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Abstract 

Practical uses of the results of the·singular-perturbation analysis 

given by West and Newman are demonstrated. These results are applicable 

for a large, finite ohmic resistanc.e as compared to, the . resistance of 

the interfacial, faradaic reaction. By applying the analysis to a 

slotted-electrode cell, it is shown how the results can be used to ver-

ify the accuracy of numerical results obtained for a specific geometry. 

The established criterion is valid for the conditions where calculations 

are most likely to be in error. 

Introduction 

This paper provides a practical demonstration of the abstract 

results of West and Newman [1]. Specifically, it shows how their 

results provide a criterion by which the validity of current distribu-

tion calculations can be tested. Their analysis can be used to deter-

mine whether the calculated current density behaves as predicted for a 

Key words: secondary current distributions, primary current 
distributions, singular-perturbation analysis 
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large, finite ohmic resistance (as compared to the resistance of the 

interfacial reaction). In this paper, the results are applied to a 

slotted-electrode cell for which the primary current distribution is 

given by Orazem and Newman [2]. Previously, Smyrl and Newman [3] apply 

similar results to the rotating disk and flow channel cells. 

West and Newman show explicitly how the extreme characteristics of 

a primary current distribution· are approached from a secondary current 

distribution for an arbitrary angle of intersection between the elec-

trade and insulator. ~ey discuss briefly how this general analysis can 

be applied to specific cell geometries by checking the validity of other 

calculations, by extending results, and by aiding in the design of 

numerical procedures. To generalize the treatment, a parameter P is 
0 

used. It sets·. the magnitude of the primary current distribution for 

small" distances from the edge: 

ip - p 
0 

r 
(Tr/2~ - 1) 

The angle ~ and the radial coordinate r are shown in figure 1. 

(1) 

P is 
0 

determined by the cell potential and the details of the entire geometry. 

It is obtained by comparing the primary current distribution of the cell 

with equation (1), the asymptotic form valid near the edge. 

For large polarization parameters, they show: 

1. that the current density deviates from the primary current density 

where 

[

(a +a )Fi ]-l a c o 
RTK. 

/ 

(2) 

for linear kinetics, and 
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'----------------e =O electrode 

Figure 1. A schematic of the edge region of an electrode and insulator, defining the 
radial and angular coordinates . 
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(3) 

for Tafel kinetics. 

2. that the current density near an electrode edge behaves as 

i d [(a +a )Fi J (l e ge a c o 
i . a: RTte 
avg 

- Tr/2/3) 
(4) 

for linear kinetics, and 

i [a FP J (2/3/Tr - l) 
edge a: ~ 

i RTte 
avg 

(5) 

for Tafel kinetics. 

3. detailed distributions in the edge region for various angles, /3. 

Numerical Analysis 

The primary current distribution of the slotted-electrode cell 

shown in figure 2 was determined by a technique that utilizes two numer-

ical, Schwarz-Christoffel transformations. Conformal mapping techniques 

such as this one are often used for the determination of primary current 

distributions. When coupled with other numerical procedures, problems 

with more complicated boundary conditions can J:>e analyzed. 

Orazem and Newman [2] give the transformation relating the coordi-

nates of figure 2a and figure 2c. Since this is a conformal mapping, 
ill. 

Laplace's equation maintains the same form. Insulator boundary condi- •. 
tions also remain the same. Along the counterelectrode, the kinetics 

are assumed to be infinitely fast, and the constant potential boundary 

condition is unchanged. At the working electrode, the boundary condi-

tion becomes 
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Figure 2. Schematic diagram of the slotted-electrode cell. Figure 2a shows the cell in 
the original coordinate system. To facilitate solution of Laplace's equation it is mapped 
conformally to the coordinate system of figure 2c, with the coordinate system shown in 
figure 2b as an intermediate coordinate system. See reference [2] for details. 
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where 

f(ifJ ) 
0 

for linear kinetics, and 

f(ifJ ) 
0 

for anodic, Tafel kinetics. 

(a +a )Fi a c o 
R:I'K. 

