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Abstract 

Temporal relations possess several characteristics that distinguish them from conventional 
snapshot relations. First, for each instance of the surrogate (entity) there is a set of time
ordered tuples. Second, surrogate instances may arrive and depart in some time-dependent 
manner. Third, the surrogate instance may arrive and depart more than once, thus creating 
gaps (null values) within its history. Lastly, the value of the temporal attribute may be also 
be time-dependent. Conventional methods of estimation are incapable of providing good 
approximations of the cost of various temporal operations, even for those involving selections 
on a single relation. The problem is more acute in the case of join operations, since selectivi
ties on time interval intersections have to be estimated. We propose a practical, yet theoreti
cally sound model to characterize the behavior of temporal relations. Estimates of the outcome 
for various unary and binary operations are derived from this model. Preliminary results on 
the accuracy of selected estimates are provided . 

This work was supported by the Applied Mathematical Sciences Research Program of the 
Office of Energy Research, U.S. Department of Energy under Contract DE-AC03-76SF00098. 
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1. INTRODUCTION 

Accurate cost estimation of relational operations is crucial to query optimization. A substantial 

amount of literature exists on selectivity estimation, among them by [Yao 77, Selinger et al 79, Chris-

todoulakis 83, Piatetsky-Shapiro & Connell 84, Graefe 87, Lynch 88, Mularikrishna & Dewitt 88, 

Ahad et al 89]. However, estimation techniques for snapshot relations cannot be readily applied to the 

context of temporal relations, due to certain distinguishing properties of the latter. First, each relation 

consists of time-ordered histories for instances of the surrogate (entity). Second, histories of the surro-

gate instances may begin and end at different points in time. Third, some of the histories may contain 

disjoint intervals, i.e., there are gaps in the history for which no data exist. Fourth, the temporal attri-

butes themselves may also be time-dependent in their behavior. Conventional methods of estimation 

are based on the assumption that tuples within a relation are independent of one another, which is rea-

sonable in the case of snapshot relations; the focus of research is on the likely distribution of the attri-

bute values. Oearly, without modeling some or all of the temporal properties explicitly, simple exten-

sion of existing methods to the temporal context would yield poor results. Furthermore, many tern-

poral operations are based on intersections between time intervals, e.g., joins between two relations 

over the time domain or selection of tuples in a relation over a query interval. Any estimates of such 

operations would necessitate explicit consideration of the temporal behavior of relations. 

The optimization of temporal operations [Snodgrass & Ahn 87, Gunadhi & Segev 88, Leung & 

Muntz 89, Segev & Gunadhi 89a, 89b] is ~ore critical than that for snapshot relations, as the size of 

data and complexity of operations are greater. Yet no study has been carried out on selectivity estima-

tion. In this paper we introduce a model that deals with (1) the arrival process for the surrogate class, 
~ 

(2) the arrival process of tuples for each instance of the surrogate, (3) the existence of disjoint his

tories, (4) the distribution of temporal attribute values and (5) the length of a surrogate instance's 

lifespan (history). We will then derive the unary and binary estimates from the model. This technique 

is practical enough to implement, yet has sound theoretical foundations. The contributions of this 

paper are the following. 
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• A detailed framework for discussing the issues involved in selectivity estimation of temporal rela-

tional operations. 

• Development of a mathematical model to characterize the general behavior of a temporal relation. 

• Derivation of estimates for the sizes resulting from both unary and binary temporal operations. 

• Tests on the accuracy of selected estimates and a comparison with conventional estimates. 

The rest of the paper is organized as follows. Section 2 introduces a framework to help under

stand the relational representation of temporal data and issues involved with their mathematical model

ing. Section 3 discusses the model we develop and its underlying assumptions. Section 4 provides the 

derivations of unary estimates, while binary estimates are derived in Section 5. In Section 6 we 

present test results on the accuracy of some of the unary estimates, and Section 7 offers concluding 

remarks and an outline of future research. 

2. REPRESENTATION AND MODELING OF TEMPORAL DATA 

In this section we develop the framework needed to understand the representation of temporal 

data as relations, basic terminology, characteristics of such relations, and the estimation measures 

required for relational operations, illustrated by examples. 

