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Stochastic NMR Imaging 

Abstract 

A technique for spectroscopic imaging employing oscillating gradients for spatial 

encoding in conjunction with a stochastic rf excitation is proposed and analyzed. Local­

ization functions are derived for a linearized model and compared with Bloch equation 

simulations. An implementation of the technique is described, and experimental point 

spread functions and a spectroscopic image (one spatial dimension and one chemical 

shift) are presented. Advantages of the technique are a large reduction in the peak rf 

power required relative to conventional pulse excitation and the elimination of switch­

ing transients through the use of oscillating gradients. Spectroscopic resolution and T 2 

contrast may be varied by post processing a single experimental data set. 

Introduction 

1 

Oscillating gradients can be used for rapid spatial encoding in NMR imaging ( 1). Chemical 

shift information is preserved, allowing spectroscopic imaging with rapid spatial encoding. 

This work extends previous analyses of imaging with oscillating gradients (2,3,4,5) to 

include stochastic rf excitation. The stochastic imaging experiment (6,7,8,9,10) consists 

of a sequence of rf pulses where the flip angles are a sample of a random or pseudo­

random sequence. Stochastic NMR experiments have much larger rf duty cycles than 

conventional pulsed NMR, consequently the peak power requirements are several orders 

of magnitude lower. This reduction in peak rf power may be important for future in vivo 

spectroscopic imaging at fields of 4 T and above. Stochastic imaging is promising for 

detection of moieties with short T2 , because reduced rf pulse amplitude facilitates rapid 

receiver recovery and no delay for gradient switching is required. Stochastic encoding 

allows spectroscopic resolution and T2 contrast to be varied by post-processing of a single 

experimental data set. T1 contrast may be obtained by changing the excitation amplitude. 
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For this analysis, the excitation will be a discrete Gaussian white noise process. Experi­

ments generally use maximum length sequences (MLS) for excitation. The auto-correlation 

functions of these pseudo-random sequences are similar to that of a white process. These 

excitations have been compared by Wong (11). With discrete excitation processes, one 

data point is sampled after every rf pulse in the presence of aBo gradient that varies sinu­

soidally throughout the experiment. The pulse sequence is shown in Fig. 1. To reconstruct 

an image, the cross correlation of the sampled signal with the product of the Gaussian 

white noise sequence and a phase demodulation kernel derived from the time-varying gra­

dient waveform is estimated. This approach is a generalization of the weighted correlation 

reconstruction method, which is equivalent to all other linear reconstruction techniques 

with spatially invariant point spread functions (12). Because the excitation is a stochastic 

process, a statistical description of the image is appropriate even in the absence of noise. 

The expected value of the reconstructed image has the form of the spin distribution con­

volved with a localization function that is determined by the experimental parameters and 

the phase demodulation kernel. 

Analysis of One Dimensional Imaging 

A linearized model for the resp·onse of the magnetization to the rf excitation, valid in the 

limit of small fiip angles, was used to obtain analytical expressions for the localization 

functions from several reconstruction schemes. The model is linear in the sense that 

the response to a sequence of rf pulses is taken to be the sum of the response to each 

pulse considered separately, and that the response is proportional to the amplitude of the 

excitation. The model is consistent with the Bloch equations in the limit of small fiip angles. 

In terms of nonlinear systems theory, the model is the first term in the Volterra series 

representation of the response of the NMR spin system. The transverse magnetization 
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m(x,t) may be described in tenns of the excitation process s(t) and the spin density p(x): 

m(x,t) = p(x) fooo e--r/T2 e-i:z:k(t,-r)s(t- r)dr. 

In this model, the magnetization results from the action of a time-varying linear system 

on the excitation. Constants of proportionality have been suppressed to keep the notation 

compact. The effect of the magnetic field gradient G(t) is included in k(t, r): 

k(t, r) = ~1~,. G(t')dt'. 

A slightly different expression is obtained when k( t, T) is separated into a difference 

k(t, r) = k(t)- k(t- r), 

where 

k(t) = 1 lot G(t')dt'. 

