) 

dti- 1 

dz - c A I 1 - 1 + aa(z) 

'V i 

and (5.4.2b) 

where aw is the normalized wiggler vector potential and ax is the normalized vector 

potential of the radiation field. The fields are written in this fashion to include all of the 

Fourier components. Explicitly we can write 

~ ~ mn . ( mn . mn) ax(z,t) = ,£.., ,£.., a5j sm kj z- Oljt + <l>sj , (5.4.3) 
m,n j 

where we have summed over all waveguide modes and radiation frequencies. 

Just as all the radiation components must be summed in the particle equations, the 

particle orbits must be summed so as to produce the source term for the radiation 

equations. The two factors that must be calculated from the particle equations are Aoj and 

epj· They can be calculated from eqs. (3.4.4) which we rewrite 

mn mn m_ (cos 'I'Jn) Aoj (z) cos9pj = N buc • 
1t Vz'Y 

(5.4.4a) 

( 
. .,;nn) - mn . mn sm '!'j 

Aoj (z) sm9pj = !Al.Nbuc 
1t Vz 'Y 

(5.4.4b) 
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where 'lfjmn is the ponderomotive phase corresponding to the frequency COj. and Vz is just 

the inverse of the right side of (5.4.2b). 

Since the equations contain the tenn Vz, they will show oscillations at 2kwz for a 

linear wiggler; It is desirable to average these equations for the purpose of calculating FEL 

resonance and for a simpler comparison to theory. This can be performed in the same 

manner as the averaging done in section 2.4. Resonance can be calculated from the 

ponderomotive phase equation (2.4.8b) which gives 

(5.4.5) •. 
with 

(5.4.6) 

Numerically, this can be solved to an arbitrary accuracy, however in general one only 

keeps a small number of terms. Because of the number of terms necessary for reasonable 

accuracy, and because of the Bessel functions that must be calculated, the averaged 

equations actually take more computer time to integrate than the unaveraged equations. The 

averaged equations are useful primarily as a check that the equations are consistent. Also 

since the form of the averaged linear wiggler equations is the same as the form of the .. 

equations for a helical wiggler, then results for one type of wiggler can be carried over to 

the other type with the inclusion of the proper Bessel function terms. 
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In order to illustrate the differences between results from the averaged and 

unaveraged equations, a simulation was performed where the FEL fundamental and its 

flrst two harmonics were allowed to interact with the electrons. In one simulation, the 

exact unaveraged equations were integrated, and in the other simulation the averaged 

equations using the flrst four terms in the expansion of vz-t were integrated. 

The simulation parameters are shown in Table IV. The relativistic energy factor y 

is small enough that the ratio aw/y is not negligible. In fact, for the parameters used, this 

ratio is just over 0.3. This means that at least several terms in the expansion of vz-1 are 

necessary to achieve numerical accuracy. 

The average value of y is plotted in Fig. 5.6. The fust feature to notice is the 

oscillations in the unaveraged simulation. These oscillations have a period of half the 

Table IV Simulation parameters 
Relativistic energy y 7.2 
Wiggler peak field 3.80 kG 

Wiggler wavelength 9.8 em 

Radiation frequency 34.6 GHz 

Beam current 800 amps 

Waveguide size 9.8 X 2.9 em 
Initial radiation power(TE01) so kW 
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Figure 5.6 A plot of the relativistic energy factor y verses distance. The solid black 
line represents the unaveraged equations. The thick gray line represents the averaged 
equations. 
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wiggler wavelength. These· are directly due to the modulation of the transverse electron 

velocity in a linear wiggler. The averaged equations produce a curve that is close to that 

produced by the unaveraged equations. The fact that these curves are not exactly aligned 

means that more terms in the expansion of vz-1 are necessary for that additional 

numerical accuracy. Given the highly nonlinear nature of the FEL equations, the 

agreement in Fig. 5.6 is actually quite good. 

There are other concerns in averaging besides strict numerical accuracy. The 

averaging can obscure what is actually occurring. Figure 5.7 shows the 2nd harmonic 

radiation from the FEL simulation. Here the curve for the averaged equations follows 
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Figura 5.7 Plot of radiation power vs. distance for 2nd harmonic radiation. 
The black curve represents the unaveraged equations. The thick gray curve represents 

the averaged equations. 
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about where it should. However. the unaveraged curve shows additional physics. Just 

from looking at the curve from the averaged equations one might interpret this to show 

that the 2nd harmonic is amplified depending on the relative phases of its ponderomotive 

well and the ponderomotive well of the fundamental. While this relation might give the 

strength ofthe interaction. the fact is that any radiation emitted at the 2nd harmonic is 

reabsorbed by the electron beam by the time the electron beam undergoes a quarter of a 

wiggler oscillation. Thus we would not expect to measure any 2nd harmonic from FEL 

interaction. Any power at the second harmonic would be incoherent radiation produced 

by end fields in the wiggler. This is a different prediction than if we used only the 

averaged simulation. 
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Rgure5.8 Plot of 3rd harmonic vs. distance for the unaveraged equations. 

Another pitfall of averaging that we must look out for is averaging out something 

by accident. In Fig. 5.8 the 3rd harmonic for the unaveraged equations is plotted. The 

equivalent plot for the averaged equations is not shown since the values for the averaged 

equations are 3 orders of magnitude smaller. This enhancement of the 3rd harmonic in 

the unaveraged equations is due to the fact that the 2kwz oscillation in v z interacts with 

the kwz oscillation of the wiggler field to produce a 3kwz oscillation in the radiation 

source term. This enhances the production of incoherent radiation at 3 times the 

fundamental frequency. 
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For some of the simulations to be performed, we will be interested in the 

amplification of radiation from noise. There are two possible sources of noise in a 1-D 

simulation. These are in the electron distribution and in ambient radiation. 

The noise from the electron beam results from the fact that a realistic electron 

distribution will not fill phase space completely uniformly. Due to this, there will initially 

be a small but finite value of the Fourier component of the current at each frequency. 

These frequency components will lead to incoherent emission of radiation that can then 

be amplified by the FEL process. 

There are several possible origins for incoherent radiation that can be amplified 

by the FEL process. Already mentioned are the nonunformities of the electron beam. 

There is also the incoherent radiation emitted by the electron beam from interaction with 

the wiggler magnetic field. Also present is shot noise from the accelerator used to 

produce the electron beam. The shot noise can ·be estimated by writing down a circuit 

equation for the accelerator. 
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Realistic estimates of the noise present in an FEL amplifier can be important in 

some FEL designs and this subject has been treated in detail elsewhere[53 ]. For the 

purpose of the study to be performed here, the actual levels of noise are not so important 

as long as we can get a reasonable measure of the FEL gain at the frequencies of 

interest. To this end we provide our 1-D simulation with the simplest reasonable way of 

including noise in the calculation. 

Since we don't wish to include noise in the electron distribution, we must make 

. sure that no unwanted frequencies are introduced by the initial particle loading .. It is 

necessary to use what is known as a quiet load. The simplest method of loading the 

particles is to place them on a rectangular grid. This is adequate as long as one wishes to 

examine- frequencies that have periods far from the particle spacing. The periodicity of 

the grid can be broken by offsetting the particle positions. This must be done subject to 

the constraint that no Fourier components be added to the distribution. In the simplest 

form of particle offsetting, particles must then be moved in pairs. 

We will include noise only in the initial radiation spectrum and not in the initial 

particle distribution. Since inhomogeneities in the electron distribution result in 
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incoherent radiation, this is not unreasonable. In any case, any tractable computer 

simulation based on the equations used here would have too few panicles to accurately 

model the noise in the distribution. In addition, the equations (5.4.1) make it necessary to 

have some initial radiation at all frequencies. This is because of the radiation amplitude 

in the denominator of (5.4.lb). 

Since we are primarily interested only in the gain, we will assume that the initial 

radiation spectrum consists of white noise, i.e. the radiation power spectrum is the same 

at all frequencies. The panicle distribution will be initialized so that all Fourier 

components of the current are initially zero. The radiation has an input for the power in 

the noise such that the initial power is spread over all frequencies to be followed in the 

simulation. 

In Fig. 5.9, the spectra from several simulations are plotted. In these simulations, 

the total power in the noise spectrum was respectively 0.5, 5.0, and 50.0 watts. One can 

see from the log scale that each peak is 10 times the previous one. This would seem to 

confirm that the gain was the same in each simulation. The spectrum has a roughly 

parabolic shape which is what one would expect from the discussion of section 2.5. 
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5.5 Physics from FEL Sideband Simulations 

In this section we will examine some sideband simulations to illustrate some 

physics from full many-particle-per-bucket simulations. We will also compare some of 

these results with a single panicle per bucket simulation to study the validity of a single 

particle per bucket model. 