2.1. Relational Representation of Temporal Data 

A convenient way to look at temporal data is through the concepts of Time Sequence (TS) and 

Time Sequence Collection (TSC) [Segev & Shoshani 87]. A TS represents a history of a temporal 

attribute(s) associated with a particular instance of an entity or a relationship. The entity or relationship 

is identified by a surrogate (or equivalently, the time-invariant key). For example, the salary history 

of an employee is a TS. A TS is characterized by several properties, such as the time granularity, 

lifespan, type, and interpolation rule to derive data values for non-stored time points. In this paper, we 

focus on a common type of data -- stepwise constant . Stepwise constant (SWC) data represents a 

state variable whose value is determined by events and remains the same between events; the salary 

attribute represents SWC data. Time sequences of the same surrogate and attribute types can be 
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grouped into a time sequence collection (TSC), e.g. the salary history of all employees forms a TSC. 

There are various ways to represent temporal data in the relational model; detailed discussion can be 

found in [Segev & Shoshani 88]. In this paper we assume a representation as shown in Fig. 1, which 

illustrates two temporal relations, representing the MANAGER and COMMISSION histories of 

employees . 

MANAGER E# MGR Ts TE 

E1 TOM 1 5 
E1 MARK 9 12 
E1 JAY 13 20 
E2 ·RON 1 18 
E3 RON 1 20 

COMMISSION E# CRATE Ts TE 

E1 10% 2 7 
E1 12% 8 20 
E2 8% 2 7 
E2 10% 8 20 

Figure 1. Representing SWC Data with Lifespan= [1, 20] 

We use the terms surrogate (S), temporal attribute (A), and time attribute (Ts or TE) when 

referring to attributes of a relation. For example, in Fig. 1, the surrogate of the MANAGER relationt is 

E#, MGR is the temporal attribute, and Ts and TE are time start and time end attributes respectively. 

E1 is an instance of E#, and tuples (E1, TOM, 1, 5), (E1, MARK, 9, 12) and (E1, JAY, 13, 20) 

represent the tuples in its history. Note that there is a discontinuity In E1 's history between time 6 and 

8. Thus, there were actually 4 changes in the manager status of El. We assume that all relations are in 

first temporal normal form (ITNF) [Segev & Shoshani 88]. In the simplest case, the temporal relation 

has one temporal attribute; due to normalization reasons, this is likely to be a common manifestation of 

temporal relations [Navathe & Ahmed 86]. Each relation has a lifespan, which is defined by the first 

t We refer to the data construct as a 'relation', but we mean a 'temporal relation'. It is different from 
a standard relation because of the associated meta-data. 
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surrogate instance arrival and last instance departure, or current time, whichever is applicable. The 

lifespan ·of a surrogiue instance is the length of its history, defined by the starting time associated with 

the first tuple and ending time of the last tuple. 

It should be emphasized that the representation of time for the SWC data type is dependent on 

the level of granularity required to capture the behavior of the temporal attribute. For the temporal 

attribute 'commission' in Fig. 1, we may use various levels of Gregorian calendar representation, such 

as year, month-year, month-day-year, and so on, depending on the requirements. In all our examples 

and models, we adopt an integer representation for convenience. This does not in any way imply that 

the underlying processes are discrete; in fact, most sWC data reflect continuous time processes. 

2.2. Characteristics of Temporal Relations 

The following are the fundamental characteristics that describe the behavior of a temporal rela-

tion. 

Arrival of surrogate instances. The arrival of a new surrogate instance adds a new history to the 

relation. Surrogate instances arrive according to some probability distribution; for example, a company 

may hire 120 new employees a year, at a unifonn rate of 10 a month. 

Departure and re-entry of surrogate instances. After arriving, a surrogate instance may remain 

active for the duration of the relation's lifespan, leave pennanently at some point, or leave and then 

re-enter later. All these may be modeled by a single stochastic process, or by separate processes. If 

the instance is allowed to return, we assume that no new history is generated, instead the old one is 

reactivated and extended, with a resulting discontinuity in its history. This is exemplified by the exam

ple of El 's history in the MANAGER relation of Fig. 1. 

