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DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
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assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommen~ation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
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Abstract 

This report addresses database system issues arising in the design, 
implementation and execution of queueing simulation experiments. The 
primary goal is to identify new features for inclusion in a custom database 
system implemented using an extensible database system. Simulation data 
is first identified as a distinct subset of scientific data. An overview of the 
experimental process is then presented along with a survey of related 
simulation environments. A queueing simulation paradigm is described in 
detail in order to identify the distinguishing characteristics of queueing 
simulation data and the modes of manipulation. This is the basis for a 
traditional ER/Relational implementation, which in turn serves as the focus 
of a complete simulation environment. Difficulties encountered in the use of 
traditional implementation tools motivate the custom database system 
extensions. 

1 . Introduction 

Commercial database systems provide a collection of tools to assist application 
developers in writing efficient programs to access a shared collection of data. These tools 
have been very successful in many application areas. For example, accounting, inventory 
control, academic data (information about students, courses, professors, enrollment), and 
so forth. There are many important application areas, however, for which traditional 
database systems provide insufficient support. For example, computer aided design data, 
office automation data (including voice and visual data), experimental scientific data, 
statistical data, temporal data, etc. In all of these latter areas the tools provided by 
traditional database systems are either incomplete (that is, the needed functionality is simply 
not available) or are too slow to be useful. 

One way to address these difficulties is the use of extensible database management 
systems (EDBMS). These systems have been recently introduced by the research 
community and will eventually allow system developers to design, configure and 
implement custom database management systems (DBMS) for specific application areas. 
The resulting database systems will have no unnecessary functionality and will include 
special features as required for efficient application programming. There are currently 
many ongoing research projects in this area, among them are: EXODUS at the University 
of Wisconsin, Madison [Care86a], POSTGRES at the University of California, Berkeley 
[Ston86], GENESIS at the University of Texas, Austin [Bato88b], STARBURST at the 
ffiM Almaden Research Center [Haas89], and IRIS at Hewlett-Packard Laboratories 
[Fish87]. 

The work summarized in this report addresses the problem of implementing a 
custom database system for scientific data management (specifically simulation data 
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management) using the EXODUS extensible database management system as a 
development platform. Developing a custom DBMS is a complex multi-step process for 
which there are few guidelines based on practical experience. EDBMS provide an 
implementation vehicle, they do not provide explicit support for identifying which features 
are significant in any given application area. The approach taken in the work presented 
here is to first attempt a pure relational design and implementation using standard 
techniques; and then to use this practical experience to identify potential extensions for 
inclusion in a custom DBMS. 

The report is organized as follows. The following two sections summarize 
previous research in scientific and statistical data management and present a high level 
description of simulation data management, an important subtype of scientific data 
management. Section four gives an overview of the experimental simulation paradigm and 
section five contains a description of an ER- data model and relational implementation. 
Section six describes a system architecture for a simulation environment based upon this 
model. Section seven presents an overview of system development support provided by 
EDMBS and design specifications for EXODUS implementation. The paper concludes 
with two possible extensions to the simulation environment and a summary of the work 
presented. 

2 . Scientific and Statistical Data Management 

Scientific and statistical data management is an area of research exploring the use of 
database system techniques to collect and manipulate data generated during experimentation 
and analysis [Shos82] [Shos84] [Shos85]. An important related issue is effective 
management of scientific metadata: information used to defme, locate and control data 
[McCa82] [McCa84]. All three types of data have distinctive characteristics which can be 
used in developing specialized physical storage organizations, operators, optimization 
strategies and logical modelling techniques. This section summarizes basic research that 
has been done in this area. · 

Statistical data is characterized by having both category and summary attributes 
[Shos82]. Category attributes typically have a small range and are used as primary keys 
for the associated summary attributes. All combinations of category attribute values are 
stored in the data base (with much redundancy) and many combinations of category values 
have null associated summary attributes (i.e. the data sets are sparse). During analysis 
many small data sets are extracted for preliminary analysis, and category attributes may be 
eliminated through aggregation (e.g. summing over all uninteresting categories). Physical 
storage structures suggested by these characteristics include multi-dimensional arrays with 
null value compression, transposed files, materialized views and summary sets (caches of 
statistical aggregate values with automated integrity control) [Shos82] [Bate82]. 
Specialized operators include direct support for estimation and interpolation, aggregation, 
statistical operations, view and summary set maintenance. Data modeling issues introduced 
by these extensions include support for complex data types, multi-dimensional 
hierarchically structured data spaces, temporal data and unstructured meta-data. 

Scientific data is similar to statistical data in many respects (in fact, statistical data 
can be considered as an important subtype of scientific data). Scientific data is, however, 
more directly associated with the actual mechanics of performing experiments [Shos85] 
[Shos84]. Measured experimental data is characterized by being more or less regularly 
distributed over its associated coordinate space, has varying density and may have 
coordinates which shift over time. Data associated with experiments includes configuration 
data (descriptions of the initial structure of an experiment or simulation), instrumentation 
data (descriptions of instruments and substances used in the experiment), analyzed data 
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(data generated during the data analysis phase), summary data (statistical aggregates such 
as averages or histograms), and property data (information accumulated from many 
experiments, such as chemical substance properties). Non-standard data types required to 
support these kinds of scientific data include: graphs, text, time series, special symbols, 
and non-scalar data values. Operators appropriate to these data types are needed as well. 
Associated data modelling tools should provide explicit support for geometric data, 
entities, hierarchical and network organizations, generalization, n-dimensional data and 
meta-data. Scientific meta-data is a large and varied category which is perhaps best 
characterized by its lack of regularity [McCa82] [McCa84]. Metadata describes data, and 
as such the distinction between the two is not always clear (vis. experimental and 
associated data above). Examples of data objects described by metadata include entities, 
attributes, category sets, databases and database collections. The descriptive information 
includes names, units, textual descriptions, processing procedures, security restrictions, as 
well as physical and structural characteristics. Metadata is used in a variety of ways by 
both end users and system software to locate, define and control the data to which it 
pertains. It is characterized by complex data types and structures which vary over time 
(and which may not be known at the time of database design). In addition, metadata 
instances are logically linked with each other in an arbitrary fashion which may be partially 
captured by the use of implicit inheritance. Specialized support includes a flexible and 
extensible data definition language, means for specifying and enforcing naming 
conventions and a variety of automatic indexing structures to support fast access to 
logically related (linked) metadata instances. · 

3 . Simulation Data Management 

The research results described above are based on extensive experience and 
discussion with practicing scientists and statisticians, primarily at Lawrence Berkeley 
Laboratories [Shos84]. Much of the work presented is in the form of abstract system 
requirements rather than detailed explanations of how the final system would be integrated 
into the experimental methodology of practicing scientists. A more concrete study is 
reported in [Bell82] for particle physics simulation experiments. A detailed study of the 
code used for simulation identified low level characteristics which are incompatible with 
more traditional data modelling techniques. Among these characteristics are the lack of 
correspondence between "real world" entities and abstract entities (which are frequently 
defined for computational convenience only), the use of implicit data naming conventions 
rather than explicit textual names for data values, the use of multiple equivalent coordinate 
representations during different phases of the overall computation and extensive use of 
derived (computed) and redundant data for more efficient computation. 

In light of these results, a different approach was taken in the work presented in this 
paper. Rather than starting with a broad and comprehensive high level survey of system 
requirements, the study was begun by examining how simulation experiments are currently 
being performed and what low level implementation techniques are used in data collection 
and analysis. The higher level system requirements are presented in terms of an ideal 
environment for building, executing and analyzing the results of concrete simulation 
experiments. The approach is thus a systems approach rather than a theoretical or analytical 
one. The remainder of this section presents a high level overview of the more formal 
model presented in the following sections. 