The transverse magnetization can then be written as 

m(x,t) = p(x)e-i:z:k(t) fooo e--r/T2 ei:z:k(t--r)s(t- r)dr. 

This represents a time invariant linear system (a one pole filter) with input e-i:z:k(t)s(t) 

followed by modulation with ei:z:k(t). In discrete form, this model may be simulated rapidly 

on a digital computer. The analytical results derived below were verified by simulations 

based on the linear model. 

The received signal y( t) is the spatial integral of the transverse magnetization: 

y(t) = j_: m(x,t)dx. [1] 

The estimate of the spin density is expressed by 

p(x', ry) =~loT y(t) K(t, ry,x') s•(t- ry)dt, [2] 
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where K ( t, Tl, x') is the phase demodulation kernel and T is the observation interval. A 

class of phase demodulation kernels is suggested by the linearized model: 

K(t, ry, x') = eiz'k(t,'l)w(t), 

where 

k(t,ry) = rlt GmCOSWmt'dt' [3] 
t-7} 

and w(t) is a weighting function. Gm and Wm are the amplitude and angular frequency of 

the cosinusoidal gradient. 

The expectation of this estimator can be written as a convolution 

E{P(x',ry)} = j_: p(x)h(x'- x,ry)dx, 

in which h(x, ry) is the localization function. This result follows from substitution of Eq. [1] 

into Eq. [2] and the property E[s(t- -r)s•(t- ry)] = 8(-r- ry). The localization function is 

[4] 

The choice of weighting function w( t) controls the shape of the localization function. Three 

possible choices will be discussed below. For simplicity, the localization functions are not 

normalized; they produce scaled estimates of the spin density. 

The localization function for a cosine gradient, Eq. (3], obtained by evaluating Eq. (4] 

and employing the series expansion 

00 

eizsin/J= 2: einiJJn(z) 
n=-oo 

IS 

[5] 

where 



" 

.. 

Stochastic NMR Imaging 5 

and Jn is the Besselfnnction of order n. The time lag of the cross correlation, ry, is a free 

parameter that may be used to manipulate T2 contrast and resolution. If the weighting 

ftmction is periodic with period 27r fwm, it may be represented in a Fourier series expansion: 

00 

w(t) = L azeilc..Jmt. [6] 
l=-oo 

Using the orthogonality of the Fourier basis ftmctions and the identity (13) 

00 

I: e'maJm(u)Jm+v(u) = e'v(11'-a)/2 Jv(2usin(a/2)), 
m=-oo 

it is evident that a non-zero Fourier coefficient of order l results in a term in J 1 in the 

localization fnnction. Thus 

where 

h(x' TJ) = Laze( -'I/T2+il(11'-c..Jm'l)/2) Jz( ex) 
l 

e = 2{3 sin (wmry/2). 

For the case w(t) = 1, the time integral in Eq. [5] reduces to the Kroneker delta 

ftmction 8pq, and the localization ftmction is 

Fig. 2a shows plots of the localization ftmction for several values of TJ. The minimum half 

width of the main lobe is 

for any choice of TJ. 

The side lobes of the localization ftmction can be reduced by including harmonics of 

the gradient frequency in the demodulation kemel, allowing synthesis of a localization 
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function from a series of Bessel functions of increasing order. For example, the weighting 

function 

yields 

Fig. 2b shows plots of this localization function, varying TJ· The side lobes are much 

smaller than with the simple weighting function w(t) = 1. Applying the recursion relation 

for Bessel functions, J 2 (z) + J0 (z) = (2/z)J1 (z), this expression reduces to 

when TJ = rrfwm. 

Shenberg (2) has demonstrated that a localization function decreasing as lxi-(L+l/2) 

can be synthesized from a linear combination of even-order Bessel functions up to order 

L, which are generated by a weighting function of the form 

L 
w( t) = 2: apei2lwmt. 

1=0 

Another approach to selecting the coefficients a1 is to compensate for the variation of 

sample point density in k-space caused by the cosinusoidal gradient (12). In this case 

w(t) = I cos (wmt)l. The localization function calculated from the first 5 terms of the 

Fourier series expansionof I cos(wmt)l is shown in Fig. 2c. 