Arrival of tuples for a surrogate instance. The arrival process of tuples for a given surrogate 

instance follows some probability distribution representing the behavior of changes in the temporal 

attribute value for that instance. For a given· surrogate class, each instance may have its own distribu

tion or may share an identical distribution with other .instances. 
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Distribution of temporal attribute values. Two consecutive tuples for a given instance's history 

must have different values unless there is a discontinuity in their associated time intervals. Attribute 

values may be time-dependent, in which case they can either be dependent on the event time itself, 

e.g., salaries paid based on seniority, or dependent on the value in one or more prior period(s), e.g., the 

value of a fixed deposit. On the other hand they may be independent of time, e.g., manager or project 

name. 

2.3. Unary Estimates 

We now look at the cost estimates needed for unary operations on a temporal relation. Cost here 

is represented by the number of tuples resulting from a selection or projection operation. We can 

characterize a temporal query as being qualified on some interval, which we call the query interval, 

[t,, te ], a special case of which is the singular time point where te = t,. The following measures are 

conditioned on the non-null intersection between the tuples of the relation and the query interval; a 

tuple x intersects the query interval when x (Ts) S te and x (T E) ~ t,. There are other interval predi

cates that may substitute for intersection. For example, the 'equal' predicate, which is true if the tuple's 

time stamps match those of the query interval's. There are other relationships representing 'contained

in', 'containment', and 'overlap'; yet all these predicates are merely subsets of 'intersection' and as 

such will not be considered separately. 

(1). Number of surrogate instances. 

Example: "How many employees were in the company between time 1 and 12?" 

(2). Number of tuples for a surrogate instance. 

Example: "Get all the manager records for E 1 between time 2 and 10." 

(3). Number of tuples that intersect with the query interval. 

Example: "Find all commission records between time 4 and 10." 

(4). Number of tuples with a given temporal attribute value for surrogate instance or relation. 

Example: "How many tuples in MANAGER have MGR = TOM between time 1 and 12?" 
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(5). Range selectivities for surrogate instances and attribute values. These are queries specifying a 

range of values over the surrogate or temporal attribute domains. 

Example: "How many employees earned between 10K and 20K between time 1 and 20?" 

2.4. Binary Estimates 

Binary estimates are associated with operations that involve two relations. The operand relations 

may have identical or different lifespans. The following are the join sizes we are interested in. 

(1). Number of intersecting intervals for two histories. Let H 1 and H 2 be two arbitrary histories 

from relations r1 and r2 respectively. The basic measure for all temporal joins is the number of 

tuples that intersect over time between any pair of histories. 

(2). The size of a temporal equijoin. In a temporal equijoin [Clifford & Croker 87, Gunadhi & 

Segev 88], which we call TE-join, the result is made up of concatenated tuples that have (i) 

identical values on a non-time join attribute, and (ii) intersecting time-intervals. In other words, 

this join is the temporal equivalent of the snapshot equijoin. The estimation procedure would 

depend on whether the non-temporal join predicate involves the surrogate or the temporal attri

bute. 

(3). The size of an event-join. An event-join [Segev & Shoshani 88, Segev & Gunadhi 89b] is used 

to group several temporal attributes of an entity into a single relation. As stated earlier, temporal 

attributes for a surrogate that change values at different times (i.e. asynchronously), are likely to 

be stored in separate relations for normalization purposes, but need to be composed into one for 

many queries. Differences in the two attributes' temporal behavior and lifespans bring the possi

bility that outer joins are needed to compose the result. The procedure for executing an event

join is the following [Segev & Gunadhi 89b]: (1) temp1 ~'I TE-JOIN r 2 on S; (2) temp2 

~ ri OUTERJOIN r 2 on S; (3) temp3 ~ r 2 OUTERJOIN r 1 on S; (4) result ~ temp1 u 

temp2 u temp3. Fig. 2 shows the result of an event-join between the MANAGER and COM

