
1. . -
.~-'!,

~
' '

>r. ~I'
~ i
;_;: '

LBL-27493
UC-405

ITtl Lawrence Berkeley Laboratory
11;1 UNIVERSITY OF CALIFORNIA

Information and Computing
Sciences Division

Database System Support for Simulation Data

M.C. Murphy

July 1989

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098

,.

'"

""hC'1
0 J-l·r
;; ;; 0

f) .D
. ./!'- ~ z

.I-'

~ !lJ n
I'D C"t'Q
I'D I'D "0
'];;Ill -<
Ill ---
to
1-'

a.
1.0
c

tfl
as

r r to r
un I
;; 0 fJ)
!li'O --.1
'1'< ~
"< • ·...o . rt) G-J

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommen~ation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

....

'

DATABASE SYSTEM SUPPORT
FOR SIMULATION DATA

Marguerite C. Murphy

Data Management Group
Information & Computing Sciences Division

Lawrence Berkeley Laboratory
University of California

Berkeley, CA 94720

July 1989

LBL-27493

This work was supported by the Director, Office of Energy Research, Applied Mathematical
Sciences Research Program, of the U.S. Department of Energy under Contract No. DE-AC03-
76SF00098.

Database System Support for Simulation Data

Marguerite C. Murphy

July 1989

Abstract

This report addresses database system issues arising in the design,
implementation and execution of queueing simulation experiments. The
primary goal is to identify new features for inclusion in a custom database
system implemented using an extensible database system. Simulation data
is first identified as a distinct subset of scientific data. An overview of the
experimental process is then presented along with a survey of related
simulation environments. A queueing simulation paradigm is described in
detail in order to identify the distinguishing characteristics of queueing
simulation data and the modes of manipulation. This is the basis for a
traditional ER/Relational implementation, which in turn serves as the focus
of a complete simulation environment. Difficulties encountered in the use of
traditional implementation tools motivate the custom database system
extensions.

1 . Introduction

Commercial database systems provide a collection of tools to assist application
developers in writing efficient programs to access a shared collection of data. These tools
have been very successful in many application areas. For example, accounting, inventory
control, academic data (information about students, courses, professors, enrollment), and
so forth. There are many important application areas, however, for which traditional
database systems provide insufficient support. For example, computer aided design data,
office automation data (including voice and visual data), experimental scientific data,
statistical data, temporal data, etc. In all of these latter areas the tools provided by
traditional database systems are either incomplete (that is, the needed functionality is simply
not available) or are too slow to be useful.

One way to address these difficulties is the use of extensible database management
systems (EDBMS). These systems have been recently introduced by the research
community and will eventually allow system developers to design, configure and
implement custom database management systems (DBMS) for specific application areas.
The resulting database systems will have no unnecessary functionality and will include
special features as required for efficient application programming. There are currently
many ongoing research projects in this area, among them are: EXODUS at the University
of Wisconsin, Madison [Care86a], POSTGRES at the University of California, Berkeley
[Ston86], GENESIS at the University of Texas, Austin [Bato88b], STARBURST at the
ffiM Almaden Research Center [Haas89], and IRIS at Hewlett-Packard Laboratories
[Fish87].

The work summarized in this report addresses the problem of implementing a
custom database system for scientific data management (specifically simulation data

Page 1

management) using the EXODUS extensible database management system as a
development platform. Developing a custom DBMS is a complex multi-step process for
which there are few guidelines based on practical experience. EDBMS provide an
implementation vehicle, they do not provide explicit support for identifying which features
are significant in any given application area. The approach taken in the work presented
here is to first attempt a pure relational design and implementation using standard
techniques; and then to use this practical experience to identify potential extensions for
inclusion in a custom DBMS.

The report is organized as follows. The following two sections summarize
previous research in scientific and statistical data management and present a high level
description of simulation data management, an important subtype of scientific data
management. Section four gives an overview of the experimental simulation paradigm and
section five contains a description of an ER- data model and relational implementation.
Section six describes a system architecture for a simulation environment based upon this
model. Section seven presents an overview of system development support provided by
EDMBS and design specifications for EXODUS implementation. The paper concludes
with two possible extensions to the simulation environment and a summary of the work
presented.

2 . Scientific and Statistical Data Management

Scientific and statistical data management is an area of research exploring the use of
database system techniques to collect and manipulate data generated during experimentation
and analysis [Shos82] [Shos84] [Shos85]. An important related issue is effective
management of scientific metadata: information used to defme, locate and control data
[McCa82] [McCa84]. All three types of data have distinctive characteristics which can be
used in developing specialized physical storage organizations, operators, optimization
strategies and logical modelling techniques. This section summarizes basic research that
has been done in this area. ·

Statistical data is characterized by having both category and summary attributes
[Shos82]. Category attributes typically have a small range and are used as primary keys
for the associated summary attributes. All combinations of category attribute values are
stored in the data base (with much redundancy) and many combinations of category values
have null associated summary attributes (i.e. the data sets are sparse). During analysis
many small data sets are extracted for preliminary analysis, and category attributes may be
eliminated through aggregation (e.g. summing over all uninteresting categories). Physical
storage structures suggested by these characteristics include multi-dimensional arrays with
null value compression, transposed files, materialized views and summary sets (caches of
statistical aggregate values with automated integrity control) [Shos82] [Bate82].
Specialized operators include direct support for estimation and interpolation, aggregation,
statistical operations, view and summary set maintenance. Data modeling issues introduced
by these extensions include support for complex data types, multi-dimensional
hierarchically structured data spaces, temporal data and unstructured meta-data.

Scientific data is similar to statistical data in many respects (in fact, statistical data
can be considered as an important subtype of scientific data). Scientific data is, however,
more directly associated with the actual mechanics of performing experiments [Shos85]
[Shos84]. Measured experimental data is characterized by being more or less regularly
distributed over its associated coordinate space, has varying density and may have
coordinates which shift over time. Data associated with experiments includes configuration
data (descriptions of the initial structure of an experiment or simulation), instrumentation
data (descriptions of instruments and substances used in the experiment), analyzed data

Page2

..