The simulations that follow use the parameters of Table V for inputs. One 

simulation will be· in an· untapered wiggler. The second simulation will use a tapered 

wiggler that .statts its taper at 1.4 meters and reduces the wiggler field to 55% of it's 

original value by the end of the wiggler. A spectrum of random noise in the radiation was 

used as input. It was assumed to be shot noise with a power of about 150 mW per GHz. 

This was about 5 watts total noise input for the frequencies followed. 

Table V 
Beam Energy 3.68 Mev 
Beam Energy in y 7.2 
Energy spread in y ±0.5 
Beam Current 800 amperes 
Wiggler wavelength 9.8 em 
Radiation frequency 34.6 GHz 
Waveguide width 9.8 em 
Waveguide height 2.9 em 
Input radiation power 60 KWatts I TE01 mode 
Wiggler Peak Field 3.80 KGauss 
Particles/bucket 272 
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Figure 5.10 Total radiation power vs. distance for (a) an 
untapered wiggler, and (b) a tapered wiggler . .. 
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slope soon after the tapering begins shows that particles are being 
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Figure 5.12 Spectrum at 3.5 meters for (a) an untapered 
wiggler and (b) a tapered wiggler. The power in the sidebands in the 
tapered wiggler is less in magnitude than the untapered case. The 
sideband power is also relatively smaller, since the fundamental power 
is much greater in the tapered wiggler. 
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Fig 5.10 shows the total radiation power produced. In each simulation, the 

sideband power is always several orders of magnitude less than the fundamental, so this 

power is essentially the power in the fundamental frequency. Since this is an unaveraged 

1-D simulation, the power exhibits small oscillations on the length scale of 2kwz. The 

tapered wiggler FEL produces almost an order of magnitude more power than the 

untapered wiggler. 

Fig. 5.11 shows the slowly varying radiation phase of the fundamental frequency. 

Even though the simulation is unaveraged, the plot for the untapered wiggler is almost a 

straight line. In the plot for the tapered wiggler, the curve changes slope soon after the 

tapering is initiated. This is because electrons are being detrapped from the FEL bucket. 

As the electrons are lost, the interaction with the radiation is weaker and the slope of the 

curve decreases. 

Fig. 5.12 shows the radiation power spectrum at 3.5 meters for both cases. The 

power in the sidebands for the tapered wiggler is significantly less than the power in the 

sidebands in the untapered case. This has several causes. First of all there was significant 

electron detrapping in the tapered case. By 3.5 meters only about a half of the original 

.. 
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electrons are still in the bucket undergoing synchrotron oscillations. Not only can 

substantial detrapping occur in tapered wiggler FEL's, but the bucket itself is 

smaller(narrower) when the wiggler is tapered. Also in a tapered wiggler FEL, the 

synchrotron wave number can change substantially. If the power during the tapering 

changes by say a factor of 10, then the synchrotron wavenumber which goes as the founh 

root of the power will change by 1.8. The sideband instability depends on the coherence 

of the synchrotron oscillation. If this oscillation varies over distance, then sideband 

growth will be inhibited. 

In order to demonstrate that sufficient accuracy was obtained by the computer 

simulation, two more untapered runs were perfonned. The number of panicles that were 

used varied in each simulation. If a sufficient number of panicles are used, then the 

results will not depend greatly on the initial conditions. Fig. 5.13 shows a comparison of 

the spectrum of these runs. It can be seen that the 528 and 272 panicle/bucket runs give 

essentially the same results. The 528 panicle/bucket run give slightly better resolution 

near the fundamental. The 144 panicle/bucket run stans to show some erratic behavior 

since there weren't enough panicles to achieve good resolution, however, the major 

features of the spectrum are shown reasonably clearly. 
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Figure 5.13 Comparison of simulations with different number of 
particles. The results don't depend too much on the number of particles as long 
as a certain threshold number are used. 

The simulations shown exhibit complicated behavior. In order to reach an 

understanding of the physics involved, we wish to study a simpler system that can 

reproduce the general behavior of the full system. To do this, a version of the FEL 

simulation can be run that has only a single panicle per bucket. This simulation can only 

study saturated FEL's since the single panicle represents a bunch of electrons and the 

electrons are tightly bunched only after saturation. The equilibrium of the single particle 

per bucket simulation can be chosen so that the particle starts at the exact center of the 
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bucket, or at any other position. If the particle is not centered in the bucket, the 

equilibrium will display synchrotron oscillations at some chosen amplitude. 

In order to understand how the single-particle-per-bucket simulation relates to the 

full simulation, we have to understand its limitations. First of all, its accuracy is limited 

to the situation where the fundamental is the dominant frequency. If any other frequency 

has a power on the order of the fundamental, then the FEL bucket is no longer well 

defmed. Therefore, to study saturation effects in sidebands one must use a more complete 

simulation. 

Another limitation is that in a realistic simulation, the bunching of the electrons is 

imperfect. One way this shows up is in the evolution of the slowly varying radiation 

phase. The single-particle-per-bucket simulation gives the maximum slope possible for 

that particular current, since in the many-particle-per-bucket simulation the term that 

drives the slow radiation phase has an average over the particles. Fig. 5.14 shows the 

evolution of the radiation phase in the case where the parameters are chosen to be the 

same as that of the untapered simulation shown earlier at saruration(Fig. 5.11 a). Note that 

the slope is larger. This will produce a shift in the output spectrum from the many

particle-per-bucket simulation. 



(/) 

c: a 
. .J 

" a 
(_ 

20.0 

15.0 

10.0 

5.0 

0.0 

rodl..otl..on phose 
frequenc~- 0.346e+llhz 

/ 
/ 

/_ 
/ 

v v 

0.0 50.0 100.0 150.0 200.0 250.0 
di..st.once XBL 895-2076 

Figura 5.14 In the single-particle-per-bucket simulation, the 
bunching is at a maximum. Note that the slope here is larger than that 
of the equivalent many-particle-per-bucket simulation of Fig. 5.11 a. 
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Also in the many-panicle-per-bucket simulation. the electron distribution will be 

spread around the bucket. This means that different parts of the distribution will have 

different synchrotron wave numbers. Remember that in a pendulum, the larger the 

amplitude of the oscillation. the more nonlinear terms contribute and the slower the 

frequency gets. The many particle simulations in this section were chosen purposely to 

have a large energy spread so that the electron distribution fills the entire bucket. This 

shows clearly that large synchrotron amplitudes are not necessary to drive the sideband 

instability. What matters is the shape and depth of the ponderomotive well that confines 

the electrons. 
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Rgure 5.15 Exponential gain coefficients calculated for the 
untapered many-particle-per-bucket simulation. Only the part of the plot 
to the left of the dashed line were a good fit to an exponential. 
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Figure 5.16 Exponential gain coefficents calculated from the single
particle-per-bucket simulation. The different curves are for different synchrotron 
oscillation amplitudes. The particles are started at different phases relative to 
the center of the bucket. As the amplitude increases, so does the gain. As the 
electron approaches the edge of the bucket, its synchrotron period changes and 
therefore the peaks move relative to the fundamental. 



150 

To see how the two types of simulations compare, exponential gain coefficients 

were calculated for both. An exponential curve was fitted to the radiation amplitude at 

each frequency. One must always check that the result is believable, since a curve that 

was far from an exponential would give a spurious result. A gain curve was calculated 

for the many-particle-per-bucket simulation in the regime after saturation. The result is 

plotted in Fig. 5.15. Only the lower sideband curve was a good fit to an exponential, so 

we will use only that part of the curve as the basis for comparison. 

In Fig. 5.16 there are gain curves for the single-particle-per-bucket simulation. 

All the curves here are a reasonable fit to an exponential. Each curve represents a particle 

with a different initial synchrotron oscillation amplitude. One can see that as the particle 

stans funher from the center of the bucket , the spectrum of the lower sideband becomes 

wider and the peak moves funher from the fundamental. 

The spectrum for the particles that are far from the bucket center looks very much 

like the spectrum of the many-particles-per-bucket simulation. The gain is smaller in the 

many-panicle-per-bucket simulation, but this is to be expected since the many competing 

frequencies would inhibit sideband gain. It would seem that a single-particle-per-bucket 

. 
simulation would be a legitimate way to gain insight into FEL sideband physics. 
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5.6 FEL Sidebands as Stimulated Scattering 

In this section, it is demonstrated that sideband generation in FEL's is a process 

completely analogous to stimulated scattering. The upper and lower sidebands 

correspond respectively to the anti-Stokes and Stokes waves in a stimulated scattering 

process. For a more detailed discussion of stimulated scattering processes see refs. [54] 

and [55]. 

