
-i
~ . 'i

LBL-27359

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

To be presented at the Data Engineering Conference,
Los Angeles, CA, February 2-5, 1990, and to be
published in the Proceedings

Currency-Based Updates to Distributed Materialized Views

A. Segev and W. Fang

June 1989

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-7tiSF00098.

+-n o r
110

n D
fUJ:Z

......
:[Jl.ln
ID<+O
I'D I'D -u
"'Ill-<
Ill

w
.......
a.

10

(.11
0

r
crn
1 0
1).1'0
1'<
"< . ru

r
w
r
I

ro
" w
J.:JI
•.I)

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

•

"

CURRENCY-BASED UPDATES TO DISTRIBUTED MATERIALIZED VIEWS

Arie Segevt and Weiping Fang+

t School of Business Administration
University of California at Berkeley

and
Computer Science Research Department

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California, 94720

+ Department of lndustial Engineering and Operations Research
University of California at Berkeley

and
Computer Science Research Department

Lawrence Berkeley Laboratory
1 Cyclotron Road

Berkeley, California, 94720

Abstract

In currency-based updates, processing a query to a materialized view has to satisfy a
currency constraint which specifies the maximum time lag of the view data with respect to a
transaction database. Currency-based update policies are more general than periodical,
deferred, and immediate updates; they provide additional opportunities for optimization and
allow updating a materialized view from other materialized views. In this paper, we present
algorithms to determine the source and timing of view updates and validate the resulting cost
savings through simulation results.

This work was supported by the Applied Mathematical Sciences Research Program of the Office
of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098.

LBL-27359

1. Introduction

In a distributed environment, materialized views are a compromise between fully- synchronized

replicated data and single copies of data. Unlike synchronized replicated data, update transactions to

the base data do not update the materialized data. After a base data transaction is committed, update

transaction(s) to the materialized view(s) may be generated. The decoupling of base data transactions

from updating materialized views raises three questions: when to update a materialized view? where to

update it from? and how to perform the update?

In updating a materialized view, an obvious solution is to rematerialize it from the base data on

which it is defined, but normally a differential update procedure (e.g., [LIND86]) is superior. Since it

is possible that modified base data is irrelevant to the view, screen test procedures to determine its

relevance have been devised [BUNE79, BLAK86]. Three general approaches to the timing of materi

alized view updates have been considered in previous research. The first approach is to update the

view immediately after each update to the base tables [SHMU84, BLAK86], the second one defers the

updates until issuing a query to the view [ROUS86, HANS87], and the third is to refresh the view

periodically [ADIB80, LIND86, SEGE89a]. The tradeoff involved in choosing an approach is the

currency of the materialized view vs. the cost of updating it.

Most of the studies of view management have been done for the case of a centralized DBMS.

The subject of distributed materialized views has been addressed recently by [LIND86, KAHL87,

SEGE89a]. These studies are concerned with "how" rather than "when" to update a materialized

view. A recent work by [SRIV88] has modeled the "when" problem analytically for a single central

ized view. The problem of quasi-copies which are similar to distributed materialized views is

addressed in [ALON88]. In all the above works, the base data was assumed to be the source of

updates to the materialized views. In [SEGE89b], currency-based updates policies are introduced and

optimal update times are derived. The notion of currency (which measures the time lag of the view

data relative to the base data) allows more flexibility in cost optimization including the possibility of

updating a materialized view from another materialized view. in this paper, we extend the results of

[SEGE89b] to determine the optimal update sources and timing for a set of distributed materialized

1

views defined on the same base data.

The paper is organized as follows. In Section 2, we introduce the problem definition, notation

and assumptions. An optimization model and algorithms are presented in Section 3. Section 4 gives a

detailed example of how to derive the input data used by the algorithms as well as how to apply them.

Section 5 presents the results of simulation experiments that were done using DeNet [LIVN88]; the

results demonstrate the cost savings that can be realized from our approach and algorithms. The paper

is concluded in Section 6.

2. Problem Definition and Assumptions

Let R be a base relation and assume that n materializedt views MV = {Vi}, i = 1, · · · , n, are

defined over R. View Vi is stored at view site i, and without loss of generality, we assume that all

site numbers are distinct. Occasionally, we will use v to mean V11 ; it will be clear from the context.

We are interested in finding an optimal view update policy for each Vi e MV. The optimal policy is

defined to be the one that minimizes the view update cost subject to a currency constraint. Currency

constraints are defined as follows.

View Currency

Let {State8 (ti)} be a description of the base table states at time points ti. We assume that ti are

expressed as integers and represent the lowest time granularity of interest. Similarly, let {State11 (ti)}

be the state description of view v. We require that State11 (ti) e {States (tj) I tj S ti}, that is, the view

state at time ti was a state of the base table at some time tj S ti. The view currency at time ti is

defined as

In practice one does not know that State11 (ti) = States (t) except for states that were reflected at view

t Unless stated otherwise. we will use the term 'view· to mean 'materialized view' in the remainder of
this paper.