(data generated during the data analysis phase), summary data (statistical aggregates such
as averages or histograms), and property data (information accumulated from many
experiments, such as chemical substance properties). Non-standard data types required to
support these kinds of scientific data include: graphs, text, time series, special symbols,
and non-scalar data values. Operators appropriate to these data types are needed as well.
Associated data modelling tools should provide explicit support for geometric data,
entities, hierarchical and network organizations, generalization, n-dimensional data and
meta-data. Scientific meta-data is a large and varied category which is perhaps best
characterized by its lack of regularity [McCa82] [McCa84]. Metadata describes data, and
as such the distinction between the two is not always clear (vis. experimental and
associated data above). Examples of data objects described by metadata include entities,
attributes, category sets, databases and database collections. The descriptive information
includes names, units, textual descriptions, processing procedures, security restrictions, as
well as physical and structural characteristics. Metadata is used in a variety of ways by
both end users and system software to locate, define and control the data to which it
pertains. It is characterized by complex data types and structures which vary over time
(and which may not be known at the time of database design). In addition, metadata
instances are logically linked with each other in an arbitrary fashion which may be partially
captured by the use of implicit inheritance. Specialized support includes a flexible and
extensible data definition language, means for specifying and enforcing naming
conventions and a variety of automatic indexing structures to support fast access to
logically related (linked) metadata instances. ·

3 . Simulation Data Management

The research results described above are based on extensive experience and
discussion with practicing scientists and statisticians, primarily at Lawrence Berkeley
Laboratories [Shos84]. Much of the work presented is in the form of abstract system
requirements rather than detailed explanations of how the final system would be integrated
into the experimental methodology of practicing scientists. A more concrete study is
reported in [Bell82] for particle physics simulation experiments. A detailed study of the
code used for simulation identified low level characteristics which are incompatible with
more traditional data modelling techniques. Among these characteristics are the lack of
correspondence between "real world" entities and abstract entities (which are frequently
defined for computational convenience only), the use of implicit data naming conventions
rather than explicit textual names for data values, the use of multiple equivalent coordinate
representations during different phases of the overall computation and extensive use of
derived (computed) and redundant data for more efficient computation.

In light of these results, a different approach was taken in the work presented in this
paper. Rather than starting with a broad and comprehensive high level survey of system
requirements, the study was begun by examining how simulation experiments are currently
being performed and what low level implementation techniques are used in data collection
and analysis. The higher level system requirements are presented in terms of an ideal
environment for building, executing and analyzing the results of concrete simulation
experiments. The approach is thus a systems approach rather than a theoretical or analytical
one. The remainder of this section presents a high level overview of the more formal
model presented in the following sections.

3.1. How are (queueing) simulation experiments performed?

Simulation experiments are begun with a careful examination of the application
domain to identify the simulation items of interest and how they are interrelated [Law82]
[Ferr78]. In the case of queueing simulations, the simulation items are represented in terms

Page 3

of jobs, servers, queues, and their interconnection. Jobs represent sequences of
processing steps, where each individual step is represented by a collection of buffers and
servers. Servers correspond to atomic processing steps and buffers are used to hold jobs
waiting for service. A single buffer can feed many servers. A buffer with its associated
servers is called a queue. Interconnections between servers represent possible paths that
individual jobs can follow during execution. Job classes are groups of jobs with similar
processing steps (i.e. similar paths through the system). Each server has an associated
service time (or possibly a collection of service times corresponding to each job class), and
each buffer has an associated discipline (ordering among waiting jobs) and possibly a
bounded capacity. Closed queueing models have a fixed and constant number of jobs,
open queueing models allow individual jobs to depart from the system as well as to arrive
from one or more external job sources.

A simulation model is specified by identifying all of the relevant job classes, the
associated servers and buffers and their interconnections. Each server is identified by its
service time distribution(s), and each buffer by its discipline and capacity. The overall
system topology is specified by the interconnection of buffers and servers. Each job class
is specified by the path jobs of that class follow through the system. This path may be
specified stochastically by a collection of branching probabilities associated with each
alternate path leaving a given server, or it may be fixed (deterministic). In addition, in a
closed system the total number of jobs in each class is specified; and in an open system the
distribution of interarrival times between successive jobs is specified for each class.
Performance metrics of interest are specified as well. Typical metrics include the average
system throughput (number of jobs processed per unit time), the average job turnaround
time (time spent in system), the average job waiting time (time spent waiting in buffers),
the average number of jobs waiting in queue, and the average server utilization. These
metrics may be further broken down by job class.

These specifications are used to generate an executable simulation model (or more
generally a family of related models). There are a wide variety of generation techniques
ranging from a custom implementation using a general purpose programming language
(and discrete event control and timing techniques [Law82]), to use of a high level
simulation language for both specification and implementation [Livn86]. Each executable
model has a collection of configuration (input) parameters used to initialize each simulation
run, and produces a collection of output traces (sequences of values).

Experiments are designed by selecting related sets of input parameter values (e.g.
by fixing all but one parameter at a "typical" value and allowing the remaining free
parameter value to vary in increments over some "reasonable" range). Each of these
parameter sets is then used to initialize a simulation run (possibly with each of a family of
models). The results from these simulation runs are accumulated and used as the basis for
computing derived statistics and/or graphs displaying the performance metrics (i.e.
throughput as a function of the free parameter).

