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IV. 

ABSTRACf 

A theory of microwave absorption in coherent or incoherent states 

of multi-dimensional crystals is developed. Application of the theory 

to the cluster states (dimer, trimer, tetramer, ... etc.) of linear 
) 

cl1ain systems and its relationship to microwave band-to-band transi-

tions in coherent Frenkel excitons provides a new way of studying coherence 

in the excited levels of molecular solids. A quantitative treatment of 

the influence of exciton-phonon coupling oil spin dynamics in a 

two-level system (dimer) and the extension to a multi-level system 

(exciton) is given. 111e results prove that zerofieid electron spin 

resonance cru1 directly measure the cross-section of the scattering 

processes in the excited state and that the techhique is applicable 

to other classes of solids. Moreover, the anisotropy and the 

magnitude of intermolecular interactions can be established from 

these experiments. 
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I. II'-.7ROOOCfiON 

TI1e spectroscopy of molecular solids has been of considerable 

interest in recent years. TI1is interest arises from the importance of 

the systems themselves as well as from the fact that the structure 

and packing of these molecules in the lattice determine the anisotropy 

of many properties in these solids. Barid theory, developed by Frenkel1 ' 2 

and Davydov, 3' 4 was clearly the ftmdamental step toward our tmderstanding 

of the molecular solid state in so far as it offered a direct rela:-

tionship between the band structure in the delocalized limit and the 

molecular properties. When the excitation is associated with singlet 

electronic levels, singlet bands are formed with a width5 determined 

by the nature of the interaction between the roolecules. Likewise, a triplet 

exciton band will be fanned from a crystal with molecules excited in 

their triplet electronic levels, and in a tight-binding theory the 

transfer integral is simply given by 

f3 = <¢ IHI<t> > m n (1) 

where H is the total Hamiltonian of the system and ¢n is the wave

function6 which is localized on the nth molecule. 

The above considerations deal with "undressed excitons" in which 

the pure electronic excitation transfer results in a band free from 

any distortion and is confined only to electronic matrix elements. 

However, the exciton could be dressed by a vibronic and/or lattice 

excitation7-13 whjd1 may couple to the pure electronic excitation, 
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resulting 1n a direct or indirect perturbation on d1e stationary 

states ·of the band. In dynamical language, this coupling of exciton 

states to a phonon bath initially results in the damping of the wave 

·~·acket (characterized by some specific momentlDll vector k)
14

-
17 

and these new linear conbinations of wave vector 

states will then scatter further to other k states, say k', via the exciton-

phonon Hamiltonian on a time scale determined by d1e magnitude of the 

coupling matrix element. 'fhis gives rise to a very important question 

that pertains to d1e relationship between the scattering cross-section 

and d1e coherent vs. incoherent- properties of band states. A quanti-
' . . 

tati ve extraction of the scattering times as a measure of d1e med1anism 

of exciton-phonon coupling is not an easy task, particularly for 

experimentalists. This is because we are dealing with an ensemble of 

N-level systems (N is the number of molecules), hence the fluctuations 

of the off-diagonal elements of the ti~e-dependent density matrix, 

which measure the degree of coherence, are a complex function for the 

coupling between the relaxation Hamiltonian and the N-levels of the 

band. If one can study such scattering processes on a two-level 

system whidi has a direct relationship· to the properties of the N-level 

system , band states, the physics behind tl1ese processes could be better 

understood and a quantitative treatment could lead into a clearer 

picture of the rela:xa tion Hamil toni an, coherence, and the influence 

of band dimensionality on exciton dynamics. 

J-
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A dirner in a triplet state is electronically a system of two 

levels which are separated by 28 where 8 is the intermolecular 

interaction between the molecules~ This dimer splitting is directly 

related to the triplet exciton splitting. 18 For example, in the 

. hb . . 19 ' 20 th 1" . (2 ) f nearest-ne1g or approx1mat1on, e sp 1tt1ng 8 o 

translationally equivalent dirners is half the bandwidth ( 48; energy 

separation between k = 0 and k = ±n/a) for an exciton formed along the 

same translational axis. Moreover, the solution to the stationary 
' 

Schrodinger equation yields w(+) and w(-) for the dirner which are 

'conceptually related to the w(k) of the band. These states are 

coherent for the lifetime of the excited state unless there is 

an interaction between them and the surroundings via a relaxation 

Hamiltonian~ The Hamiltonian21 , 22 describing the coupling (with 

' ·amplitude A) between phonons of frequency w and the exciton is 

(2) 

+ where b and b are the intramolecular phonon (with q momentum) q q 

creation and annihilation operators, and a~ and ak are those of the 

exciton with energy E(k). For a dirner, the scattering causes local 

and transition fluctuations 13 which determine the power. spectrum, J(r2), 23 , 24 

00 

J(r2) = I < H(t) H(t + T) > exp(-ir2T) dT (3) 

-00 



where Q is the frequency corresponding to the energy differencebetween . . 
the two levels . The autocorrelation function has 

a characteristic time, Tc' which is the memory time or coherence 

time, since for this time 

'Thus the T 's of .1/J ( +) and 1jJ (-) are detennined by fluctuations of 
' c 

the off-diagonal matrix elements of the time-dependent density 

matrix when the stationary states are solutions to the zeroth 

on.ler Hamiltonian matrix responsible for the dirner splitting. 

(4) 

Experimentally, there are two important parameters needed 

to describe· the scattering, T and the values at different points ·. c 

in the correlation function, so that the full correlation function for 

scattering may be detennined. Specifically, Tc relative to 

the resonance transfer whose frequency is 213/h establishes 

whether or not there is a coherence in the dimer. This is 

because coherence can only be established by detennining the rate 

at which the time-dependent Hamiltonian25 , 26 modulates the energies of 

d1e states relative to 213. 

If Tc (±) < h/213, the states are clearly incoherent and possibly 

indistinguishable. On the other hand, if. Tc (±) > h/213, as when 

approaching d1e lifetime of the excited species in the state, the 

dirner is coherent because the phases of the wavefunctions are well-

defined during that period of time. 11owever, it should be remembered 

. ' 
i 
! 
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that the measurement of \: is completely determined by the time 

scale of tl1e experiment. For example, in optical experiments if 

the spectroscopic splittings between the two dimer states or, 

more generally, the Davydov components, and the optical linewidth 

of the plus and minus states are on the order of S, the system 

can appear to a large extent incoherent although the off-diagonal 

elements of the density matrix are not fluctuating at the rates 2S 

(or 8S for the Davydov splittings). In addition, the available 

optical tedll1iques cannot measure the linewidth of the minus 

state of a translationally equivalent dimer since the transition 

moment from the ground state to that state ~s zero by symmetry. 27 

If 2S is less tl1an the optical linewidth, then conventional optical 

techniques caJll10t measure any of these parameters and many of the 

. . . . 2 8- 34 f dime. • b b . d spectroscopic properties o rs cannot e o ta1ne 

conventionally. 
35 36 . Avakian et al ' have shown the l.ITipOrtance of the linewidth 

of the Davydov component as well as the separation between the 

two components in anthracene in determining the dynamics of 

exciton migration. Furthennore, they measured diffusion constants 

and related them to the nature of excitation transfer. However, as 

1 . db. h th 35- 37 th d"ff . 1 rea 1ze y t ese au ors, e 1 us1on constants not on y 
. 38 39 depend on the veloCl ty ' of the exciton but also on the 

scattering time and hence more experiments beside the diffusion 

constant are needed. 
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Magnetic Resonance spectroscopy (EPR), can 