3.1. How are (queueing) simulation experiments performed? 

Simulation experiments are begun with a careful examination of the application 
domain to identify the simulation items of interest and how they are interrelated [Law82] 
[Ferr78]. In the case of queueing simulations, the simulation items are represented in terms 

Page 3 



of jobs, servers, queues, and their interconnection. Jobs represent sequences of 
processing steps, where each individual step is represented by a collection of buffers and 
servers. Servers correspond to atomic processing steps and buffers are used to hold jobs 
waiting for service. A single buffer can feed many servers. A buffer with its associated 
servers is called a queue. Interconnections between servers represent possible paths that 
individual jobs can follow during execution. Job classes are groups of jobs with similar 
processing steps (i.e. similar paths through the system). Each server has an associated 
service time (or possibly a collection of service times corresponding to each job class), and 
each buffer has an associated discipline (ordering among waiting jobs) and possibly a 
bounded capacity. Closed queueing models have a fixed and constant number of jobs, 
open queueing models allow individual jobs to depart from the system as well as to arrive 
from one or more external job sources. 

A simulation model is specified by identifying all of the relevant job classes, the 
associated servers and buffers and their interconnections. Each server is identified by its 
service time distribution(s), and each buffer by its discipline and capacity. The overall 
system topology is specified by the interconnection of buffers and servers. Each job class 
is specified by the path jobs of that class follow through the system. This path may be 
specified stochastically by a collection of branching probabilities associated with each 
alternate path leaving a given server, or it may be fixed (deterministic). In addition, in a 
closed system the total number of jobs in each class is specified; and in an open system the 
distribution of interarrival times between successive jobs is specified for each class. 
Performance metrics of interest are specified as well. Typical metrics include the average 
system throughput (number of jobs processed per unit time), the average job turnaround 
time (time spent in system), the average job waiting time (time spent waiting in buffers), 
the average number of jobs waiting in queue, and the average server utilization. These 
metrics may be further broken down by job class. 

These specifications are used to generate an executable simulation model (or more 
generally a family of related models). There are a wide variety of generation techniques 
ranging from a custom implementation using a general purpose programming language 
(and discrete event control and timing techniques [Law82]), to use of a high level 
simulation language for both specification and implementation [Livn86]. Each executable 
model has a collection of configuration (input) parameters used to initialize each simulation 
run, and produces a collection of output traces (sequences of values). 

Experiments are designed by selecting related sets of input parameter values (e.g. 
by fixing all but one parameter at a "typical" value and allowing the remaining free 
parameter value to vary in increments over some "reasonable" range). Each of these 
parameter sets is then used to initialize a simulation run (possibly with each of a family of 
models). The results from these simulation runs are accumulated and used as the basis for 
computing derived statistics and/or graphs displaying the performance metrics (i.e. 
throughput as a function of the free parameter). 

3. 2. Data Management Requirements 

Data management is required at all stages of simulation. Initially, the information 
gathered about simulation items needs to be cataloged anq recorded for future reference. 
This is frequently done in an ad hoc and informal way, using longhand notes for example. 
The simulation model specifications likewise need to be recorded for future reference, and 
again are frequently recorded in an informal manner, or are implicit in the model 
specification used to generate the executable simulation code. The model specifications 
themselves are data related to the experiment which ideally should be maintained; and all 
executable versions used for experimentation should be saved for later verification or 
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further experimental runs. In addition to saving the model code, all information necessary 
to run the model code must be maintained in some fashion (i.e. model description, input 
parameter types and description, output trace descriptions, compilation/execution 
instructions, etc.). All parameter sets used in experimental runs should be saved for future 
reference, as well as all execution traces. Descriptive information needs to be stored along 
with the raw collections of information (which model the parameter sets are associated 
with, which parameter set the output trace is associated with, etc.). And finally, the partial 
and final results of analyzing the trace output should be saved to allow for later re-analysis, 
extensions and validation of the original experiments. 

In a typical small simulation experiment, such as that used to validate the results 
presented in [Murp89], on the order of 2 Mbytes or more of simulation data are generated. 
Larger simulation experiments can generate several gigabytes or more of raw simulation 
data and associated analytic results [Shos84]. Although the data management needs are 
apparent, most simulation practioners handle simulation data in an ad hoc and informal 
manner (i.e. by encoding file names to provide information about the nature of the data they 
contain). 

3. 3. Ideal Simulation Environment 

The description presented above is a somewhat simplified view of how practitioners 
currently perform queueing simulation experiments. In addition to support for these 
activities, the ideal simulation environment should be easy for non-experts to use and 
should allow flexible implementation of a wide range of simulation methodologies. 

Simulation environments designed for use by non-experts require simple paradigms 
for specifying, creating and executing experiments. The use of visual interfaces has proven 
to be a very effective technique for making computing environments accessible and useful 
to non-expert programmers [Appl87]. Support for a standard "point-and-click" iconic 
interface for queueing model specification and coordination of experiments would be a first 
step towards providing a visual paradigm for the overall simulation process. Other useful 
features include automatic generation and collection of data and metadata during the 
simulation process; automatic consistency checking of all user input; and the ability to 
specify experiments and sequences of experiments at a very high level and allow the system 
to automatically perform the necessary low level specification, generation and execution 
steps [Abel89]. Finally, the system should have an extensive on-line help facility that can 
identify all user-accessible objects as well as locate all information associated with a 
particular object (i.e. all execution traces associated with a particular executable model and 
parameter set). 

In many.ways the goal of flexibility is antithetical to that of simplicity and ease of 
use: the more functions the system automates, the less control the end user has over how 
the operations are actually performed This problem can be addressed in many ways, the 
approach taken here is to design an extensible system which incorporates a minimal set of 
simple paradigms and which can be extended and/or modified by a knowledgeable end­
user. Within such an environment, the use of a common simulation paradigm and data 
representation facilitates the development of integrated simulation toolsets (i.e. a range of 
different output analysis packages). 

More pragmatic concerns include the ability to access the specifications and 
implementations of all components making up the environment; this allows extensibility as 
well as verification of correctness. Within the executable simulation models, there should 
be a clean separation between code and state. This will allow the simulation to be restarted 
at any point by simply reloading the state variables and continuing execution. A checkpoint 
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facility to save a "snapshot" of the current simulation state is needed as well. Finally, the 
environment should allow high-level simulation descriptions to be executed on a variety of 
simulation platforms (i.e. event-queue based simulation on a uniprocessor, timed-message 
based simulation on a distributed processor system [Righ89]). This facility again requires 
a clean separation between the high level (logical) specifications and the low level 
implementation. 

3. 4. Related Work 

This section summarizes the data management capabilities of several simulation 
environments developed recently. While not queueing simulation environments per se, the 
simulation paradigms and data management requirements are similar. The first two 
environments are hybrid hardware and software simulation environments for 
communications network and oceanographic simulation experiments respectively. The 
third is a software system based on a language for implementing discrete event simulations 
with an associated simulation environment. 

3.4.1. Pnps 

Pops is a hybrid simulation environment for prototyping communication protocols. 
The system was developed at the University of California, Berkeley [Cies89]. The 
hardware base consists of a collection of reusable hardware modules embedded within a 
control environment. The control environment supports a wide range of software tools for 
interactive creation, execution and analysis of simulation experiments. 

The simulation process is divided into four phases: component design, experiment 
design, data collection and data analysis. During component design the user specifies a 
collection of network components using a variety of software tools to translate high level 
specifications into executable components. Executable components are stored in named 
files; specifications are either input interactively (and discarded after component generation) 
or are also stored in named files. During experiment design, components are selected 
interactively and their interconnection and initialization data specified. The system 
performs internal consistency checks to verify that the interconnection is syntactically 
correct. During the data collection phase the user first specifies which subset of trace 
outputs to record; then initializes the hardware modules and downloads the executable 
components; and fmally executes the experiment. The output traces generated during 
execution are written to named data files using a standard format. During the data analysis 
phase, the user interactively invokes a collection of statistical analysis routines over the data 
files. 

There is very limited support for data management in the Pops environment. The 
system supports a standard file format with header information including author, creation 
and modification dates, access privileges and user defined search keywords. The user 
interface supports component search using file name, author or keyword as criteria. And 
finally, the collection of components themselves make up a reusable library which is 
incrementally created during extended use of the system. 