2

•

update times. Consequently, if the last update of the view was at time tu ~ ti and that update reflected

. (ti)
the base table state at time tj ~ tu, then the working definition of view currency IS Tv = ti - tj.

Informally, this definition means that the view data is at most ti - tj time units 'old'. A currency con

straint may be associated with a view and/or a query. Associating the constraint with the view implies

that the view data has to satisfy it at all times. Associating the constraint with a query implies that

data retrieved by the query has to satisfy it. In this work, we assume that the currency constraint is

associated with queries (we denote it by TQ).

Query Processing and View Update Constraints

When a query is to be processed at time ti, TQ is satisfied by the view data if Tv(t;) ~ TQ. We

also assume that a query is answered from the view only, that is, if TQ is satisfied, the query is pro-

cessed against the current state of the view; otherwise, the view is updated such that the new

currencyt, T }
1
;), is less than or equal to T Q , and the query is processed against the new state. Since

the view data is not synchronized with the base relation at the transaction level, T Q = 0 or Tv = 0

should be interpreted as o+, that is, the state of the view changes according to an immediate update

policy (e.g. [SHMU84, BLAK86]).

Consider a view v. Let SV c MV be such that for each v e SV, View_ Predicate(v) =

View_Predicate(v) or View_Predicate(V) => View_Predicate(v), and Tv ~ TQ. The set SV represents

a set of views that can be used to update v such that the new currency of v will satisfy T Q • See

[FINK82] for the subject of identifying relationships between predicates. There are two advantages to

having the option of updating a view from other views. First, it may be cheaper than using a base

relation, and second, it frees the base relation processor (if the views are stored at other sites) from a

portion of the view maintenance activity.

t In practice the various events, and the update process in particular, are not instantaneous. We as
sume that the new view currency is effective as of the beginning of the update process.

3

View Update Policies

.
The foregoing discussion implies the following constraint on a view update policy: prior to pro-

cessing a query Q , the currency of the view has to satisfy T Q . Subject to this constraint there are

several possible policies of timing the view update. These policies can be classified as follows:

Pl: Periodical updates - view updates are done on a pre-determined cyclical basis.

P2: On-Demand- view updates are done only at query processing time.

P3: Random Updates- view updates are done at random times.

P4: Hybrids -view updates are done according to combinations of the first three policies.

In [SEGE89b] we have derived optimal analytical results for hybrid policies of which PI and P2

are special cases. The results of that paper are applicable to the case where the set SV is given. How-

ever, a membership in SV (relative to view v) is qualified on both currencies and predicates, and there-

fore can not be determined a priori if the view update sources are not known. In this paper we are

interested in determining optimal update policies for all the views in MV given that a Periodical Or

Demand (POD) policy is-followed; Figure 1 illustrates the POD policy-for-updating-v-from- v -where

Tv is constant (the results are applicable to random Tv as well).

In this policy, an update to v is triggered by either of the following two events: (1) A query

arrives and the currency of V is unsatisfactory; (2) The time from the last update is s . This policy pro-

vides a mechanism to balance the system's objective with the user's objective. In this policy, there are

two types of updates: the first update type is triggered by a query, while the second type is clock-

triggered when a cycle time elapsed. The cycle time is restarted after each update (either a query-

triggered or a clock-triggered), and by changing s, one can control the cost of query-triggered updates.

Note that the view currency is measured in time units relative to the states of the base table; Therefore,

a higher currency value means that the view data is older. In the figure, we assumed that initially v is

generated from the base table, and subsequently, is updated from v. The figure shows three updates:

the first two updates are triggered by queries 3 and 5, and the third update is clock-triggered because s

time units elapsed from the second update. Queries that find the currency value below T Q do not

4

..

..

Currency
of v

~~----------------~----------~~----Tv
~----------·----------~~------------~------~Time

x.s

~ Arrival of query i

~ Query arrival that triggers a view update

X Time between update initiations

T0 Query currency requirement

Tv Currency of update source

Fig. 1: The POD Update Policy.

trigger updates.

The goal of the analytical analysis is to derive the following results.

(1) Choose a v e SV u {R}. and s such that lim updating cost in [O, r] is minimized.
~~ # of query arrivals in [0, r]

The al:x>ve expression represents the average view update cost per query, and its minimiza-

tion is a system's objective .

(2) We would like to minimize the expression in (1) subject to a user's response time con-

straint. The constraint is given as follows. let UTQ..r be the view update time for a query-

triggered update (it is a function of v and s). We require that Pr { uro_.s > H 1} ::; H 2•

where H 1 and H 2 are user-provided threshold values.

5

The results (which are used in this paper) are summarized in Appendix 1. The underlying cost

function is discussed next.

Cost Functions

The cost of updating a view is dependent on the particular algorithm, size of the data files, pro-

cessing cost, communication costs, and the currency constraints. View update algorithms that were

proposed in previous studies can be classified into two general categories: rematerializations and

differential updates. An algorithm in the first category regenerates the view from the base table. in

differential updates, only changes to the base table(s) since the last view update are processed against

the view. There are two approaches to differential updates, one is to use a differential file (e.g.