Localization functions with reduced sidelobes may also be synthesized by combining a 

range of correlation delays. Integrating over N periods of the gradient, Eq. (5] becomes 

[7] 
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If the integration time is long compared with the memory of the system (2-rrNfwm ~ T2 ), 

the localization function approaches 

The tenns in the summation over q are small for lql =f:. 0 provided that T 2 ~ 1/wm. In this 

case 
1 {T . 

h(x) = T2J0(/3x) ~ Jp(/3x)T lo e'f'Wmtw(t)dt. 

Thus integrating over TJ results in a factor of T 2J0 in the localization function. As above, 

the Fourier series of w( t) detennines the rest of the localization function. For periodic 

weighting functions, the Fourier series of the weighting function, Eq. [6], may be employed, 

yielding 
00 

h(x) = T2Jo(/3x) L alJl(f3x). 
l=-oo 

For w(t) = 1, the localization function is 

This localization function is illustrated in Fig. 3. The half width of the main lobe is 

As expected, some resolution has been traded for side lobe reduction. Localization func­

tions corresponding to the other weighting functions discussed above are also shown in 

Fig. 3. The quantity "YGmxfwm is similar to the modulation index in the theory of fre­

quency modulated signals, and detennines the rate. at which the side bands decrease in 

the spectn.un of the received signal. 
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Spectroscopic Imaging 

The stochastic imaging experiment may be applied without modification to systems with 

multiple chemical shifts, provided that the gradient modulation frequency is greater than 

the range of shifts present. The method is also applicable to imaging in an inhomogeneous 

magnetic field. 

Including chemical shift, (j, the transverse magnetization is 

The expectation of the spin density estimator will be 

E {,0( x', T])} = /_: /_: p( x, (j )e-i17
,., h( x' - x, 17 )dxdcT, [8] 

where an integral over (j has been included. Taking the Fourier transform (over 17) produces 

a new estimator, ,0( x', u'), of the two dimensional spin density in space and chemical shift. 

This estimate may be written in terms of a two dimensional localization function: 

E P( x', (7
1

) = J: /_: p( x, (j )h( x' - x, (7
1 

- (j )dxd(j. 

The new localization ftmction is 

[9] 

If the transform is sufficiently long that 27r N / Wm >> T2 , 

Thus the desired spectrum has the expected Lorentzian shape but is replicated at multiples 

of the gradient modulation frequency Wm, as is typical of frequency modulated systems. 

The spectrum may be easily extracted by filtering as long as the replicated spectra do 
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not overlap, that is, when the modulation frequency is greater than the chemical shift 

bandwidth. The baseband spectrum will have the localization function 

h(x,a) = Jo(f3x) I: I: J,({3x)T
1 

{T ei(p-q)WJmtw(t)dt (
1 
~2 T!] . 

, q lo + t<7 2 

For periodic weighting functions and T 2 >> 1/ Wm, this can be expressed in terms of the 

Fourier coefficients al: 

h(x, a) = Jo(f3x) I: alJl(f3x) [
1 
~2 T!] . 

l + 1,(7 2 

The two dimensional localization function is seen to separate into a product of spatial and 

spectral localization functions. Spectroscopic resolution is not affected by the stochastic 

excitation or the localization gradients. 

Comparison of Linearized Model and Numerical Bloch 

Equation Solution 

As the power of a stochastic excitation is increased, the system response will increase up 

to a maximum and then decrease (saturation). The power of the observed signal as a 

function of excitation power may be easily predicted (11), and exhibits saturation similar 

to conventional pulsed NMR. The effect of the excitation power on the localization function 

was studied by comparing simulated data generated by the linearized model and a Bloch 

equation model with hard pulses. The reconstruction algoritluns developed above were 

applied to this simulated data. The effect of the system nonlinearity on the shape of the 

localization function is negligible for excitation power up to that which yields the maximum 

response from the spin system. An example is shown in Fig. 4, along with the localization 

function for a very saturated system. Thus the results of the linearized analysis are directly 

applicable to the real system in the regime of practical interest. 
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Variance of the Density Estimator 