3.4.2. Hybrid Simulator 

The Hybrid Simulator is an integrated environment of hardware, software and 
cables which is used to simulate an ocean environment [Berg86]. It was developed at the 
Naval Ocean Systems Center in San Diego and its primary use is real-time testing of 
electronic guidance and control systems. 
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There are two major activities making up the simulation process: controlled and 
documented evolution of the collection of hardware, software and cables making up the 
simulation environment; and controlled and documented execution of simulation 
experiments. Whenever either of these activities takes place, the user registers appropriate 
information in an associated database. The equipment making up the simulation 
environment is arranged in a strict hierarchy in which individual items are grouped into 
subsystems, subsystems are grouped into units and units are grouped into simulators . 
Before executing a simulation, all of the items in the associated simulator hierarchy need to 
be configured and registered in the database (configured items, subsystems and units can 
be reused). Each simulation run is likewise registered in the database along with 
information about all associated configurations, initialization parameter sets, and associated 
documentation. Whenever an item needs to be reconfigured, information about the specific 
changes, authorization and implementation are recorded as well. Collection of experimental 
data and analysis is performed using application software and is not under the control of the 
configuration management subsystem. 

Database system support is based on use of the lNG RES database system for 
structured data, and the UNIX file system for unstructured data (i.e. configured software 
items). The hierarchical structures of equipment and configured equipment are mapped 
more or less directly into relations, as is information about simulation runs and 
configuration change orders. Various configured versions of software items are maintained 
using the UNIX Source Code Control System (SCCS) and "make" facilities. Parameter 
data is maintained in a collection of UNIX files whose names are registered in the database 
as part of the simulation run data. The database is updated via a collection of QUEL 
macros, and the other information through a collection of C-shell scripts. 

3.4.3. DeLab & DeNet 

DeNet is a prototype language for implementing discrete event simulation models 
[Livn86] and DeLab is a proposed simulation environment to assist in the mechanics of 
performing DeNet simulation experiments [loan88a]. Both were developed at the 
University of Wisconsin, Madison. 

The DeNet language is based on the Discrete Event System Specifications (DEVS) 
modeling methodology. This methodology allows each component to be specified as an 
autonomous module which can in tum be loosely coupled into a network of discrete event 
systems. A simulator is viewed as a directed graph. Nodes correspond to instances of a 
discrete event module (DEVM) with associated input and output ports; arcs correspond to 
mappings between output port events of one DEVM to input port events of another DEVM; 
and the overall topology is a description of all the interconnection of nodes via arcs. The 
run-time environment supports timed events within discrete event modules and 
transmission of entities (events) over arcs. The modelling tools provided by the language 
include explicit support for entities and queues as well as probes for gathering statistics 
during execution and a collection of tracing, input/output and other utilities. Each DEVM 
specification is translated into standard MODULA II code; and the topology specification is 
used to link together the associated modules into an executable simulation. DeNet can 
manage libraries of reusable object modules and can link arbitrary (compatible) modules 
into executable images. 

The DeLab environment was designed to assist in the construction of complex 
experiments and management of long running experiments. DeLab provides support for 
programming, debugging and verifying simulation models, executing collections of related 
experiments, and analyzing experimental results. All data generated during the simulation 
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process will be stored in an associated database management system. Two views of the 
executable simulation are needed: a programming view and an execution view. The 
programming view requires a detailed low level model of the simulation language 
primitives, tracing and other debugging facilities. The execution view can be used to 
describe a simulated system simply as a vector of input parameters, a vector of output 
parameters and a description of the operation performed. Each simulation run corresponds 
to a pair of parameter vectors, which are automatically registered in the DeLab database 
during execution of the run. 

The Moose data model was designed for use with DeLab [Ioan88a]. Moose 
provides high level semantic modeling support using an extended object oriented 
framework. Descriptive tools are provided for specification of objects, aggregates, class 
hierarchies with multiple inheritance, specialization rules, and primary classes. These 
tools allow a precise description of the semantic relationships among the simulation 
components, however it does not (as yet) provide any means for querying the associated 
information. In addition, the Moose data model is incompatible with existing relational 
database systems and will require a special purpose system in order to become part of an 
operational DeLab environment. 

4 . Overview of Experimental Simulation Paradigm 

The previous section described simulation data management from several high level 
perspectives. This section is focused on queueing simulation from a more concrete (i.e. 
systems or implementation oriented) perspective. This is done in order to explicitly 
develop an ER/Relational system design and implementation, as detailed in the following 
section. 

4 .1. What is a Simulation? 

An executable simulation consists of three components: a collection of 
computational objects, an interconnection among these objects, and an execution 
framework. The collection of computational objects corresponds to the items being 
modelled, and consists of executable code modules which simulate the abstract behavior of 
the items they represent. The interconnection specifies the inter-relationships among object 
instances, and the framework provides the necessary low level support to allow events to 
"happen" in the correct sequence during execution and to record timing and other output 
trace information. 

In the context of queueing simulations, computational objects correspond to 
queueing simulation entities (i.e. jobs, servers, buffers, etc.). Each type of object is 
specified by a local state (variables) and methods (procedures) along with configuration 
parameters and an interface specification. The methods correspond to the abstract behavior 
the object can exhibit and the local state summarizes its past behavior. Configuration 
parameters are used to initialize the object state prior to beginning execution (and should 
include all state variables needed to "restart" the object from any consistent state). The 
interface specification summarizes the external behavior of the object and includes a 
description of the legal input and output (i.e. which methods are defined within the object-­
the input-- and which methods are invoked in other objects-- the output); the collection of 
configuration parameters and all trace output selectively produced by the object. The object 
specification and implementation collectively summarize the local behavior of each object 
and details its response to both internal and external events. The descriptive language must 
be able to express time relationships between events declaratively (i.e. job service will be 
completed after an exponential delay with mean u, service begins when a job arrives at the 
server). 
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The object types themselves can be defined independently of each other, or they 
may be arranged in a "class hierarchy", in which common features are factored up into 
common superclasses. For example, all servers might share a common interface 
specification (defined in a common superclass) and differ in their service time distributions 
(defined in the particular subclasses). An extensible library of pre-defmed standard object 
types could be easily represented in this way. 

Object types describe the generic kinds of behavior that simulation entities can 
exhibit. A particular simulation model consists of a collection of object type instances 
along with their interconnection. The interconnection, or topology, specifies the inter­
relationships among object instances. At an abstract level, each connection between a pair 
of objects corresponds to a legal communication pathway (i.e. a particular server can 
"send" jobs to a particular buffer). More concretely, each connection corresponds to an 
object instance invoking a method in another object instance. The overall interconnection is 
specified by a directed graph in which each node corresponds to an object instance and each 
directed edge corresponds to an object instance invoking a method in another object 
instance. More generally the interconnection is specified hierarchically by defming 
interconnected groups of object types as an aggregation type, and allowing nodes in the 
interconnection graph to be either aggregation or object instances. The interconnection 
itself is passive, however it implicitly specifies an overall global behavior of the simulation 
by indicating which objects interact and what their mode of interaction is (i.e. a given 
buffer instance transfers a job instance to an idle server instance; a multi-way branch 
instance routes jobs to one of several buffers according to a collection of associated 
branching probabilities). 

The interconnection specification is used to link together a collection of simulation 
object instances into an executable model. In the simplest type of simulation models, no 
more than one activity in one object is in progress at any time. In this situation, 
performance statistics can be collected using elapsed (real) time and counters, providing 
that all computational events are implemented with realistic delays (i.e. using wait loops). 
In most simulations, however, there is an explicit need for parallel events (e.g. two distinct 
servers can typically be busy at the same time), and the requirement that all events last a 
"realistic" duration may be unnecessarily wasteful of computational resources. The 
solution to these problems is to have a lower layer of software, the execution framework, 
provide the illusion of parallelism and allow simulation time to proceed at whatever rate is 
computationally feasible. This is done by monitoring distinct events (inter-object 
communications) and insuring that all events "happen" in the correct sequence and are 
assigned consistent simulation times of occurrence. The collection and storage of 
simulation trace output is also coordinated by the execution framework. In addition, the 
execution framework may distribute the simulation model computation over multiple 
processors and implement extensive interprocessor consistency checks [Misr86]. 