be performed on a time scale which is very suitable for the 

measurements of coherence time and the detection of many of the 

ru1isotropic properties of magnetic interactions in the excited 

state. Scl1woerer and Wolf40 ,41 have shown that the EPR of the 

naphthalene pair are different from that of the monomer whose 

EPR spectra were well-known from Hutchison and Mangum experiments. 42 ,43 

Moreover, they identified the pair as translationally inequivalent, 

and a "diffusion constant'' for the excitation was computed from 

their measurements. However, the correlation time for scattering,· 

in our opinion and also from the work of l~son, 44 cannot be deter-

mined from these high field linewidth measurements. This is because 

the resonance linewidth depends on (i) magnetic field broadening 

induced by the field anisotropy, (ii) hyperfine splittings 

which have been proven to exist in the dimer spectra of naphthalene 

by Hutchison and King, 45 Ciii) relaxation effects, and finally, 

(iv) the physics of stochastic Markoffian46 processes must be 

taken 4 7 into accoWlt in extracting the coherence properties from such 

measurements. 
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AS we will demonstrate, zero field EPR spectroscopy of dimers 

at low temperatures can be used to answer many of the above 

questions pertaining to the coherent and incoherent properties, 

particularly if the dimers are fanned in crystals where the 

band dispersion is d . . . ·1. 48 one- 1mens1ona . 

Recently,the zero field phosphorescence microwave double 

resonance (PMDR)49 spectroscopy of pairs of 1,4-dibromonaphthalene 

} th I d d . . f th . . d" . 150,51 w1ere e Jan 1spers1on or e exc1ton 1s one- 1mens1ona · 

was reported. 52 The identification of 

the pairs as tianslationally equivalent was consistent with the 

resonance frequencies ,and both the optical and EPR results manifest 

the strong interaction between the two molecules of the pair. 52 ,53 

However, the dynamics of coherence could not be established from 

the experiments because of the interference between the D + IE I 

and D - lEI transitions which broadens the resonance lines and limits 

the resolution. 

The first paper54 of this series gave a brief account of our 

results on coherence in excited dimers of 1,2,4,5-tetrachlorobenzene crystal. 

In tilis paper we present the detailed tileoretical grounds for understanding 

coherence in dimers and its relationship to coherence in exci tons. The influence 

of the resonance interaction and the resonance between tile molecules 

composing the pair on tile stationary properties of the dirner is also 

given. 111e effect of phonon scattering on the microwave absorption 

in the dirner states is explicitly given and related to the physics 
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governing the scattering processes in the different limits of 

exchange; slow, intennediate and fast. 

I I. THE STATIONARY STATES OF DIMERS AND EXCITONS 

In the rigid lattice approximation, the totalHamiltonian of 

the crystal 1s 

H=H+I:v 
m m<n nm 

(5) 

Hm is the Hamiltonian for a JOOlecule at the rnth site and Vmn is the 

exciton interaction energy. This Hamiltonian may be written in 

another commonly used notation, occupation number·f~rmalism, if 

we define the vacuum state .of the crystal by the following 
.. 55 equat1on. · 

a 1oooo.· ... 1 •••• 000> = IOOOO ••.• o .... OOO> <5 · (6) , rn n mn 

where am is the well-known annihilation operator arid 

!OOOO •••• l .... 000> indicates that one quantum of excitation is on n 

the nth site while all other sites are in the grmmd state. Thus 

H = """· ~ a+ a + """v a+ a ex ~ 1m rn m ~ mn n m m m<n 
(7) 

If the unit cell of the lattice contains more than one 100lecule 

the full crystal eigenstate for a spinless exciton is 21 

(8) 
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where ua is the cell cordinate (u labels the l.Ulit ce 11 , o. the 

molecule in the l.Ulit cell), and I <Po. (k)> is the one-site exciton 

ftu1ctiort . These Bloch ftu1ctions56 can be fonned from the anti-

syrrunetricized product of waveftu1ctions for the individual 

molecules. v is the band index for the different exciton branches, 

whicl1 is equal to the number of molecules per unit cell. 

For a paramagnetic (triplet) exciton, equation (8) may be 

substituted by 

where T. are the zero field spin functions. 
t 

(9) 

It 1s now clear that in order to determine the proper eigen-

states of the system, C must be obtained. Group-theoretica157 
' uo. 

argt.Dilents may be used to evaluate these coefficients at certain points 
-+ 

in the Brillouin zone. This is strictly true for the k = 0 point at which 

the full symmetry of the Brillouin zone can be used to classify the eigen-

* ' functions. 'Thus CC = 1/2 at this point of the zone. The same 
-+ 

kind of simplifications can be made if k is directed along a 
-+ 

symrootry axis of the crystal. For a general k this is not 

necessarily true. However the "restricted Frenkel limit" 58 

was invoked to .simplify the computation. Briefly, this approximation 

eliminates the translational resonance interactions skew to the 

crystallographic axes. Such an approximation seems to describe 

the triplet state excitonic properties of naphthalene and anthracene 

type lattices, perhaps because of the tu1ique nature of the spatial 
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array of the molecules in the lattice. It is within this limit 
+ + 

that the eigenfunctions, I!JJ (k), T .>, for each 0 and for all k . v ~ 
+ 

(not ju5t k = 0 and along synunetry direction) have equal aplitudes from 

the one ... site exciton functions. The energies for lattices with two molecules 

in the unit cell are 

L and L B are the so-called translationally equivalent and oo · a --

translationally inequivalent interaction tenns, and E0 is the 

center of gravity of the exciton band (which can be written as 

the sum of the free gas excitation energy plus the crystal shift) . 

More specifically, the dispersion relation of equation (10) for a· 

nnnoclinic P21/a lattice may be written in the following form. 3 

k•r k•r [~+] [++] 
cos ~ cos ~ 

(11) 

where r (ll = 1,2,3) represent a,b,c lattice vectors, respectively. 
ll 

For a one-dimensional exciton, equation (11) · reduces to 

.. .+ + + 
E (k) = E + 

0 2Ba cos(k • a) (12) 

if the interaction is along the a-axis. 

(10) 

:o . 
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Th~· above equations can be used to describe the stationary 
.· ::~~;:· . ·t· . \ 

electroP,ic properti~s of a IOOlecular .. P.imer in a crystal lattice, 
~ .. \ . . ' ': 
I 

since the Ihuniltonian for a pai; of molecules (A and B) bound by 

the intermolecular potential VAB is 

H(D) = H(Dimer) = HA + HB + VAB (13) 

whichis derived from equation (5) for a two 100lecule chain. In 

addition, the one-site function for the pair is simply 

Alj!~ (1 ,2) 1/J~i) (3,4) (14) 

in which the molecule B is excited into the triplet state while 

molecule A is in the ground state. i stands for a particular triplet . 

spin sublevel, and ljJ(rz, rm) is the two-electron antisynmetrized 

function .. of the electron coordinates r l and rm. A permutes the 

electrons between the molecules and 1/JA is the product of a spatial 

function ~ (whid1 is symmetric to electron interchange for a 

singlet state and antisymmetric for a triplet state), and a spin 

function. 

