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Mean Field and Collisions in Hot Nuclei 
H. S. Kohler1 

Nuclear Science Division,Lawrence Berkeley Laboratory, 
University of California, Berkeley, CA 94720 

Collisions between heavy nuclei produce nuclear matter of high density 
and excitation. Brueckner methods are used to calculate the momentum 
and temperature dependent mean field for nucleons propagating through 
nuclear matter during these collisions. The mean field is complex and 
the imaginary part is related to the "two-body" collisions, while the real 
part relates to "one-body" collisions. A potential model for the N-N 
interactions is avoided by calculating the Reaction matrix directly from 
the T-matrix (i.e. N-N phase-shifts) using a version of Brueckner theory 
previously published by the author. Results are presented for nuclear 
matter at normal and twice normal density and for temperatures up to 
50 MeV. 

Introduction 

The primary purpose of Heavy-Ion (H.I.) collisions is to explore the properties of 
hot nuclear matter; both static and dynamic. It is of particular interest to analyse 
these collisions in order to learn about nucleonic degrees of freedom. But before 
proceeding to introduce some model of these into a theory of hot nuclei it seems 
appropriate to investigate the consequence of incorporating important many-body 
effects in a "nucleons only" theory. This has not been done satisfactorily. A first step 
is to find the "effective" force 'VeJJ in hot nuclear matter from the known "free" N-N 
interaction. Most "microscopic" calculations have been done with forces that are 
fitted to zero temperature properties like binding and compressibility and depend on 
local density only but not on other variables of the medium. This might be adequate 
for low energies. It is however well known that the effective force in nuclear matter 
is momentum dependent (non-local). Collisions at higher energy result in strong 
deformations in momentum space. A force that depends on density only, gives an 
energy-functional that is independent of such deformations, while a momentum­
depend~nt force leads to a dependence on this deformation. It follows that it may 
be necessary to incorporate the momentum dependence of the force especially in a 
theory of high energy H.I. collisions. Furthermore, the strength of the force depends 
not just on density but also on excitaion; it is "temperature"-dependent. This 
investigation is a contribution to our understanding of the effective forces in hot 
nuclei both as regards the mean field and the two-body dissipative collisions. 

1 Permanent address: Physics Department, University of Arizona, Tucson, AZ 85721 



Let us go into some more detail as regards the arguments that were given above. 
The momentum distribution in the interior of a ground state nucleus is essen­

tially isotropic and with a sharp Fermi-surface as in a Thomas-Fermi approximation. 
In the initial stage of a high energy collision between two nuclei the momentum dis­
tribution at some point where the two nuclei overlap in coordinate space, is strongly 
deformed. It is roughly that of two Fermi-spheres separated by the relative mo­
mentum of the colliding ions. Our earlier calculations 1 , incorporating two-body 
collisions by the relaxation-time method, show this explicitly to be the case for the 
distribution averaged over coordinate space. These calculations also show that the 
mean field distorts this averaged distribution only slightly during the course of a 
collision, while two-body collisions thermalizes it. 

In a model of H.I. collisions where the effective two-body interaction Ven is local 
i.e. independent of relative N-N momentum the resultant mean field will also be 
local and independent of the distribution in momentum space; other than of the 
zero moment of this distribution, i.e. the local density. Most calculations like VUU 
2 , BUU 3 or TDHFRX and VRX 4 have used this model. In a calculation of the 
properties of nuclear matter from realistic nuclear forces the momentum dependence 
is very important for obtaining the correct saturation density and in calculating the 
compressibility. In calculations of collisions between heavy ions made by Stocker et 
al 5 using a local N-N interaction Veff, it was found necessary to use quite a large 
compressibility in order to obtain the experimentally observed perpendicular flow. 

One can however argue· that the increase in compressibility is necessitated by 
neglecting the (known) momentum dependence. This can be understood as follows. 
By deforming or heating a zero-temperature Fermi-distribution (while keeping the 
density constant) the repulsive part of the energy due to the momentum dependence 
of the force will increase. Collisions between the ions result in such deformations in 
momentum space. If the energy is assumed to be indep~ndent of the deformation 
this increased repulsion has to be compensated for by increasing the compressibility, 
making use of the fact that the density also increases in the interaction region. 