(V - ifJ ) 
0 

6 

(6) 

(7) 

(8) 

~(X) relates the normal derivatives along the working electrode in 

the two coordinate systems and is given by 

( ) ;c::;. ;c:::;. jt+;. 
~ xr - --- --- --

/t+b Je-t jd-t 

where t is related to x through 

t jdt x-f ______ _ 
a /t-a /t-b /t+d /t+c 

and the original coordinate z is related to t through 

z -
t J /t-a /t+a dt 

0 /t-b /t+b /t-c /t+c /t-d /t+d 

(9) 

(10) 

(11) 

This problem was solved with a boundary-integral technique. Wagner 

( 4] first suggested such techniques for use in current distribution 

problems. Our procedure, though, might have more in common with tech-

niques described by Brebbia [5] or by Cahan et al. [6). Newman [7] fol-

lows a similar procedure that combines a conformal mapping technique and 

a boundary-integral method. 

In this paper, the geometric ratios used are L/h = 0.5, r/g = 0.1, 

and h/G = 6. 0, where L, h, r, and g are shown in figure 2. The 

.. 
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polarization parameter for linear kinetics is 

J 
(a +a )FLi 

a c o 
RTK. 

(12) 

and for Tafel kinetics is 

a FLj i I a avg 
RTK. 

s = (13) 

The length L used in defining J and S is chosen arbitrarily. 

Applicability of the Perturbation Analysis 

Singular perturbation analyses can be quite involved. Neverthe-

less, their results can be simple to use. In this paper, a tool that 

checks the validity of numerical calculations is established. To use it 

effectively, one must be aware of the limited range of applicability of 

the perturbation analysis. Also, a physically significant length should 

be used in the definitions of the polarization parameters. Otherwise, 

the coefficients in the series may be very different from unity. 

The first neglected term in a perturbation series determines the 

range of applicability. Because the term arises from the details of the 

entire cell (and not one specific detail like p), a general conclusion 

is difficult to make. To estimate its magnitude, it is useful to study 

in detail one particular geometry: the disk electrode. For this cell, 

the characteristic length L in equations (12) and (13) should be 

replaced with r , the disk radius. 
0 

Linear Kinetics--For large J, the current density at the electrode 

edge is given by (8] 



8 

i 
edge= 0 . 62 jJ + e(2) lnJ 

iavg jJ ' 
(14) 

where e(
2 ) is determined by solving for the second order correction to 

the primary potential distribution. 

The condition for when the first term adequately predicts the 

current density is 

/2) lnJ J] » ----
0.62 J]. (15) 

Although a determination of e ( 2 ) may not be worth the effort, its value 

should be near· unity, and one can make a reasonable estimate of the 

range of applicability. 

Figure 3 compares calculated values of the current density at the 

edge of the electrode with the first term of the asymptotic prediction. 

The predicted behavior is approached by values of J consistent with the 

above inequality. Equation (14) also suggests an alternate, more sensi-

i d 
a plot of e ge vs. 

J]· ~avg 
tive way of plotting results. For example, 

could be used. For such plots, the ordinate intercept is predicted. 

lnJ 
J 

To comment generally about the magnitude of the next term, the 

relation of Ni$ancioglu and Newman [8] is useful: 

1 
I lnJ (1- ~0/V)rdr- 0(~) (for high J). 
0 

(16) 

An analogous term should give the order of the next term for other 

geometries, and it is expected to be of the same magnitude. If so, for 

large J and p > ~12, 
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Figure 3. The current density at the edge of a disk electrode for linear kinetics. The 
points are calculated values, and the dashed line is the asymptotic prediction. 
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i 
edge (l)J(l-~/2~) (2) lnl 

i = e + e J~/2~ 
avg 

(17) 

This implies that the analysis of West and Newman applies when 

(2) 
e 

J >> (1') lnl. 
e 

(18) 

Tafel Kinetics-For Tafel kinetics on a disk electrode, Appendix A 

shows that the order of the next term in the perturbation expansion is 

unity with respect to S, thus implying that 

i 
~ 
i avg 

0.196 6 + e( 2). 

Figure _4 compares the first term with calculated results. 