Since VAB of equation (13) is a spatial operator on the 

coordinates of all four electrons, one can show that 

(15) 
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. . 
Writing ,the explicit fonn for the wavef1mctions clearly indicates 

that J = 0 for triplets if there is no spin-orbital interaction 

and that 8- (exchange excitation transfer matrix element) is 

primarily responsible for triplet dimer splittings.59 

In zero field, the spin is correlated 60 along the molecular 

axes whid1 ar~ coincident with the synuootry axes if the molecular 

· point group is c2v or higher. Thus the total triplet function in 

zero field can be Jritten as~ €) T. where i = x,y,z. The corres.:. 
-z.. 

ponding Bloch f1mctions for a dimer are therefore given by 

which could be abbreviated as follows. 

II I. RESONANCE SPECTRA OF DIMERS AND TRIPLET FRENKEL EXCITONS 

If the zero field splittings (ZFS) are comparable with the 

energy separation between the bands (i.e., in regions of the 

Brillouin zone where there are band degeneracies 61 or near 

d . ) th . . 19 egeneracies , e spin energies of the exciton states can 

be obtained from the following secular equation. 

where the SI.Ull is over all the electrons in the crystal. 

(16} 

(17) . 
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For a dimer the solution is rather simple. The above six 

basis fun~tions (see equation (17)) can be used to obtain the dimer 

energies for any value of <V AB>. A general matrix elerent for the 

Hamiltonian of equation (13) in the above basis is 

<tjJ.(±)IHA + HB + VAB +If+ if3jtjJ.(±)> = 
1.- s s J . 

[ 
+ (A) (B) J o+ -a .. D.. _ <VAB><T. IT. > -+ 1.-J 1.-J 7.- J 

D .. are the fine-structure tensor elements, e.g. D · = -X, etc. 
1.-J XX 

magnetic quantization in the direr will therefore be detennined 

by these spin projections, <TiA) ITJB)>, which are simply the 

geometrical factors 62 for the molecules in the unit cell. In 

addition,· this quantity does not necessarily 'equal the 0 .. Dirac 
1.-J 

(19) 

The 

function for translationally equivalent pairs, 
52 

since this will 

be detennirted by the local S)'lllrretry53 of the dimer. 

The resonance between the two molecules composing tl1e pair 

will be manifested in the magnetic spectnun of the dimer. This 

is because the dimer spin Hamiltonian can be generally written as 

a = A,B 

where H (a) is the spin Hamiltonian for the ath molecule. Thus s 

the degree of resonance between the two molecules, the matrix 

elements of VAB,and tl1e relative orientation of the molecules 

(20) 
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detennine the dimer EPR resonance frequencies. In the limit of 

large <VAB> and for resonating molecules, 1Ca1 2 = 1/2 for both 

translationally equivalent and translationally inequivalent 

dimers. 

One might think that the ZFS for translationally equivalent 

dimers wi 11 not change from tha~ of the isolated molecule, even if 

B >>D. . of the molecule. This is only true if the molecules are 
1-"Z-

centrosymmetric.52 On the other hand, the ZFS for translationally 

. . 1 d. 19 1nequ1va ent 1mers ·is very sensitive to <VAB> = {:3, even if the 
( 

molecules have a center of symmetry. This is simply because the 

molecules in the unit cell have different orientation. For example, 

if the configuration of the pair magnetic axes is as those given in 

Figure 1 for the translatiohally inequivalent pairs of 1,2,4,5-

tetracl1lorobenzene (approximate, representation), the energies of 

the six spin states of TCB dirner can be easily derived from 

equation (19). 'fhe results, neglecting intermolecular magnetic 

interactions, are rather simple for this particular configuration 

of d1e molecules. Specifically, 

and 

* * X + y Y,X =---± 
2 

* Z = Z ± B 

1/2 (21) 

(22) 
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'lhe above equations show the dependence of dimer spin spli ttings on B. If 

S is very small compared to D and E (zero field parameters) of the 

molecule, then 

* * * X , Y , Z ::::=X, Y, Z 

respectively, However, in the limit where B>>D,E, only one 

transition in both the plus and minus components will be located 

at z - [X ; Y J . It should be 

(23) 

noted that to have an anisotropy in the Lannor frequencies of 

the two dimer (or, more generally, the exciton) states, a mixing between 

t:Ve plus and minus states via the magnetic Hamiltonian or spin

orbital interactions between the singlet and- triplet (or triplet

triplet, for that matter) states must be considered. The former 

clearly depends on the symmetry of the plus and minus states. 

For states Mlich are derived from centrosymmetric sites, 

these magnetic interactions will shift the spin levels to the 

same extent. 111e spin-orbital interaction, however, induces 

an anisotropy, even in centrosymmetric systems, as will be 

demonstrated in later sections. 

IV. OJHERENCL . IN 11-IE EXCITED STATES OF t4)LECULAR AGGREGATES 

(A) The Relationship between the Coherent Properties of Dimers 

and Those of the Band States. 

'lhe unique feature of the dimer is that it preserves many of the 

excitonic properties of interest, yet the problem is reduced 
I 
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to a two-level system. For the discussion ofexcitation transfer 

1n dimers, the time-dependent Schrodinger equation, 

. iil 'dt/J(t) 
at = Ht/J(t) (24) 

can be ilsed. The stationary states of the dimer are then given by 

(25) 

and a general non-stationary state by 

_$(t) = a+t/J(+) exp[-(i/~)E+t] + a_t/J(-) exp[-(i/fl)E_t] = c t/J ( +) .+ c t/J (-) 
+ -

(26) 

If E I E , + - an oscillation of the excitation is expected 

in this dynamical picture and - the resonance transfer rate, 

l<$(t)ltjJ1i)l)J13>1 2 divided by t, 1s given by 

(27) 

1s the one-site function for the dimer.. This rate of 

transfer is directly related to that of a one-dimensional triplet 

exciton, (BIB I /h).. The comparison between the coherence time with 

the rate of transfer establishes whether or not the dimer (or 

exciton) states are coherent. 

In order to differentiate between coherent and diffusion 

limited triplet Frenkel exciton migration in molecular crystals, 

one must specify both the coherence time associated with the 
-+ 

wavevector k and the correlation time associated with .the particular 

li 
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experimental approach used. It has been shown 63 that photons 

in thl' micro\\ave region give the sui table e.>.:perirnental 
~ 

time scale for which the k state of ·an exciton will not decay 

completely; hence the coherent properties of such states may be 

extracted. Triplet states offer such great possiblities since 

the ZFS energies lie in the microwave region. At very low 

temperature, the influence of the phonon bath 

on the excitation dynamics is e.x-pected to be small and one might 

expect the frequency of scattering to be much less than the 

intennolccular exchange time. If the events of scattering 

take place on a time scale much longer than the total (radiative 

and radiationless) lifetime of the emitting state, a forenkel 
. 64 65 

exciton can be thought of as an excitation propagat.1ng ' 

coherently (wave packet) at a velocity characteristic of both its 
~ 

energy and the linear combination of crystal k states which describe 

the wave packet. This velocity is known as the group velocity and 

is given by 

V (k) = (2n/h)[dE(k)/dk] g 

E (k) is definl'd in equation (12) for a one-dimensional sys tern. 