[SEGE89a]) and the other is to use the base table (e.g. [LIND86]).

Under the assumption that the size of relations and materialized views are stable over a relatively

long period of time, we use an update cost function of the form ax + b. For rematerialization-type

updates a = 0. For differential-type updates we assume that the cost is linear with respect to time x

(the precise definitiQ_n_ of x is given below). We feel that this function is an appropriate representation
- -- --- -- - -- --· -- - -------....1

for a differential-file algorithm. For example, in [SEGE89a] the major cost components are a sequen-

tial backwards scan of the differential file, transmission of the differential tuples that pass a screening

test, and updating the remote view. If the average selectivities and activity patterns are constant over a

period of time, then in that period, the first two cost components are linear with respect to the -time

between view updates. The behavior of the third component is dependent on how the remote view

update is done; it is possible that (even if the update volume is linear with time) a cost linear with time

is an over-estimate because of Yao-function [YA077] behaviort of view update cost

In the remainder of the paper we will assume a differential-file-based view update algorithm. If

we use v = V; to update V = Vj, the update cost is a;jX + b;j, and the cost coefficients represent pro

cessing and communication costs; x is the difference between the currencies of v after and before the

t The Y ao-function is not related to the time betWeen updates, but to the size of the view and number
of records to be updated at any time. If the number of records to be updated is either very large or very
small, a linear cost function is appropriate. Also, a very good piecewise-linear approximation of the
Yao-function is given in [BERN81].

6

..

update. We also assume that the optimization procedure is static with respect to a given period of

time, that is, during that period only one relation (or view) v e SV u {R} is used to update v, and

the average post-update currency of V is the same after each update from v. In this case, we use the

time between updates as the value of x in the cost fonnula. Note that previous studies are a special

case, where the view currency after each update is a constant and equal to 0. In section 4, we show

how to derive the coefficients aij and bij.

3. A Model and Algorithms for Multiple View Updates

In this section, we fonnalize the optimization problem of detennining optimal POD update poli

cies for a collection of views. In order to simplify the subscripting we refer to the base relation as V 0.

A collection of views Vi, i = 1, · · · , n, are defined over V 0• Each Vi is derivable from Vi if the

selection predicate of Vi, and all attributes of Vj appear in Vi. View Vj can be updated from Vi if it

is derivable from it; the update is satisfactory if the currency requirements of queries to Vj are

satisfied by the updated data; in that case we denote Vi and Vj as the source and target of the update

respectively. For a particular target a source is satisfactory if the resulting update is satisfactory.

The following input date is used by the algorithms described below. The update cost coefficients

aij and bij are used to calculate cij (x) = aijX + bij which is the cost of updating Vj from Vi, where x

is the time from the last update of Vj; if Vj is not derivable from Vi, then aij and bij are oo. A

coefficient di describes the cost rate of creating a differential file at view site i; this file is required if

Vi is used to differentially update at least one V.t, k '# i; if x is the time between two consecutive

updates of Vi, then dix is the differential file writing cost associated with an update of ~·i. A directed

weighted graph is given as G = (V, A , C, D) where V = { i I i = 0, · · · , n } , A = { (i, j) I i, j e V

& Vj is derivable from Vi}, C = {(aij• bij) I (i,j) e A}, and D = {di I i e V}. The node numbers in

G correspond to view numbers. Each element in C is associated with the corresponding arc, and each

element of D is the weight of the corresponding node. Queries to Vi arrive according to a Poisson

process with a rate A.i, and have a currency requirement Tb.

7

In the algorithmic analysis, we distinguish between two cases -- acyclic G and cyclic G . An

acyclic graph represents the case where no two views are identical. This case results in the simpler

algorithm (Algorithm 1 in Section 3.1). Section 3.2 extends Algorithm 1 to handle the case of identi

cal views.

3.1. The Case of an Acyclic Graph

Algorithm 1 is of a greedy type. At each iteration an update source and timing is determined for

the next view (the one for which the incremental cost is minimized); once this is done, the average

currency of that view is calculated. Consequently, at each iteration there are two sets of views; the

first set contains the views for which an update source and optimal update times have been determined,

and the second set contains the rest ("unfixed") of the views. Note that given a set of fixed views the

calculation for each of the unfixed views (based on the formulae in Appendix 1) is optimal, the overall

procedure, though, is heuristic. The previous steps assume that the differential files at view sites are

free; the final step of the algorithm evaluates this additional cost for each view that is used as an

update source, and if this cost is greater than the savings realized by the target views (compared to

being updated from the base table), the base table is fixed as the update source for those target views.

If the differential file cost incurred by other applications at the view site, this final step should be omit

ted. The outcome from the above steps is dependent on the order in which the views are examined. A

topological order [KNUT73] is used by the algorithm. The reason for a topological order is that all

views from which view Vi is derivable, are by definition, topologically before Vi in the graph G .