The calculations by Welke et al 6 (using a momentum dependence resembling 
the Yukawa force in momentum-space) bear this out, although the simple argument 
given above may not be correct. It. may not just be a question of the energy­
functional; Rather it appears that the dynamics especially as regards the perpen­
dicular flow is different in the two separate cases 7 • 

Increasing the stiffness of the equation of state by incresing the density depen"' 
dence of Ve1 1 results in a larger repulsion in the mean field in the region of overlap 
between the ions. Nucleons hitting this repulsion in a non-central collision will be 
reflected out sideways. If the force, and consequently the mean field, is momentum 
dependent a different mechanism described as a 'coherence' in phase-space seems 
to enter7

• A similar effect was observed when displaying the Wigner functions for 
low energy (head-on) collisions between slabs with a momentum-dependent force 
of quadratic (Skyrme) form8 . A density dependent force tended to break up the 
distribution in· phase~space much more than the momentum-dependent although 
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the compressibility was the same for both. 
Whatever the mechanism is, the calculations do indicate that the momentum 

dependence is important6 and it is one purpose of this paper to calculate this macro­
scopically. 

We have stressed that in the case of a momentum dependent Ve1 f, the mean field 
will change if the distribution of nucleons in momentum-space is deformed. There is 
however another effect of deformation to consider. In a microscopic theory VeJJ will 
itself depend on the distribution; not just on density but also on the deformation 
under constant density. In Brueckner's formulation of the many-body problem this 
is explicit in that the Reaction-matrix, which in our context here is the same as 
the effective interaction Ve1 f, is a functional of the Pauli-operator which expresses 
a dependence on which states are occupied. There is also a dispersion-effect in that 
the nucleons propagate through a mean field while interacting. All of these effects 
are included in the Reaction-matrix equation defined below in Sect. 2. They are 
all important when calculating the Reaction-matrix at zero temperature. There is 
no reason to beleive they should be less important at higher temperatures. 

Although the Reaction-matrix is formally defined for any distribution of oc­
cupied states, calculations are in practice restricted to some simple cases. The 
simplest is the zero-temperature Fermi-distribution for which of course many cal­
culations have been done. Non-zero temperature Brueckner calculations have also 
been done ?•10 and in relativistic Brueckner theory by Malfliet 11 • While a heated · 
Fermi-sphere would be the appropriate representation for the final stages of the col­
lision, the distribution in the initial stage of a H.I. collision may best be represented 
by two spheres separated by the relative momentum of the two ions. Calculations 
for this system has also been done as a step towards calculating an optical model 
potential for ion collisions 12

•
13

. 

In this paper we shall present results of calculations of the mean field potential 
in hot nuclear matter using a method that was presented in an earlier publication 
14

• We have used this method for the two sphere problem as well, but shall reserve 
those results for later presentation. For completeness a short description of the 
method is given in sect. 2 and the results are shown in sect. 3. Sect. 4 contains a 
summary and conclusions. 

2 The Effective Interaction in Nuclei 

The calculations in this paper are based upon the Brueckner many body theory of 
the effective interaction VeJJi in this theory referred to as the Reaction matrix K. A 
difference from the conventional formalism is that we shall calculate the K -matrix 
directly from the scattering T-matrix. The first order approximation to K will beT 
rather than aN-N potential as in conventional approaches. In order to calculate K 
from Tone needs the off-diagonal matrix-elements of the related reactance-matrix K, 

(see below) that are not accessible from N-N scattering. To overcome this problem 
we simply assume K, to be separable in momentum-space. It is shown below that it 
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Figure 1: The effective interaction at normal (left curves) and double density (right 
curves) as a function of relative momentum P. Lower curves are from T- and upper 
is from ]{-matrix. See text. 

is then rather easy to solve the equations for diagonal elements of K. For uuclear 
matter calculations we only need these diagonal elt~me~ts of the effective interaction. 
The assumption of separability may·seem ad hoc. We think it is justified by the 
agreement with calculations from N-N potentials and by the comparative ease with 
which calculations can be done for rather complicated distributions. 

Our method should not be confused with the method of using a separable po­
tential. We are in fact not using a potential model (at least not explicitly) and we 
consider this an advantage in itself. 

Our approach using the T-matrix as a first approximation is also made more 
sensible if we note that in the low density limit, and in the limit of large relative 
momentum, J( :::} T. This is shown in fig. 1 at normal (left) and double (right) 
density. The lower curve in each figure is the T-matrix approximation (in some 
works referred to as the phase-shift approximation) and the more repulsive curve is 
the K-matrix effective interaction. 

We now describe some details of calculating K following the procedure outlined 
above. It is defined by 

Q 
K = v + v . K. 

e + ZTJ 
(1) 

Here Q is the Pauli-operator and the energy-denominator contains the (bubble­
)interactions with all other nucleons. The traditional procedure is to calculate K 
from this equation assuming the interaction v, the 'free' N-N interaction to be 
known. Instead we proceed by first defining a reactance-matrix K- by 
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p 
K- = v + v-K- (2) 

eo 

where P denotes that the principal value is to be taken when e0 , which is kinetic 
energy only, has a pole. This reactance-matrix has the useful property that it is 
directly related to the phase-shifts. In an angular momentum decomposition one 
has 

K- = tanb,(k)/k (3) 

for free scattering states while for bound states 15 

(4) 

with b,( k) being the phase-shifts. The relation between K and K- is 

K=K-+K-( Q_ - p)K 
e + Z7] eo 

(5) 

The first approximation to this equation is obtained by putting Q = 1 and e = e0 

in ( eq.5) to give 

which is usually referred to as the impulse approximation. This implies using free 
cross-sections. 