(28) 

In the absence of scattering the group velocity of the wavevector 

states at the center of the band in one-dimensional systems is 

approximately 106 times the velocities of those associated with random 

lk . . 65 wa m1grat1on. In a stochastic rnode1 46 

the distance,.l(k), which an exciton propagates 1n a coherent fashion 
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without changing either its direction or velocity is 

l(k) = Vg(k) • 1(k) (29) 

where 1 (~) 1s the lifetime of the coherent state. 'llms L (k) is 

equivalent to a·inean-free path and 1 (k) corresponds to a correlation 

time for the wavevector state k or linear combination of k states 

and an energy E(k) associated with the zeroth order state. 
I 

· 'These cohere.I~! _Q_roperties for exci tons are all related, 

conceptual~ to the coherent properties of dimers; 1 (k) is 

simply 1(+) and T(-) for the two dimer states and Z(k) is just 

the lattice constant 1.;hich is the distance between the interacting 

molecules of the pair. However, the physics that describe these 

scattering times in a dimer are mud1 simpler to Wlderstand than those 

of the exciton. 111e lifetimes of the plus and minus states of a 

dimer in a host lattice (characterized by kh band states) are g1ven 

by 

(1 )-1+"" 
+- LJ 
-+ k I 

h 

-1 
(T+k' ) = f(±) - h . 

(30) 

In the zeroth order approximation (such as 1n t}le c:ase of a dimer 

gas), the uncertainity width is the same for both the plus and 

m1nus states: 

r (±) r = (31) 

i 
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Figure 2 , shows the experimental observables associated with coherence 

in the plus and minus dimer states. For an exciton the picture 

is more complicated since a sum over all k states of the band 

must be carried out, even in the zeroth order approximation: 12 

Tkk' is the probability of an exciton initiall>:" in an energy 

associated with the kth state scattered to a final energy with 

(32) 

the state k' . 'Dw relationship between V (k) and the band dispersion 
g 

for exci tons is gi vcn in Figure 3, which should be compared with 

the dimer coherent parameters given in Figure 2. 

In addition to the above mentioned considerations needed for 

the description of coherence in dimers and excitons, the statistics 66 

of population distribution must be included. This is because 

the population distribution amongst the plus and the minus states 

(or the different k states of the band) may detennine the appro-

. 10 11 12 . 1 pnate model ' ' for phonon-exc1 ton scattering as well as t 1e reso-

nance interactions between the molecules. 

If a Boltzmann distribution of population is attained 

over all the k states, the number of excitons, N(k), propagating 

with a velocity, V (k), at a given temperature is 
g 

N(k) = p(E) exp(-E(k)/kT] • z -1 
(33) 

where p{E) 1s the density of states and z is the partition function. 
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Such population distribution may arise at intennediate temperatures, 

where the inelastic phonon-exciton scattering conditions the magnitude 

of T(k) .. In such cases, an exciton initially at an energy E(k) 

scatters to other energies E (k') via phonon interactions in a 

time short compared to the lifetime, but in a: time long compared to 

h/88. As a result the coherence time is shortened, the mean-free 

path or coherence le_ngth is reduced, and the individual k states 

acquire a width r{k), given by the equation (32). 

In the case of dimers , however, the partition fwlCtion takes 

a very simple form: 

z = 1 + e-28/kT = 1 + ~ 

and therefore a simple temperature dependent experiment g1 ve 

directly 8 and establishes whether or not Boltzmann statistics 

detennine the routes of ~xcitation transfer in the pair. This 

will lead 'into a very important question: Do the radiative and 

(34} 

non-radiative channels in the crystal lead to differences in the 

coherence time of ljJ(+) and lJI(-) states? 

(B) Detection of Coherence in Dimer States: Magnetic Properties . 

of Dimers in the Rotating Frame 

So far, we have given all the recipes. for measuring the degree 

of coherence 1n excitons and dimers. However, the ftmdamental 

question is: \\hat kind of experiment is needed for the extraction 

of coherent observables? In order to answer this question, let us 

treat the dynamics of the whole spin ensemble for a strongly coupled 

. th d . . f 1" 67,68 dimer us1ng e ens1ty matnx orma 1sm. 
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In the presence of a time dependent rf Hamiltonian connecting, 

for example, the Tx* and Ty*· magnetic sublevels of the dimer, 

the total spin Hamiltonian is 

H(D) =! (~ + ~) - yH S coswt = H(D)(O) + H(D)(t) 
S 2 S S 1 z* s S 

where yH1 1s the magnitude of the rf field, y is the magnetogyric 

ratio of the electron, w is the lf frequency, and Sz* is the 

magnetic dipole trm1sition operator. the proper description of 

the spin system in the laboratory frame is given by the time-

dependent density matrix, p, where 

. 
P = ifh [p,H5] (36) 

. 69 
In the interaction representation the appropriate description 

* of the spin system is again a time-dependent density matrix, p , 

where 

* -1 p = U pU, 

and the unitary transfonnation U connecting the laboratory and 

interaction representation is given by 

U = exp(iG(t)tfi) 

* * 

(37) 

(38) 

and the Hamiltonian, H5, associated with p satisfies the following 

equations: 

(39) 

(35) 
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(40) 

'Ihe interaction representation can be viewed as a tmi tary 

transformation of the laboratory frame which effectively removes the zero 

field Hamiltonian of the dimer provided the transformation matrix 

U is explicitly de'fined as: 

U(Dimer) = exp[(i/2)(~ + ~)(t/fi)] 

* * Therefore, the Hamiltonian matrix in the x y basis is 

= -(yH1~/2)i exp[-i(X * * Y ) t/fi + iwt] 

(41) 

(42) 

and is nonsecular tmless w = (E * - E *)/1\ where E * and E * are 
X y · X y 

the eigenvalues of the zerofield dimer Hamiltonian; 1/2(~ + ~). 

At resonance tl1e interaction Hamiltonian becomes secular in first 

· order, and has the form of a "Zeeman Hamiltonian" in a rotating 

frame 70 ' 71 at the resonance frequency. Thus·· 

* Hs = - (yH11i/2) sz* 

where the effective field yH1 causes a "pseudo" magnltization 

{43) 

to precess around z*. Stated in simplest tenns, the. motion .of the 

pseudomagnetization in the rotating frame is equivalint to the 

dynamics of the zero field alignment of tl1e populations 
\ 

with the dimer spin sublevels in the laboratory frame. 
! 

associated 

The detection of coherence in dimers will depend on the rate 

at which tl1e well-defined phases in the waveftmction of equation (26) 

become random due to ensemble fluctuations. If we define a as 
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the density matrix in the basis 1/J(+) and 1/J(-), the probability 

matrix which describes the time-evolution of dirner states is\ 

a(t) = 

where 

= 

* c c - + 

--;r 
c c + -

--* c c 

(44) 

( 45) 

The star on the matrix elements denoting the complex conjugate character 

should not be confused with the star on p which was used to characterize 

another representation of the density matrix. The bar on the products of 

the coefficients in the above matrix represents the ensemble average. 

Another form for the above matrix can be deduced from Feynman, Vernon 

and Hellwartll (FVH) 72 geometrical representation of the Schrodinger 
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1 - r 
3 

(46) 

where r 1 = (o12 + o21 ) and r 2 ~ (o21 - o12)(-i) give the coherence 

infonnation of the enseni>le. It is now clear that the coherence 

infonnation iii the direr is contained in the off-diagonal elements 

of the density matrix, and that the polarization of the spin is 

manifested in the pseudomagnetization vector, r 3, which in turn 

depends on 8 and on the relative geometrical orientation of the 

mlecules in the pair. 

Measurements of the EPR resonance frequencies in the pair are 
. ~ 

therefore not expected to give infonnation about the off:..diagonal 

elements of the density matrix and only can be expressed in terms 

of r 3 which is given by 

( 47) 

For a dimer in a mon~clinic lattice, e.g. naphthalene-like crystals, 

(cs . . t. ) 73 
2h po1nt group syrrane ry the spin Hamiltonian of the pair, Hs (D), 

can be written in terms of H5 (M) in the following fonn: 



.. 