Three Wave Scattering Processes 
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Figure 5.17 Three-wave scattering processes. (a) is the Stokes scattering 
case where an initial pump wave scatters into a Stokes wave and an oscillation 
in the scattering medium. (b) is the anti-Stokes case where an anti-Stokes wave 
and an oscillation in the scattering medium combine to create the pump wave. 

b 

To start let's describe the types of stimulated scattering processes we will be 

examining. Fig. 5.17 shows the possible three-wave scattering processes. By media 

oscillation, we mean any oscillation or wave that can interact with the radiation. These 

could be molecular vibrations in a gas, phonons in a crystal, plasma oscillations, sound 
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waves or quantum levels in an atom. The case of Stokes scattering is always possible in 

such a medium. However, for anti-Stokes scattering, there must be some energy already 

present in the media oscillation, or in other words the medium must. have a finite 

temperature or a nonthermal excitation. These processes must conserve energy and 

momentum. This means that in most systems the Stokes wave is a backscattered wave. 

Four Wave Scattering Processes 
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Rgure 5.18 Four-wave scattering .process. The pump wave scatters into a 
Stokes and anti-Stokes wave through a "Virtual" media oscillation. 

Another scattering process imponant to our discussion is a four-wave process. 

Here the pump wave scatters into a Stokes and an anti-Stokes wave. The media 

oscillation is a vital pan of this process, but on balance no energy or momentum are 

transferred ~o the medium. It is then possible to- create an anti-Stokes wave in a "cold" 

medium in a four-wave process. 
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Model of Stimulated Scattering for FEL Sidebands 
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Rgure 5.19 Electron bunches in the ponderomotive well performing synchrotron 
oscillations can be modeled as charged harmonic oscillators. The radiation scatters into 

lower sidebands(Stokes wave) and upper sidebands(anti-Stokes wave). 
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In an FEL. sidebands are seen only when the electron beam is tightly bunched 

and the fields at the fundamental frequency are rather large. For the purposes of 

modeling sideband growth we will assume that the electron bunch .can be represented by 

a single macroparticle with equivalent mass and charge. Our system then begins to look 

like Fig. 5.19 where the electrons oscillate in a harmonic oscillator potential that is 

driven by the FEL radiation. The radiation is scattered by this interaction into upper and 

lower sidebands. In a three-wave interaction, the lower sideband( Stokes wave) can grow 

when there is no initial synchrotron oscillation in the electrons. If there is some 

synchrotron osdllation initially, then scattering to the upper sideband(anti-Stokes wave) 

is allowed and the sideband will grow at the expense of the synchrotron oscillation. For 

the case where there is no initial synchrotron oscillation, the upper sideband can only 

grow in a four-wave process. 
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To demonstrate that sideband generation in FEL's is just stimulated scattering, 

computer simulations were performed with a single macropanicle per FEL bucket to 

model the electron bunch. The simulation parameters are almost identical to those in 

Table I, except that the input power is 200 Mwans. 

The plots in Fig. 5.20 are simulations where there was no initial synchrotron 

oscillation. These plots demonstrate just what one expects for stimulated scattering in a 

cold medium for a three-wave process. In Fig. 5.19a only the lower half of the spectrum 

is allowed to grow in the simulation. Since we expect this to be the Stokes .wave, there 
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Figura 5.208 When only the lower sideband is allowed to grow, there is 
substantial gain. This is consistant with Stokes scattering in a three-wave 
process. 
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Figure 5.20b When only the upper sideband is allowed to grow, there is no 
gain at all. This is consistant with anti-Stokes scattering in a three-wave process. 
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should be plenty of sideband growth, which is what one observes. In Fig. 5.20b only the 

upper half of the spectrum is allowed to grow. We would expect that there would be no 

growth for these initial conditions and that is in fact what one observes. 

In the case where there is an initial synchrotron oscillation, the upper sideband 

can grow. In Figs. 5.21 and 5.22, the simulation is staned with a large synchrotron 

oscillation, but otherwise the inputs are the same as for the simulations in Fig. 5 .20. One 

can see that there is growth in the upper sideband spectrum. As the upper sideband 

grows, the synchrotron oscillation is damped out. This is also consistent with our picture 

of stimulated scattering. 
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When there is some initial synchtrotron oscillation, the upper 
sideband can grow in a three-wave process. 
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Figura 5.22 In a three-wave process, the upper sideband (anti-Stokes 
wave) must grow at the expense of the synchtrotron oscillation. 
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If we now allow both upper and lower sidebands, i.e. four-wave processes are 

now possible, then it is possible to get upper sideband growth when there is no initial 

synchrotron oscillation. Fig. 5.23 contains a simulation that illustrates that this is in fact 

what occurs. 
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Figure 5.23 In a four-wave process, both upper and lower sidebands can 
grow when there is no initial synchrotron oscillation. 

It can be seen that FEL sidebands exhibit all the expected behavior of a 

stimulated scattering process. Thus the formal methods for calculating gain that are used 

in nonlinear optics should be directly applicable to FEL sidebands. In section 5.7, a set of 

coupled wave equations are derived and expressions for sideband gain are calculated and 

compared to the single-paiticle-per-bucket computer simulation. 
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5.7 FEL Sideband Dispersion Analysis 

In this section we will derive the dispersion relation for sideband gain in an FEL. 

The methodology that will be used closely parallels that of parametric amplification in 

nonlinear optics. Here our nonlinear medium is the bunched electron beam. We will derive 

a wave equation for each radiation frequency. The different frequencies will couple to each 

other through the electron beam whose motion will be described by a modified pendulum 

equation. The advantage to this type of analysis is that the equations for free space and for 

a waveguide are identical. The physics of sidebands in a waveguide can be understood by 

examining the phase matching conditions detennined by the set of equations. 

From chapter 3 we can write a 1-D wave equation for each radiation mode in a 

waveguide. Rewriting eqs. (3.2.4),(3.2.5), and (3.2.6) gives 

[ 

2 2 l d d n2 mn mn 
-

2 
- -· -

2 
- 'ft' Ax (z , t ) = - ~ 1x (z , t ) , 

dZ C2dt 
(5.7.1) 

where 

(5.7.2) 
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... 1 xmn(z,t) = . Szt la dxlb dy cosmltX sin°: J,(x,t) . 
ab(l + Omo) o 0 a 

(5.7.3) 

If we wished to do a plane wave analysis in free space we would just set 'Ytmn = 0, and set 

lxmn(z,t)=2ztlx(z,t). The form of the wave equation is therefore the same. Since we are 

primarily interested in FEL's in waveguides we will keep all the waveguide notation. For 

convenience we will drop the waveguide superscripts m and n since the analysis is valid 

for a single waveguide mode. 

We can now write Ax and lx as a Fourier series to obtain 

(5.7.4) 

where we have normalized the vector potential by e/mec2, and where n is a subscript that 

labels a particular frequency. Explicitly J{l)ft is 

r2nf~ 
Jroll(z) = ~Jo dt lx(z,t) a· i(I),J ' (5.7.5) 

where we have defined a periodic interval with angular frequency roo. If we follow a 

section of beam with Nbuc FEL buckets and if C.0 5 represents the fundamental FEL 

frequency, then C.Oo = NbucC.05 • This period does not enter the final answer and so in 

principle can be as large as necessary to achieve any arbitrary frequency resolution. The 

periodic boundary conditions are used to make the calculation as dose to the computer 
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simulation as possible, but the same answers can be achieved with a continuous Fourier 

transform. We can write the current density as 

Jx<z.t> = ~ :L o(z- zt<t>)vxt<z> • as! (5.7.6) 

where ! is the index for each particle and as is either the beam cross sectional area in free 

space, or a fllling factor in a waveguide that is given by 

cos m7t sin n1l 
_1_=...4.. 2 2 
as ab (1 + Omo) 

(5.7.7) 

where once more a and b are respectively the x and y dimensions of the waveguide and m 

and n represent the waveguide modes. We can now write 1om explicitly as 
• 

(5.7.8) 