MISSION relations previously shown in Fig. 1. 
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MANAGER EVENT-JOIN COMMISSION 

result E# MGR CRATE Ts TE 
E1 TOM 0 1 1 
E1 TOM 10% 2 5 
E1 0 10% 6 7 
E1 0 12% 8 8 
E1 MARK 12% 9 12 
E1 JAY 12% 13 20 
E2 RON 0 1 1 
E2 RON 8% 2 7 
E2 RON 10% 8 18 
E2 0 10% 19 20 
E3 RON 0 1 20 

Figure 2. Event-Join Result 

2.5. Multi-Attribute Temporal Modeling 

A more complex scheme for a temporal relation is one involving multiple temporal attributes 

A I> A 2, ••• ,Am. We have to consider the interdependence amongst attributes in terms of both the tim-

ing of events and value changes in temporal attributes. In general, it would not be desirable to maintain 

relations where the temporal attributes are not synchronous, as previously explained. If such relations 

are nonetheless maintained, then each new tuple indicates that at least one attribute has changed its 

value, but not necessarily all attributes have undergone changes. If the attributes indeed form a syn-

chronous set, we can model them as if they form a single attribute A ; in this case, the preceding dis-

cussions on modeling and measurement parameters directly apply. In this paper, we concentrate pri-

marily on the case of a single or synchronous set of temporal attributes, and for the sake of conveni-

ence, will refer to them as the one -attribute model. 

3. ONE-ATTRIBUTE MODEL AND ASSUMPTIONS 

We propose a model with the following parameters: A surrogate instance arrival process, tuple 

arrival process for each instance in the surrogate class, probability distribution of the temporal 
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attributes, two different distributions for the lifespan of a surrogate instance and a treatment of possible 

discontinuities in histories. The following basic assumptions are made: (1) Lifespan infonnation is 

maintained for each relation, call it LS,
1

; the start and end points of the lifespan are represented by 

LS,
1
.START and LS,

1
END; (2) The time domains of all temporal relations can be represented by the 

set of non-negative integers {0, 1, · · · }; and (3) Granularities of the time attributes in two joining 

relations are identical. Additional assumptions and explanations will be provided as we proceed. 

Arrival of Surrogate Instances 

Let {N~ (p )}, p = 0, 1, _ · · · , be the number of surrogate instances that arrive in period p for 

relation ri. Assume that { N~ (p)} is a Poisson counting process with arrival rate A:,. 

Tuple Arrivals for a Surrogate Instance 

Let {N:a_ (p )}, p = 0, 1, · · · , be the number of tuples that arrive in period p for an arbitrary 
• 

surrogate instance in relation ri. Then assume that { N :a_ (p)} is a Poisson process with rate of arrival 
• 

A.:,. Further, we assume that the counting processes for surrogate instances s 1, s2, • • • are indepen-
' 

dent and identically distributed. 

Distribution of Temporal Attribute Values 

We model the value of the temporal attribute during the surrogate instance's lifespan by an i.i.d. 

sequence of unifonn random variables over the temporal attribute domain. Although it would be 

incorrect to assume that for a given surrogate instance and say the temporal attribute 'salary', the value 

can remain the same for two successive tuples, the impact should not be significant if the domain size 

is large. This approach is taken to simplify estimation, since time-dependent characterization requires 

knowledge of the actual behavior of the temporal attribute. 
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Life-span of Each Surrogate Instance 

There are two possibilities with respect to the length of a surrogate instance's history in a rela

tion, which we denote as LS; . For simplicity in deriving approximations, we first assume that the 
I 

lifespan is deterministic in length. We then relax this assumption and model the length of history as a 

random variable with a general distribution. 

Treatment of Null Values 

The null values will be handled by using a parameter, called the existence density-- EDr = 
I 

nwnber of ~a po~nts. Therefore 1- EDr. gives us the proportion of changes within a given his-
nwnber of wne potnts 1 

tory that will generate nulls. By assuming that null values are uniformly distributed throughout each 

history, we can apply this constant factor to a relation to determine the total number of null changes. 

When this measure is applicable, then the measure of tuple arrivals per surrogate instance has to incor-

porate the 'arrival' of null values. In the derivations that follow, we do not consider the existence of 

nulls, since only the final results will be affected by a constant factor. 