.• 

-25-

= + 

A3r 3• (S ~tS * + S *S *) y z z y 
(48) 

* * * where X , Y and Z are the fine structure constants of the pair, and A
1

, A
2 

and A3 are given by D and E of the monomer and the geometrical factors for the 

molecule in the lattice (direction cosines). r_3 now defines the difference 

' in probabilities of finding the excitation on the molecules of the dimer. 

Of course, the above Hamiltonian can be transformed into a new set of principal ! 

axes which re100ve the off-diagonal tenns andJedefine the fine structure constants. 

V. OPTICAL DETECfiON OF MAGNb!IC RESONANCE IN COHERENT STATES 

In this section we shall treat the relationship between the 

dispersion in Larmor frequencies for dimers and exci tons and the 

resonance interactions between molecules, using the properly 

antisymnetrized eigenfunctions. It will be shown thatthere is a 

direct correspondence between both dispersions. Although the 

solution to the dimer problem is simpler than that of the exciton 
' 

we shall treat the latter first since the solution to the former 

problem will emerge from the general case, exciton, if tl1e 

number of k states is just two. 
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(A) Microwave Band-to-Band Transitions in Coherent Exciton States: 

.Manifestations of k-dependent Interactions 

The stationary properties of electronic triplet bands can 
' . . 

be understood by the simple dispersion relationship of equation (12) 

if the couplitlg between· the linear chains is neglected. Thus 

the one-site exciton functions can be explicitly written as 

ljJO = A II 
ua 

for the grolllld singlet state, and as 

(49) 

(SO) 

for the ith spin state of the fth excited state. ljJ;B and ~~a are 

the antisymmetrized molecular wavefunction and A is the permutation 
74 operator effecting an interchange of electrons between 

molecules. ·n1e crystal eigenfunction is 

f. 
<P ~ (k) 

l N f. 
= - 2:: exp [k • r ] ljJm~ 

YNmS mB p 

. (51) 

where k (one-dimensional wavevectors) classifies both the symrretry 

and the energy of band states. In the zeroth order approximation, 

ljJfT. has no electric dipole strength to the grotmdstate simply 
~ 

because of the spin orthogonality between S and T.. The orbital 
~ 

part of tl1e wavefunction, ljJf, transforms like the polar vectors 

of the molecular point group while the spin part transfonns like the 

aX'ial vectors. However, the molecules do not enjoy the full 
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molecular symmetry because of the crystal field,and thus the 

effec;:tive molecular symmetry, site synunetry, must be used to 

classify the different spin-orbit states. Since /<H50>/ is 
./ 

much lessthan singlet-triplet splittings,75 the nnlecular 

function (to a first order) 1s given by 
f r 

+ 
~ <tiJ r_,. IH-0/w a> 

/t~JfT.>(l) = a/tiJfT.>(O) ~ v -~ 
'l- -z, r (E~ - E~) 

(52) 

where lwra> (space (il) spin) is either a singlet or a triplet state, 

and a is a normalization constant. 

The magnetic anisotropy introduced to the. three spin bands 

by the molecular spin-orbital coupling will certainiy depend on 

the nature of the interaction between molecules in the lattice 

which couid lead into different splittings in the different 

electronic states. Two cases would arise. 

(i) S is relatively large and no spin-orbit anisotropy: 

k-independent microwave dispersion. 

Because of the nature of the exchange Hamiltonian 

the triplet exciton bands are formed from each of tl1e individual 

sublevels separately, in the absence of spin-orbital coupling. 

Thus in the absence of spin-orbital anisotropy a one-dimensional 

band is composed of three parallel spin bands with separations 

equal to the molecular ZFS. Hence, the microwave 

band-to-band transition is a single homogeneous line whose fre-

quency is independcn t of the energy of the k state in tl1e band, 
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even if tl1e band width is very large. This is shown in Figure 4. 

(ii) S is relatively large and there is a finite spin-orbital 

anisotropy: k-dependent microwave dispersion. 

Combining equations (SO) and (52), we get 

.. ·. 0 0 f I: "'ll r = AIT,·t .. : . ·lJ; S [alJ; 0 T. + · <HSO>f llEf lJ; a> J uafn)S'· ua m(J '/, r r r 
(53a) 

fi(O) ~ -1 r 0 0 
= alJJ o + ~ <H50>f llEf llJJ a>(AIT lJJ s ) · (53b) 

mfJ r r r u:x'rnB ua. 

TI1e corresponding Bloch functions are thus given by 

f. (1) 
cp 1.- (k) = 

f.CO) f . 
acp 1.- (k) + L<H > llE-1 cp ro (k) 

r SO fr fr (54) 

a is now given by 

. (55) 

TI1e energy spectrum of the crystal can be determined from 

the above equations by using the crystal Hamiltonian. Thus 

for singlet-triplet mixing, i.e. f =triplet (t), and r =singlet (s), 

we have 

* t t 
= a a[Eg + D + 2St cosk·a] + 

4= I<Hso>tslzllE~; [E: + Ds + Ls(k)] 
• 

(56) 
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For a one-dimensional singlet dispersion, the total energy ,of the 

i th spin state is thus given by 

I <H > 12 n: -1 I H 12 (Dt Ds) A r:- 2 _ so ts ~ts - < so>ts - ~ts 

(E~ + Dt) is the crystal molecular energy in the triplet state; 

Egt is the gaseous excitation energy and Dt is the crystal shift. D .. 
1-1-

is the molecular fine structure constant in the absence of Hso· 
Equation (57) states that the spin-orbital interaction modulates 

the band energy and leads into a k-dependent anisotropy in the three 

spin bands, across the Brilloilll zone. Of course the selectivity 

of H50 in coupling singlet (or triplet) molecular states with 

the lowest triplet will ensure such anisotropy in the band-to-band 

energy dispersion. To' calculate the microwave frequencies for 

all values of k, the energies in equation (57) must be corrected 

for the energy of the molecule in the crystal lattice. For two. magnetic 

sublevels, Ez(k) and Ex(k), the transition energy is given by 

~E (k) : IE (k) - E (k)l XZ X . Z 

= 
( ) 2 1 ~ (2Bt - 26s) 

[x- z] - 1<1~: >I ~E- (1 +- + coska) 
W ~E till 

(58) 
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Some of the subscripts were omitted for the purpose of simplification, 

ru1d the z-component of the spin-orbit inter~ction was selected to 

give a simple solution. However, the extension to more than one 
/ 

level coupling i~s straightforward. A molecule at the crystal 

site has the following zero field transition energy: 

(59) 

Thus the microwave transition frequency in the k-domain is given by 

Letting 

(61) 

the band dispersion, 2St coska, of the lowest triplet state can 

be directly related to the microwave frequencey spectrum of the band: 

(t.E (k) - t.E ) f-l 
xz xz = 28t coska (62) 

Equation (62) indicates tl1at the microwave frequency dispersion in 

the first Brilloun zone is linear in coska, a relation which is very 

important in discussing the magnetic anisotropy in dimers. This 

equation is identical to the one derived by Francis and Harris 15 for one-Jimen-

sional excitons. Moreover, the microwave band-to-band transition,deri ved from the 

above equations, will take a shape which is related to the density 

of states function (cf. Figure 4). 

.. 
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Oile should notice that although the anisotropy in the microwave 

band-to-band transitions is explained by incorporating HSO in the 

total Hamiltonian, there is a very simple fact behind this idea; 

namely that the matrix elements between the k band states of the 

upper excited level and the k states of the lowest energy band are 

very selective. Thus if the two bands have different bandwidths 

(as is usually the case), the anisotropy is transmit ted to 

the lowest sublevels of the band. We feel that these observations 

could be quite general, even in molecular crystals where the 

molecular spin-orbit routes are not highly selective. 