Therefore, when Vi is being evaluated to determine its source of update, all views that can be used to

update it have already been evaluated (including their average currencies Ti 's). A formal statement of

the algorithm follows.

Algorithm 1

Step 1. Initialization: Relabels Vi's in topological order, i.e., if (i, j) e A, then i < j in V. For

each j e V, find the set of immediate predecessors of Vi, Ii = { i I (i, j) e A } . Set T 0 = 0.

8

Step 2. For j e V - { 0} in topological order, do the following:

2.1 Find i • such that

a... b .•.
-' _1 + -------'...:...1 _____ _
A· . -'A./si- (T6 - T .•))

1 A.i (T b_ - Ti.) + 1 - e '

2.2 SOURCE(j] = i • .

E(Xj{sj)) 1 [.
2.3 Tj =

2
= 2 Tb_ - Ti. +

-'A.·(S· - (l",i- T .•))l
1

)) {l I

-e

Step 3. Fori e V - {0} in topological order, do the following:

3.1 Find J = {j I SOURCE[j] = i } .

3.2 If J ~ 0, find J' c J such that for j e J'

3.3 If J' ~ 0, for j E J' set SOURCE[j] = 0 and

1 · 1-e 11 ~tt

[

-A..(s.- (Ti.- T0))]

Ti = 2 Tb_ - T 0 + A.i , J +- J - J', and go to 3.2.

In the above algorithm, Step 1 topologically sorts the vertex set V and for each vertex (view) j

in V finds the set of its immediate predecessors, which, in other words, can be used to update Vi in

terms of their view expressions. Step 2 finds an update source that minimizes based on Appendix 1

the average update cost per query for the target view, and calculates its mean currency to be used in

9

case this view is used as an update source. Step 3 considers the cost of creating a differential file at

each update source and may change the update source of views to the base table. The cost of the

differential files is consedered after the update sources are fixed in Step 2, in order to account for cost

sharing by multiple target views. When the algorithm terminates the update source of each Vj is given

by V SOURCEU]·

As a final note, the algorithm asswnes linear update cost functions. However, if the cost func

tions are piecewise linear as in the example in Section 4, the cost coefficients are different in different

intervals. We then, for each possible update source (in lj), calculate the mean update cycle length

(E(Xj(sj))) and use it to determine those cost coefficients (a's and b 's) before the minimization in

step 2.

3.2. The Case of a Cyclic Graph

The presence of identical views at different sites introduces cycles into the graph G . Each group

of identical views leads to a maximal complete subgraph of G . Algorithm 2 is an augmentation of

Algorithm 1 to handle this case. It first (Step 1) transform G into G' by shrinking every maximal

complete subgraph of G into a single node of G' to make it acyclic. Then (Step 2) the nodes of G'

are evaluated in a topological order. If a node corresponds to a single node of G, Algorithm 2 does

exactly the same as. algorithm 1; Otherwise, it acts like a greedy algorithm for a minimum spanning

tree, and repeatedly removes a node from the corresponding complete subgraph to the set of predeces

sors (see Step 2.3 below). The following is a formal statment of the algorithm.

Algorithm 2

Step 1. Initialization:

1.1 By shrinking every cycle into a single node, transform G into G '(V', A'), where V' is

actually a partition of V; i.e., each element in V' is a subset of V, and these subsets

covering V are disjoint. Since A is transitive, every element in V' constitutes a maxi

mal (not maximum) complete·subgraph of G; A'=

{(u'," v') I u', v' e, V' & (u, v) e A for u e u', v e v'}.

10

1.2 Sort V' topologically according to A'. Let V' = { V 1', · · · , V m '}.

Step 2. For l = 1, · · · , m , do the following:

2.1 Set J +- V1 '. J is the set of views for which their source views are to be chosen from

I.

2.2 Find I = {i I i e V.t' & (V,t', V/) e A'}. I is the set of views that can be used to

update views in J.

2.3 While J ~ 0, repeat the following:

2.3.1 Find ;• e I, / e J, and Ti. < Tb• such that the following expression is

minimized

a.... b .•.•
_I_J_ + -------1-<.J ____ -:-----

A. ·• .• i.. .• (s .• - (T~· - T .•))
1 A. .• (TL -T .•)+1-eJ J I

J ~ I

2.3.2 J +-1- {/},I +-I U {/}.

2.3.3 SOURCE[/] = ;•.

2.3.4 1 [·• T .• =- TL - T.. +
J 2 ~ I

-i.. .• (s .• - (T{- T .•))l
1 - e J J I

A... .
J

Step 3. Same as Algorithm 1.

4. An Example

In this section, we illustrate the algorithm for the acyclic case using a simple example given

below. The syntax of the view definition follows INGRESISQL [RTI86].