Discussion 

The choice of Poisson characterization for the arrival processes is not incompatible with our 

representation of the time domain. If the temporal attribute values are recorded only at time points t 

and t + 1, this does not imply that no value exists in between them; it merely reflects the selected 

granularity of representation. Secondly, the Poisson property that no two arrivals occur simultane-

ously, does not mean that for a given time point, no two surrogate instance arrivals can be recorded; 

again, the time point t is assumed to capture information within the interval [t, t + 1). 
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4. UNARY ESTIMATES 

We derive selectivity estimates for unary operations on a relation in this section. The following 

symbols are used throughout. lr; I is the number of tuples (cardinality) of r;. lr;(S)I is the number of 

unique surrogate instances in r;. lr;(A)I is the number of unique attribute values in r;. The query 

interval is the interval [t,., te ], with t,. ;;;:: 0, which we will refer to as QJ; the length of the interval is 

IQ/1 = te - t,. + I. MTUP is the expected number of tuples of r; contained within QJ. MSUR is the 

expected number of unique surrogate instances of r; found within QI. MHIS is the expected number 

of tuples per surrogate instance of r; found within QI. MATT is the expected number of tuples per 

unique temporal attribute value of r; found within QJ. 

4.1. Deterministic Surrogate Instance Lifespans 

We first derive unary estimates under the assumption that the lifespan of each surrogate instance 

is a constant k in length. In the next subsection, we relax this assumption for the case where the 

lifespan can take an arbitrary random distribution. 

Number of Surrogate Instances 

The number of valid histories is at most equal to those arrivals that took place from time 

t3 - k + 1 to time te. Surrogate instances that were active before t,. - k + 1 would have become inac-

tive by time t3 • Given the Poisson nature of arrivals, the required measure is given by (IQ/1 + k) A.:. 
I 

This assumes that t3 - k + 1 is greater than or equal to 0, the start of the relation's lifespan. If this is 

not satisfied, then all histories will intersect with the query interval, and the measure is given by 

Ue + 1) /..; .. 
I 

MSUR =min{IQ/1 +k, te + 1} A:. 
I 

(4.1) 

10 

v 



Number of Tuples in Relation and per Surrogate Instance 

The total number of tuples for the relation that are found within the query interval, can be found 

by finding the total length of all surrogate instance lifespans that intersect with the query interval, then 

multiplying it by the arrival rate of tuples per surrogate. We divide arrivals into two types -- those that 

arrive before Ql, and those that arrive within it For the first type of arrival, if t8 -k + 1 ~ 0, then the 

number of surrogate instance arrivals still active at time t8 is k A:,. The length of the intersecting 

lifespan of such a surrogate instance, selected at random, depends on the comparison between IQJI and 

k I 2. If IQJI ~ k I 2, then the expected length of the intersection is k I 2; if, IQJI < k I 2, then the 

expected length is I QJI. Now, if t8 -k + 1 < 0, then the number of surrogate instances that arrived 

before t8 and are still active at time t8 is (t8 + 1) J..:,. The expected length of the intersecting lifespan 

of such a surrogate instance with Ql, if IQJI ~ k - (ts + 1) I 2, is k - (ts + 1) I 2; if 

IQJI < k - Cts + 1) I 2, then the expected length of the intersection is IQJI. 

For the second type of surrogate instance arrivals, i.e., those that arrive within Ql,. the count of 

unique instances is IQJI A;.. The expected length of the intersection depends on a comparison 
I 

between k and IQJI. If k ~ IQJI I 2, then the expected length is k; otherwise it is IQJI I 2. There-

fore, the measure we need, MTUP is 

-(4.2) 

where q = min{k, t8 + 1}. 

It follows that the average number of tuples of a randomly selected surrogate instance that intersects 

with Ql is 

MHIS = MTUP I MSUR. (4.3) 
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Number of Tuples for a Given A Value 

The general procedure for finding the number of occurrences of an arl>itrary value of A , call it 

aj, within the query intetval is the following: (1) For each surrogate instance, find the number of 

occurrences of aj within that interval; (2) Summing it up over all surrogate instances gives us the 

desired result. Given the assumption of independent and unifonn probability distribution of A values 

over the relation, we need not explicitly go through these steps. Instead, multiply the number of tuples 

within the query interval by the selectivity of A . 