Since we are assuming that the particle motion is detennined to zeroth order by the 

ponderomotive well formed by the wiggler field and the fundamental radiation frequency, 

it will be convenient to change variables. From chapter 2 we know that we can write the 

ponderomotive phase as 'If = (kw + k5)z - W 5t + cj)5(z), where kw is the wiggler wave 

number, k5 is the radiation wave number for a vacuum filled waveguide, and <l>s is the 

slowly varying phase from the radiation interaction with the electron beam. We can solve 

for t in terms of 'If, but to be consistent with the many bucket model we cannot restrict 'V to 

be between -7t and 7t. We will write 'If = 21tp! + 'If', where P£ is an integer giving the 
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bucket index and 'If' is between -1t and 1t. The expression for JCJ),. can now be written 

J ( ) =- ~ e·i (m./c.Q.I(k. + k.) z + Q.(z)] """ Vxt...z) ei (m./c.Q.)'V; e·i (m./m.)27tPt 
CJ)" z,'\jl ~as f vz!...z) , (5.7.9) 

where once more !is a particle index. From eq. (2.2.8) we know we can write 

caw0(z) . 
vxt...z) = sm kwz , 
. "({ 

(5.7.10) 

where awo is the amplitude of the dimensionless wiggler vector potential. We will also 

reexpress Vz£ as cl3zt· At this point we will also assume that 'Yt and 13zt are essentially the 

same for all the particles. This is very nearly true and it will allow us to express the current 

entirely in terms of 'Ill and z. So dropping the l's on"( and J3z we obtain 

J CJ)rl( Z, '\jl) = -~ ~ ~ sin (kwz). e-i ( m.Jm.{ {k. + k.) z + ~z>] L e i ( m./m.)v; e -i ( m./m.)21tPt 
~z l 

(5.7.11) 

Since we are deriving equations for a linear wiggler, we expect from section 2.4 to 

have terms in the current that vary from each other by factors that go as a sine or cosine of 

2kwz. To average (5. 7.11) over this length scale, we will first write the sinkwz term in 

complex form. Then in analogy with the averaging procedure of section 2.4 we will write 

'Ill= '!foe+ '1'2 sin(2kw z) , 

and ..L; K1- K2 cos 2kw z , 
J3z 

(5.7.12) 

(5.7.13) 
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where 

and 

3(!12 + .l a4) 15( 1!12 + 1 a4 + li a6) aa. ._ 2 w 2 .._ 2 w 32 w 
K2= -+ + + ... 

4f st 48f 
(5.7 .14b) 

The factors of (5.7.11) that we wish to average can then be written 

(5.7.15) 

If we express the exponentials in terms of sines and cosines, we can use the identities 

+oo 

sin< r sin a) = 2 I , 2n+ 1 < r > sin« 2n + t> a> • (5.7.16a) 
n=O 

+-

cos < r sin a > = , o < r > + 2 I , 2n < r > cos < 2n a ) • (5.7.16b) 
n=O 

where the J's represent Bessel functions. We will keep only leading terms so the average 

becomes 

F" = K ( 11 ro"K2] _ J [~] ) + K21J ro"K2] 
ave 

1 ll_ 2ckw 1 2ckw 2 ll_ 2ckw 
(5.7.17) 

The Fourier component of the current J(J)II can now be written 

J (z "')=-''""....c..~ F" eik.z e·i (cn.!~{(k. +k.) z+o.<z>] ~ ei (cn./~)'llote·i (cn./~)21tPt . 
(1)11 , .,. - ........, as y ave 2i f 

(5.7.18) 
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We need to make one more approximation before the radiation equation is in a 

suitable form for the subsequent analysis. Since the panicles are considered to be deeply 

trapped in the bucket we will assume that 'lfot << I. We can now expand the exponential 

· · Th fi f h · · 1 d · ~ e·i (m../ro.'fl.'ltPc o h. contammg 'lfoc. e rrst term· o t e expansion 1s an smce ~ = , t ts 
{ 

term can be ignored. It can be seen that the sum adds to zero by remembering that W5 and 

w" are frequencies defined in a Fourier series of the current. As long as (1)5 :¢: w"' this sum 

vanishes. The next term in the expansion will just pull out the argument of the exponential. 

We can then write 

J.,.(z.v>"- i' -£1 ~ •-; P, •• e•><.z e·' ("-'.,{<•· +k.) <+<Mz>] f. ,..e·' ("-'.,)2""• ,(5.7.19) 

We now wish to derive an equation of motion for 'If in terms of the radiation fields. 

If we start with a more general form for the radiation field vector potential 

(5.7.20) 

then in a derivation following section 2.2, the particle equations of motion can be written 

dy =- wsasaw [sinw + L w~" sinw"] . 
dz 2c 'Y Ws<ls •s 

(5.7.21a) 

and d'lf = kw+ ks- Ws + d<!>s -~[1 +a~] 
dz c dz 2c:i 2 

(5.7.21b) 

The factor 'lin is the ponderomotive phase determined by the nth radiation component. We 
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wish to rewrite this in terms of the ponderomotive well of the fundamental since by 

assumption, the field at the fundamental is much larger than at any other frequency."'" can 

be written as 

'lf11 = (kw+ kJ Z - 0011t , (5.7.22a) 

= (kw+ kJ Z -
00

" [{kw+ ks) Z + dcps] + 00"'1' 
OOs dz OOs 

(5.7.22b) 

By taking the derivative of (5.7.21b) and substituting in (5.7.21a) we can derive a 

modified pendulum equation. This becomes 

·2 

d "' ~.-2 . ~.-2~ oon3o" . (e < ) oo" ) -- + "<Jsm 'If=-~~ -- sm "z --v , 
dz2 OOsaos OOs 

n~s . 

(5.7.23) 

where 8"(z) = (kw+ kJ z- OOn [ (kw+ k5) z + cp5(z)] , and lea is the synchrotron wave number 
OOs 

and is given by 

~ = oo; aw0 aso( 1 + aa.o) 
2c2y4 

(5.7.24) 

If we had used the low y equations of section 2.4 to start, the form of (5.7.23) would be 

identical. The synchrotron wave number kc,, however, would have a different form. Since 

we are assuming that a" << a5 , then we can treat the right side of (5.7.23) as a 

perturbation. 
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.. To use this equation we have to relate it to the radiation equation. Using (5.7.20) 

and the fact that aom is a Fourier coefficient for the radiation field we have 

- -
ax(Z,t) = L an()Sin ( kraZ - (l)"t +(j)"(z)) = L aco" eico..t ' (5.7.25) 

ll= 0 r&= ..00 

where we now identify aom = fao" e-i(k~ + C!l.(z)). If we write 'If = 27tpc +'If', and assume 

that 'If' <<1 in order to expand the exponentials, and if everything is written in complex 

form, then we have 

(5.7.26) 

Here we have ignored the factor <P" compared to k~. This is also equivalent to absorbing 

the exponential of <P" into the factor aom. This equation plus the radiation equation 

iaco" + (~ - it)aom = 
az2 c2 

...e._ co,.~ F" eik.z e·i (co../co,f(k. + k.) z + C!lo(z)] L . e·i (co../co,)27rPc 
- '''"' - ave 'Vt 

""'JQBCl\y ( ' 
(5.7.27) 

provide the basis for all subsequent calculations. The total derivative in the '!"equation can 

be written as a partial derivative since the ponderomotive phase is comoving with the 

electrons which we have assumed are deeply trapped in the ponderomotive well. Thus the 

system is identical to that of coupled harmonic oscillators. 
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To see which frequencies will couple with each other we need to change the form of 

eqs. (5.7.26) and (5.7.27). We will separate out a fast phase that we will write out 

explicitly, and a slow phase which will be calculated in the subsequent dispersion analysis. 