3. 2. Data Management Requirements

Data management is required at all stages of simulation. Initially, the information
gathered about simulation items needs to be cataloged anq recorded for future reference.
This is frequently done in an ad hoc and informal way, using longhand notes for example.
The simulation model specifications likewise need to be recorded for future reference, and
again are frequently recorded in an informal manner, or are implicit in the model
specification used to generate the executable simulation code. The model specifications
themselves are data related to the experiment which ideally should be maintained; and all
executable versions used for experimentation should be saved for later verification or

Page4

further experimental runs. In addition to saving the model code, all information necessary
to run the model code must be maintained in some fashion (i.e. model description, input
parameter types and description, output trace descriptions, compilation/execution
instructions, etc.). All parameter sets used in experimental runs should be saved for future
reference, as well as all execution traces. Descriptive information needs to be stored along
with the raw collections of information (which model the parameter sets are associated
with, which parameter set the output trace is associated with, etc.). And finally, the partial
and final results of analyzing the trace output should be saved to allow for later re-analysis,
extensions and validation of the original experiments.

In a typical small simulation experiment, such as that used to validate the results
presented in [Murp89], on the order of 2 Mbytes or more of simulation data are generated.
Larger simulation experiments can generate several gigabytes or more of raw simulation
data and associated analytic results [Shos84]. Although the data management needs are
apparent, most simulation practioners handle simulation data in an ad hoc and informal
manner (i.e. by encoding file names to provide information about the nature of the data they
contain).

3. 3. Ideal Simulation Environment

The description presented above is a somewhat simplified view of how practitioners
currently perform queueing simulation experiments. In addition to support for these
activities, the ideal simulation environment should be easy for non-experts to use and
should allow flexible implementation of a wide range of simulation methodologies.

Simulation environments designed for use by non-experts require simple paradigms
for specifying, creating and executing experiments. The use of visual interfaces has proven
to be a very effective technique for making computing environments accessible and useful
to non-expert programmers [Appl87]. Support for a standard "point-and-click" iconic
interface for queueing model specification and coordination of experiments would be a first
step towards providing a visual paradigm for the overall simulation process. Other useful
features include automatic generation and collection of data and metadata during the
simulation process; automatic consistency checking of all user input; and the ability to
specify experiments and sequences of experiments at a very high level and allow the system
to automatically perform the necessary low level specification, generation and execution
steps [Abel89]. Finally, the system should have an extensive on-line help facility that can
identify all user-accessible objects as well as locate all information associated with a
particular object (i.e. all execution traces associated with a particular executable model and
parameter set).

In many.ways the goal of flexibility is antithetical to that of simplicity and ease of
use: the more functions the system automates, the less control the end user has over how
the operations are actually performed This problem can be addressed in many ways, the
approach taken here is to design an extensible system which incorporates a minimal set of
simple paradigms and which can be extended and/or modified by a knowledgeable end­
user. Within such an environment, the use of a common simulation paradigm and data
representation facilitates the development of integrated simulation toolsets (i.e. a range of
different output analysis packages).

More pragmatic concerns include the ability to access the specifications and
implementations of all components making up the environment; this allows extensibility as
well as verification of correctness. Within the executable simulation models, there should
be a clean separation between code and state. This will allow the simulation to be restarted
at any point by simply reloading the state variables and continuing execution. A checkpoint

Page5

facility to save a "snapshot" of the current simulation state is needed as well. Finally, the
environment should allow high-level simulation descriptions to be executed on a variety of
simulation platforms (i.e. event-queue based simulation on a uniprocessor, timed-message
based simulation on a distributed processor system [Righ89]). This facility again requires
a clean separation between the high level (logical) specifications and the low level
implementation.

3. 4. Related Work

This section summarizes the data management capabilities of several simulation
environments developed recently. While not queueing simulation environments per se, the
simulation paradigms and data management requirements are similar. The first two
environments are hybrid hardware and software simulation environments for
communications network and oceanographic simulation experiments respectively. The
third is a software system based on a language for implementing discrete event simulations
with an associated simulation environment.

3.4.1. Pnps

Pops is a hybrid simulation environment for prototyping communication protocols.
The system was developed at the University of California, Berkeley [Cies89]. The
hardware base consists of a collection of reusable hardware modules embedded within a
control environment. The control environment supports a wide range of software tools for
interactive creation, execution and analysis of simulation experiments.

The simulation process is divided into four phases: component design, experiment
design, data collection and data analysis. During component design the user specifies a
collection of network components using a variety of software tools to translate high level
specifications into executable components. Executable components are stored in named
files; specifications are either input interactively (and discarded after component generation)
or are also stored in named files. During experiment design, components are selected
interactively and their interconnection and initialization data specified. The system
performs internal consistency checks to verify that the interconnection is syntactically
correct. During the data collection phase the user first specifies which subset of trace
outputs to record; then initializes the hardware modules and downloads the executable
components; and fmally executes the experiment. The output traces generated during
execution are written to named data files using a standard format. During the data analysis
phase, the user interactively invokes a collection of statistical analysis routines over the data
files.

There is very limited support for data management in the Pops environment. The
system supports a standard file format with header information including author, creation
and modification dates, access privileges and user defined search keywords. The user
interface supports component search using file name, author or keyword as criteria. And
finally, the collection of components themselves make up a reusable library which is
incrementally created during extended use of the system.

3.4.2. Hybrid Simulator

The Hybrid Simulator is an integrated environment of hardware, software and
cables which is used to simulate an ocean environment [Berg86]. It was developed at the
Naval Ocean Systems Center in San Diego and its primary use is real-time testing of
electronic guidance and control systems.

Page 6

..

There are two major activities making up the simulation process: controlled and
documented evolution of the collection of hardware, software and cables making up the
simulation environment; and controlled and documented execution of simulation
experiments. Whenever either of these activities takes place, the user registers appropriate
information in an associated database. The equipment making up the simulation
environment is arranged in a strict hierarchy in which individual items are grouped into
subsystems, subsystems are grouped into units and units are grouped into simulators .
Before executing a simulation, all of the items in the associated simulator hierarchy need to
be configured and registered in the database (configured items, subsystems and units can
be reused). Each simulation run is likewise registered in the database along with
information about all associated configurations, initialization parameter sets, and associated
documentation. Whenever an item needs to be reconfigured, information about the specific
changes, authorization and implementation are recorded as well. Collection of experimental
data and analysis is performed using application software and is not under the control of the
configuration management subsystem.