MATT =MTUP 
1 

lr;(A)I. 
(4.4) 

4.2. Non-deterministic Surrogate Instance Lifespans 

We now derive unary estimates for the case where the lifespan of surrogate instances follow a 

common general distribution G. The problem can be modeled along the lines of the Infinite Server 

Queue problem [Ross 83]. Each instance arrives in accordance with a Poisson process. Upon anival a 

surrogate instance is immediately taken in for setvice by one of an infinite number of possible setvers, 

and the service times are assumed to be independent with a common distribution G . In our case, the 

setvice time is the life of the surrogate instance. The first measure of interest -- the number of active 

surrogate instances during interval Q/, can be derived by the following analysis. Let us say that an 

arrival is 

type 1: if it arrives before time t3 and completes setvice between t3 and ttl, 

type 2: if it arrives before t3 and completes service after ttl, 

type 3: if it arrives between t3 and ttl and completes setvice after ttl, 

type 4: if it arrives between t3 and ttl and completes service before ttl, 

type 5: otherwise. 

12 
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Hence an arrival at time y will be type j with probability Pj (y) given by 

_ {G (t~ - y) - G (t8 -y) if y < t8 

P 1 (y) - 0 otherwise 

{
1 - G (t~ - y) if y < t8 

P 2<Y) = o otherwise 

{
1 - G (t~ - y) if t8 < y < t~ 

P 3(y) = 0 otherwise 

{
G (t~ - y) if t8 < y < t~ 

P 4(y) = 0 otherwise 

4 

P 5(y) = 1- 1:Pi(y) 
j=l 

I 

Figure 3 provides an illustration of the breakdown of the types of arrivals. 

0 arrival pointy 

• departure point z r-----------+---· 

0 ts te 

Figure 3: Dlustration of Different Types of Arrivals 

type4 

type3 

type 2 

type 1 

Let MSURj j = I, ... , 4, denote the expected number of type j events that occur. Then, applying 

the following Poisson property [Ross 83]: 

"If Nj(t),j =1, ... , k, represent the number of type j events occurring by time t then Nj(t), 

j = 1, ... , k, are independent Poisson random variables having means 
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E[Nj(t)] = A.lPj(s)ds," 
\ 

it follows that the expected number of surrogate instances within Ql of type j is 

'· 
MSURj =A.~ l Pj(y)dy, j = 1, ... , 4. 

The mean number of surrogate instances that are active within the interval Ql is therefore the sum of 

the means for type 1 to type 4 arrivals. 

4 

MSUR = "£MSURj. 
j=l 

(4.5) 

Now, in order to derive the expected number of tuples in the relation which intersect with Ql, we 

have to first derive the expected length of a surrogate instance's lifespan that intersects with Ql, for 

event types 1 to 4; let Ej, j = 1, ... , 4 represent this measure. Once the Ej's are known, we find their 

weighted average. Finally, the expected number of tuples that arrive within this weighted average 

period can be estimated, thus giving us the desired estimate. For notational convenience, let the point 

of departure of the surrogate instance, LS;..END, be represented by z. 
I 

'· '· 
E 1 = f r (z - t;,) dG (z - y) _!_ dy , 

t, b ts 

E 2 = IQ/1, 

We can explain the derivations in the following manner. In order to compute the expected length 

for each type of event, we find the intersecting portion for each type of lifespan, which in tum are con

ditional upon the arrival and departure times, y and z respectively. The density function of the 

14 
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random variable y is uniform, given the Poisson nature of tuple arrivals. The limits of each uniform 

distribution is in turn dependent on the event type. Integrating over the range of y and z where neces

sary, we derive the four equations. The measure for the number of tuples in the relation is 

I 
MTUP = p V;. where p = i.Ei MSURi. 

. J=l 

(4.6) 

It follows that the number of tuples per history, MHIS = MTUP I MSUR. The measures for the total 

number of tuples within the interval, and the expected number of tuples with a given temporal attribute 

value are identical to those derived under the deterministic lifespan scenario. 