. • - - ik..z - ikoz -• - ikaz We will wnte the fast phases as aom = ao" 8 , and 'lf'c= 'l'oc8 + 'Jfoc 8 , where 

the * denotes complex conjugate. The trick is now to match combinations of the fast 

phases to see which terms have strong interactions. Rewriting the particle equation gives 

Remembering the definition of 6,.. we now define the following phase factors 

&u = kw+ k" • (I)" [(kw+ ks} + diPs] + leo- , 
(l)s dz 

(5.7.29a) 

&L = kw+ k" • (I)" ·[(kw+ ks} + diPs]. leo- , 
(l)s dz 

(5.7.29b) 

&2u = kw+ k" · (I)" [(kw+ k5} + diPs] + 2ko , 
(l)s dz 

(5.7.29c) 

&2L = kw+ k" • (I)" [(kw+ ks} + diPs]. 2ko-
(l)s dz 

(5.7.29d) 

dk:u = 0 defines a frequency 00u and similarly the zeros of the other phases define different 

frequencies. A set of coupled equations can be. derived by setting each phase in (5.7.29) 

equal to zero and matching nonoscillating terms. The particle equations can be written as · 
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Similar manipulations on the radiation equation will produce 

a2aou _ 2iku aaou = ~ aw0 ?ave rou 2: 'Vot e~k.zei<m..tro.)2np, • 
az2 az 111ec3 OBY N buc c 

(5.7.31a) 

a:lioL -2ikL aaoL = ~ !!&.. F~ve~· 2: 'V~c e~kLzei(~/oo.)2npc ' 
az2 az IlleC3 OBY Nbuc c 

(5.7.31b) 

where we have used roo= NbucOls, 

The coupled equations (5.7.30) and (5.7.31) provide a basis for the study of FEL 

sidebands. For now we will ignore the 2u and 2L terms in (5.7.30) and the radiation 

equations we could derive for them. This will leave us with a system of four waves 

described by Clso. the fundamental, 'Voc, the synchrotron oscillation, and aou and aoL, 

respectively the upper and lower sidebands. We can make this identification of the upper 

and lower sidebands by examining the phase conditions (5.7 .29). For free space these 

conditions imply 

(5.7.32a) · 
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(5.7.32b) 

These turn out to be identical to the sideband location predicted in previous analyses. 

However, if we use the waveguide dispersion relation in the phase matching condition, we 

get more complicated formulas. Explicitly 

Olu = (kw;. ko)vp {I± 
[~-~ 

and 

ffiL=(r~r {I± 
where vp is the phase velocity of the ponderomotive well defined by the fundamental 

frequency and the wiggler field. Explicitly 

V - O>s p-

( k + k I dcf>s) 
w s dz 

(5.7.34) 

Note that there is a± in the expression for the frequency of the sidebands. In a waveguide 

there can be two frequencies that have the same phase velocity. Therefore there can be two 

lower sidebands and two "upper" sidebands. Upper is in quotes since one of the solutions 

for 6ku = 0 lies below the fundamental frequency. There will not necessarily be 

amplification at all of these frequencies, but in the next section it will be shown that at least 

in the lower sideband spectrum, two peaks can be produced. 



169 

To avoid confusion with the terminology of upper and lower sidebands we will 

refer to the waves defined by .1kL = 0 as the upper and lower Stokes waves, and the 

waves defined by .1ku = 0 as the upper and lower anti-Stokes waves. Since the lower anti-

Stokes wave actually lies below the fundamental, it is somewhat misleading to call it an 

"upper" sideband. 

If phase matching is impossible, there may be circumstances where .1k is small 

enough to produce amplification. Phase matching is impossible if the relation inside the 

square root in (5.7.33a) or (5.7.33b) is negative. In that case we expect gain to be a 

maximum where .1k is at a minimum. The maximum gain, if there is any, is therefore at 

m.=g' (5.7.35) 

where vp is as defined in (5.7.34). Note that leo does not come into this relation. The gain 

in these circumstances will be small at best 



170 

5.8 Three-Wave Analysis 

In our three-wave analysis we will assume that the FEL fundamental, or pump 

wave, is not depleted at all during the interaction. Thus we can take a5o and d<l>s as 
dz 

constants. Therefore only two equations are required. For Stokes wave gain we need the 

equations with aoL(5.7.3lb), and \ji~t(5.7.30b). We will substitute 'iioL = aoL ePIZ' and 

-· -'l'oc= 'l'oc9P2Z, where the p's are complex. The resulting equations are 

(py- 2ikLPt)aoLePtz = ~ aw0 F~ve c.or.. L 'iiOcePlle~zei(~lco.>21tpr , 

mec3 aaY Nbuc t 
(5.8.1a) 

and (p~ - 2i}G,p2)~~Pll = -~ OlL iioL ePtze- iakt.ze- i(~co.)27tpc , 
COsaso 

(5.8.lb) 

The equations (5.8.1) imply that Pt = P2 + UlkL. Eliminating the coefficients aoL. and 'iiQc 

will produce an equation for p 1• The terms that go as e± i(~co.)27tpc will cancel leaving a 

factor of L 1. This is a sum over all particles and may be replaced by Nbucnbunch. where 
{ 

Nbuc is the number of buckets and nbunch is the number of particles per bucket. We can 

also write nbunch as nbunch = l2zt. The fourth order equation for Pt then becomes 
e COs 

Pt- 2i(kL + Lll<L + ko)pi-

(Llkt + 2lCoLlkL +4kLLlkL + 4kLk(,)py + 2ikL(Llk[ + 2kaLlkL)Pt + F = 0 

where in free space 

(5.8.2) 
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F = ..2.&.. awa !a Frve ro[ 1tot , 
IIleC3 aso y ooi (5.8.3) 

Jtot being the electron beam current density. In a waveguide 

nm. . n1l 2 
8 I cos 2 sm 2 a "'~ m• F _ _zt e w0 !!Sl. FL .=!:£ 

- abil'lec3 (1 + Bmo) aso y ave ooi (5.8.4) 

where I is the total beam current, m and n are waveguide indices, and a and b are 

waveguide dimensions. 

Using the same procedure, a dispersion relation can be derived for the anti-Stokes 

wave. The result is 

P1- 2i(k.L + LlkL ~ l<o)p~ -

(Llk[- 2~LlkL + 4kL~L- 4kLko)py + 2ikL(Llk[- 2~LlkL)Pl + F = 0 ' (5.8.5) 

where the term F~ve in F has been replaced by Pave. and cot. has been replaced by <J>u. 

Note that the choice of P1 a real root means exponential growth or damping. Since 

the complex factor i only appears for odd powers of Pt. the dispersion equation can be 

written with all real coefficients by writing Pl = ip't· This implies that real roots of Pt 

come in pairs of positive and negative roots. We will now compare roots calculated 

numerically from the dispersion relations (5.8.2) and (5,.8.5), with roots calculated from a 

single particle per bucket computer simulation. 



Beam energy in y 7.2 
Radiation frequency 34.6 GHz 
Wiggler wavelength 9.8 em 
Beam current 800 amps 
Input radiation power 200 MW 
Waveguide mode TE01 

TABLE VI 

Waveguide 
x djmensjgn 

4.74 em 
9.80 em 

11.37 em 
14.21 em 

y djmensjgn 
6.00 em 
2.90 em 
2.50 em 
2.00 em 

Wiggler oeak fjeld 
4.00 kG 
3.80 kG 
3.70 kG 
3.46 kG 
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Table VI shows the input parameters to the simulations. Each simulation staned 

with a panicle in the center of each FEL bucket. Four waveguide cases were used with 

varying amounts of dispersion. All were chosen so that the total waveguide cross 

sectional area was the same in each case. In order to get a comparison for only a three-

wave process it is desirable to suppress all four-wave interactions. This is achieved by 

only allowing one half of the spectrum in the simulation. Either the upper or lower 

sideband spectrum is allowed to grow. 

For the anti-Stokes wave, both simulation and dispersion analysis show no 

sideband gain. Only the Stokes wave shows gain and therefore the plots in this section 

are only for the lower sideband. 

The simulation calculates a gain coefficient by fining an exponential curve to the 

radiation fields at each frequency followed. Thus a curve that was far from an 
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exponential would give spurious results. This had to be checked in each case. The factors 

llwo•ks and <l»s used in the dispersion analysis are those calculated by the simulation. 

Figs. 5.24 show a comparison of the simulation results and the dispersion 

analysis in the case where the slowly varying phase <!»s of the fundamental was ignored. 

There is relatively good agreement for the larger waveguide heights, although there is a 

frequency shift. As the waveguide height decreases and therefore as the dispersion 

increases, there is less accurate agreement. This is partly because of the fact that as the 

dispersion increases the results are increasingly sensitive to the inputs. The largest cause 

of the discrepancies, however, is that we need to include the slow radiation phase of the 

fundamental in the dispersion analysis. When this is done, the agreement between 

simulation and theory is quite good. 