4. 2. Experimental Process 

The concrete experimental process begins with a queueing model representation of 
the application to be simulated, which is developed as described above. This representation 
is used to determine what object types are needed in the executable model, and the existing 
class hierarchy is examined to determine whether or not appropriate object types already 
exist. The class hierarchy is extended by defming new subtypes as needed. The 
interconnection is designed by hierarchically constructing aggregation types until the overall 
simulation topology is composed, then linking the associated collection of object instances 
into an executable simulation model. 
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Experiments are performed by selecting values for all configuration parameters (or 
allowing them to take on predefined default values) and selecting some subset of the trace 
variables for collection during simulation. The simulation model is then executed (possibly 
multiple times), producing a collection of trace variable values with each execution. 

This process can be organized a little more formally by defining a parameter set 
specification as the overall collection of configuration parameters accepted by an executable 
simulation model; a parameter set specialization as a subset of the configuration parameters 
(i.e. all configuration parameters without default values); and a parameter set realization as 
a specific collection of values associated with each element of a parameter set specialization. 
Sets of trace variables and values are defined analogously. 

A pass is defined as the execution of a single simulation model over a single 
parameter set realization with a single trace set specialization. The result is a single trace set 
realization. An iteration is the execution of a single model over a set of parameter set 
realizations over a single trace set specialization (a pass is a special case of an iteration). 
The results are a set of trace set realizations, indexed by the parameter set realizations. An 
experimental run is the execution of a set of models over a set of parameter set realizations! 
with a single parameter set specialization (an iteration is a special case of an experimental 
run). The results are a collection of trace set specializations indexed by both the associated 
model and parameter set realization. And, fmally, an experiment is the execution of an 
experimental run some number of times (the replication factor). The results are a collection 
of trace variable realizations indexed by the associated model, the parameter set realizations 
and the replication number. 

Data analysis is formalized by specifying computational functions and/or graphics 
over the trace set realizations associated with one or more experiments. 

4. 3. What kinds of information are used/generated? 

Specific kinds of information generated during the simulation process include: a 
detailed specification of the object class hierarchy; various aggregation types defined over 
collections of object types; simulation model specifications (aggregation and execution 
framework) and executable code; and all data associated with experiments and analysis as 
defined above. These data collections are described and classified in greater detail below 
within the context of an ER-model description. 

4. 4. Example Simulation Experiment: Tandem Queues 

This section presents a simple example taken from [W alr88] within the context of 
the simulation paradigm described above. The queueing model consists of two queues in 
tandem with a single feedback connection: 

1 The parameter set specification for a set of models is the union of the individual parameter 
set specifications. If a model is passed a parameter value which is not applicable, the value 
is ignored. Similarly for trace variable specifications. 
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Figure 1. Example Queueing Model: Tandem Queues 
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Each of the queues has a FIFO buffer with unlimited capacity and exponential 
service times with means u1 and u2, respectively. Jobs arrive from an external Poisson job 
source with parameter I and visit the two queues in succession, then return back to the first 
queue with probability a. Jobs leave the system altogether with probability 1-a. The 
performance metrics of interest include the measured average rate at which jobs leave the 
system (which must be equal to I for stable behavior), the average number of jobs at each 
server, and the average time jobs spend in the system. 

4.4.1. Object Classes 

The object classes needed to represent this queueing model include: Poisson job 
source, job, unlimited capacity FIFO buffer, exponential server, stochastic branch node, 
and job departure node. Note that in this example the range of simulation objects is 
sufficiently dissimilar that a hierarchical arrangement is not needed and all objects can be 
defined independently of each other. 

The state of a Poisson job source class includes a Poisson random number 
generator (configured by its mean value) and a count of the number of jobs produced so far 
(defaults to zero). It has no input, however there is a single internal method which 
produces jobs after appropriate intervals of simulation time and sends them out over the 
single output. The only trace value is the number of jobs produced. 

The job class has a single state variable: the time of creation (arrival). The time of 
creation is a configuration parameter (defaults to zero) and is set by invoking the single 
input method. The class has no output methods and produces no trace output. 

The unlimited capacity FIFO buffer class has local state consisting of a list of 
waiting jobs (implemented as a FIFO queue structure) along with their associated arrival 

.. times (in units of simulation time). There are two input methods: one associated with the 
arrival of a job, and one associated with a request for the job at the head of the queue. The 
single output method sends the job at the head of the queue to the requesting class. The 
trace output associated with a job arrival is a count of the number of jobs in queue. The 
trace output associated with a job departure is a count of the number of jobs remaining in 
the queue and the time the departing job spent waiting in the queue. Configuration consists 
of initializing the queue with some number of jobs with associated arrival times (the queue 
defaults to empty). 
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The server class has two state variables: an exponential random number generator 
and the current job in service. The random number generator is configured with the value 
of the mean of the associated distribution, and the current job in service can be configured 
with a job (defaults to nil). There is a single input method to accept a job and generate its 
service time; and a pair of output methods, one to send off a job that has completed service 
and one to accept a new incoming job. There is a single trace value: the time of the each 
departing job. 

The stochastic branch node class has four state variables: a random number 
generator that produces the value 1 with probability a and produces the value 0 with 
probability 1-a; the value a itself and a count of the number of jobs sent out over each of 
the two outputs (both default to zero). It is configured with the value of a and the two 
count values. There is a single input method which accepts a job, and a single output 
method which sends the job to one of two destination objects. The output traces are the 
values of the two counts. 

The job departure node has two purposes: to produce trace output of the time each 
. job spends in the system, and to terminate the simulation after some number of jobs has 
executed. It has a single input which accepts departing jobs and has no output. 

4.4.2. Aggregations 

The initial aggregation is the association of a buffer and a server into a queue. The 
aggregation type has a single input which accepts jobs from another source, and a single 
output which produces jobs after some time delay. The two methods used to coordinate 
communication between the buffer and the server are internal to the aggregation. The 
aggregation is configured by configuring both the buffer and the server, and the output 
traces are those produced by either object. 

Job 
Arr1va 

Jobs & Arrivals (=nil) 

list of jobs & 
arrival times 

Arrival # in Queue 
Departure # in Queue 
Time in Queue 

Mean, Job in service (=nil) 

Departure Time 

Figure 2. Queue Aggregation. 
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The overall system is represented by a complex aggregation consisting of two 
queue aggregations, and one each of the remaining object classes. Note that the overall 
system aggregation has no unaccounted for input or output methods. 

Configuration Parameter Values 

Source 

Job 

Trace Variable Output 

Figure 3. System Aggregation 

4.4.3. Executable Model: Configuration and Trace Parameters 

The system aggregation is used to create an executable model by generating object 
instances of the appropriate type; associating the input and output as indicated; and linking 
with an execution framework in order to produce executable simulation code. The details 
of this process depend intimately upon the particular language used to write the simulation 
code and will not be discussed further in this section. The model configuration parameters 
consist of the union of the configuration parameters for all object instances participating in 
the model; and the complete trace output includes all trace values from all object instances. 
Table 1 summarizes all of the configuration parameters required for this example (along 
with default values as appropriate), as well as the possible output trace variables. 
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Object Instance Configuration Parameters Default Trace Variables 
Queue 1 Jobs in Buffer & Arrival Times nil Arrival # in Queue 

Mean Service Time Departure # in Queue 
Server Job in Service nil Time in Queue 

Queue 2 Jobs in Buffer & Arrival Times nil Arrival # in Queue 
Mean Service Time Departure # in Queue 
Server Job in Service nil Time in Queue 

Job Source Mean lnterarrival Time # Jobs produced 
count 0 

Job Time of Creation 0 
Branch Node Count of Output 1 0 # of Outputs 1 

Count of Output 2 0 # of Outputs 2 
branch probability (a) 

Job Departure Max Count Time in System 

Table 1. Configuration Parameters and Trace Values 

In order to execute the simulation model, the configuration parameters without 
default values must be specified. For the example, there are only five such configuration 
parameters: the mean service times of the two servers, the mean interarrival time, the 
branching probability, and the stopping criteria (maximum number of jobs departing). The 
other parameters can either be specified explicitly, or allowed to take on their default 
values. There are ten possible output traces that could be produced during execution, each 
of which may contain many values depending upon how long the simulation is run. 