5. BINARY ESTIMATES 

In studying binary estimates, we need not consider any restrictions on the lifespans of the result 

relation, since these can be carried out as a unary operation. When the two relations have unequal 

starting or ending lifespans, an innetjoin must be based on the intersecting lifespans defined by 

Thus we can assume throughout that the two relations are always joined over identicallifespans with 

the exception of the event-join, where outetjoins are involved. We define additional notations as fol-

lows. M (Hi, Hj) is the expected number of intersection tuples resulting from the cartesian product of 

histories Hi and Hj. M (rTE, Y) is the expected size (in tuples) of the result of a TE-join between ri 

and rj over attribute Y. M(rEJ) is the expected size (in tuples) of the result of an event-join between 

ri and 'j• and M(r01 , l..S,; -l..S,) is the result of one directional outetjoins from ri to rj over 

l..S,. -l..S, .. , i.e., subintervals within the lifespan of 'i that precede and/or succeed that of r1·. I IJ 
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Size of Intersection Between Two Histories 

Given the two histories H 1 and H 2• we assume that they are independent of one another. 

Knowing that within each history, arrival times are unifonnly distributed, the number of intersections 

between the two histories follow a unifonn distribution. By induction, the following bounds are 

derived on the number of resulting intersections. 

Where IH; I is the number of tuples in that history. As an example, if H 1 has 5 tuples and H 2 has 3, 

then the minimum number of intersections between the two is 5, while the maximum is 7. The mean 

number of intersections is therefore 

(5.1) 

Size of Temporal Equijoin 

In a temporal equijoin, the joining attribute is either the surrogate S or temporal attribute A. In 

order to find the size of an equijoin on S, we multiply the result of Eq (5.1) by min{ lr 1(S)I, lr2(S)I }, 

i.e. the minimum of the surrogate instance counts for r 1 and r 2• 

M(rrE• S) = min{lr 1(S)I, lr2(S)I} M(H 1, Hz). (5.2) 

When the equijoin is over A, multiply the selectivities of r 1A by r 2.A (due to the independence 

assumption), and multiply the result by the total number of intersecting intervals in the two relations, 

which is calculated as the cartesian product of r 1 and r 2 followed by a restriction based on the inter-

section of concatenated pairs of intervals, which is equal to the product of the number of surrogate 

instances in each relation multiplied by the expected number of intersecting tuples for any pair of 

instance histories; this is how Eq. (5.3) is derived. 
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(5.3) 

Size of Event-Joins 

In the case of an event-join, unequallifespans produce outerjoin tuples in the result Thus, we 

have to explicitly consider the original lifespans of the operand relations. One part of the result is the 

size of a TE-join over S, which was derived in Eq 5.2. There are two outerjoin components-- the 

starting and ending portions of the lifespans which do not intersect with one another, and the disjoint 

portions resulting from the existence of nulls in a corresponding time-interval belonging to one of the 

joining relations. To compute the first component, for each relation, we find the following outerjoin 

estimates. 

M(roJ• LSr. - LSr.) = lri(S)I (LSr.- LSr . .) J..:,, fori = 1, j = 2 and i = 2, j = 1. 
I J I IJ I 

Procedurally, this is the equivalent of taking the total number of surrogate instances and multiplying it 

by the expected number of tuples arriving within the time period(s) not covered by an equijoin. Note 

that these outerjoins take into consideration only the ends of the lifespans, and not the disjoint parts 

within it. To account for the gaps within the intersecting lifespans, we simply ignore the measures of 

existence density while deriving the size of the TE-join component. The following equation then 

gives the desired estimate. 

(5.4) 

6. EXPERIMENTAL RESULTS 

In this section, we present the result of a test on the accuracy of one of the measures presented. 

We limit the test to the estimation of the number of unique surrogate instances found within two ran-

domly generated query intervals, and compare them to the actual count and also conventional 
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estimates. 

The parameter values for the selectivity estimates are derived from statistics compiled by the 

DBMS. We assume that the following statistics are maintained: starting and ending time (or NOW if 

it is still active) of the relation's lifespan, the count of surrogate instances, total tuples in the relation 

and size of the temporal attribute domain. With the exception of the lifespan information, the other 

statistics are available in conventional DBMS's. The rate of arrival of surrogate instances is estimated 

by dividing the total number of tuples by the total size of the surrogate domain. 