To prove the band-to-band spin-orbit selectivity, one can 

write the Bloch functions for both the singlet and triplet bands; 

and take the matrix elements of HSO. It follows that 

(63) 

if the exciting photon length is inuch larger thml 

molecular spacing.· Intennolecular spin-orbital coupling 1s not 

included in D1ese computations, and <Hso>st is again the molecular 

spin-orbital coupling matrix element. Extension of the above theory to 

any band dispersion is straightforward. 

(B) Microwave Absorytion in Coherent Dimer States 

·nw t re~1tment of the dimer case will be essentially 1 ike that 

developed for cxcitons, except the complication inducedby the many 

k states of the band is now resolved since there are only two 

states in the dimer. Moreover, the anisotropy induced in the dimer 
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by Hso should be related to the full band anisotropy (by extrapolation). 

The relationship is simple if the band dispersion is one:..dimensional, and 

thus the observation of dimer microwave absorption could be very 

·important in detennining the band dimensionality. 
·.I 

To fonn such dimers, we need to shorten the chains somehow, 

e.g. by introducing barriers 76 , 50 at certain sites in the crystal 

However in most experiments performed one does not have a control 

1 d
. . . 77 

over t1e ran om1zat1on in these d1ains. Thus the treatment 

of N-mers is necessary. The energies of an N-mer in a given chain 

is given by 

•K = «0 + 28 cos[Krr/(N + 1)] (64) 

where K = 1, .... N and should not be confused with k since the 

translational syrrunetry is removed. 

The energies of these N-mers in the band are given in Figure S. 

Ideally the monomer, K = 1, is at the center of the band (k = ±n/Za) and the 

infinite chain is at the band edge. It follows from equation (62) 

that the two dimer states, which are located at ±8 relative to the 

monomer energy, should have a microwave transition frequency at 

(65) 

·n1erefore the frequency spread across the band (frequency difference 

of the transition at k = 0 and k = n/a; ~k} is related to the dimcr 

spread (frequerKy difference of the transition at K = 1 and K = 2; 



• 
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= (66) 

Tilis relationship is demonstrated in Figure 5 (or a one-dimensional 

system. Similar equations can be derived for higher members of the 

chain (trimer, tetramer, ... etc.). Figure 6 shows the microwave 

frequencies calculated for the N-mers of translationally equivalent 

molecules and compared with the calculated exciton resonances. 

It is clear from equation (65) that the Larmor frequency will 

be different for the two different states of the dimer. Such 

differences can be explicitly incorporated ih the magnetic Blod1 78 

equations, allowing for different states of the dimer to be probed 

by either conventional EPR spectroscopy or by optical detection 

of magnetic resonance as we shall demonstrate in the following 

section. 

VI. TilE INFLUENCE OF EXCITON- PIDNON SCATTERING ON 11-fE ZERO FIELD 

EPR TRANSITION PROBABILITIES IN 11IE 1WO DI.MER STATES 

It is we 11- known that the shape and the cross section for the 

absorption of magnetic oscillators by a two spin level system can 

be deduced from the phenomenological Bloch equations. 78 

In the dimer case, where ead1 state has its own Lannor frequency, 

one additional parameter, namely the transfer probabilities 



-34-

· between the two subsystems, must be invoked in order to fully 

understand the relationship between the absorption of microwaves 

or radiofrequency (rf) fields and the scattering probabilities. 

The studies of these scattering rates by zero field EPR 

spectroscopy is particularly suitable since the coherence time is 

expected to be on the time scale of the correlation time 

associated with 

the os<:illating magnetic field. Naturally, if the coherence 

time is much shorter than the experimental correlation time, the 

coherence info,rmation cannot be extracted. On the other hand, 

the rate of scattering between the two states and the difference 

in their Lannor frequencies determines the limit of exchange for the 

spin. Hence, three cases are known: fast, intennediate and slO\v 

exchange. 

Mathematically, the three limits for the dimer can be obtained 

by using the Bloch equations in the rotating frame with the inclusion 

of scattering time constants, T+- and T_+. In the presence of a 

weak oscillating rf field of d1e form 

H(t) = -yH
1 

coswt (67) 

The Bloch equations without the exchange part take the form, 78 

(du/dt) + (u/T2) - Awv = 0 (68a) 

(Jv/dt) + (v/T2) + ~wu - yH1M
2 

0 (68b) 
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(68c) 

where ~w = w0 - w; w0 is the resonance frequency, and u and v are 

the inphase and out-of-phase components of a complex moment defined 

by 

G = u + iv (69) 

Since the macroscopic pseudomagnetization of the. triplet 

state spin ensemble is not strongly disturbed, the equilibrium 

magnetization is approximately equal to M (r~); therefore equation 
z .) 

(68) can be written as 

(70) 

where~~= (w0 - w). The complex frequency w0 includes the 

spin-spin relaxation time: w0 = w0 - iT2-l The Bloch equations 

in the rotating frame, for both ljJ(+) and lJ;(-) states of the dimer 

can readily be written in the following form in the absence of scattering: 

0 (71a) 

(dG_/dt) + i(~w_)G_ - iyH1M0 = 0 (7lb) 

For dimers ·isolated in molecular crystals, the resonance 

frequencies, w~ ru1d w~, in the two stationary states, ~(+) and~(-), 

could be different and at low temperatures (L 1. SK) the spin-lattice 

relaxation time 60 is expected to be longer than, say, the lifetime 



-36-. 

of the excited state. However, exciton-phonon t coupling may 

connect the two states (T1 process). Moreover, it may also 

contrihute to the linewidth of the EPR resonances in the plus 

and minus· states (T 7 process). Thus the magnitude of the 
' :... 

scattering tiine. can be obtained from the EPR spectra of dimers 

by two means; linewidth measurements and the difference in Larmor 

frequencies, as we shall demonstrate later. Following the 
7 3 ' 24 79 

formalism of 1\.ubo,... Anderson, and McConnell for d1emical 

exd1ange, and defining T+- and T_+ as the scatteirng times between 

the two states, the modified Blod1 equations are given by 

(72a) 

and 

(dG /dt) = (72b) 

The power factor, yH1, is abbreviated by w1,arid N± is the fraction 

of spin in the plus and minus states. 

In the steady state, where dG/dt = 0, the .solution is simple 
I 

since we are only dealing with two exciton states (plus and minus). 

TI1e 1 ineshape function g (w) of the microwave transition in 

the dimer is simply given by 

= IffiGv = Im(G + G ) 
+ -

p 
whereas in the case of one-dimensional excitons ... 

= 

tBy exciton-phonon coupling in the dimer case we mean to imply a 
two-molecule exciton chain coupled to the lattice. 

(73) 

(74) 
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\toreover, the solution of Blod1 magnetic equations for the dimer is 

straightforward whereas in the case of exciton states, where the 

scattering probabilities between any two k states, k and k', are 

finite, the equations become more difficult to solve since a sLnn 

of all k' states must be included: 

(75) 

Recently the (2k + 1) equations, obtained from equation (75) 

under the steady state approximation, d . 12 f h 1 were 1scussed or t e s ow, 

intermediate and fast exchange limits 

k 

. h . 1 63 us1ng t e exper1menta ly 

determined values for w0 and the population distribution among the 

k states of the one-dimensional 

exciton band of tetrachlorobenzene crystal. It is clear that 

both the energy dispersion of the band and the population distri-

bution between the different k-states deteDILinc the magnitude of 

k Mo. 11ms, the analysis of the lineshape of the exciton resonance 
I 

must give the band dispersion, density of states and the coherence 

time. However, the physics 
63 

of scattering must be asst.mled 

since the lineshape is a manifestation of many (number of molecules 

in the chain) states, each with a characteristic Lorentzian lineshape. 