In order to solve eq.5 forK we first introduce another matrix Kp by 

K QPK 
P = v+v- P 

e 

related to K by ( b( e)) is here delta-function of e) 

and to K- by 

(6) 

(7) 

(8) 

This equation is readily solvable in momentum space for the diagonal elements 
Kp if we assume K- to be separable. In fact we find Kp = D( k )K- where D is a 
function of relative momentum k only and is related to the integral 

I(k) = r>O IK-I(QP- P)dk'. 
. lo e eo 

(9) 

by D(k) = 1/(1- I(k)). The Reaction-matrix K is then obtained from Eq. (7). It 
is in general complex. A non-zero imaginary part is obtained whenever we have a 
pole, that results in energy-conserving transitions. To first approximation Eq. (7) 
is solved by 

(10) 
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Figure 2: Upper curve is the empirical binding energy curve saturating at p0 • The 
lower is from our Brueckner-calculation. 

If the absorption is small i.e. if the imaginary part of K is small compared to the 
real part of K, this approximation which has often been used is adequat~, _but we 
shall find later that for large nucleon momenta with large absorption, corrections 
can be quite large. It is also to be noted that the total energy now is complex, 
except in case of a zero-temperature distribution. 

The method descibed above has been tested against calculations of the Reaction · 
matrix from the Reid HC potential model and was found quite satisfactory14 • The 
1 S states were reproduced essentially exactly. For some states (1 D2 , 1 P1 ,

3 P0 and 
3 PI) the T-matrix approximation is actually already very good and was therefore 
used. The coupled states e S - 3 D) require a special treatment. For these states 
the contribution from the coupling was simply added to the right hand side of Eq. 
(9) and this procedure was found quite adequate. 

The integration in Eq. (9) was cut off at 20/m-1 • The phase-shifts used in the. 
calculations presented below are those of Arndt et al 16 which are for labenergies 
below 500 MeV only. For higher energies a straight line extrapolation was used 
with a slope that was considered a parameter. In a potential model this procedure 
corresponds to the choice of short-range repulsion. With a reasonable value of this 
parameter a binding energy of about 16 MeV/ A is obtained at normal saturation­
density. 

The phase-shifts, the stipulation of a separable matrix and this parameter con­
stitutes our 'potential' model although the potential itself is not obtainable. 

The binding-energy that we obtain is shown by the lower curve in fig. 2. The up­
per curve is the empirical saturation curve. Just as in other non-relativistic Brueck­
ner and HNC calculations saturation is not obtained in this model at the empirical 
point. Following the ideas in ref. 17 it is assumed that the difference between the 
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calculated saturation curve and the "experimental" is due to 3-body and/or higher 
order terms. We remedy the situation by adding a density-dependent term E3 to 
the Nuclear Hamiltonian. This Hamiltonian will contribute to the mean field. It is 
repulsive. 

3 Calculations 

Following the procedure just outlined in the previous section we assume that nuclear 
matter saturates at -15.8 MeV/ A at a saturation density of 0.166 fm-3 and with a 
compressibilityof235 MeV. We achieve this by adding to the microscopic calculation 
of the energy per particle a function E3 defined by 

E3 = 0.46- 5. 79(p/ po) + 5.33(p/ po)2 (11) 

where p0 is the saturation density. This part of the Hamiltonian will contribute a 
quantity V3 to the mean field with 

V3 = 0.46- 11.58(p/ Po)+ 15.99(p/ Po? (12) 

including rearrangement terms. It is to be noted that V3 does not have to be added 
to the energy-denominator e in the calculation of the Brueckner Reaction-matrix 
because it is independent of momentum and therefore cancels when taking the 
difference between particle- and hole-energies. 

The Reaction-matrix is calculated with on-energy shell insertions in both hole 
and particle lines, i.e. with a continuous spectrum. The Pauli operator forT > 0 
is calculated in the angle averaged approximation 18• 

The mean field at normal and double density is shown in fig. 3 at T =0 and 
50 MeV. In addition to the energy V3 the third oder rearrangement energy Vnh has 
been added. It is well approximated by19 

(13) 

where Vh is the first order K-matrix energy. The "wound-integral" Iw is a model­
dependent factor and is given the values 1.2 and 1.0 at normal and double density 
respectively. 