Database system support is based on use of the lNG RES database system for
structured data, and the UNIX file system for unstructured data (i.e. configured software
items). The hierarchical structures of equipment and configured equipment are mapped
more or less directly into relations, as is information about simulation runs and
configuration change orders. Various configured versions of software items are maintained
using the UNIX Source Code Control System (SCCS) and "make" facilities. Parameter
data is maintained in a collection of UNIX files whose names are registered in the database
as part of the simulation run data. The database is updated via a collection of QUEL
macros, and the other information through a collection of C-shell scripts.

3.4.3. DeLab & DeNet

DeNet is a prototype language for implementing discrete event simulation models
[Livn86] and DeLab is a proposed simulation environment to assist in the mechanics of
performing DeNet simulation experiments [loan88a]. Both were developed at the
University of Wisconsin, Madison.

The DeNet language is based on the Discrete Event System Specifications (DEVS)
modeling methodology. This methodology allows each component to be specified as an
autonomous module which can in tum be loosely coupled into a network of discrete event
systems. A simulator is viewed as a directed graph. Nodes correspond to instances of a
discrete event module (DEVM) with associated input and output ports; arcs correspond to
mappings between output port events of one DEVM to input port events of another DEVM;
and the overall topology is a description of all the interconnection of nodes via arcs. The
run-time environment supports timed events within discrete event modules and
transmission of entities (events) over arcs. The modelling tools provided by the language
include explicit support for entities and queues as well as probes for gathering statistics
during execution and a collection of tracing, input/output and other utilities. Each DEVM
specification is translated into standard MODULA II code; and the topology specification is
used to link together the associated modules into an executable simulation. DeNet can
manage libraries of reusable object modules and can link arbitrary (compatible) modules
into executable images.

The DeLab environment was designed to assist in the construction of complex
experiments and management of long running experiments. DeLab provides support for
programming, debugging and verifying simulation models, executing collections of related
experiments, and analyzing experimental results. All data generated during the simulation

Page7

process will be stored in an associated database management system. Two views of the
executable simulation are needed: a programming view and an execution view. The
programming view requires a detailed low level model of the simulation language
primitives, tracing and other debugging facilities. The execution view can be used to
describe a simulated system simply as a vector of input parameters, a vector of output
parameters and a description of the operation performed. Each simulation run corresponds
to a pair of parameter vectors, which are automatically registered in the DeLab database
during execution of the run.

The Moose data model was designed for use with DeLab [Ioan88a]. Moose
provides high level semantic modeling support using an extended object oriented
framework. Descriptive tools are provided for specification of objects, aggregates, class
hierarchies with multiple inheritance, specialization rules, and primary classes. These
tools allow a precise description of the semantic relationships among the simulation
components, however it does not (as yet) provide any means for querying the associated
information. In addition, the Moose data model is incompatible with existing relational
database systems and will require a special purpose system in order to become part of an
operational DeLab environment.

4 . Overview of Experimental Simulation Paradigm

The previous section described simulation data management from several high level
perspectives. This section is focused on queueing simulation from a more concrete (i.e.
systems or implementation oriented) perspective. This is done in order to explicitly
develop an ER/Relational system design and implementation, as detailed in the following
section.

4 .1. What is a Simulation?

An executable simulation consists of three components: a collection of
computational objects, an interconnection among these objects, and an execution
framework. The collection of computational objects corresponds to the items being
modelled, and consists of executable code modules which simulate the abstract behavior of
the items they represent. The interconnection specifies the inter-relationships among object
instances, and the framework provides the necessary low level support to allow events to
"happen" in the correct sequence during execution and to record timing and other output
trace information.

In the context of queueing simulations, computational objects correspond to
queueing simulation entities (i.e. jobs, servers, buffers, etc.). Each type of object is
specified by a local state (variables) and methods (procedures) along with configuration
parameters and an interface specification. The methods correspond to the abstract behavior
the object can exhibit and the local state summarizes its past behavior. Configuration
parameters are used to initialize the object state prior to beginning execution (and should
include all state variables needed to "restart" the object from any consistent state). The
interface specification summarizes the external behavior of the object and includes a
description of the legal input and output (i.e. which methods are defined within the object-­
the input-- and which methods are invoked in other objects-- the output); the collection of
configuration parameters and all trace output selectively produced by the object. The object
specification and implementation collectively summarize the local behavior of each object
and details its response to both internal and external events. The descriptive language must
be able to express time relationships between events declaratively (i.e. job service will be
completed after an exponential delay with mean u, service begins when a job arrives at the
server).

Page 8

..

...

The object types themselves can be defined independently of each other, or they
may be arranged in a "class hierarchy", in which common features are factored up into
common superclasses. For example, all servers might share a common interface
specification (defined in a common superclass) and differ in their service time distributions
(defined in the particular subclasses). An extensible library of pre-defmed standard object
types could be easily represented in this way.

Object types describe the generic kinds of behavior that simulation entities can
exhibit. A particular simulation model consists of a collection of object type instances
along with their interconnection. The interconnection, or topology, specifies the inter­
relationships among object instances. At an abstract level, each connection between a pair
of objects corresponds to a legal communication pathway (i.e. a particular server can
"send" jobs to a particular buffer). More concretely, each connection corresponds to an
object instance invoking a method in another object instance. The overall interconnection is
specified by a directed graph in which each node corresponds to an object instance and each
directed edge corresponds to an object instance invoking a method in another object
instance. More generally the interconnection is specified hierarchically by defming
interconnected groups of object types as an aggregation type, and allowing nodes in the
interconnection graph to be either aggregation or object instances. The interconnection
itself is passive, however it implicitly specifies an overall global behavior of the simulation
by indicating which objects interact and what their mode of interaction is (i.e. a given
buffer instance transfers a job instance to an idle server instance; a multi-way branch
instance routes jobs to one of several buffers according to a collection of associated
branching probabilities).