For example, one has to assume that the actual scattering time from 

k to k' is much shorter than the time in a particular k state, and 

that there is no spin memory between the different k states. 

In the case of dimers, the above assLnnptions can be verified 

if the resonances of the two, states can be observed. 'D1e relative 
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absorption intensities and energies in the plus and minus states, 

cm1 directly give the physics of scattering and the influence of 

the scattering amplitudes on the population of the two states. ·If there 

are no large host influences on the dinler states, the scattering 

probabilities, 1/T +- and 1/T -+, should detennine the explicit fonn 

of the exci{on~phonon interaction. 

On the other hand, if the two states 

of the dimer scatter utilizing different channels of the host, the 

resonance lineshape will depend on 1/T'+_: 

1/T I+- = 
-+ 

-+ 

(76) 

and the sum over ~ could be different for the plus and minus states. 

'TI1erefore the absorption intensities and the 

transition lineshape are crucial in determining the nature of 

scattering in the pair. 

'1\vo cases are considered here: a Boltzmann distribution between 

the + and - states and a non-Boltzmann distribution with N+ = 

N = 1/2, although the solution for any other limit is straight-

fonvard. The contribution to the linewidth due to processes other 

than exd1ange will be neglected in this calculation for the sake 

of sirnplici ty. 
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(A) Non-.BoltZma.JUl Distribution; N+ = N_ = 1/2 and T+- = T_+ T 

R(w+ - w )3 
IIIL = D (wl/2)Mo 7 ' 7 

(w - w+)~(w- w )~ + 4R2(w+ - w )~(w - w)Z 

(77) 

where w is the average frequency and R is the ratio of the scattering 

rate to the difference in Lannor frequencies of the plus and minus 

states, i.e. 

(w+ - w_) = 1/T x 1/R (78) 

It is evident from equation (78) that if R is small, both transitions 

of the dimer will be sharp and well separated. TI1is means that 

if the exciton-phonon scattering rate is much slower than the rate 

corresponding to tJ1e difference in Lanoor frequencies, the spin 

in each state can absorb ilie microwaves as if the two states are not 

connected. On the otJ1er hand, if the two dimer states are strongly 

coupled via the relaxation Hamiltonian, the spin can no longer. 

distinguish between the two subsystems and averaging will take 

place. Increasing the value of R will result in 

overlap between tJw two transitions since the spin is no longer effecti ve1y 

quantized in one state. Figure 7 shows the dimer resonance spectra 

for different values of R, which cover the fast,. intermediate and 

slow exchange limits. We notice also that for small R and when 

w o w+, a single Lorentz line will be obtained with a width gi vcn by 

1/T = 1/T 2e (79) 
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Tilis exchange t imc, T2e, gives the time the spin spends in ·the 

plus state during the exchange. This, of course, means that the 

linewidth of the plus and minus state is zero in the absence of 
( 

exchange. If there is a residual linewidth (Tz+ -l and r
2

_ -l) 

due to e.g. crystal and/or hyperfine fields, the total width will 

be given by 

1/r2 1/T + 1/T 
2e 2± 

(80) = 

(B) Boltzmann Distribu:tion 

In this case the exchange is between states of unequal popu-

lation and the whole thennalization mechanism depends on the rnagni tude 

of the resonance interaction, S, and the temperature of the bath. 

Utilizing the partition function, z, of the system, the imaginary 

part of the magnetization is given by 

R(w+ - wJ3 
IrnGD = w1M

0 
( •I z )--,-----------,~--'-----2::--:--. ------____,.--. 

(w - w+)2(w - w ) 2 + R2(w+ - w ) [•(w - w_) + (w - w+)] 2 

(81) 
\ 

Again if R is small the characteristic resonances in the plus and 

minus states will be resolved. However the relative intensities will \le. 

different. Figure 8 shows the dependence of resonance spectra on the 

magnitude of R for a fixed temperature and constant \/alue of S, 

while Figure 9 gJVes the spectra as a function of 8 for a fixed value 

of R. ·nlC scnsiti vi ty of the intensity· ratio to both the temperature 

and S makes zero field EPR techniques very versatile in extracting 

... 



-41-

,, 

(3 and hence the bandwidth for Frenkel excitons. Within this 

thennalization med1anism, the relative ratios of the resonance 

transition intensities as a fw1ction of B are given in Figure 10. 

The knowledge of such ratios from experiments will directly 

provide 6 and establish the band dirnensionali ty as well. 
. I 

In addition, for both the Boltzmann and non-Boltzmann regimes, 

T can be detennined. The above considerations bear a direct 

relationship to the exciton case. Both the band dimensionality 

and the bandwidth were obtained from the exciton band-to-band 

transitions, observed by Francis and Harris. 63 Based on these 

experimental results and on their theoretical development, 

a detailed investigation of the effect of exciton-phonon scattering 

on the coherent i:>roperties of exciton states was recently given by 

Harris and Fayer. 12 It was also shown that in the fast exchange 

limit the coherent properties of individual k states average 

out resulting in a single homogeneous line centered around 

k = ±n/2a, in agreement with the ab~:we findings for the dimer case. 

Finally, we should mention here that the intensity of the 

microwave resonances is given by the imaginary part of G as in 

the case ofconventional EPR spectroscopy. 80 However, in the 

case of optical detection of magnetic resonance from triplet states, 

the intensity is proportional to r3' 81 It was shown81 recently 

that the frequency spectnnn is almost the same and therefore 

no attempt was made in this paper to express the resonance intensities 

1n terms of r 3. 
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VII . SUM\1r\RY 

(1) The magnetic properties of translationally equivalent and 

translationally inequivalent pairs of molecules in crystals were 

explained and related to the magnitude of the resonru1ce interaction 

between the two molecules. The effect of local symmetry of 

the excited dimer on the induced anisotropy in the Larmer frequencies 

of ljJ ( +) and ijJ (-) states was discussed in detail. 

(2) The dispersion of microwave absorption in chains of N-mer 

roolecules was directly related to the microwave band-to-band 

dispersions of the infinite chain (exciton). This offers a new 

metfiod for studying exciton dimensionality. 

(3) Factors whid1 determine coherence in excited states were 

explained and related to the magnitude of both intermolecular 

interactions between molecules and the exciton~phonon coupling 

matrix elements. 'l11e influence of the latter on the resonance 

absorption in the dimer states was shown in three limits of spin 

exchange; slow, intermediate and fast. In the limit where the 

scattering probabilities are small, the spin can absorb the 

rf fields in each state of the dimer and hence the two Larmor 

frequencies can be measured. On the other hand, fast scattering was 

shown to lead into a collapse of the resonance absorptions of 
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IJJ(+) and IJJC-) into one line centered around [w(+) + w(-)]/2. 

Moreover, the linewidth of these transitions in the slow exchru1ge 

limit can give a lower limit for the coherence time associated with 

the excited state. 