The results (at T=O) shown in fig. 3 have been compared with the results of 
Wiringa20 who used HNC methods and various N-N interactions to calculate single 
particle potentials at zero temperature . The agreement is satisfactory although 
his potential at double density (interpolating between his 0.3 and 0.4 fm-3 results) 
is about 25 MeV more repulsive than ours at the highest momenta. Part of the 
difference can be explained by the fact mentioned above after Eq. (10), that we 
are including propagations in an absorptive medium, even when calculating the 
real part of the mean field. We have estimated this contribution by calculating 
K from Eq. (10) instead of from Eq. (7). This increases the repulsion by about 
10 MeV at double density and high momenta where the absorption is large. The 
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Figure 3: Mean field at normal(left) and double (right} density. at temperatures 
T=O and 50 MeV as a function of momentum P. · 

propagation through an absorptive potential has therefore a non-negligble effect on 
the real potential , but this effect is not included in ref. 20• Another point is that 
Wiringa "normal.ised" his curves to go through some common point, so that a direct 
comparison is not really relevant. 

In addition to being momentum-dependent the mean field is also temperature­
dependent. This is of course at least partly a consequence of the momentum depen­
dence of the two-body interaction Ve1 1• To investigate this further we compare with 
the predictions of the parametrization used by Welke et al6 who use a temperature­
independent phenomenological interaction. Fig. 4 shows the mean field calculated 
with their interaction at normal and double density and indicated temperatures. 
Comparing with fig.3 we see that the overall agreement is good but there is a no­
ticeable difference in temperature dependence especially at the higher density. This 
is understood as follows. We may consider the ref.6 effective interaction as the first 
order contribution in the separation method of Moszkowsi and Scott 21 • This is ( es­
sentially) independent of the medium. The second order contribution is of the form 
v(Q/e)v and depends on temperature {and density) through the Pauli Q-operator 
which blocks scattering into occupied states. At zero temperature the blocking 
increases with density. As temperature is increased blocking is decreased and the 
interaction becomes more attractive. Referring to fig 1, the effectiv~ interaction will 
approach the T-matrix interaction as temperature increases. On the basis of our 
results one could consider including the temperature dependence by a temperature 
dependent factor applied to the ref. 6 interaction. 

The imaginary part of the mean field relates to dissipative two-body collisions22 • 

The left parts of fig. 5 and fig. 6 show the results at normal and double density re­
spectively. The right parts of the same figures show the absorption calculated from 
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Eq. (10) and with K 11 replaced by T. This is equivalent to using the "free" cross­
section in the collision term. We find that it is in fact a quite acceptable approx­
imation, especially at the higher temperatures that we are concerned with in H.I. 
collisions. This approximation has also been used in optical model calculations13

• 

It is of course also used in practically all calculations of the Uehling-Uhlenbeck 
term. There is however a very important note to make here. The mean field enters 
through the delta function in Eq. (10). In all our calculations above, this is calcu­
lated with the selfconsistent mean field. To a first approximation one may consider 
using the effective mass approximation and the absorption is then proportional to 
m•. The result of such an approximation is shown in fig 7. The effective mass is 
here calculated from 13 to get m* = 0.71. 

4 Summary and Conclusions 

The mean field in nuclear matter has been calculated as a function of momentum 
and temperature. At zero temperature the momentum dependence of the mean field 
is well approximated by deriving it from an effective interaction such as used in ref. 
6

• It is suggested that the interaction should be allowed to increase in strength 
with temperature. Our results justify the use of free cross.,sections in the collision 
term for hot nuclear matter. We like however to stress the more important issue 
of choosing the correct propagator (e in Eq. (10)) in the collision operator. The 
simplest choice is an effective mass m •, as in fig. 7, but the problem is then to find 
the correct value of m•. Another matter is that this propagator is complex23

• 

The results presented here are for a thermally equilibrated system while the 
initial un-equilibrated state is really the more interesting because this is when im-
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portant dynamics takes place. We have however also made calculations by the 
same method for this case, namely for the system of two Fermi spheres. The gen­
eral conclusions appear to be the same however. The main difference is really 
only in complexity; in the case of two spheres the mean field is not isotropic in 
momentum~space and the results are more complicated to display. 

The results presented here are obtained by a somewhat unconventional method. 
We beleive however that the essential ingredients of the many-body effects are in­
cluded. Density and temperature-dependence is included by the Pauli and selfcon­
sistency effects. We do of course not imply that this method supersedes the more 
conventional potential-model approaches. It has an advantage because of its relative 
simplicity which allows us to estimate effects otherwise very hard to investigate. 
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