4.4.4. Example Performance Analysis 

Many experiments could be performed using the simulation model described above 
as a computational base. For example, the average time in system as a function of the 
arrival rate; the average time in queue as a function of the relative difference between the 
two service times; the average queue length as a function of the value of the branching 
probability. More complex experiments over multiple free parameters could be evaluated 
as well (although the use of graphics becomes problematic with more than three 
dimensions). The model could also be used to simulate a closed queueing system by 
setting the arrival rate to zero, the branching probability to one and initializing the system 
with the proper number of jobs (alternatively, one could allow the system to generate the 
required jobs, then reset the arrival process rate to zero). 

In all of these examples, the experimenter would first determine a collection of 
"reasonable" parameter values; and then a sequence of parameter value sets with one or 
more of the parameter values changing in a regular fashion. The interesting output traces 
would then be selected and the simulation executed with each of the different parameter 
value sets. The output traces can then be used to compute standard performance metrics. 
For example, the average of the job time in system over the number of jobs exiting the 
system is equal to the average job turnaround time. These computed metrics can then be 
displayed tabularly or graphically as an assist to interpreting the results of the overall 
simulation experiment. 
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5 . Formal Data Model & Process Description 

The preceding discussion presented an informal description of the structure of the 
data used during simulation as well as the overall experimental process. This section is 
focused on the data management aspects of simulation. It begins with a formal ER-model 
of simulation data, as described above, a relational implementation and a collection of 
example data corresponding to the Tandem Queue example introduced at the end of the last 
section. It concludes with a formal description of the simulation process in terms of data 
processing requirements, a relational implementation (SQL queries) and a brief discussion 
of the Tandem Queue example. 

5 .1. ER-Model of Simulation Data 

The Entity-Relationship data model was introduced by Chen in 1976 [Chen76]. It 
has since become the most widely used descriptive tool for specifying the structure of 
collections of data in a way that is independent of the particular database system used for 
implementation [Ullm88] [Elma89]. 

Entity instances correspond to "real world" objects and entity sets (or entities) 
correspond to groups of similar entity instances. Relationships are ordered lists of entity 
sets and relationship instances are ordered lists of entity instances. Each relationship 
instance corresponds to a group of entity instances which have the given relationship with 
each other. Relationships are categorized by their order: a binary relationship is 1-1 if 
exactly one instance of each entity is associated with each relationship instance; binary 
relationships are 1 :n if up to n instances of one entity and a single instance of the other 
entity are associated with each relationship instance; and a binary relationship is m:n if an 
arbitrary number of instances of each entity are associated with each relationship instance. 
Relationships of higher arity are categorized in an analogous manner. 

Both entities and relationships can have attributes associated with their instances. 
Attributes, or properties, are values from a given domain that describe the particular 
instances with which they are associated. Note that attributes can also be represented as 
entities associated with instances via an "attribute-of' relationship and hence are not 
fundamental components of the data model, but rather are included for convenience of 
representation. 

5.1.1. Entities, Relationships & Attributes 

Figure 4 contains an ER-diagram representing the collection of entities, 
relationships and attributes used to describe simulation data Square boxes correspond to 
entity sets and diamonds correspond to relationships. Labeled arrows between boxes and 
diamonds are used to designate the entity sets participating in the relationship and the 
category of relationship (1:1, 1:n, m:n, etc.). Attributes are represented by domain names 
appearing near the icon representing the entity-set or relationship with which the attributes 
are associated Note that an extended ER-model is used here which allows arbitrarily 
complex data items to appear as attribute values. 

There are six entity sets corresponding to object classes, aggregations, executable 
models, experiments, parameter sets and trace sets; and six relationships describing 
associations among various instances of these entity sets. 

The object entity set has one instance for each object class appearing in the 
implementation class hierarchy. Each entity instance has three attributes specifying the 
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interface, state and functions associated with that object class. Object entity instances 
participate in two relationships. First, the descended-from relationship describes the 
structure of the object class hierarchy: each object is descended from exactly one other 
object (multiple inheritance could be represented using a m:n relationship rather than a 1:n 
relationship as shown). Second, the part-of relationship is used to associate object classes 
into aggregations, as described below. 

The aggregation entity set has one instance for each aggregation defmed in the 
system. Each aggregation instance has two attributes: an interface specification 
summarizing any unattached inputs and outputs, a list of configuration parameters, and a 
list of trace variables; and a graph describing the internal object/aggregation components 
and their interconnections. Aggregation instances participate in two relationships. First, 
the part-of relationship is 1 :n:n between aggregation, object and aggregation instances. It 
associates all of the components of a single aggregation with the aggregation itself. The 
second relationship associates aggregation instances with executable models, as described 
below. 

The model entity set has one instance for every executable simulation model in the 
system. Each instance has three attributes: executable code, a parameter set specification, 
and a trace variable specification (the execution framework is implicit in this model, 
however it could be represented by an additional attribute or entity/relationship pair). 
Model instances participate in two kinds of relationships: each model instance is linked­
from exactly one aggregation instance; and models are used to compose experiments, as 
described below. 

The experiment entity set is used to describe experiments, as defined formally 
above. Each experiment entity has a single attribute giving the replication factor associated 
with distinct passes. Experiment entities participate in three relationships: each experiment 
is composed of one or more executable models; each experiment has an associated 
parameter set; and each experiment produces an associated trace set (as described below). 
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Parameter set entities are used to represent the sets of configuration parameters that 
are used to initialize executable models. Each parameter set entity instance has a realization 
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associated with it Parameter set entities are associated with experiments via a derived-from 
relationship, which has the parameter set specification as an associated attribute. Note that 
the format of the parameter set realization is determined by the derived-from specification 
attribute. 

Similarly, trace set instances are used to represent the sets of traces produced during 
execution of a simulation model. Each trace set entity instance has a realization associated 
with it. Trace set entities are associated with experiments via a produced-by relationship, 
which has the trace set specification as its associated attribute. 

5.1.2. Relational Implementation (Relations) 

The Entity Relationship data model is unique in having a straightforward translation 
into a standard Relational implementation. First, an identification attribute is added to each 
entity set. Next, each entity set is mapped into a single relation with attributes 
corresponding to the entity set attributes. Finally, each relationship is augmented with an 
attribute corresponding to each of the participating entity sets (of type entity-set identifier) 
and mapped into a single relation as well. 1: 1 relationships can also be represented by an 
additional attribute in either of the associated entities. 

The simulation data model corresponds to the following relations (described using 
SQL augmented with new data types corresponding to entity identifiers, interfaces, 
methods, state variables, graphs, executable code, specifications and. realizations--in a 
standard environment these could all default to INTEGER identifiers or STRING 
representations): 

CREATE TABLE object ( 
id ENTID; 
interface INTERFACE; 
state STATE; 
functions METIIODS; 

) 
CREATE TABLE aggregation ( 

id ENTID; 
interface INTERFACE; 
graph · GRAPH; 

) 
CREATE TABLE model ( 

id ENTID; 
code CODE; 
parameter_spec SPECIFICATION; 
trace_spec SPECIFICATION; 
linked-from ENTID; 

) 
CREATE TABLE experiment ( 

id ENTID; 
replication INT; 

) 
CREATE TABLE parameter_set ( 

id ENTID; 
realization SPECIFICATION; 

) 
CREATE TABLE trace_set ( 
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.. 