Fig. 5.25 shows the real part of the gain for each frequency. Fig. 5.26 shows the 

imaginary part of the gain or the slow radiation phase for each frequency. In the 

dispersion calculation, the imaginary part of the gain was plotted only when the real part 

was nonzero. This was to .make cenain that the correct root was chosen. 
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Figure 5.24 Comparisons of simulation and theory. The slow radiation phase o, was ignored in 
the dispersion calculation, but is automatically included in the simulation. Note that the gain curves are 
relatively close in (a) and (b) except for the frequency shift. In (c) there is a substantial discrepancy between 
the curves although the size and location of the right hand peak is about right. The simulation exhibits two 
lower sideband peaks, the leftmost just barely visible before the plot goes offscale. In (d) there is also a 
discrepancy between the curves although the size and location of the peaks are about right. As the 
waveguide height decreases, the dispersion increases and small variations in input parameters can have a 
large effect. 
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Figure 5.25 When the slowly varying phase of the fundamental is added to the dispersion 
analysis, there is rather good agreement with the simulation. Note the double sideband peak in (c). This 
shows both upper and lower Stokes waves. In (d) there is only rough agreement between the dispersion 
analysis and the simulation. Not only are the results of the dispersion analysis more sensitive to inputs, but 
the raggedness of the simulation curves suggest that the computer had a hard time fitting the data. The 
simulation curves may not have been such good exponentials. 
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Figure 5.26 These are plots of the slope of the slowly varying phase of the various radiation 
frequencies which correspond to the imaginary part of the sideband gain. The curve designated calculated 
shows points only where the gain was nonzero and a definite value for the phase can be assigned. Note 
that where a peak is present in the gain curve, except for (d), the phase slope passes through zero. In (c) 
the double peak is then visible. In (d), exact phase matching can never be achieved. The curve passes 
through zero, but it appears more like noise in the simulation. 
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Note that for the cases where phase matching is possible, i.e. (a) through (c), the 

imaginary pan of the gain passes through zero when there is a peak in the real gain 

curve. This is an additional way to determine the location of the sideband peak. In (c) for 

both figures, two Stokes wave peaks are visible. For the parameters given, one would 

expect the lower peak to be at 11.6 GHz from the relation (5.7.33b). There is quite good 

agreement. For (a) and (b) this peak exists, but is off the scale of the plots. For (d) there 

is only rough agreement with the theory. The regime in (d), however, is one where phase 

matching is impossible. Sideband gain can occur only because ~L is small enough. The 

curves don't match exactly becaus~ the dispersion analysis is rather-sensitive to the 

inputs in this regime. Also the simulation curve looks somewhat noisy because the fit to 

an exponential is not as accurate as the other simulations. In all, the dispersion analysis 

seems to do a rather good job for predicting behavior in a three-wave process. 

In Fig. 5.27 is a plot of sideband location versus waveguide dispersion Yt· It 

shows both solutions of (5.7.33b) representing the upper and lower Stokes waves. For the 

upper Stokes wave, the peak moves away from the fundamental as the dispersion is 

increased. However, one eventually reaches a point at which phase matching is no longer 

possible. In this regime, the sideband peak starts moving back towards the fundamental. 
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Figure 5.27 The various phase matching conditions for the lower FEL sideband are plotted. This 
uses the parameters of Table VI. When phase matching can be achieved, two sideband peaks are possible. 
For small dispersion, the lower peak is so close to the waveguide cutoff that it will probably not be seen. 
When phase matching becomes impossible, the peak starts to move back towards the fundamental. 

Note that just because the phase matching condition gives a location for a sideband it 

doesn't mean that the sideband will be actually unstable and grow. For the parameters used 

here, the sideband is unstable up to about Yt = 1.6. From previous analyses one expects 

something special to happen when v group = v particle· This happens at a little over Yt = 2.1. 

We can see that even if the sideband was unstable, the sideband location would be exactly 

on top of the fundamental. Therefore, it is strictly impossible to see a sideband when v group 

= vpanicle• though this is an unnecessarily strong condition for no sideband growth. 
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5.9 Four-Wave Analysis 

In the last section, it was shown that when the computer simulation was restricted to 

interactions between three waves, the agreement between the complicated computer 

simulation and the simple dispersion analysis performed was quite good. However, three-

· wave interactions cannot explain all of the phenomena of sideband generation in an FEL. 

Most obviously, the upper sideband is shown to grow when the FEL electron distribution 

is well centered in the bucket. In the three-wave analysis, the upper sideband never grows. 

In this section it will be shown that when four-wave interactions are allowed as well as 

three-wave interactions, then all the relevant physics of sideband growth can be explained. 

We will start by utilizing all of the equations (5.7.30) and (5.7.31) to do a 

dispersion analysis of the four-wave system. The four waves are the FEL fundamental, the 

synchrotron oscillation, and the upper and lower FEL sidebands. If we assume that aoL 

and iou both go as ePz, then we can derive a sixth order equation for p that is 

6. s (2 )4 -2 3 ( 2 )2 p - 2l(kL + ku)P + 4 leO- kLku p - 8~kL + ku)P + FL + Fu - 16kOkLku p + 

(5.9.1) 

where 
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(5.9.2a) 

and 

Ill1t . Il1l 
_ 8ztle cos 2 sm 2 a ~ u ~ 

Fu- ) ~ Fave 
abinec3 ( 1 + Omo aso Y "' ro; 

(5.9.2b) 

The analysis is a little tricky now since from the matching conditions (5.7.33), there 

are two Stokes waves and two anti-Stokes waves. If we take the frequencies that people 

usually associate with sidebands( the upper Stokes and anti-Stokes waves represented by 

the +'s in 5.7.33), then the dispersion relation (5.9.1) has no real roots. This is not 

entirely unexpected since in a four-w~ve analysis, the two resulting frequencies must grow 

at the same rate, which is not what we observe in computer simulations of sidebands. As 

will be shown later, the upper sideband is driven by a process that is not related to 

exponential gain. However, if we examine roots at all the other possible combinations of 

Stokes and anti-Stokes waves, we find that there are indeed some frequencies that exhibit 

exponential growth in a four wave process. To actually observe this, the trick is to find a 

part of the spectrum where we expect to see growth from a four-wave process, but not a 

three-wave process. Otherwise the three-wave process, which generally exhibits higher 
.. 

growth, will completely overwhelm the four-wave process. According to the dispersion 

equation, the combination of the lower anti-Stokes wave and the upper Stokes wave is 

unstable. Also the lower Stokes wave and the upper anti-Stokes wave is unstable. 
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One unexpected property of the lower anti-Stokes wave is that it occurs well 

below the FEL fundamental. In fact for waveguides with small dispersion, it occurs near 

the waveguide cutoff. 

In Figs. 5.28 and 5.29 we look at a situation where a four-wave instability can be 

easily distinguished from a three-wave process. Using the parameters of the previous 

section, we find that the waveguide with a height of 2.5 em has a lower anti-Stokes wave 

at about 7.6 GHz. The three-wave dispersion relation predicts no exponential growth at 

this frequency. The four-wave dispersion equations predicts an exponential gain 

coefficient of 0.017 at this frequency. 

Two simulations were done for this comparison. In the first simulation, only 

those frequencies below the fundamental were allowed to grow. Since the anti-Stokes 

peak that we are looking for is actually below both Stokes peaks and the fundamental, a 

four-wave process is still quite possible. This simulation should have a minimum of 

additional complications to the physics. The second simulation used the full spectrum 

necessary to include the contributions from all possible sideband peaks. 

.. 
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" Figure 5.28 Comparison of single-particle-per-bucket computer simulation and 
three-wave dispersion analysis. In the simulation, only frequencies below the -
fundamental were allowed to grow. (a) is the real root and (b) is the imaginary root. An 
arrow in (a) marks where there is a substantial deviation between the simulation and the 
three-wave theory. The peak's location and height are just where they would be predided 
by a four-wave dispersion analysis. 
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Figure 5.29 Comparison of single-particle-per-bucket computer simulation and 
three-wave dispersion analysis. In the simulation, the full spectrum was allowed to grow 
although only frequencies below the fundamental are plotted here. (a) is the real root and 
(b) is the imaginary root. An arrow in (a) marks where an additional peak is expected from 
a four-wave dispersion analysis. There is some discrepancy between the simulation and 
the calculated curve, much more than in 5.28. The additional differences must be from 
interaction with frequencies above the fundamental. 
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In Fig. 5.28, there is a comparison between a one particle per bucket computer 

simulation and the three-wave dispersion equation. For most of the spectrum, there is 

quite good agreement between the three-wave analysis and the simulation. There is, 

however, a major discrepancy below 10 GHz. The marked peak has a location close to 

the 7.6GHz peak predicted by a four-wave dispersion analysis, and is a reasonably good 

fit to an exponential. The height of the peak in the simulation is somewhat larger than the 

0.017 predicted by the theory, though this is not unreasonable since this peak represents a 

four-wave interaction that includes the upper Stokes wave. Since this Stokes wave is also 

participating in a three-wave instability, it's higher growth rate should influence the gain 

of the lower anti-Stokes wave. The fact that the phase derivative curve passes through 

zero near the peak is strong evidence that it is a sideband interaction and not just the 

lower FEL resonance described in section 4.1. 