I* V 0: employee base relation containing 100,000 92-byte tuples stored at site 0. *I

create table VO (

11

EMP# integer,

NAME char(20),

ADDRESS char(40),

'SALARY money,

JOB CODE char(4),

DEPT char(12),

PROJ# integer

);

I* V 1: set of employees whose salary is greater than $50000. *I

/* We assume 10,000 qualifying tuples stored at site 1; tuple width = 52 *I

create view V 1 as

select EMP#, NAME, SALARY, JOB_CODE, DEPT, PROJ#

from EMPWYEE where SALARY> 50000;

I* V 2: set of employees whose salary is greater than $40000. *I

I* Wu assume 20,000 qualifying tuples stored at site 2; tuple width = 52 *I

create view V2 as

select EMP#, NAME, SALARY, JOB_CODE, DEPT, PROf#

from EMPWYEE where SALARY> 40000;

I* V 3: set of employees in Engineering Deparmzent with salary greater than $50000. *I

I* We assume 1,000 qualifying tuples stored at site 3; tuple width= 52 *I

create view V3 as

select EMP#, NAME, SALARY, JOB _CODE, DEPT, PROJ#

from EMPWYEE

where SALARY > 50000 and DEPT = 'ENGINEERING';

12

4.1. Deriving the Update Cost Coefficients

It is clear in the example that V 0 ::::> V 2 ::::> V1 ::::> V3; therefore, V = {0, 1, 2, 3} and A = {(0, 1),

(0, 2), (0, 3), (2, 1), (1' 3), (2, 3)}.

To find out view updating costs (C in our algorithm), we use the fonnulae of [SEGE89a] which

are given in Appendix 2. The appendix also contains the linearization of the nonlinear expressions.

The following parameter values are common to all updates:

Cno = 0.025 sec; B = 1024 bytes; Wa = 8 bytes; Wv = 52 bytes; Wi = 56 bytes; Wd = 4 bytes;

C comm = 100000 bps.

Costs for updating V 1 from V 0

Further assumptions specific to this case:

U = 20t/60 = t/3; (t: time in seconds); WR = 92; NR = 100,000; <Xs = 0.1.

Based on those assumptions, we then have

D/0 1 = 0.025x.i.x~ = 0.7487x10-3t
3 1024

D/02 = 0.025x2x.!.. 10000 x~ = 0.1497x10-3t
3 100000 1024

{

t /30 t 130 s 39.06
D/03 = 0.025 + 0.025 X (t/30 + 78.125)/3 39.06 < t/30 s 156.25

78.125 156.25 < t/30

{

t /30 t 130 s 253.91
D/04 = 0.05 X (t/30 + 507.81)/3 253.91 < t/30 s 1015.625

507.81 1015.625 < t/30

DCOM = 8(-t-x56 + _t_x4)/100,000 = 0.08x10-3t
60 60

Adding the above cost components we get

D/0 1 + D/02 + D/03 + D/04 + DCOM

13

3.478 x 10_3r + o.o2s t :s; 1171.875
2.923 x 10-3r + o.676 1171.875 < t :s; 4687.5

= 2.645 x 10_3r + 1.978 4687.5 < t :s; 7617.19

1.534 X 1<r3t + 10.44 7617.19 < t :s; 30468.75

o.978 x 10-3r + 27.37 30468.75 < t

D/0 5 = 0.7487x10-3t

Therefore,

and

(3.478 x w-3• o.o2s)

(2.923 x w-3• o.676)

(ao,l•bo,l) = (2.645 X 10-3, 1.978)

(1.534 x w-3• 10.44)

(0.978 x w-3• 27.37)

d 0 = 0.7487x1o-3.

t :s; 1171.875

1171.875 < t s 4687.5

4687.5 < t :s; 7617.19

7617.19 < t :s; 30468.75

30468.75 < t

Similarly, we get the following cost coefficients:

Updating V2 from V 0 under assumptions U = t/3, WR = 92, NR = 100,000, <Xs = 0.2:

(6.208 x w-3• o.os)

(5.097 x w-3• 1.352)

(ao.z• bo,z) = (4.542 X 10-3
, 3.956)

(2.319 x w-3• 20.883)

(1.208 x w-3, 54.737)

t s 1171.875

1171.875 < t s 4687.5

4687.5 < t :s; 7617.19

7617.19 < t s 30468.75

30468.75 < t

Updating V 1 from V2 under assumptions U = t/15, WR =52, NR = 20,000, <Xs = 0.5:

(2.749 x w-3.0.025) r s 1171.875

(2.194 x 10-3,0.676) 1171.875 < r s 4687.5

(az,1,b2,1) = (1.916 X 10-3, 1.978) 4687.5 < t :s; 7617.19

(0.805 x 10-3, 10.44) 7617.19 < r :s; 30468.75

(0.249 x 10-3• 27.37) 30468.75 < r

14

Updating V 3 from V0 given that U = t/3, WR = 92, NR = 100,000, as = 0.01:

< 1.022 x 10-3• o.025) r s 1171.875

(0.966 x 10-3.0.09) 1171.875 < t s 4687.5

(ao,3•bo,3) = (0.938 X 10-3,0.22) 4687.5 < t S 7617.19

(0.827 x 10-3, t.067) 7617.19 < t s 30468.75

(0.772 x 10-3,2.759) 30468.75 < t

Updating V3 from V1 given that U = t/30, WR =52, NR = 10,000, <Xs = 0.1:

(0.309 x 10-3• o.025) t s 1111.875

(0.254 x 10-3.0.09) 1171.875 < t s 4687.5

(al,3,bl,3) = (0.225 X 10-3,0.22) 4687.5 < t S 7617.19

(0.114 x 10-3, 1.067) 7617.19 < t s 30468.75

(0.059 x 10-3,2.159) 30468.75 < t

Updating V 3 from V 2 given that U = t/15, WR =52, NR = 20,000, <Xs = 0.05:

(0.351 x 10-3, o.025)

(0.296 x 10_3• o.09)

(a 2.3• b 2,3) = (0.267 X 10-3, 0.22)

(0.156 x 10-3, 1.067)

(0.101 x 10-3• 2.759)

Cost of differential files:

d 2 = 0.0846x 1 o-3

4.2. Applying Algorithm 1

t s 1171.875
1171.875 < t s 4687.5

4687.5 < t s 7617.19
7617.19 < t s 30468.75

30468.75 < t

We now illustrate how to use Algorithm 1 with the cost coefficients derived in Section 4.1.

Assume that the query arrival rates are A.1 = 1120, A.2 = 1110, A.3 = 1/200; also let

Td =TJ = TJ = Ta = 60, and s 1 = s2 = s 3 = oo. Since E(Xj(sj)) are less then 1171.875 for all j,

15

and thus fall into the first inteJVal ([0, 1171.876]), we take a's and b 's for that inteJVal and omit the

calculations of E (Xj(sj)); otherwise we would pick a's and b 's for the time interval containing

After the initialization in Step 1 we get V = {0, 2, 1, 3}; and 12 = {0}./ 1 = {0, 2}. / 3 = {0, 1,

2}.

In Step 2, for j = 2, the only possible source is V 0, and therefore SOURCE[2] = 0 and T 2 = 35.

a2 1 b2.1 ao 1 bo 1
For j = 1, ~~· + = 0.066 is less than T + .

1
• = 0.076, and there-

,.,. A1 (T J - T iJ + 1 11.1 At (T Q - T 0) + 1

fore SOURCE[1] = 2 and T t = 22.5. Similarly, for j = 3, we get SOURCE[3] = 1 and T 3 = 118.75.

a2t + d2 b21
In Step 3, fori = 2, J = { 1 }, and J' = 0 because ·At + t · = 0.068 is still

At (T Q - T iJ + 1

less than 0.076. Thus the update source of V t remains unchanged. Similarly the source of V 3 also

remains unchanged.

5. Simulation Experiments

The purpose of the simulation experiments reported in this section was two-fold. First, the view

update decisions generated by the algorithms presented in this paper are based on a linear approxima-

tion of the cost function and an assumption that each view is updated from a single source. The latter

assumption may significantly affect the error of the estimated cost because, in an actual syste-m, it is

possible that a view designated as an update source will not have a satisfactory currency at all update

points (even though its average currency is satisfactory). In that case, either the source view is

updated to a satisfactory currency (this may have to be done recursively for more than one view) or an

alternative source is used (by the definition of currency the base table is always an acceptable source).

In the simulation experiments, if an update source is a view, its currency is checked and if not satisfac-

tory the update is done from the base table instead. We are interested in finding the ratio of the

estimated update cost and the simulated update cost

16

The second (and the more important) objective of the simulations was to evaluate the benefit of

using views as update sources. The best measure of the benefit is derived from the simulation experi

ments; we ran simulations for cases where view update are done only with the base table as a source

(the update times are determined based on the POD policy), and for cases (with the same parameter

values) where the view update sources are determined by Algorithm 1. The ratio of the resulting costs

indicates the benefit of updates from views. Next, we describe the specific details of the simulation

experiments and their results.

The simulation model was built using DeNet [LIVN88] for a 4-node network representing the

example of Section 4. The parameter values that were changed from one run to another were the Pois

son arrival rates of queries and the currency requirements. All other parameters were fixed at the

values given in Section 4. Each run lasted 100,000 seconds of simulation time. For each set of

parameter values, Algorithm 1 generates the primary update sources for the case where views can be

used as an update source (we refer to this case as ''view-to-view updates''). The case of using only

the base table for updates (referred to as "base-to-view updates") was handled according to Appendix

1. We report here the main results of the simulations. Figure 2 shows the ratio of the simulated total

update cost to the estimated total update cost as a function of the query currency (the same query

currency requirement was associated with all views). The inter-arrival times of queries were drawn

from an Exponential distribution with a mean (1/A.) of 20, 10, and 200 seconds for views 1, 2, and 3

respectively. The graph of Figure 2 shows that the degree of underestimation is decreasing with the

required currency.