5.1.3. 

) 

id 
realization 

ENTID; 
SPECIFICATION; 

CREA 1E TABLE descended-from ( 
child ENTID; 
parent ENTID; 

) 
CREA 1E TABLE part-of ( 

aggregation ENTID; 
component ENTID; 

) 
CREA 1E TABLE composed-of ( 

experiment ENTID; 
model ENTID; 

) 
CREA1E TABLE derived-from ( 

) 

experiment ENTID; 
parameter-set RNAME; 
specification SPECIFICATION; 

CREA 1E TABLE produced-by ( 
experiment ENTID; 
trace-set RNAME; 
specification SPECIFICATION; 

) 

Tandem Queues Example 

The tandem queues example can be described by a collection of tuples appearing in 
the relations defmed above. Again, the data types provided in a pure relational system are 
not able to represent all of the attribute values explicitly. In practice various encoding 
schemes and auxiliary files must be used to represent this information in conjunction with a 
standard relational database system. 

Each of the six object types used to describe the queueing model would have a 
single tuple in the objects relation. There would not be any tuples in the descended-from 
relation. The aggregation relation would have two tuples, one corresponding to the queue 
aggregation, and one corresponding to the system aggregation. The part-of relation would 
have two tuples corresponding to the queue aggregation (one for the buffer and one for the 
server); and five tuples corresponding to the system aggregation (one each for Poisson job 
source, queue aggregation, branch node, job departure node and job). The model relation 
would have a single tuple describing the executable queueing simulation. 

Assume that two experiments have been performed: one to evaluate the average 
time in system as a function of the arrival rate; and one to evaluate the average queue length 
as a function of the branching probability. Each experiment would have a single tuple in 
the experiment relation with an associated replication factor and a single tuple in the 
composed-of relation. Each experiment would have a single parameter set and a single 
trace set, with a single descriptive tuple in each of the derived-from and produced-by 
relations. The two parameter-set and trace-set relations would have schemas given by the 
specification attribute in the derived-from and produced-by tuples. The configuration 
parameter sets corresponding to various values of the arrival rate and branching probability 
would be stored in the parameter-set relations; and the simulation trace variable output in 
the corresponding trace-set relations. 
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5. 2. Description of the Simulation Process 

The ER-model is descriptive only, it does not provide any means to describe 
processing operations associated with a collection of data [Ullm88]. This section 
informally describes the processing operations that are required to create and maintain the 
simulation data defmed above as experiments are designed, executed and the results 
analyzed. 

5.2.1. Processing Steps 

Prior to using the system, most of the relations used to store simulation data must 
be created. The only two exceptions are the parameter-set and trace-set relations. These 
two relations have structures which depend upon the associated experiment instances, 
information not known before the experiment is specified. During the process of 
experiment design and execution, various items of information become known and are 
entered into the appropriate relations (which may be created as well). 

The frrst data operation is associated with defining a new object type. The simplest 
implementation would be to simply add a tuple to the object relation (detailing the interface, 
state and functions of the new object class) and another tuple to the descended-from 
relation. This solution does not address the issue of inheritance, however the class 
hierarchy as defined above does not allow modification of existing classes so there is no 
possibility of inconsistency. A more storage efficient solution would avoid replicating 
shared (inherited) object attribute values by using a more complex representation scheme. 

The second basic data operation is associated with adding a new aggregation type. 
When the overall structure of the aggregation has been specified as well as the object types 
corresponding to all of its nodes, the aggregation can be checked for internal consistency 
(i.e. by verifying that all arcs connect type-compatible inputs and outputs) and the overall 
interface determined. The interface description and interconnection (graph) are stored in a 
single aggregation tuple. One tuple is also stored in the part-of relation for each kind of 
aggregation or object occurring as a node in the graph. 

The third data operation occurs after a new model is compiled and linked. It 
involves adding one new model tuple to the database containing all of the information about 
the new executable model. 

Defining an experiment is the most complex data operation. It first requires 
assignment of a new experiment identifier and user input of the associated replication 
factor. This information is stored in a single experiment tuple. The collection of models 
participating in the experiment are then specified and a single tuple is added to the 
composed-of relation for each. The overall collection of models determines the complete 
collection of configuration parameters and trace variables supported by the experiment. 
The parameter-set specification includes all of the configuration parameters without default 
values, along with any other configuration parameters needed for the particular experiment. 
This information is used to create a parameter-set relation, and a single tuple is stored in the 
derived-from relation linking the parameter set relation to the experiment.! The parameter 
set values are then specified and entered into the parameter set relation, one tuple for each 

1Strictly speaking the relation name cannot be stored as an identifier in the derived-from 
relation. The mapping between data values and relation names takes place outside of the 
query language code proper. 
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complete set of configuration parameter values. Finally, the complete trace set specification 
is computed as the union of all of the trace variables associated with the experiment models. 
Some subset of these trace variables is selected, and the associated specification is used to 
create the trace-set relation and a single tuple is inserted into the produced-by relation. 

The fifth basic operation is associated with executing an experiment. The trace-set 
relation is first cleared of any tuples, then each of the models is executed with each of the 
parameter value sets for the given number of replications. As the experiment executes, the 
execution framework stores the trace variable output into the trace-set relation. Each pass 
over a model produces one tuple of trace-set data, assuming that attributes can be sequence 
valued. This is not possible in a relational system and an alternate storage mechanism is 
required. For example, the execution framework could write out each distinct trace variable 
to a distinct file, and then store the file names in the trace-set tuple associated with each 
experimental pass. 

The final data operations are associated with analyzing the results of one or more 
experiments. This requires retrieving trace-set data from the database, as well as 
parameter-set and other information needed to compute performance statistics and display 
the experimental results graphically. Typical operations include: retrieval of all (trace 
variable, parameter-set value) pairs associated with an experiment, and then averaging the 
trace variable values over the replication factor; and computing the average of a trace­
variable value over all experimental passes with a given combination of parameter-set 
values. The data representation defined above includes all information necessary to 
selectively locate all trace data associated with one or more experiments, and hence allows 
defmition of arbitrary operations over this collection of data. The analysis phase is thus 
extensible, however it does not involve storage or modification of data so it is non­
destructive. 

5.2.2. Relational Implementation (Queries) 

The SQL language supports relatively simple update operations. A single update 
query can insert one or more tuples into a single relation. All of the data operators defined 
above require multiple SQL queries. In addition, much of the processing requires 
definition and construction of complex data objects (i.e. aggregation graphs). This 
processing cannot be effectively performed using SQL and requires additional system 
support. The following major section outlines one possible system architecture for 
providing the necessary processing tools to be used in conjunction with the database 
defined above. These tools would, in turn, invoke standard low level SQL queries to store 
and retrieve associated simulation data. 

Extensibility (the ability to add new data analysis operators, for example) requires 
the ability to execute interactive queries, as well as the ability to store these queries for later 
reuse. In addition, it is frequently easier to store intermediate results of long computations. 
This is done both for ease of programming and for later re-use of partial results. The 
natural repository for all of these kinds of data is again the database itself. SQL does not 
provide direct support for these kinds of operations, however the set of relations defmed 
above is not necessarily inclusive--it is possible for users to extend the system by adding 
arbitrary new relations with associated new operators. The one restriction is that all data 
must be stored as relations, and all data manipulation must be expressed using standard 
SQL. 
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5.2.3. Tandem Queues Example 

The tandem queue example is typical insofar as its data operations are concerned. 
All of the information described in section 5.1.3 would be created during experimental 
design and execution; and then entered into the database using the standard operators 
defined above. 

6 . · Simulation Environment System Architecture 

Data storage and manipulation is only one component of an overall simulation 
environment, albeit a very important component. This section describes other major 
software components implicit in the data processing operators as described above and a 
possible implementation strategy using commercial tools provided by the Hypercard/Oracle 
database system. 