The interconnection specification is used to link together a collection of simulation
object instances into an executable model. In the simplest type of simulation models, no
more than one activity in one object is in progress at any time. In this situation,
performance statistics can be collected using elapsed (real) time and counters, providing
that all computational events are implemented with realistic delays (i.e. using wait loops).
In most simulations, however, there is an explicit need for parallel events (e.g. two distinct
servers can typically be busy at the same time), and the requirement that all events last a
"realistic" duration may be unnecessarily wasteful of computational resources. The
solution to these problems is to have a lower layer of software, the execution framework,
provide the illusion of parallelism and allow simulation time to proceed at whatever rate is
computationally feasible. This is done by monitoring distinct events (inter-object
communications) and insuring that all events "happen" in the correct sequence and are
assigned consistent simulation times of occurrence. The collection and storage of
simulation trace output is also coordinated by the execution framework. In addition, the
execution framework may distribute the simulation model computation over multiple
processors and implement extensive interprocessor consistency checks [Misr86].

4. 2. Experimental Process

The concrete experimental process begins with a queueing model representation of
the application to be simulated, which is developed as described above. This representation
is used to determine what object types are needed in the executable model, and the existing
class hierarchy is examined to determine whether or not appropriate object types already
exist. The class hierarchy is extended by defming new subtypes as needed. The
interconnection is designed by hierarchically constructing aggregation types until the overall
simulation topology is composed, then linking the associated collection of object instances
into an executable simulation model.

Page9

Experiments are performed by selecting values for all configuration parameters (or
allowing them to take on predefined default values) and selecting some subset of the trace
variables for collection during simulation. The simulation model is then executed (possibly
multiple times), producing a collection of trace variable values with each execution.

This process can be organized a little more formally by defining a parameter set
specification as the overall collection of configuration parameters accepted by an executable
simulation model; a parameter set specialization as a subset of the configuration parameters
(i.e. all configuration parameters without default values); and a parameter set realization as
a specific collection of values associated with each element of a parameter set specialization.
Sets of trace variables and values are defined analogously.

A pass is defined as the execution of a single simulation model over a single
parameter set realization with a single trace set specialization. The result is a single trace set
realization. An iteration is the execution of a single model over a set of parameter set
realizations over a single trace set specialization (a pass is a special case of an iteration).
The results are a set of trace set realizations, indexed by the parameter set realizations. An
experimental run is the execution of a set of models over a set of parameter set realizations!
with a single parameter set specialization (an iteration is a special case of an experimental
run). The results are a collection of trace set specializations indexed by both the associated
model and parameter set realization. And, fmally, an experiment is the execution of an
experimental run some number of times (the replication factor). The results are a collection
of trace variable realizations indexed by the associated model, the parameter set realizations
and the replication number.

Data analysis is formalized by specifying computational functions and/or graphics
over the trace set realizations associated with one or more experiments.

4. 3. What kinds of information are used/generated?

Specific kinds of information generated during the simulation process include: a
detailed specification of the object class hierarchy; various aggregation types defined over
collections of object types; simulation model specifications (aggregation and execution
framework) and executable code; and all data associated with experiments and analysis as
defined above. These data collections are described and classified in greater detail below
within the context of an ER-model description.

4. 4. Example Simulation Experiment: Tandem Queues

This section presents a simple example taken from [W alr88] within the context of
the simulation paradigm described above. The queueing model consists of two queues in
tandem with a single feedback connection:

1 The parameter set specification for a set of models is the union of the individual parameter
set specifications. If a model is passed a parameter value which is not applicable, the value
is ignored. Similarly for trace variable specifications.

Page 10

Poisson
Job
Source
(I)

FIFO
Infinite

Exp(u1)

FIFO
Infinite

Exp(u2)

Figure 1. Example Queueing Model: Tandem Queues

(1-a)

a

Each of the queues has a FIFO buffer with unlimited capacity and exponential
service times with means u1 and u2, respectively. Jobs arrive from an external Poisson job
source with parameter I and visit the two queues in succession, then return back to the first
queue with probability a. Jobs leave the system altogether with probability 1-a. The
performance metrics of interest include the measured average rate at which jobs leave the
system (which must be equal to I for stable behavior), the average number of jobs at each
server, and the average time jobs spend in the system.

4.4.1. Object Classes

The object classes needed to represent this queueing model include: Poisson job
source, job, unlimited capacity FIFO buffer, exponential server, stochastic branch node,
and job departure node. Note that in this example the range of simulation objects is
sufficiently dissimilar that a hierarchical arrangement is not needed and all objects can be
defined independently of each other.

The state of a Poisson job source class includes a Poisson random number
generator (configured by its mean value) and a count of the number of jobs produced so far
(defaults to zero). It has no input, however there is a single internal method which
produces jobs after appropriate intervals of simulation time and sends them out over the
single output. The only trace value is the number of jobs produced.

The job class has a single state variable: the time of creation (arrival). The time of
creation is a configuration parameter (defaults to zero) and is set by invoking the single
input method. The class has no output methods and produces no trace output.

The unlimited capacity FIFO buffer class has local state consisting of a list of
waiting jobs (implemented as a FIFO queue structure) along with their associated arrival

.. times (in units of simulation time). There are two input methods: one associated with the
arrival of a job, and one associated with a request for the job at the head of the queue. The
single output method sends the job at the head of the queue to the requesting class. The
trace output associated with a job arrival is a count of the number of jobs in queue. The
trace output associated with a job departure is a count of the number of jobs remaining in
the queue and the time the departing job spent waiting in the queue. Configuration consists
of initializing the queue with some number of jobs with associated arrival times (the queue
defaults to empty).