Figure 3, demonstrates the more important result that it pays to allow view-to-view updates (even

if the cost estimates used to determine the sources are not accurate). For all the simulations

represented in Figure 3, the source for updating view 2 was the base table (this is the only choice

because of the view predicates and the reason why its cost ratio is 1). View 2 was chosen as the

update source for View 1 which in tum was chosen as the update source for View 3. The query

arrival rates where the same as for Figure 2. The figure illustrates that substantial cost savings can be

realized from using views as update sources (in this particular example up to 60% for View 3). In

17

cost
ratio

1 .1

1

·-----

• 0.95 r--_ ___.. ____________ _

0.9+-----~-----r-----+----~----~

30 60 120 300 800 1800

Fig. 2: Ratio of Simulated Cost to Estimated Cost.

general the cost savings increase with the query currency; this can be explained by the fact that the

higher the value of T Q , the higher the probability that a non-base table update source will have a satis

factory currency, and thus, the savings opportunity is realized by the target more frequently.

6. Summary and Future Research

Distributed materialized views can be a cost effective alternative to synchronized replicated data

in many environments. In order for a DBMS to support materialized views, three problems have to be

solved; the first is .. when to update the view," the second is "where to update it from," and the third

is "how to update the view." In this paper we have been primarily concerned with the first two prob-

lems, and introduced the concept of view currency.

By allowing queries on a materialized view to specify a currency requirement, a more powerful

and flexible update policy results. If the currency does not imply immediate updates, it may be possi-

ble to update one materialized view from another rather than from a base table. This can reduce the

18

1 0 0 0 0 0 0
I • •

0.8 +
• • • •

•
0.6 ~. -·- V1

cost
·~ -o- V2

ratio
0.4 ·-----• • -·- V3

0.2

0
30 60 120 300 800 1800

Ta

Fig. 3: A Comparison of View-to-View and Base-to-View Update Costs.

cost of maintaining distributed materialized views significantly, as well as lead to a funher reduction in

the interference with base table transactions. We have introduced an optimization model and algo-

rithms to determine the optimal update sources and timing for a collection of views defined on com-

mon base data. A detailed example has been presented showing how to get the cost coefficients

needed at the abstraction level of the algorithms; the example also demonstrated how the algorithms

are applied. A DeNet simulation model was constructed in order to capture the cost of the algorithm's

decision in more detail. In particular, the algorithm's cost estimation is based on a fixed update cost;

however, in an actual system, if a currency is not satisfied for a particular update, then the source has

to be changed to the case table; this 're-routing' is captured in the simulation experiments. The results

• of these experiments have demonstrated the potential cost savings from our approach and algorithms;

in current work are extending the simulations to cover additional cases. Finally, it should be noted that

at the algorithm level the base data can be a set of relations, and the views can be general. However.

the details of deriving the linear cost coefficients (and their quality) will be different for general

19

Select-Project-Join views.

ACKNOLEDGEMENT

We would like to thank Miron Livny for providing us with the discrete event network simulation

language DeNet

20

APPENDIX 1

The following results were derived in [SEGE89b], for the POD policy.

Summary of the Basic Model

A base relation: R .

View to be updated: V.

Views implied by or identical to v: SV, v fi SV.

Cost of updating v from v e SV u {Ri }: Cy(x) = ayx +by, where x is the time between view

updates. (ay and by are an abbreviated notation for aw and by, respectively.)

Currency of v e SV: Uniformly distributed over the interval [0, ty].

Query (to v) arrival: Poisson process with arrival rate of A..

=> inter-arrival time: Exponential with mean ~ .

Required currency for query Q : T Q .

Objective: find a v e SV u {R} to be used in updating v with minimum cost subject to currency,

policy, and response time constraints.

Note that the currency of the base table is 0.

Theorem 1:

The values of s and v that minimize the average cost per query are given by s • = oo, and v •

is such that

21

Theorem 2:

For any view v, the optimal s value subject to update time constraints H 1 and H 2 is given by

APPENDIX 2

To calculate the cost of updating materialized views we use the following notation and cost expressions

from [SEGE89a]:

0101: cost of reading tuples from the differential file

0102: cost of sorting the tuples after the screen test

0103: cost of accessing the s• tree

0104: cost of updating the data in the view table

OCOM: cost of transmitting over the network

0105: cost of creating a differential file at the update source ·-

B : block size (bytes)

C110: VO COSt (second/block)

U: number of tuples in the differential file

W R : width (bytes) of each tuple for the base table

Us: number of tuples that pass the screen test

N v : number of tuples in the view table

H8 : height of a s• tree record at the view site Qlog81w
8

Nvl>

f (N, P, K): expected number of blocks fetched when accessing K out of N tuples in P blocks

[YA077]

22

W 8 : width of a B + tree record at the view site

U,: number of tuples to be transmitted to the view site

W v : width of of a view tuple

wj : width of an insertion tuple

Wd: width of a deletion tuple

Ccomm: transmission rate (bps)

The resulting cost expressions are:

D/0 1 = C110 UWR/B

D/05 = D/0 1

Using the linearization of the Yao function from [BERN81],

{

K, K~'IU'
f (N, P, K) = (K + P)13, VU' < K ~ 2P

we get

P, 2P < K

{

U'

D/0 3 = C110 (H8 - 1) +Clio (U' + Nv W8 1B)I3

NvWsiB

U' ~ 1h.Nv WsiB

'h.NvWsiB < U' ~ 2NvWsiB

2Nv WsiB < U'

{

U' U' ~ 1h.Nv WviB

D/04 = C11oXl. (U' + N11 W11 1B)/3 1h.N11 W11 1B < U' ~ 2N11 W11 1B

Nv W11 1B 2N11 W11 /B < U'

23

' '·

REFERENCES

[ADIB80] Adiba, M. E. and B. G. Lindsay, "Database Snapshots," in Proceedings of the Interna

tional Conference on Very Large Data Bases, October 1980, pp. 86-91.