A relation with schema (S, A, Ts, TE) was generated in the following manner. Instances of each 

surrogate was created by assuming a uniform distribution of arrivals over the time interval [0, 3,000). 

A total of 5,000 surrogate instances were produced in this way. The lifespan of each instance was 

fixed to 400 time units. Tuples were generated within this lifespan, by assuming that each has a valid 

interval that follows a uniform distribution within [0, 20). In this way, a 181, 373 tuple relation was 

generated. We randomly selected 20 samples from the relation for query intervals of lengths 25 and 

100. For each sample selected, we derived our estimates and measured their error (sample estimate-

actual value). We also derived an estimate using conventional methods of estimating restrictions, 

which assumes equal likelihood that a surrogate instance is present at any given time. 

Fig. 4 shows the results, where the third column displays actual values, the fourth the mean 

error/standard deviation of our estimate, and the fifth the mean error/standard deviation for a conven-

tional estimate. Within the parentheses of the last two columns are the error measures as percentages of 

the actual. It is very clear from the figures that our estimates are very accurate and significantly better 

than those obtained by conventional means. 

IQII Measure Actual Derived Estimates Conventional Estimates 

25 x 672.2 1.75 (<1 %) 4327.9 (>100%) 

cry 146.0 1.37 (9%) 146.0 (100%) 

100 x 797.0 1.95 (<1%) 4289.4 (>100%) 
cry 119.9 12.7 (11%) 0.0 (0%) 

Figure 4. Results of Test for Number of Surrogate Instances 
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7. CONCLUSIONS AND FUTURE RESEARCH 

We have provided a framework that describes the fundamental issues involved in the statistical 

modeling of temporal databases and derivation of selectivity estimates.· Unlike snapshot relations, tem

poral relations are much more complex to estimate, yet they also possess more infonnation that may 

enable more accurate approximations. We introduced our model, in which a relation is characterized 

by the following: (1) Poisson arrival rate of surrogates instances; (2) Poisson arrival rate of tuples per 

surrogate instance, and (3) Independent distribution of temporal attribute values. We derived estimates 

on the size of key unary and binary operations using the model. Two additional factors were taken into 

consideration in the derivations: (1) The possibility that a surrogate instance's tenure in the relation fol

lows a probability distribution of its own, and (2) The existence of gaps in the history of a surrogate 

instance, represented by nulls. We also provided results of the accuracy of a selected number of esti

mates and compared them to estimates derived from conventional methods. 

We have not been able to cover all the ramifications and natural extensions of the model to vari

ous aspects of modeling and estimation. Nonetheless the model is general enough to be applicable 

under different scenarios. In the case of time predicates other than intersection, our estimates can be 

easily modified, since most time predicates are subsets of the intersection relationship; thus only addi

tional restrictions need to be added. With respect to the modeling of asynchronous multi-temporal attri

bute relations, the primary difference in the modeling approach would be the characterization of the 

tuple arrival process. We could look at it as a Poisson process with as many types of arrival as there 

are attributes, where each type is assumed to be independent from the others. Such an approach is 

called time-sampling from a Poisson process, and it is a known property that each type of event has an 

independent Poisson process of its own. In this way, we can use decomposition (projection) to deter

mine the independent behavior of each temporal attribute and make the appropriate selectivity estima

tions. The following are our plans for future research. 

• Carry out extensive simulations to test the robustness of the model, and carry out a comparison with 

extensions of simple estimation techniques. 

• Extend the model to include time-dependent temporal attribute distributions. This could prove very 
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useful in practical applications, since we can probably classify real life temporal behavior into a rela

tively small set and subsequently develop a distribution-dependent estimation procedure. 

• Investigate a more sophisticated surrogate. model, which explicitly accounts for the probability of null 

value generation and also pennanent exit from the relation. One technique we are looking at employs 

Semi-Markov processes for the surrogate event arrivals. We are also looking at non-Poisson models for 

surrogate arrivals. 
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