Page 11

The server class has two state variables: an exponential random number generator
and the current job in service. The random number generator is configured with the value
of the mean of the associated distribution, and the current job in service can be configured
with a job (defaults to nil). There is a single input method to accept a job and generate its
service time; and a pair of output methods, one to send off a job that has completed service
and one to accept a new incoming job. There is a single trace value: the time of the each
departing job.

The stochastic branch node class has four state variables: a random number
generator that produces the value 1 with probability a and produces the value 0 with
probability 1-a; the value a itself and a count of the number of jobs sent out over each of
the two outputs (both default to zero). It is configured with the value of a and the two
count values. There is a single input method which accepts a job, and a single output
method which sends the job to one of two destination objects. The output traces are the
values of the two counts.

The job departure node has two purposes: to produce trace output of the time each
. job spends in the system, and to terminate the simulation after some number of jobs has
executed. It has a single input which accepts departing jobs and has no output.

4.4.2. Aggregations

The initial aggregation is the association of a buffer and a server into a queue. The
aggregation type has a single input which accepts jobs from another source, and a single
output which produces jobs after some time delay. The two methods used to coordinate
communication between the buffer and the server are internal to the aggregation. The
aggregation is configured by configuring both the buffer and the server, and the output
traces are those produced by either object.

Job
Arr1va

Jobs & Arrivals (=nil)

list of jobs &
arrival times

Arrival # in Queue
Departure # in Queue
Time in Queue

Mean, Job in service (=nil)

Departure Time

Figure 2. Queue Aggregation.

Page 12

The overall system is represented by a complex aggregation consisting of two
queue aggregations, and one each of the remaining object classes. Note that the overall
system aggregation has no unaccounted for input or output methods.

Configuration Parameter Values

Source

Job

Trace Variable Output

Figure 3. System Aggregation

4.4.3. Executable Model: Configuration and Trace Parameters

The system aggregation is used to create an executable model by generating object
instances of the appropriate type; associating the input and output as indicated; and linking
with an execution framework in order to produce executable simulation code. The details
of this process depend intimately upon the particular language used to write the simulation
code and will not be discussed further in this section. The model configuration parameters
consist of the union of the configuration parameters for all object instances participating in
the model; and the complete trace output includes all trace values from all object instances.
Table 1 summarizes all of the configuration parameters required for this example (along
with default values as appropriate), as well as the possible output trace variables.

Page 13

Object Instance Configuration Parameters Default Trace Variables
Queue 1 Jobs in Buffer & Arrival Times nil Arrival # in Queue

Mean Service Time Departure # in Queue
Server Job in Service nil Time in Queue

Queue 2 Jobs in Buffer & Arrival Times nil Arrival # in Queue
Mean Service Time Departure # in Queue
Server Job in Service nil Time in Queue

Job Source Mean lnterarrival Time # Jobs produced
count 0

Job Time of Creation 0
Branch Node Count of Output 1 0 # of Outputs 1

Count of Output 2 0 # of Outputs 2
branch probability (a)

Job Departure Max Count Time in System

Table 1. Configuration Parameters and Trace Values

In order to execute the simulation model, the configuration parameters without
default values must be specified. For the example, there are only five such configuration
parameters: the mean service times of the two servers, the mean interarrival time, the
branching probability, and the stopping criteria (maximum number of jobs departing). The
other parameters can either be specified explicitly, or allowed to take on their default
values. There are ten possible output traces that could be produced during execution, each
of which may contain many values depending upon how long the simulation is run.

4.4.4. Example Performance Analysis

Many experiments could be performed using the simulation model described above
as a computational base. For example, the average time in system as a function of the
arrival rate; the average time in queue as a function of the relative difference between the
two service times; the average queue length as a function of the value of the branching
probability. More complex experiments over multiple free parameters could be evaluated
as well (although the use of graphics becomes problematic with more than three
dimensions). The model could also be used to simulate a closed queueing system by
setting the arrival rate to zero, the branching probability to one and initializing the system
with the proper number of jobs (alternatively, one could allow the system to generate the
required jobs, then reset the arrival process rate to zero).

In all of these examples, the experimenter would first determine a collection of
"reasonable" parameter values; and then a sequence of parameter value sets with one or
more of the parameter values changing in a regular fashion. The interesting output traces
would then be selected and the simulation executed with each of the different parameter
value sets. The output traces can then be used to compute standard performance metrics.
For example, the average of the job time in system over the number of jobs exiting the
system is equal to the average job turnaround time. These computed metrics can then be
displayed tabularly or graphically as an assist to interpreting the results of the overall
simulation experiment.

Page 14

5 . Formal Data Model & Process Description

The preceding discussion presented an informal description of the structure of the
data used during simulation as well as the overall experimental process. This section is
focused on the data management aspects of simulation. It begins with a formal ER-model
of simulation data, as described above, a relational implementation and a collection of
example data corresponding to the Tandem Queue example introduced at the end of the last
section. It concludes with a formal description of the simulation process in terms of data
processing requirements, a relational implementation (SQL queries) and a brief discussion
of the Tandem Queue example.

5 .1. ER-Model of Simulation Data

The Entity-Relationship data model was introduced by Chen in 1976 [Chen76]. It
has since become the most widely used descriptive tool for specifying the structure of
collections of data in a way that is independent of the particular database system used for
implementation [Ullm88] [Elma89].

Entity instances correspond to "real world" objects and entity sets (or entities)
correspond to groups of similar entity instances. Relationships are ordered lists of entity
sets and relationship instances are ordered lists of entity instances. Each relationship
instance corresponds to a group of entity instances which have the given relationship with
each other. Relationships are categorized by their order: a binary relationship is 1-1 if
exactly one instance of each entity is associated with each relationship instance; binary
relationships are 1 :n if up to n instances of one entity and a single instance of the other
entity are associated with each relationship instance; and a binary relationship is m:n if an
arbitrary number of instances of each entity are associated with each relationship instance.
Relationships of higher arity are categorized in an analogous manner.