(19) 

In harmony 

with equation (19), the calculated values lie on a line parallel to the 

asymptotic prediction. The figure shows that the last data point (near 

S - 90) is inaccurate. For larger S (not shown), errors are more 

noticeable. A more sensitive test of numerical calculations would be to 

i 
plot S~dge vs. 1/S, with a predicted ordinate intercept of 0.196. 

avg 

Appendix A suggests that the next term of a perturbation series 

will be of order unity for other cell geometries. Previous calculations 

[ 9] verify this for the channel geometry (again, ~ = ~). 

for ~ > ~/2, the expected relationship is 

i edge 
i 
avg 

e(l) s<2~/~-l) + e 
(2) 

In general, 

(20) 

The third term in this series will be of order less than unity. For 

6(Z~/~-l) > 10 we can expect the numerical calculations to attain the 

correct slope but to be offset from a line through the origin by an 

amount e( 2 ). 
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Figure 4. The current density at the edge of a disk electrode for Tafel kinetics. The 
points are calculated values, and the dashed line is the asymptotic prediction. 
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Results and Discussion 

For the slotted-electrode cell, the primary current distribution 

near the electrode edge is 

i a.s 
-2/3 

~ p r 
0 , 

where r is the distance along the electrode measured from point A. 

(21) 

p 
0 

is determined by comparing this asymptotic form with the current distri-

bution as calculated by the method of Orazem and Newman (see figure 5): 

P - 0.569 L
213

i o a.vg 
(22) 

For linear kinetics in the slotted-electrode cell, equation (28) of 

West and Newman [1], which is a quantitative statement of the propor-

tionality (3), gives 

iedge _ 
1

_
5 

J2/3 
i a.vg 

(23) 

as J- oo. In figure 6 this relationship is compared to calculated 

values of i d /i . Good agreement exists for J
213 ~ 4. e ge a.vg 

For Tafel kinetics, equation (29) of West and Newman gives 

i 
~ - o.426 s2 
i a.vg 

(24) 

as S - oo. Figure 7 compares this relationship with calculated results. 

An empirical curve, with the predicted slope of 0.426, is fit through 

the calculated results. Its intercept is determined from the slope of 

the curve shown in figure 8. 

Figure 8 provides a sensitive test of numerical calculations. If 

the next term in the series is of order unity with respect to S, the 

curve should be linear at high S and have the ordinate intercept 
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Figure 5. The primary current distribution of a slotted-electrode cell. The dashed 
line is the asymptotic approximation of the current distribution, given by equation 
(21). 
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Figure 6. The current density at point A of the slotted-electrode cell (figure 2) as it 
varies with the polarization parameter for linear kinetics. The points are calculated 
values, and the dashed line is the asymptotic behavior predicted by equation (23 ). 
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as it varies with the polarization parameter for Tafel kinetics. The points are cal
culated values, the solid line is the asymptotic behavior predicted by equation (24 ), 
and the dashed line has the predicted slope but an empirical ordinate intercept. 
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Figure 8. An alternate, more sensitive way of plotting calculated results for Tafel kinetics 
in the slotted-electrode cell. The ordinate intercept is predicted by the perturbation analysis, 
and the slope of the line gives an estimate of the next term in the series. 
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predicted by equation (24). This figure shows that the numerical calcu-

2 
lations begin to fail near 5 = 30. For larger 5 (not shown), the numer-

ical calculations are clearly in error. The deviation from the semi-

empirical curve of figure 7 also suggests that the calculations begin to 

fail near o2 - 30. Our experience suggests that it becomes difficult to 

obtain highly accurate solutions with traditional numerical procedures 

when i d /i is much greater than 10. e ge avg 

Figures such as 6, 7, and 8 are recommended as checks on numerical 

results, where, for large polarization parameters, numerical difficul-

ties arise. To check data quickly, the proportionalities given by equa-

tions (3) and (5) can be tested. Deviations from a linear relationship 

indicate that results are inaccurate. 

Few numerical difficulties are expected for small polarization 

parameters; therefore, a perturbation analysis describing the devia-

tions from a uniform current distribution might not be as interesting. 