6. 1. Major Software Components & Database Interactions 

Figure 5 summarizes the various components of the system architecture. The 
Database System provides a common substrate for all of the tools and allows 
straightforward integration of new tools as the system evolves. All tools share a common 
collection of simulation data structured as described above. Each tool automatically inserts 
data it generates into the database. In addition, all tools share a common visual interface 
which allows users to interact with any of the tools using a standard visual paradigm. This 
is depicted by a single external interface encompassing the entire system. 
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Figure 5. System Architecture 

The object browser/editor provides support for interactive or keyword search 
through an existing object hierarchy as well as addition of new object subtypes into the 
hierarchy. As noted above, once an object is entered into the object hierarchy, it is not 
modified or deleted In addition, each object type is expanded out to include all inherited 
state and methods and stored as a self-contained unit. More efficient storage strategies can 
be developed by taking advantage of the known inheritance relations to "expand out" 
objects as needed (e.g. [Rowe87]). The major difficulty with this approach is the 
performance penalty resulting from multiple database retrievals associated with every object 
reference. 

The aggregation editor allows the user to specify aggregations by constructing a 
graph, labeling its nodes with the corresponding object/aggregation types and labeling its 
edges with the corresponding input/output methods. Ideally the specification should be 
done interactively by first selecting a collection objects (which implicitly selects a collection 
of inputs and outputs for each object), then connecting outputs of one object to the 
appropriate inputs of another object. The overall process can be visualized as a structured 
"drawing" of the aggregation graph. 

In designing an aggregation, the user can only connect compatible inputs and 
outputs (i.e. if an input expects to receive a job instance of a particular class and the user 
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connects an output which generates jobs of another class, either run time or compile/link 
time errors will occur). Ideally these mismatches should be detected at the time the 
aggregation is designed, rather than during a later debugging phase. This requires at least 
a limited incremental type checking component to be invoked whenever the user adds 
another arc to an aggregation under construction. This allows immediate feedback to the 
user and prevents the design of incompatible aggregations. 

After all of the aggregations making up a simulation model have been designed, 
they need to be translated into executable code. This requires a program generator which 
can recursively expand an aggregation out into a collection of object instances (code 
fragments), generate the necessary linkages between objects and produce a high level 
language program fragment This program fragment is then compiled and linked with an 
execution framework to produce an executable simulation model. 

Initially, the system requires at least one execution framework. The simplest event­
queue based simulation support routines require several hundred lines of high level 
language code [Law82]. More complex techniques for multiprocessor execution use timed 
messages and a variety of mechanisms for distributing the computation over multiple 
processors and require more complex support routines [Misr86] [Righ89]. In addition, the 
execution framework needs to coordinate storage of trace output data by accepting raw trace 
values from simulation objects, and then coordinating storage into the trace-set relation. In 
order to use multiple execution frameworks, a consistent interface must be established to 
allow simulations to schedule events and specify trace variables in a standard manner. 

The two remaining processing steps, experiment definition and data analysis, 
require interactive interfaces to query the user for necessary specification data as well as an 
extensible collection of tools to define new analysis operators over arbitrary collections of 
experimental data. An integrated spreadsheet would be one way of providing extensibility 
as well as ease of use and the ability to generate graphics directly. Another possibility 
would be to provide a standard interface for data retrieval and allow the user to invoke 
arbitrary analysis programs. A third possibility is to use an EDBMS, as described below. 

The fmal tool is called an Assistant for experimental design. Its purpose is to 
partially automate the design process by using limited forms of inference. For example, 
given a experiment, the Assistant could search through the database to determine whether 
or not equivalent simulation passes have already been executed as part of other experiments 
(equivalent here means over the same model with the same parameter set realization over a 
superset of the trace output variables); and then only execute those passes that are 
necessary. Another example is experiment generation: given partial information about an 
experiment (i.e. the set of participating models and the desired trace variable outputs), 
construct and execute an experiment which produces the desired results. The Assistant 
could prompt the user for additional required information, or it could "infer" plausible 
values for all unspecified parameters. 

6. 2. Hypercard/Oracle Prototype 

Oracle is a commercial relational database system that has been marketed since the 
late 70's [Orac88]. It is available on a variety of computer systems and has a distributed 
architecture which allows applications to execute on multiple computers. Concurrent data 
access, security and crash recovery are fully supported. Oracle implements a standard SQL 
language interface with minimal language extensions. 

The Macintosh version of Oracle supports a variety of development tools for 
application programming using the Hypercard environment [0rac88]. Hypercard is a 
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multi-media (hypertext) presentation and programming environment distributed by Apple 
Computer [Appl87]. The Hypercard/Oracle system includes a Hypercard based application 
generator for rapid prototyping of applications which access data stored in an Oracle 
database. All of the Hypercard tools can be used to create interactive user interfaces which 
integrate structured text with audio and visual data. More complex user interfaces can be 
constructed using the HyperTalk script programming language with embedded SQL calls 
for storage and retrieval of data from the underlying database. Finally, advanced general 
purpose applications can be developed using the C programming language with embedded 
SQL calls. 

The simulation environment architecture defmed above could be implemented using 
Hypercard/Oracle. The collection of structured simulation data would be stored in an 
Oracle database, the user interface implemented using the HyperTalk scripting language, 
and the simulation programs themselves in a structured version of C. The primary 
difficulty in performing a direct implementation is the limited collection of data types 
provided by Oracle SQL: char (fixed length up to 240 characters), date, long (variable size 
up to 65,535 characters), number (with optional precision and scale), decimal (with 
optional scale), float, integer, and rowid (uniquely identifies a tuple). While the long data 
type allows storage of data with arbitrary internal structure, it is up the application program 
developer to provide the necessary operators to correctly interpret and maintain the byte 
strings. No more than one long data attribute can appear in any tuple, making 
straightforward implementation of parameter set and trace set realizations difficult. In 
addition, it is possible for the maximum size of a long to be exceeded by trace variables 
associated with long running experiments. Despite these difficulties, however, a prototype 
could be implemented to verify other aspects of the design. 

7. Exodus Design Specifications 

As noted in the previous section, representing non-standard data types may be 
awkward, but it is possible to do with either text (unbounded string) data types or auxiliary 
indexed files. Representing non-standard data operators, however, is virtually impossible 
within standard SQL: it requires the use of an external programming language with an 
internal SQL interface to the database. While these programming tools and techniques do 
allow implementation, it is unlikely that the resulting system will be as efficient as one built 
using a DBMS which provides more direct support for the particular kinds of data and 
operators required. This section describes how extensible databases systems (EXODUS in 
particular) could be used to provide such system support. 

7 .1. Overview of Support Provided by EDBMS/EXODUS 

Extensible database systems are effectively database system generators. As Lex 
and Y ace are used to specify and generate language scanners and parsers, extensible 
database systems are used to specify and generate custom database systems. The scope of 
a database system is much broader than that of a typical programming language, and 
extensible database systems are much more complex than simple program generators. 
Typically they include a variety of software engineering tools to assist in system 
specification and implementation: special purpose programming languages, generic run­
time storage support, libraries of standard access methods, configurable user interfaces, 
rule-based optimizer generators, hooks for inclusion of user-defmed types, and more or 
less comprehensive support for implementing various different concurrency control 
algorithms. 

The Exodus system is typical of extensible database systems in terms of the overall 
system development support provided [Care86a]. The details of how EDBMS are 
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designed and implemented differ greatly from system to system. The central component of 
the Exodus system is the E programming language and its run-time support environment. 
TheE language is an extended version of the C programming language which includes 
features supporting object oriented programming (similar to those provided by C++) as 
well as explicit language support for persistent objects [Rich87]. The run-time 
environment implements a storage manager with integrated concurrency control and buffer 
management [Care86b]. TheE language is used to define new data types and their 
operators. The system provides access method support, as well as a standard internal 
architecture for implementing query execution. The optimizer is generated from a 
functional description and provides a mechanism for integrating user defined operators into 
the overall query optimization and processing strategy [Grae87]. 