(4) Finally, we have related the coherent properties of dimers to 

those of the exciton, hoping that the details of the physics behind 

scattering and their influence on energy migration in solids can be eluci

dated by studying the simplest member, the dimer. The different 

models of excitation scattering were discussed in tenns of the 

population distribution in the pair. Both Boltzmann and non-Boltz-

mann thermalization regimes were considered and used as a tool in 

extracting both the magnitude and the sign of the resonance transfer 

matrix elements. 
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F I C:l. nu: C'\PT IONS 

figure 1: ·nw magnetic axes of 1,2 ,4 ,5-tetnichlorobenzene monomer 

(Dzh) and dimer (translationally inequivalent). XA' y A' ZA and 

xB, y
8

, z8 are the molecular axes of molecules A and B respectively, 

while X, Y, Z are the crystal principal axes. 1he figure demonstrates that 

in the large limit of intermolecular interaction, the in-plane spin 

energies will average while the out-of-plane is approximately 

unchanged for this particular geometry. · 

Figure 2: Coherent properties of electronically excited dimers. (a) . 

represents the two dimer (decoupled) functions while (b) represents 

the stationary (coupled) states, W(+) and tji(-), of the dimer that are 

separated by 28. (c) Coherence times associated with the plus and 

minus states of the dinier. (d) 111e effect of population distribution,· 

:--J+, N_, on the expected intensities of 1/J(+) and tji(-) resonance 

transitions. S generates a rate of energy transfer between molecules and the 

coherence lifetiwes, T(+) and T(-), generate a width to the state and are 

a measure of the coupling of the dimer to its environment (see text) . 

Figure 3: Coherent properties of one-dimensional excitons. 

(a) ·nw isolated molecule functions (one-site) and energy, E0 • 

(b) 111e stationary states of one-dimensional band dispersion. 

(c) Coherence time, T(k), associated with the different k-states 

of the band. 

" 
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Figure Captions continued 

Figure 3 (continued): 

(d) Energy dispersion~ E(k), for a one-dimensional exciton ldth 

a band width, 413. 

(e) Group velocity distribution, Vg(k)~ 1n the band, which 1s 

maximum at k = TI/2a. 

(f) TI1eoretically calculated density of state function, p(E), 

for a one-dimensional exciton. 

(g) Population distribution function, N(k), for the band states. 

t3 generates a rate of energy transfer, V (k), between g 
molecules and T(k) generates a width to the state k and a mean-

free path, l(k), for coherent energy migration. N(k) determines 

the partition of energy between states of different velocities. 

Figure 4: Expected Larmor frequencies for one-dimensional systems. 

w(M) is the Larmor frequencey of two spin sublevels, T , T , of the 
X y 

excited triplet state. w(+) and·w(-) are the two different frequencies 

in ljl(+) and ljl(-) dimer states. w(k=O), w(k=TI/a) and w(k~7T/2a) are 

the Larrnor frequencies of k = 0, k = TI/a (band edges) and k = TI/2a 

(band center) states respectively. Extraction of the Lannor frequency 

for any other k-state from the schematic is straightfonvard. The right 

hand side of the figure demonstrates the effect of exchange on the microwave 

absorption in dimer and exciton states. 
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Figure Captions co~tinued 

Figure 4 (continued): 

(a) '1he isolated molecule transition. 

(b) Microwave absorption in dimers for a slow exchange limit; 

AK is the difference in Lannor frequencies of ~(+) and 

1jJ (-) states. 

(c) Microwave absorption 111 dimers for a fast exchange limit. 

!3oth w(+) and w(-) are centered around w(M). 

(d) Exciton band-to-band transition extrapolated from the 

' 
dimer case "b" in the slow exchange 1imi t. '\ is directly 

related to AK (see text). 

(e) Exciton resonance in the fast exchange limit. w(k) is centered 

around w(M). 

Figure 5: 111e relationship between exciton and N-mer dispersions 

for one-dimensional systems. 'The figure on the left gives the k 

dispersion (cosine curve) for the exciton while the vertical lines 

give the energy position of the N-mers. The rest of the K states 

are not shown for the sake of clarity. The position of the monomer 

at the center of the band is only tnte if there is no host polarization 

or hyper fine effects. 'lhe sdwmatic on the right-hand side of the figure 

gives both the energy and microwave dispersions for the 

different states of the different clusters. TI1e position of the k = 0 

level is arbi tarily chosen. TI1e figure clearly shows that there is 

.. 
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Figure Captions continued 

figure S (continued): a one- to-one correspondence between the optical 

and microwave dispersions. 

Figure 6: Calculated Larmor frequencies for aggregates of one-dimen

sional systems. 'Ihe continuous double-humped curve is the exciton 

15 
bm1d-to-banJ transitionj calculated for a ~oltzmann distribution 

amongst the k states and w(k = n/2a) = 5539 MHz. 111e vertical lines 

represent the relative positions of the N-mer resonance transitions. 

'11w intensity distrihution among the N-mer states is not calculated 

m1d only drawn this way to follow the exciton line shape. 

Figure 7: Fast,intermediate and slow exchange of spin between the 

diner states. 'l11c two states are equally populated and the trans fer 

times for the two charmels are equal. 

(a) R 0.1 

(b) R = 0. 2 

(c)R=0.5 

(d) R = 1.0 

Higher values of R will lead into a much sharper line which 

ultimately will have a widti1 of zero (see text). 

Figure 8: fast, intennediate m1d slow exchange of spin between the 

dimer states. ·nw two states are in thermal equilibrium with 

IS I = 0 .. 25 em 
-1 
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Figure 8 (continued): 

(;1) ]{ 11.2 

(b) R 0. 5 
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(c) R:; 1.0 

(d) R:; Z.O 

R is defined for one-way transfer since the system is in Boltzmanniari 

distribution. Notice the shift of the peak, in the fast exchange 

limit, from·the [w(+) + w(-)]/2 value. 

Figure 9: Effect of the resonance interaction, f3, on the EPR line 

shape of a dimer. 1he calculated spectra is for the slow exchange 

limit; · R = 0 .1. TI1e temperature is 1. 75 K. 

(a) B = 0.5 cm-l (b) f3 = 0.25 cm-l -1 (c) f3 = 0.05 em 

Increasing the magnitude of f3 results in,the disappearance of the 

line with low intensity (frequenc--y units :; 7). 

Figure 10: Effect of resonance interaction, f3, on the relative : 

intensities of the EPR transitions in 1/J(+) and 1/J(-) states of the 

dimer. The temperature is l. 75 K. At this temperature it is clear 

from the figure that in order to see both transitions of the dimer, 

f3 must be small; for an intensity ratio of =5, S must be less than 

-1 0.5 on . 

.. 
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MAGNETIC AXES OF TETRACHLOROBENZENE 

MONOMER AND DIMER 

z 

XBL 747-6800 

Fig. 1 · 
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COHERENT PROPERTIES OF ONE-DIMENSIONAL EXCITONS 
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THE RELATIONSHIP BETWEEN EXCITON AND N-MER DISPERSIONS 
IN ONE-DIMENSIONAL CRYSTAL 
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CALCULATED LARMOR FREQUENCIES FOR 
AGGREGATES OF LINEAR CHAIN EXCITON 
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FAST, INTERMEDIATE AND SLOW EXCHANGE OF SPIN 
BETWEEN OIMER STAT~S 
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FAST, INTERMEDIATE AND SLOW EXCHANGE OF SPIN 
BETWEEN OIMER STATES 
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EFFECT OF RESONANCE INTERACTION 

ON THE DIMER MICROWAVE ABSORPTION 

Boltzmann Distribution 

Slow Exchange Limit 
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Fig. 9 
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