Both entities and relationships can have attributes associated with their instances.
Attributes, or properties, are values from a given domain that describe the particular
instances with which they are associated. Note that attributes can also be represented as
entities associated with instances via an "attribute-of' relationship and hence are not
fundamental components of the data model, but rather are included for convenience of
representation.

5.1.1. Entities, Relationships & Attributes

Figure 4 contains an ER-diagram representing the collection of entities,
relationships and attributes used to describe simulation data Square boxes correspond to
entity sets and diamonds correspond to relationships. Labeled arrows between boxes and
diamonds are used to designate the entity sets participating in the relationship and the
category of relationship (1:1, 1:n, m:n, etc.). Attributes are represented by domain names
appearing near the icon representing the entity-set or relationship with which the attributes
are associated Note that an extended ER-model is used here which allows arbitrarily
complex data items to appear as attribute values.

There are six entity sets corresponding to object classes, aggregations, executable
models, experiments, parameter sets and trace sets; and six relationships describing
associations among various instances of these entity sets.

The object entity set has one instance for each object class appearing in the
implementation class hierarchy. Each entity instance has three attributes specifying the

Page 15

interface, state and functions associated with that object class. Object entity instances
participate in two relationships. First, the descended-from relationship describes the
structure of the object class hierarchy: each object is descended from exactly one other
object (multiple inheritance could be represented using a m:n relationship rather than a 1:n
relationship as shown). Second, the part-of relationship is used to associate object classes
into aggregations, as described below.

The aggregation entity set has one instance for each aggregation defmed in the
system. Each aggregation instance has two attributes: an interface specification
summarizing any unattached inputs and outputs, a list of configuration parameters, and a
list of trace variables; and a graph describing the internal object/aggregation components
and their interconnections. Aggregation instances participate in two relationships. First,
the part-of relationship is 1 :n:n between aggregation, object and aggregation instances. It
associates all of the components of a single aggregation with the aggregation itself. The
second relationship associates aggregation instances with executable models, as described
below.

The model entity set has one instance for every executable simulation model in the
system. Each instance has three attributes: executable code, a parameter set specification,
and a trace variable specification (the execution framework is implicit in this model,
however it could be represented by an additional attribute or entity/relationship pair).
Model instances participate in two kinds of relationships: each model instance is linked­
from exactly one aggregation instance; and models are used to compose experiments, as
described below.

The experiment entity set is used to describe experiments, as defined formally
above. Each experiment entity has a single attribute giving the replication factor associated
with distinct passes. Experiment entities participate in three relationships: each experiment
is composed of one or more executable models; each experiment has an associated
parameter set; and each experiment produces an associated trace set (as described below).

Page 16

..

Interface
State
Methods

Interface

Object

n

n

Graph Aggregation t---...J

1

Code
Parameter Model n

Spec.
Trace Spec.'--------'

Realization

Trace
Set

Experiment

Figure 4. ER-Diagram of Simulation Data

1

Realization

Parameter
Set

Replication Factor

Parameter set entities are used to represent the sets of configuration parameters that
are used to initialize executable models. Each parameter set entity instance has a realization

Page 17

associated with it Parameter set entities are associated with experiments via a derived-from
relationship, which has the parameter set specification as an associated attribute. Note that
the format of the parameter set realization is determined by the derived-from specification
attribute.

Similarly, trace set instances are used to represent the sets of traces produced during
execution of a simulation model. Each trace set entity instance has a realization associated
with it. Trace set entities are associated with experiments via a produced-by relationship,
which has the trace set specification as its associated attribute.

5.1.2. Relational Implementation (Relations)

The Entity Relationship data model is unique in having a straightforward translation
into a standard Relational implementation. First, an identification attribute is added to each
entity set. Next, each entity set is mapped into a single relation with attributes
corresponding to the entity set attributes. Finally, each relationship is augmented with an
attribute corresponding to each of the participating entity sets (of type entity-set identifier)
and mapped into a single relation as well. 1: 1 relationships can also be represented by an
additional attribute in either of the associated entities.

The simulation data model corresponds to the following relations (described using
SQL augmented with new data types corresponding to entity identifiers, interfaces,
methods, state variables, graphs, executable code, specifications and. realizations--in a
standard environment these could all default to INTEGER identifiers or STRING
representations):

CREATE TABLE object (
id ENTID;
interface INTERFACE;
state STATE;
functions METIIODS;

)
CREATE TABLE aggregation (

id ENTID;
interface INTERFACE;
graph · GRAPH;

)
CREATE TABLE model (

id ENTID;
code CODE;
parameter_spec SPECIFICATION;
trace_spec SPECIFICATION;
linked-from ENTID;

)
CREATE TABLE experiment (

id ENTID;
replication INT;

)
CREATE TABLE parameter_set (

id ENTID;
realization SPECIFICATION;

)
CREATE TABLE trace_set (

Page 18

•

..

5.1.3.

)

id
realization

ENTID;
SPECIFICATION;

CREA 1E TABLE descended-from (
child ENTID;
parent ENTID;

)
CREA 1E TABLE part-of (

aggregation ENTID;
component ENTID;

)
CREA 1E TABLE composed-of (

experiment ENTID;
model ENTID;

)
CREA1E TABLE derived-from (

)

experiment ENTID;
parameter-set RNAME;
specification SPECIFICATION;

CREA 1E TABLE produced-by (
experiment ENTID;
trace-set RNAME;
specification SPECIFICATION;

)

Tandem Queues Example

The tandem queues example can be described by a collection of tuples appearing in
the relations defmed above. Again, the data types provided in a pure relational system are
not able to represent all of the attribute values explicitly. In practice various encoding
schemes and auxiliary files must be used to represent this information in conjunction with a
standard relational database system.