Nevertheless, Appendix B demonstrates by example how the deviations 

could be predicted. For other geometries, the same functional depen-

dence on the polarization parameter is expected, but general predictions 

of the coefficients in the series is not possible. 

Conclusions 

Applications of the abstract results of West and Newman [1] are 

demonstrated. Their results, which are valid for asymptotically large 

polarization parameters, provide a test of numerical results. The pred-

ictions do not hold for small polarization parameters, partly because 

i d /i - 1 for a zero polarization parameter. e ge avg 
For Tafel kinetics 
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and obtuse angles of intersection between the electrode and insulator, 

the next term in a perturbation series is expected to be of order unity. 

Calculated values of i d /i are expected, therefore, to fall on a 
e ge avg 

line that is parallel to the predictions of West and Newman. 

The importance of. asymptotic analyses should not be underestimated. 

In addition to giving insight, they can provide checks on calculations. 

Wit~ the emergence of high-speed computers and sophisticated, packaged 

software, complicated numerical ·calculations are more prevalent, and 

simple tests of these results are necessary. 

Appendix A 
Tafel Kinetics on a Disk Electrode 

The order of the next term in a perturbation series describing 

i /i for Tafel kinetics on a rotating disk electrode is shown to edge avg 

be unity. It is also suggested that a term of order unity can be 

expected for other geometries. O(e) means of order e, and o(e) means of 

order lower than e. 

Following Smyrl and Newman [3], a potential <P is.defined as 

(A.l) 

where ~ is the primary potential difference, for the same total 
0 

current, between the disk electrode and a reference electrode placed at 

infinity. The stretched variables for the outer region (away from the 

edge of the electrode) are 'f; - <P, '7 f7, and~- e, where e and '7 are 

the rotational elliptic coordinates. In the inner region, the appropri-

ately stretched variables are 



q, = 64J- ln6, 

~ = 6~. 

and 

The stretched potentials, q, and <P. can be expanded in terms of 6: 

~ - ~(1) + ~ (6)~(2) + 
2 

... ' 
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(A.2) 

(A. 3) 

(A.4) 

(A. 5) 

(A. 6) 

(0) 1 -1 
Smyrl and Newman show that <P = 2 tan ~. and they determine numeri-

cally ~(l). 

-2 In the inner region, terms of order 6 are neglected in Laplace's 

equation. Terms can also arise from the matching and boundary condi-

tions. The insulator boundary condition does not introduce additional 

terms. Along the disk electrode, the boundary condition is 

where 

It is shown (3] that 

where lnE(l) is the 

~ e~o _ 1[~] , 
2 - -, a~ ~-o 

2i [a F ~)]. E = 
0 exp ~(V -

i RT 
avg 

lnE - 1 + 1lnE(l) + 
6 ' 

second term in a perturbation expansion 

The boundary condition, therefore, can be rewritten as 

(A.7) 

(A. 8) 

(A. 9) 

of lnE. 
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(A.lO) 

which is expanded further to yield 

(A.ll) 

! -(1) -(2) ) 
- 1 ~ + f (o) ~ + o(f (o)) . 

- - 2 - 2 
, ae e-o . ae e-o 

1 
Equating terms of the same order in 6 suggests that £

2 
= 5· To decide 

conclusively necessitates inspecting the matching conditions, where 

higher order terms due to the outer solution can arise. 

In the outer region, the exact form of Laplace's equation (in rota-

tional elliptic coordinates) was solved, and thus no terms arise from 

the governing equation. Also, no terms arise from the ·boundary condi-

tion at infinity, on the insulator, or on the axis. The boundary condi-

tion along the electrode in the outer region can be expressed by 

sq, 
1 0 - ! .91_, 
2Ee '1 ae e=O . 