Previous sections have focused on the expectation ofthe spin density estimator. Here the 

variance of p( x', TJ) due to the stochastic excitation is derived. This statistic is a measure of 

the accuracy of the estimator p( x', TJ) in the absence of measurement noise. The variance 

of may be written as the difference: 

Var{p(x',ry)} = E{lf>(x',ry)l2
}- [E{p(x',ry)}] 2

• 

From Eq. [1, 2] the mean square of p(x',ry) is 

E{ If>( x'' TJ )12} = ...!..joo 100 rT rT roo roo p( Xt)P( x2)e-(r1+7'2)/T2 e-iz~k(tlo-rl) eix'k(tlo'1) 
Tl -oo -oo lo lo lo lo 
xeix2k(~2.'1'J) e-ix'k(t2,11) w(t1)w*(t2) 

. 
xE{s(tt- Tt)s•(tt- ry)s*(t2- 12)s(t2- TJ) }d;t d12 dt1 dt2 dx1 dx2. 

[10] 

The excitation process must be specified in order to evaluate the expectation. Consider 

a complex process s(t) = sx(t) + s31 (t), where sx(t) and sx(t) are independent zero mean 

Gaussian processes with variance r7 2 /2. Substituting· expectation 

into Eq. [10], it is easily demonstrated that the first product of delta functions yields 

[E{p(x', ry)}]2. Thus 

This expression shows the important result that the variance of p(x', ry) is independent of 

position and correlation lag (x' and ry, respectively). It is bounded above, 
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and equality holds when p(x) = 8(x). Using Eq. [6] and the assumption that T is an 

integral multiple of the gradient period the above equation gives 

1! 00 [roo ] 2 Var{p(x',17)} < 
2
; 

1
];

00 

lazl2 
}_

00
p(x)dx 

This result shows that the variance of ,0( x', 17) is inversely proportional to the observation 

timeT. It is easily demonstrated that measurement noise (a complex process like s(t), but 

independent of s( t)) will also contribute a variance inversely proportional to T. 

Using Eq. [8] it can be shown that the variance of spin density estimator, p(x', u'), for 

the spectroscopic imaging experiment is similarly bounded: 

Var{,O(x',u')} < 
27r~~;T2 z~oo lazl 2 

[J.:J.:p(x,u)dxdur [11] 

Again the variance goes to zero as T approaches infinity, and is independent of ~' and 

u. The variance of spin density estimators involving integration over 17 is a special case 

obtained by setting u to 0 in Eq. [11]. 

Experimental Results 

Experiments were conducted on a 0.5 T, 1 m bore imaging spectrometer equipped with 

a shift register circuit for generating 31 bit maximum length sequences (MLS). Sequences 

substantially shorter than the period of the generator were used for experiments. While 

such short sequences do not have the same autocorrelation functions as the entire MLS, 

the sequences of length 8192 points or more used here were observed to have no major 

spurious peaks in their autocorrelations. The MLS generator switched the transmitter 

phase between pulses, resulting in a train of rf pulses of equal flip angle but with sign 

determined by the MLS. 
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Fig. 5a' is a one dimensional image of a vial of water. The diameter of the vial (2.5 em) is 

smaller than the half-width of the localization ftmction, so this image closely approximates 

the localization fnnction corresponding to the weighting ftmction w(t) = 1 and integration 

over TJ· The same data processed with the w(t) = (1 + ei2wmt)/2, shown in Fig. 5b, 

demonstrates the reduction of side lobes with accompanying broadening of the main lobe. 

Fig. 6 is a spectroscopic image of a 100 ml beaker filled half with water doped with 

copper sulfate and half with oil, processed with w(t) = 1 and Fourier transformation. The 

materials are resolved in both position and chemical shift. 