[ALON88] Alonso R., Barbara D., H. Garcia-Molina, and S. Abad, "Quasi-Copies: Efficient Data

Sharing for Infonnation Retrieval Systems," in Lecture Notes in Computer Science, vol.

303, edited by J.W. Schmidt, S. Ceri, and M. Missikoff, Springer-Verlag, 1988, pp. 443-

468.

[BERN81] Bernstein, P. A., N. Goodman, E. Wong, C. L. Reeve, and J. B. Rothnie, Jr. "Query Pro

cessing in a System for Distributed Databases," in ACM Transactions on Database Sys

tems, vol. 6, no. 4, December 1981.

[BLAK86] Blakeley, J. A., P. Larson and F. W. Tompa, "Efficiently Updating Materialized Views,"

in Proc. of the ACM-SIGMOD Conf on Management of Data, Washington DC, May

1986, pp. 61-71.

[BLAK88] Blakeley, J. A. and F. W. Tompa, "Maintaining Materialized Views Without Accessing

Base Data," in Information Systems, vol. 13, no. 4, 1988, pp. 393-406.

[BUNE79] Buneman, 0. P. and E. K. Oemons, "Efficiently Monitoring Relational Databases," in

ACM Transactions on Database Systems, vol. 4, no. 3, September 1979, pp. 368-382.

[FINK82] Finkelstein, S., "Common Expression Analysis in Database Applications," in Proc. of the

ACM-SIGMOD Intern. Conf on Management of Data, Orlando, FL, June 1982, pp. 235-

245.

[HANS87] Hanson, E. R., "A Perfonnance Analysis of View Materialization Strategies," in Proceed

ings of the ACM-SIGMOD International Conference on Management of Data, May 1987;

pp. 440-453.

[KAHL87] Kahler, B. and 0. Risnes, "Extending Logging for Database Snapshot Refresh," in

Proceedings of the International Conference on Very Large Data bases, Brighton, Sep

tember 1987, pp. 389-398.

24

..,

[KNUT73] Knuth, D. E., The Art of Computer Programming, Vol. 1: Fundamental Algorithms, 2nd

ed., Addison-Wesley, Reading Mass, 1973.

[LIND86] Lindsay, B. G., L. Haas, C. Mohan, H. Pirahesh, and P. Wilms, "A Snapshot Differential

Refresh Algorithm," in Proceedings of the ACM-SIGMOD International Conference on

Management of Data, June 1986, pp. 53-60.

[LIVN88] M. Livny, "DeNet User's Guide," Version 1.0, Comp. Sci. Dept., Univer. of Wisconsin,

Madison, 1988.

[ROUS86] Roussopoulos, N. and H. Kang, "Principles and Techniques in the Design of ADMS+/-,"

in COMPUTER, December, 1986, pp 19-25.

[RTI86] "INGRES/SQL Reference Manual," Relational Technology Inc., CA Release 5.0, UNIX,

August, 1986.

[SEGE89a] Segev, A. and 1. Park, "Updating Distributed Materialized Views," in IEEE Trans. on

Knowledge and Data Engineering, (forthcoming).

[SEGE89b] Segev, A. and W. Fang, "Optimal Update Policies for Distributed Materialized Views,"

Technical Report LBL-26104, Lawrence Berkeley Laboratory, CA, 1989.

[SHMU84] Shmueli, 0. and A. Itai, "Maintenance of Views," in Proceedings of the ACM-SIGMOD

International Conference on Management of Data, Boston, 1984, pp. 240-255.

[SRIV88] Srivastava, J. and D. Rotem, "Analytical Modeling of Materialized View Maintenance

Algorithms," in Proc. of the 7th Annual Symposium on Principles of Database Systems,

Austin, Texas, 1988.

[STON75] Stonebraker, M., "Implementation of Integrity Constraints and Views by Query

Modification," in Proceedings of the ACM-SIGMOD International Conference on

Management of Data, San Jose, May 1975, pp. 65-78.

[Y A077] Yao, S. B., "Approximating Block Accesses in Database Organizations," in Communica

tions of the ACM, vol. 20, no. 4, April 1977.

25

--,..).,

LA~NCEBERKELEYLABORATORY

TECHNICAL INFORMATION DEPARTMENT
1 CYCLOTRON ROAD

BERKELEY, CALIFORNIA 94720

.,-.
i,k,.;-