7. 2. Custom EDBMS System Functions to Support Simulation Data 

There are four major topics that need to be addressed in order to design a custom 
database system: the nature of the data that the system must handle (i.e. the standard and 
non-standard data types), the collection of operators needed at the user interface to 
manipulate the data, the access methods necessary to efficiently store and access the data, 
and techniques for optimizing user queries to run as efficiently as possible. This section 
discusses each of these areas within the context of simulation data management. 

7.2.1. New Data Types & Operators 

All of the new data types require a standard collection of operators to allow storage 
and retrieval of instances of that type. Type-specific operations require additional 
operators, as described below. Table 2 summarizes the proposed new data types and major 
type-specific operators. 
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Data Type Operators 
Named Value Equality 

Find 
Polymorphic Value Define-range 

Type Compatible 
Graph Add-edge 

Label-edge 
Add-node 
Label-node 

Sequence Mean 
Median 
Max 
Min 
Merge 

Relation Dereference 
Set Add element 

Delete element 
Find element 
Union 
Intersection 

Parameter Space Difference 
Inclusion 

Table 2. New Data Types and Operators 

Named attributes are similar to standard typed attributes, however each instance of 
the attribute has a unique name along with a value. Two named attributes are equal if both 
their names and values are identical and similar if their names are identical. The find 
operator searches for all instances of a value with a given name (i.e. all similar instances). 

Polymorphic attributes can take on values from a given range of types. Each value 
is tagged with its associated type. The operators allow definition of a new type range and 
determination if two polymorphic attribute instances (i.e. values) are type compatible. 

Graphs are represented as a collection of nodes and directed edges. Graph 
instances need not be connected. The operators allow addition of new nodes and edges, 
and labeling of existing nodes and edges. Labels can be values of any type. 

Sequences are ordered collections of data values. There is an implicit index ranging 
over the integers. The four statistical operators (mean, median, min, max) are computed 
over a numeric component of a subrange of the sequence and produce a single value. The 
merge operator takes two sequences as input and produces a single sequence as output, 
where the elements of the output sequence are paired elements of the input sequences. 
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Relations can be stored as atomic structured data values to an arbitrary degree of 
nesting. The dereferencing operator allows a relation value to appear in an extended SQL 
query. This allows a query to retrieve a collection of relation values from the database, and 
then to apply a given query to each of the relations in tum. 

Sets are collections of values. Heterogeneous collections can be represented as 
collections of polymorphic values. The basic operators allow addition and deletion of 
elements (this is distinct from inserting and deleting set instances) as well as search on a 
given element attribute. The set union operation takes two compatible sets as arguments 
and produces a single set as a results. The set difference operator is defined analogously. 

A parameter space is defmed over a parameter set specification and realization. It 
has one dimension for each of the parameters and an extent defmed by the collection of 
values appearing in the realization. The difference between two parameter spaces is the 
volume corresponding to points which are in one parameter space, but are not in the other. 
The inclusion operator determines whether or not one parameter space is completely 
included within another. 

Data types appropriate to simulation data can be constructed from this collection of 
basic types. For example, interfaces can be represented as sets of named, polymorphic 
values. Type compatibility can be verified over the two polymorphic values corresponding 
to the two methods. The interface of an aggregation can be computed by taking the union 
of the interfaces of its components less internal interconnections, and the parameter set and 
trace set specifications of an experiment can be computed by taking the union of the 
component model specifications. The Assistant could use parameter spaces to express 
concisely the computations required in order to determine which experimental passes have 
already been performed, and so forth. 

Complex retrieval operators for accessing correlated sets of data can be broken 
down into merging operations followed by one dimensional statistical operations. 
Additional presentation operators could be defined as well for displaying data graphically 
and tabularly, however it might be simpler to implement and use a system which supported 
the notion of a standard spreadsheet as a data type rather than supplying the same 
functionality in a more piece-meal fashion. 

7.2.2. New Access Methods 

Abstract versions of many of the new data types described above have been 
previously suggested within the context of semantic data models [Hull87] [Peck88]. 
Extensible database systems allow direct implementation of the concrete data type. Access 
methods are techniques for arranging information stored on stable storage to permit 
efficient retrieval. Existing techniques work well for collections of tuples which have keys 
that have at least a partial order defmed over them. If individual tuples are larger than a 
single disk block, special techniques must be used to permit indexed storage [Chou85]. 
The Exodus storage manager provides explicit support for objects of size bounded by the 
physical media [Care86b]. These tools should allow a straightforward implementation of 
the simpler types: named, polymorphic, sequence and relation (treated as a pointer to a 
system catalog entry). 

Graphs and sets are problematic since it is not clear how they can be treated as 
ordered collections of objects. One solution to this difficulty would be to add an explicit 
identifier for use in building access method structures, or to simply disallow direct access 
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on graphs or sets (that is, all retrieval would be based on other values stored in the same 
tuple). 

Parameter spaces are more difficult. The obvious ftrst choice is a multi-dimensional 
access method implemented using standard techniques [Salz88], however the number of 
dimensions is likely to be very large and the amount of data stored at every point very 
small. This suggests use of an alternate structure based upon encoding of the geometric 
properties of the data sets that will allow efficient implementation of the difference and 
inclusion operations as simple binary operations over bit vectors. 

7.2.3. Optimizer Support 

Rule based query optimization is coordinated through the use of "rules" 
summarizing the execution behavior of different access paths under various run-time 
conditions. The EXODUS optimizer generator is designed to be easily extensible by the 
addition of new rules to describe new operators and access methods [Grae87]. These rules 
are based on the execution costs associated with performing the operators using alternate 
access paths. These costs, in turn, depend on the low level access method design and 
operator algorithms and cannot be accurately inferred prior to implementation. 

8. Future Work and Extensions 

The most immediate area for future work is completion of the Hypercard/Oracle 
prototype implementation. This will allow validation of the simulation environment 
architecture design and at least limited implementation of actual queueing simulation 
experiments. This, in turn, will allow development of more precise system requirements 
for EXODUS system development, another important area for future workl. 

Two of many possible extensions are the use of an IRDS framework and an 
Object/CASE environment. The Information Resource Dictionary Standard (IRDS) is a 
new federal standard for developing a common organizational framework for describing, 
storing and manipulating shared data [ANSI88]. Use of an IRDS will allow simulation to 
be integrated into the overall information management strategy of an organization. Object 
oriented computer aided software engineering (Object/CASE) environments provide direct 
support for object oriented program development. Many of the functions described above 
could be part of an Object/CASE environment (for example, an object browser and editor). 
In addition, an Object/CASE environment would provide efficient storage, tracking of 
updates and support of multiple versions of objects, as well as explicit support for multi­
user access of a shared object hierarchy. 

9 . Summary and Conclusions 

This report has discussed database system issues arising in the design, 
implementation and execution of queueing simulation experiments. The approach taken 
was to carefully examine how queueing simulation experiments are performed, and then to 
propose a new paradigm for queueing simulation. This allowed development of a detailed 
data design as well as a proposal for the architecture of a complete simulation environment. 
While the data management requirements of the proposed architecture can be partially met 
using existing commercial database systems, there are some aspects of the design which 

1At this time, July 1989, none of the Extensible Database Systems referenced in the 
introduction are being distributed for general use. It is anticipated that both Exodus and 
Genesis will be available for academic use beginning September 1989. 
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would be awkward or inefficient to implement. This suggests use of an extensible database 
system for development of a custom DBMS to serve as the central data repository of the 
simulation environment architecture. The report concluded with an outline of the system 
requirements for a custom DBMS, to be developed using the EXODUS extensible database 
system. 
In conclusion, while it is feasible to use a commercial relational database system to 
implement an environment for performing simulation experiments, it is unclear 
whether or not efficient implementation is possible. The primary difficulty is the lack 
of system support for application specific data types. The use of extensible database 
systems is suggested as an alternative implementation strategy which will provide 
better support for the kinds of structured data and manipulations required by 
experimental simulation environments. 
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