Discussion 

The parameters to be selected in a stochastic imaging experiment are gradient strength 

and modulation frequency, sampling rate and flip angle. To avoid aliasing, the modulation 

frequency must be greater than the bandwidth of the spin system due to either field 

inhomogeneity or chemical shift (with no gradients applied). As demonstrated above, the 

gradient modulation frequency, gradient amplitude, and reconstruction method determine 

the localization fnnction. The modulation frequency is fixed by the spin system bandwidth, 

consequently the gradient amplitude is chosen to achieve the desired spatial resolution. The 

received signal with oscillating gradients is not bandlimited, but Carson's rule (14) provides 

a working criterion for setting the sampling rate. In terms of the imaging experiment 

parameters, the approximate bandwidth, W, is 

where R is the greatest distance from the origin (zero crossing of the gradient) to a point 

within the object. 
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As examples reflecting on the practicality of the method, the chemical shift range (or 

minimum gradient modulation frequency) .6-w, the effective signal bandwidth W, and the 

localization function half-width .6-xhalf are tabulated ( Table 1) for several nuclei. The 

example is a R=10 em object in a 4 T static field imaged with a 10 mT /m gradient. The 

data are processed to yield the localization function JJ. The modulation frequencies are in 

the range of 1 to 5 KHz, and sampling rates are below 100 KHz. 13C presents the greatest 

challenge, as a large gradient amplitude will be required to produce a useful localization 

function, about 50 mT /m for a half width of less than 2 em. Whether such oscillating 

gradients are realzable and safe must be carefully evaluated. 

Imaging with stochastic excitation and oscillating gradients produces well character­

ized localization functions with side lobe amplitude controlled by post processing. Spectro­

scopic imaging may be accomplished at gradient strengths and frequencies that are readily 

attainable. Extension of the method to two and three spatial dimensions requires only the 

addition of orthogonal gradients that are not harmonically related. 
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Table 1: Gradient modulation frequency, resolution, and signal bandwidth for spectro­

scopic imaging with time-varying gradients for a 10 em object at 4.0 T with 10 mT /m 

gradient. 

Nucleus tH 31p t3C 

wm/2rr = D.w/2rr (1Q3 Hz) 1.69 1.46 4.54 

W/2rr (103 Hz) 88.5 37.3 30.4 

tl.xhalf (em) 0.87 1.87 9.33 
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Figure Captions 

Figure 1: Pulse sequence for a one dimensional stochastic imaging experiment with sinu­

soidal gradient. 

Figure 2: Plots of localization functions for three weighting functions: a) w( t) = 1, b) 

w(t) = (1 + ei'l.I..Jmt)/2 and c) w(t) = I cos(wmt)j. The imaging parameters are: 1 mT/m 

oscillating gradient at 381Hz, and 105 J.LSec/sample. Three delays are plotted: T7 = 0, solid; 

T7 = 1r /2wm, dashed; T7 = 1r fwm. The delays cover one half of the period of the gradient. 

Figure 3: Localization functions for the imaging parameters and the three weighting func­

tions of Fig. 2, integrated over the correlation lag ry. T2 is 50 ms. 

Figure 4: Comparison of linear model (solid line) and Bloch equation. The simulation 

used 65536 time samples, T1 is 200 ms and T2 is 50 ms. The imaging parameters are: 0.93 

mT/m oscillating gradient at 381 Hz, and 105 J.Lsec/sample. (integrated over 5 gradient 

cycles). The maximum response of the Bloch equation model occurs for an excitation 

process with RMS flip angle 3.6 degrees (dotted line). The localization function under 

extreme saturation, RMS flip angle of 20 degrees, (dashed line) illustrates the breakdown 

of the linear model at very large flip angles. Data are normalized to be equal to 1 at the 

ongm. 

Figure 5: Image of a 2.5 em vial of water doped with copper sulfate, scaled such that the 

peak value is 1. The imaging parameters are the same as Fig. 4, but only 8192 samples 

were acquired. The solid line corresponds to the weighting function w( t) = 1 and the 

dotted line to w(t) = (1 + ei'l.I..Jmt)/2. 

Figure 6: Spectroscopic image (arbitrary density units) of a 100 ml beaker containing equal 
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portions of oil and water doped with copper sulfate obtained with an oscillating gradient in 

the vertical direction. Imaging parameters are the same as Fig. 4 (65536 samples acquired). 

The image was processed with w(t) = 1. The first 1024 correlation values were Fourier 

transformed, and the 41 bins centered about the spectrometer reference frequency ( 0 Hz 

on the plot) were plotted. 
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