Since q,CO) - 0, this boundary condition is rewritten a, 
0 

(A.l2) 

(1) 

( 
1 (1) 

) ( 
(2) ... )eoll(o)'?>o (A.l3) 

~ 1 + 6 lnE + o(l/6) 1 + 6I2(6)'?>
0 

+ 

... } 
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1 
This suggests that I 

1 
= 

0 
and that 

(1) 
~0 = -1- ln(~), (A.l4) 

which is expected from a straightforward attempt to correct the poten-

tial (from the primary potential) for finite electrode kinetics. Smyrl 

and Newman [3], with a different approach, imply the same results. 

~(l) is described by Laplace 1 s equation in rotational elliptic 

coordinates: 

The insulator boundary condition at ~ = 0 is unchanged, the boundary 

condition at the disk electrode is given by equation (A.l4) and 

~(l) - 0 as c2 2 
'> +~ - 00, Furthermore, no current should flow to infin-

ity since 5 specifies the total current, and this is supplied by the 

primary current term, ~(O). 

From separation of variables, the solution is 

00 

~(l)- I B P
2 

(~)M2 (~), 
n-l n n n 

(A.l6) 

where P Zn are the even Legendre polynomials, and M
2
n are Legendre func-

tions of imaginary argument (10]. The B are determined through the 
n 

orthogonality condition: 

1 
B - -(4n + 1) fP 2 (~)ln(~)d~ n 

0 
n 

(A. 17) 

The asymptotic behavior (for small~.~) of ~(l) must be developed 

to provide the matching condition for the inner solution. If 

r- '( c2+ .. 2 )~ and 8 t -l( ;c) L 1 1 t' b ., •1 - an ~ ., , ap ace s equa 10n ecomes 
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0 = (A.l8) 

2 ~ ~ + 2r(l - 2sin f)) ar - 4sinfJcosf) ao . 

Using. a coordinate expansion technique and separation of. variables, and 

applying the appropriate boundary conditions, 

2 (1) 3 (1) 3 4 7 A
1 

r cos()+ A
2 

r cos(30) + O(r ), 

which can be written in terms of e and '1 as 

~(l)<rJ-o,e-o)---1 ln(rJ 2+e2 )~ + Ai1)e 

I 

with the complete solution. 

(A.l9) 

(A.20) 

Finally, the matching condition is applied. This condition is 

expressed formally as 

lnc5 1 - -2 -2 
--6--. + 5 ~<rJ +e ~) - ~<rJ-o,e-o) (A.21) 

Agreement must be observed for all orders in c5 and also all orders in 

<e 2+rJ 2 )~. Equation (B-8) of Smyrl and Newman can be rewritten in terms 

of e and '1 as 

A< 1 ) e 
- -2 -2 c5 2 2 ~ 1 1 
~(rJ +e -co) - -2 e - ln(Eo(rJ +e ) ) + 7 --=~-

o c2 2 
'> + '1 

(A.22) 
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where "Ail) is the same as Smyrl and Newman's A
1 

and is estimated to be 

-3.1. Substituting forE gives 

- -2 -2 
ln5 + ~<~ +e ~) 

5 5 
I! 1[ 22~] 2 - 6 · 1 + ln(~ +e ) (A.23) 

A:<l)e I 1 2 + 2 2 + o(l/5 ). 
e + ~ 

To specify completely the matching condition for ~( 2 ), it is neces-

sary to investigate the outer region expansion: 

(A.24) 

-Ail)e- e2 + o<<e2+~2)3/2)) + o(l/52) 

The leading term of ~( 2 ) must match the highest unmatched term in ~. 

Although it might not be worth the effort of solving it, for complete-

ness, the problem statement is given. 

The governing equation remains 

a2i(2) + a2i(2) - o. 
(A.25) 

a~2 ae2 

The insulator boundary condition is 

a~<2) 
- 0 at .,., - 0. (A.26) 

-
a~ 

Along the working electrode, the boundary condition is 



~ / o lnE(l) + 7>(2) = 1 a7<2) -(1) [ l 
2 0 - -

'f'J ae 
where equation (A-18) of Smyrl and Newman gives 

Results of finite-difference calculations can be correlated by 

E 4.3 + 6 
2 4.3 + 0.73586' 

which is expanded to suggest that lnE(l)· = -1.544. 

Finally, the matching condition is 

and, in principle·, "j,( 2 ) can be obtained. 