The simulation in Fig. 5.29 is very similar to that of Fig. 5.28. In these 

simulations, frequencies above the fundamental were allowed to interact with those 

below the fundamental. There are small shifts in the location and height of the peaks on 

the sideband gain curve. We need some additional physics to explain these shifts. 
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Theoretically, the upper anti-Stokes wave and the lower Stokes wave can exhibit 

a four-wave instability. This upper anti-Stokes wave is predicted to be at about 38.7GHz. 

If we examine the spectrum of the full spectrum simulation shown in Fig. 5.30, this peak 

is visible, but it is not the peak that people usually assume is the upper sideband. 

We need only one more physical process to explain the structure of the spectrum 

shown in Fig. 5.30. It is also a four-wave process, but it is not an exponential instability. 

... 
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If there are two waves at different frequencies that both have a fairly large amount of 

power in them, then the beat wave created by these frequencies will form a moving 

ponderomotive well that can then act on the electron beam. The electron beam will be 

modulated by this potential. Radiation will be emitted at new frequencies that go as the 

old radiation frequencies plus or minus the frequency of the electron beam modulation. If 

this electron beam modulation moves at a speed close enough to the ponderomotive 

phase defined by the wiggler field and one of the new frequencies, then there will be 

substantial amplification of the new frequencies. This is not an instability. It is rather 

more similar to a pendulum forced at a frequency quite different from it's resonance 

frequency. Those peaks that are a result of this forcing are marked with arrows in Fig. 

5.29. Now the need for the Stokes and anti-Stokes terminology is apparent. In free space 

where the sidebands are symmetric around the fundamental, there is no difference 

between the anti-Stokes wave and the forced upper sideband. In a waveguide, what 

people usually refer to as the upper sideband is actually a forced wave that is 

symmetrically located around the fundamental with the lower sideband. Dispersion 

causes the Stokes and anti-Stokes waves to be asymmectrically placed around the 

fundamental . 
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To illustrate the physics of what has just been described, a number of simulations 

were performed. The results are shown in Figs. 5.31 and 5.32. In these simulations, the 

single~particle-per~bucket simulation with the 2.5cm height waveguide was used. In 

addition to the fundamental, a signal at 5kW was injected at a frequency lower than the 

fundamental. To make the- interpretation of the results easier; only those frequencies 

larger than the fundame~tal were allowed to grow. 

What was observed was that the frequency that was the "mirror image" of the 

input frequency around the fundamental was driven quite hard and achieved large 
' . 

amplitudes in just 50cm. This is just what one would expect if it was a beat wave 

between the fundamental and the lower input frequency that was driving the current. This 

effect was rather insensitive to the value of the lower input frequency, which should 

indicate that this is not a resonance effect. 

Fig~ 5.32 shows the power in the forced frequency versus distance. Since the 

forced modulation of the electron beam moves at a different speed than optimal for 

amplifying the forced radiation frequency, the signal will be alternately amplified and .. 
damped. 
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Figure 5.31 Simulations all start with 200MW in the fundamental and SkW at a 
lower frequency. Only frequencies larger than the fundamental are allowed to grow. The 
input frequencies are 32.4GHz, (a); 28.1GHz, (b); 24.9GHz, (c); 20.5, (d). Note that by 
SOcm, the upper forced frequency is almost the same in magnitude as the input 
frequency. This is rather insensitive to exactly what the input frequency actually is . 
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Figure 5.32 Simulations all start with 200MW in the fundamental and SkW at a 
lower frequency. Only frequencies larger than the fundamental are allowed to grow. The 
input frequencies are 32.4GHz. (a); 28.1 GHz, (b); 24.9GHz. (c); 20.5, (d). Since the 
electron beam modulation moves at a different speed than the frequency that is being 
amplified, it will eventually get out of phase and the frequency that had been amplified will 
now be damped. 
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The upper lobe of the saturated FEL spectrum that has generally been labeled the 

upper sideband is in fact just frequencies that are amplified in this manner. Since the 

"upper" sideband lobe is just forced by the lower sideband lobe, it will not attain the 

same amplitude as the lower sideband unless the forced electron beam modulation is 

moving at exactly the same speed as the ponderomotive phase of the forced frequency. 

This amplification and subsequent damping can also explain why the upper lobe of the 

sideband spectrum is often seen to disappear after initial amplification. While any two 

frequencies with large power can interact in this fashion, it is more likely to observe 

spectra that have a shape that is symmetric around the fundamental, since initially the 

fundamental has the largest power of any frequency. 

This beating of two frequencies can amplify a third frequency at the startup of an 

FEL as well as in the saturated regime. This will be shown in the next section. It is also 

further justification that this is not a process actually related to the sideband instability. 

Thus we can see that sidebands are primarily driven by a three-wave instability, 

with the upper sideband spectrum resulting primarily through the lower sideband 

spectrum beating against the fundamental. In a waveguide, four-wave instabilities are also 
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possible and complicate the spectrum. In all, this section and the previous one contain all 

the physics necessary to describe the complicated spectrum shown in Fig. 5.30. 

0 

• 
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5.10 Explanation of ELF Sideband Results 

Experiments were performed intended to measure sideband growth at the ELF 

facility at Livermore. In this section some simulations were performed to show that the 

experiment was flawed in that no amplification of sidebands could have been measured. 

The experiment had the parameters shown in Table VII. The peak wiggler field 

was chosen to put the fundamental, at 360Hz, at the top of the gain curve. A tunable 

magnetron was used to inject at a second frequency that varied between 31 GHz and 

34GHz. A set of tunable filters was used to look at the spectrum from 31-36GHz and 

from 34-40GHz. No apparent amplification of the sideband(lower frequency) was 

observed. 

Table VD. Simulation parameters 

Relativistic energy ., 6.85 

Energy spread fly ±0.4 

Wiggler peak field 3.65 kG 
Wiggler wavelength 9.8 em 
Beam current 900 amps 

Waveguide size 9.8 x2.9 em 
• Input radiation: 

5kW at 36GHz (fundamental) 

1·5kW at 31-34GHz 
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To see why this happened, we first have to look at the FEL gain curve. The curve 

in Fig. 5.33 is calculated by fitting an exponential curve to the radiation field amplitudes 

in the startup section of the experiment just described. Since the simulation used is 1-D, 

the results may not be accurate as far as exact experimental measurements are concerned, 

but the basic physics can be understood. 

The first thing to note is that the gain curve fills the entire frequency regime that 

the measurements were made in. It would. therefore be rather difficult to separate the gain 

due to the FEL sideband interaction ~d the gain due to FEL startup. 
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Figure 5.33 Startup gain curve for the experimental parameters of Table VII. 
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A second problem with the parameters used is illustrated in Fig. 5.34a. The gain 

curve for the lower sideband lies completely out of range of the lower input in the 

experiment. The lower sideband curve has a peak at 29 .3GHz. 

In the simulations that follow, we calculate first what the expected results would 

be if the tunable magnetron was set to give 5kW at 33.8GHz. The physics of this case 

has little to do with sidebands. In the next case, we will inject 5kW at the actual sideband 

frequency of 29.3GHz. It will be seen from Fig. 5.33 that this frequency has a startup ' 1 

gain close to zero. Therefore, if strong gain is observed it should be due to sideband 

interaction. 

Fig. 5.35 shows the power output of the simulation for the input signal at 

33.8GHz. This shows a severe case of the forcing of new frequencies from the beating of 

two strong radiation waves as described in the previous section. The forcing is strong 

enough to create many frequencies since both input signals are high on the gain curve 

and are strongly amplified. Note that in the plot of the total power versus distance there 

is a local saturation of the total power at a little over 150MW near 1.5 meter into the 

wiggler. This is the same as the case where only the fundamental frequency was 



(a) 

(b) 

... 
a 

299.7 em power d~slr~but~on 

10
6 

10
7 

10
6 

105 

1 o" 
10

3 

1 oz 
10 1 ~----~----,-----~----,-----~ 

1.0 2.0 3.0 4.0 5.0 

frequency in Hz 

totaL rad~atLon power 

20.0,-------~------T-------~----~ 

5.0~------~~----~------~------~ 

0.04-----~~------~, ------~------~ 
0.0 100.0 200.0 300.0 400.0 

dLstance (cml 
XBL 896-2100 

Figura 5.34 Plots for the simulatio~ where only the fundamental was 
inj~eci. Lower sideband peak is at about 29.3GHz. 