The next term for i /i would be 
edge avg 

i edge 
i avg 
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(A.27) 

(A. 28) 

(A.29) 

(A. 30) 

(A. 31) 

Without further numerical work, the important result is that the next 

term in a perturbation series is of order unity. 

A thorough treatment of the rotating disk geometry is presented. 

The E parameter of Smyrl and Newman [3] is the key to obtaining the next 

term in a perturbation series. For other cell geometries, an analogous 

term arises, and it might be expected to behave similarly. For a 

coplanar electrode and insulator, a term of order unity seems likely. 

For other angles of intersection, the correct expansion for the primary 

current distribution near the edge may cause unforeseen terms to arise. 

This makes it difficult to draw a more general conclusion. 
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Appendix B 
Current Distributions for Small Polarization Parameters 

A perturbation analysis describing the deviations from a uniform 

current distribution is regular. Such an analysis is given here for 

linear and Tafel kinetics on a disk electrode. 

Before proceeding, one should recall the integral equation relating 

the potential and current distributions on the disk [11]: 

2 
q; (r ) - -

0 q 'lr/C 

r 
0 

I 
o. 

i K(m)r 
n dr 

r + r 
q 

K(m) is the complete elliptic integral of the first kind [12], and 

m 
2)rr 

q 
r + r 

q 

(B.l) 

(B.2) 

Linear Kinetics-For linear kinetics, the· boundary condition along 

the disk electrode can be expressed as 

i 
n 

(a +a )Fi 
a c o(V 

RI 
q; ) . 

0 

(B. 3) 

We solve this problem as one with a set electrode potential. It is 

equally valid to specify the total current, as we prefer for Tafel 

kinetics. 

For J- 0, the current distribution is uniform, and q; = 0; that is, 

the ohmic potential drop in the solution is negligible. This fact, along 

with equation (B.3), suggests that the potential is appropriately 

expanded as 

(B.4) 

Substitution of equations (B.3) and (B.4) into equation (B.l) gives a 
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formal solution for the potential, where terms of the same order in J 

are equated: 

and, for n > 1, 

1 
~(l)(r) -~I K(m)r dr' 

o q ~ 0 r + rq 

~ (n) (r ) 
0 q. 

dr . 

Nanis and Kesselman [13] show that 

~(1) - ~ E(r2/r2) 
0 ~ 0 ' 

where E(m)t is the complete elliptic integral of the second kind. 

These results give 

i 

i 
n 

avg 

(B.S) 

(B.6) 

(B.7) 

(.B. 8) 

Where the :;:(n) · t' t th · t d · t w ar~se as correc ~ons o e average curren ens~ y, 
0 

1 
~(n) - 2 I ~(n)rdr 

0 0 0 

Nanis and Kesselman [13] show that ~(l) 
0 

Tafel Kinetics--For Tafel kinetics, 

(B.9) 

(B.lO) 

For relatively uniform current distributions, Wagner [4] suggests that 

tNote that our argument for 
Nanis and Kesselman's argument. 
integral chosen to be consistent 

the elliptic integral is the square of 
We use a definition of the elliptic 

with Abramowitz and Stegun [12]. 

"· 



the Tafel kinetics boundary condition can be linearized: 

i 
n 

a Fi a avg 
RT [ ..K£...-<f} ]· a F o 

a 
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(B .11) 

This suggests that the first correction to a uniform current distribu-

tion for Tafel kinetics will be identical to the first correction for 

linear kinetics (with a properly modified definition of J). Only for 

higher order corrections will differences appear. 

We solve this problem by setting 6, the dimensionless average 

current density. As 6 - 0, the current distribution is uniform, and <P 

is zero (as a zeroth approximatio_n). This fact, along with equation 

(B.lO), suggests that the solution potential can be written as 

(B.l2) 

The electrode potential must also be expanded: 

ac{; + ln[aa~~io] - ln6 + L 6nV(n). 

n-1 
(B. 13) 

The ln6 term on the right side of equation (B.l3) can be thought of as 

the zeroth order term, which is determined by reguiring that the dimen-

sionless current distribution be uniform with a magnitude specified by 

o. Since this term satisfies the specified average current density, all 

of the higher order corrections to the potential distribution 

(2) 
(tjl , etc.) must have a zero average current density. This provides 

the condition to determine v<n). 

Following the same procedure used for linear kinetics gives 

(B.l4) 
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1 K(m)(V(l)_~(l))r 
= ~ J ____ __;;_o __ dr , 

1r 0 r +r q 
(B.l5) 

and 

~(3) 
0 

where 

and 

These results give 

i n 
i 
avg 

1 + o (V(l) 

(B.l6) 

1 
v(l) - 2 f~(l)rdr-.!.. 

0 31r ' 
0 

(B.l7) 

(B.l8) 

(B.l9) 

Summary--These analyses demonstrate the correct procedure to calcu-

late small deviations from a uniform current distribution. The terms in 

each series can be obtained by a numerical integration of the previously 

determined, lower order current distribution. Since E(l) = 1, the 

current density at the edge of the the electrode for linear kinetics is 

i 
.1._J edge 

- 1 + (small J), 
i 31r 

(B.20) 
avg 

and for Tafel kinetics is 

i 
2s ~ - 1 + (small o). 

i 31r 
(B.21) 

avg 
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As expected [4], the first correction to a uniform distribution is the 

same for linear and Tafel kinetics. Figure 9 compares numerical results 

obtained from finite-difference calculations with these asymptotic pred-

ictions. The current density at the center of the disk is also compared 

with its asymptotic value. Since E(O) - ~/2, 

i 
center = 1 + ( ~ - 1 )J ( o) i 3~ or . (B.22) 

avg 

These analyses show how the current densities for linear and Tafel 

kinetics deviate from one another for larger values of the polarization 

parameter. For other cell geometries, the same linear dependence on J 

or o is expected. 
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List of Symbols 

coefficients arising in matching conditions (see equations 
(A.l9-23)) 

parameters used in the conformal mapping procedures, shown 
in figure (2), ern 

coefficients defined by equation (A.l7) 

stretching functions for the solution potential 

Faraday's constant, 96487 C/equiv 

parameter defined by equation (A.8) 
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Figure 9. Calculated and predicted current densities for linear and Tafel kinetics 
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2.0 

at the center and edge of a disk electrode for small polarization parameters. For 
linear kinetics, the current density depends on J, and, for Tafel kinetics, it depends 
on o. 

"--:, 



E(m) 

i 

i 
0 

j 

J 

K(m) 

L,r,b,G 

r 

r 
0 

r 
q 

* r 

R 

s 

T 

t,x,z 

v 

-y(x) 

€ 
(n) 

complete elliptic integral of the second kind 

2 current density, A/em 

2 exchange current density, A/c~ 

dimensionless exchange current density 

complete elliptic integral of the first kind 

lengths characterizing the slotted electrode, em 

even Legendre functions of imaginary arguments 

A/cm (l+11'/2,8) parameter defined by equation (1), 

even Legendre polynomials 
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radial distance away from the electrode/insulator edge, em 

radius of the disk electrode, em 

radial position at which 
determined, em 

the potential is being 

distance where the asymptotic approximation of the primary 
current distribution is in error by one percent, em 

universal gas constant, 8.3143 Jjmol-K 

h . . bl -l stretc ~ng var~a e, em 

absolute temperature, K 

complex coordinates 

electrode potential, V 

transfer coefficients 

interior angle between insulator and electrode, radians 

relates normal derivatives in original and transformed 
coordinate systems 

dimensionless average current density 

th n coefficient in a perturbation series 



~ 
0 

as 

avg 

center 

edge 

i,r 

p 

rotational elliptic coordinates 

-1 -1 
specific conductivity, 0 em 

3.141592654 

dimensionless solution potential 

solution potential, V 

solution potential adjacent to the electrode, V 

Subscripts 

asymptotic 

average 

center of the disk electrode 

electrode/insulator interface 

imaginary and real parts of a complex variable 

Superscripts 

prima,ry 

inner region variable 

outer region variable 
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