198 

.. 

• 



• "' ~ 
~ 
I'll 
3:: 

(a) 

"' ~ 
~ 
I'll 
3:: 

(c) 

• 

199 

99.7 em power dLstrLbutLon 199.7 em power dLstrLbutLon 

10° 
1 o" 1 

10' 1 
10

8
1 i 10

8 

l 0
5 ~ "' ~ 

i ~ 105 

1 o• 1 ~ ~ 

~ 
w• 

1011 ~ 
1 o' ~ 

1 0~1 

ill 
10~ 

n ~ 

101 101 

1. 0 2.0 3.0 4.0 5.0 6.0 (b) 1 .0 2.0 3.0 '!.0 5.0 6.0 

frequency in Hz ~lola frequency in Hz ~lOla 

3~9.7 em power dLstrLbutLon totaL rad~otLon power 
Do - 4.0 

§ :c 

1 o' 1 
3.0 

10
5

~ 
Ill 

10
5 

"'§ 
..) 

2.0 

/7 
jl 

..) 

0 WI' 
); 

J to• ~ 
-~~ .~ 

I 
10

3 

104 

1.0 

I 
0.0 

./ 

1.0 2.0 3.0 4.0 5.0 6.0 (d) 
frequency in Hz "lOta 

0.0 100.0 200.0 300.0 

di..stonca (cml 

XBL 896-2101 

Figure 5.35 Power produced with inputs of 36GHz and 33.8GHz at SkW each. 
The peak of the gain curve is set to be close to 36GHz. The beating of the waves creates 
waves at new frequencies that are separated by the frequency of the beat wave. Since 
there is strong amplification, these waves in tum produce others. Near the end of the 
wiggler in (c), much of the radiation fills the spectrum below the fundamental frequency 
(36GHz). The simulation only calculates down to 18GHz so it is possible that there is even 
more power in the spectrum below this point. 
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Figura 5.36 Plots of the power of the lower injected frequency for two different 
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gain curve and therefore experiences little gain after the startup region until the 
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Figura 5.37 When the lower input signal is at 29.3GHz, it is possible to see the 
amplification of the sidebands. Near the end of the wiggler, in (b), it can be seen that 
there is significant power only at the fundamental and the lower and upper sidebands. 
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amplified. After this point the total power increases due to more power being pumped 

into additional frequency components. A large proportion of the power produced could 

not have been measured in the experiment since it is in frequencies outside the tunable 

filters. Thus the experiment might have measured a decrease in total power produced. 

It might have been possible to see sideband amplification if the correct lower 

frequency was used as input. It is fortuitous that the peak of the sideband gain lies at a 

point that has near zero gain in an unbunched beam. Fig. 5.36 shows the power of the 

lower injected signal versus distance for. both the previous example and for a 29.3GHz 

lower input. One can see that the 33.8GHz input is amplified exponentially from the 

beginning, just like the fundamental. The 29.3GHz case shows little gain before the 

saturated regime is reached. After the electron bunching is complete, there is exponential 

gain. Fig. 5.37 shows that for the given length of wiggler, there is significant power 

primarily in the fundamental and the upper and lower sidebands. Thus the simulation 

shows that if one looked at the right frequencies, one might have been able to measure 

sideband gain. 
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It has been pointed out by Bill Fawley, that in a simulation that included space 

charge effects, the synchrotron wavelength would be increased. According to some 

calculations he has made, this would place the lower sideband at about 320Hz which 

was within the range of frequencies searched in the experiment. However, because the 

lower frequency was on. the gain curve and because the injected signals were of 

comparable intensity, the beat interaction between the two frequencies would have 

overpowered any sideband interaction. It might have been possible to measure sidebands 

in this case, but only if the signal injected at the sideband frequency was many orders of··. 

magnitude less than thefundamental. Even then, a very careful measurement of t~e gain 

curve in both the startup regime and the saturated regime would have been necessary to 

establish sideband gain. 

The sideband amplification experiment did not work because of the fact that the 

injected signals were on the fundamental gain curve. If all radiation is injected at the 

beginning of the FEL, then a sideband gain experiment is quite difficult. If one could 

design an experiment such that the sideband signal to be amplified is injected after 

saturation of the FEL, then the physics of the experimental results would be much 

clearer. 
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Chapter 6 . 

Conclusion 

• 
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6 Conclusion 

In this work the sideband instability has been explained in a manner that gives a 

direct physical interpretation. While the sideband instability in a waveguide has been 

accurately described, it also provides insight into the FEL sideband instability in general. 

For FEL sidebands in free space, it is difficult to use the output spectrum to 

differentiate between a stimulated scattering process and a system of forced currents. The 

upper sideband is where the anti-Stokes wave is predicted to be and the lower sideband is 

where the Stokes wave is predicted to be. The way to prove the case is to design a system 

that can preferentially damp either the upper or lower sideband. If the lower sideband is 

damped, then the sideband instability should be completely absent If the upper sideband is 

damped, the sideband instability should still cause amplification of the lower sideband. An 

oscillator with some form of Fabry-Perot device in the optics might be able to accomplish 

this experiment. 

The analysis of this thesis produced some unexpected results that can be tested. 

Fully four sideband peaks are possible from stimulated scattering processes in a 
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waveguide. These consist of two Stokes waves and two anti-Stokes waves. Three of these 

peaks are below the fundamental in frequency( two Stokes and one anti-Stokes) and one is 

above the fundamental(one anti-Stokes). Because of waveguide dispersion, no pair of 

frequencies are located symmetrically around the fundamental. Therefore, additional peaks 

in the sideband spectrum are possible from beat wave interactions between any 

combination of the FEL fundamental and the four stimulated scattering peaks. 

The primary driving force of the FEL sideband instability is a three-wave interaction 

where the three waves .are the FEL fundamental, the electron synchrotron oscillation, and 

the Stokes wave(lower sideband). What people have called the .upper sideband is driven by 

a beat wave interaction between the FEL fundamental and the Stokes wave. In free space, 

all frequencies move at about the speed of light, and the sidebands tend to be rather close 

to the fundamental. For these circumstances we would expect the lower and upper 

sideband power to be roughly equal. In a waveguide where the upper and lower sidebands 

can move at substantially different speeds and can be relatively far from the fundamental, it 

has often been observed in computer simulations that the upper sideband is orders of 

magnitude less in power than the lower sideband. The reason for this is that the beat wave 

between the FEL fundamental and the lower sideband can no longer interact strongly with 

the upper sideband. 
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In a waveguide it is also possible to have instabilities between four waves. These 

interactions are weaker than the three-wave instabilities and are therefore difficult to 

observe unless the peaks are located reasonably far from the other peaks in the spectrum. 

Not all combinations of Stokes and anti-Stokes waves can interact in this fashion. 

The sideband instability disappears when the three-waves scattering process is no 

longer possible. It was shown in sections 5.8 and 5.9 that at the frequency of the sideband 

peak, there is no slowly varying phase. This means that the frequency at the sideband peak 

travels at the same speed as it would travel in a waveguide without the electron beam. The 

sideband peaks exist where this phase matching occurs or where the phase mismatch is at a 

minimum. If the phase mismatch is too great, then no amplification of the sidebands is 

possible. This occurs well before the group velocity of the FEL fundamental reaches the 

electron beam velocity. 

The work perfonned in this thesis suggests some possibilities for future studies of 

FEL sidebands in waveguides. Some suggestiofis follow. 
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Effects due to nonlinearities in the FEL bucket could be examined by deriving 

equations similar to (5.7.26) and (5.7.27) where v' is not assumed to be small. This 

would be equivalent to studying the coupling between a harmonic oscillator(radiation 

Helmholtz equation) and a fully nonlinear pendulum(particle motion). Effects due to finite 

electron distributions could be examined by using the equations of motion in a kinetic 

analysis similar to Kroll and Rosenbluth[42] or Riyopoulos and Tang[46]. 

The work of section 5.7 could easily be expanded to include coupling between 

transverse modes at different frequencies in the saturated FEL regime. This .is different 

than the thesis work of Jonathan Wurtele where the coupling between transverse modes of 

the same frequency was examined[5]. This could be accomplished by writing k5 and k" as 

k5mn and k"mn' where the waveguide mode for each radiation wave is not necessarily the 

same. The phase matching conditions (5.7.29) would then be used to see which waves 

could interact strongly. 

L 
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