Each of the six object types used to describe the queueing model would have a
single tuple in the objects relation. There would not be any tuples in the descended-from
relation. The aggregation relation would have two tuples, one corresponding to the queue
aggregation, and one corresponding to the system aggregation. The part-of relation would
have two tuples corresponding to the queue aggregation (one for the buffer and one for the
server); and five tuples corresponding to the system aggregation (one each for Poisson job
source, queue aggregation, branch node, job departure node and job). The model relation
would have a single tuple describing the executable queueing simulation.

Assume that two experiments have been performed: one to evaluate the average
time in system as a function of the arrival rate; and one to evaluate the average queue length
as a function of the branching probability. Each experiment would have a single tuple in
the experiment relation with an associated replication factor and a single tuple in the
composed-of relation. Each experiment would have a single parameter set and a single
trace set, with a single descriptive tuple in each of the derived-from and produced-by
relations. The two parameter-set and trace-set relations would have schemas given by the
specification attribute in the derived-from and produced-by tuples. The configuration
parameter sets corresponding to various values of the arrival rate and branching probability
would be stored in the parameter-set relations; and the simulation trace variable output in
the corresponding trace-set relations.

Page 19

5. 2. Description of the Simulation Process

The ER-model is descriptive only, it does not provide any means to describe
processing operations associated with a collection of data [Ullm88]. This section
informally describes the processing operations that are required to create and maintain the
simulation data defmed above as experiments are designed, executed and the results
analyzed.

5.2.1. Processing Steps

Prior to using the system, most of the relations used to store simulation data must
be created. The only two exceptions are the parameter-set and trace-set relations. These
two relations have structures which depend upon the associated experiment instances,
information not known before the experiment is specified. During the process of
experiment design and execution, various items of information become known and are
entered into the appropriate relations (which may be created as well).

The frrst data operation is associated with defining a new object type. The simplest
implementation would be to simply add a tuple to the object relation (detailing the interface,
state and functions of the new object class) and another tuple to the descended-from
relation. This solution does not address the issue of inheritance, however the class
hierarchy as defined above does not allow modification of existing classes so there is no
possibility of inconsistency. A more storage efficient solution would avoid replicating
shared (inherited) object attribute values by using a more complex representation scheme.

The second basic data operation is associated with adding a new aggregation type.
When the overall structure of the aggregation has been specified as well as the object types
corresponding to all of its nodes, the aggregation can be checked for internal consistency
(i.e. by verifying that all arcs connect type-compatible inputs and outputs) and the overall
interface determined. The interface description and interconnection (graph) are stored in a
single aggregation tuple. One tuple is also stored in the part-of relation for each kind of
aggregation or object occurring as a node in the graph.

The third data operation occurs after a new model is compiled and linked. It
involves adding one new model tuple to the database containing all of the information about
the new executable model.

Defining an experiment is the most complex data operation. It first requires
assignment of a new experiment identifier and user input of the associated replication
factor. This information is stored in a single experiment tuple. The collection of models
participating in the experiment are then specified and a single tuple is added to the
composed-of relation for each. The overall collection of models determines the complete
collection of configuration parameters and trace variables supported by the experiment.
The parameter-set specification includes all of the configuration parameters without default
values, along with any other configuration parameters needed for the particular experiment.
This information is used to create a parameter-set relation, and a single tuple is stored in the
derived-from relation linking the parameter set relation to the experiment.! The parameter
set values are then specified and entered into the parameter set relation, one tuple for each

1Strictly speaking the relation name cannot be stored as an identifier in the derived-from
relation. The mapping between data values and relation names takes place outside of the
query language code proper.

Page 20

complete set of configuration parameter values. Finally, the complete trace set specification
is computed as the union of all of the trace variables associated with the experiment models.
Some subset of these trace variables is selected, and the associated specification is used to
create the trace-set relation and a single tuple is inserted into the produced-by relation.

The fifth basic operation is associated with executing an experiment. The trace-set
relation is first cleared of any tuples, then each of the models is executed with each of the
parameter value sets for the given number of replications. As the experiment executes, the
execution framework stores the trace variable output into the trace-set relation. Each pass
over a model produces one tuple of trace-set data, assuming that attributes can be sequence
valued. This is not possible in a relational system and an alternate storage mechanism is
required. For example, the execution framework could write out each distinct trace variable
to a distinct file, and then store the file names in the trace-set tuple associated with each
experimental pass.

The final data operations are associated with analyzing the results of one or more
experiments. This requires retrieving trace-set data from the database, as well as
parameter-set and other information needed to compute performance statistics and display
the experimental results graphically. Typical operations include: retrieval of all (trace
variable, parameter-set value) pairs associated with an experiment, and then averaging the
trace variable values over the replication factor; and computing the average of a trace­
variable value over all experimental passes with a given combination of parameter-set
values. The data representation defined above includes all information necessary to
selectively locate all trace data associated with one or more experiments, and hence allows
defmition of arbitrary operations over this collection of data. The analysis phase is thus
extensible, however it does not involve storage or modification of data so it is non­
destructive.

5.2.2. Relational Implementation (Queries)

The SQL language supports relatively simple update operations. A single update
query can insert one or more tuples into a single relation. All of the data operators defined
above require multiple SQL queries. In addition, much of the processing requires
definition and construction of complex data objects (i.e. aggregation graphs). This
processing cannot be effectively performed using SQL and requires additional system
support. The following major section outlines one possible system architecture for
providing the necessary processing tools to be used in conjunction with the database
defined above. These tools would, in turn, invoke standard low level SQL queries to store
and retrieve associated simulation data.

Extensibility (the ability to add new data analysis operators, for example) requires
the ability to execute interactive queries, as well as the ability to store these queries for later
reuse. In addition, it is frequently easier to store intermediate results of long computations.
This is done both for ease of programming and for later re-use of partial results. The
natural repository for all of these kinds of data is again the database itself. SQL does not
provide direct support for these kinds of operations, however the set of relations defmed
above is not necessarily inclusive--it is possible for users to extend the system by adding
arbitrary new relations with associated new operators. The one restriction is that all data
must be stored as relations, and all data manipulation must be expressed using standard
SQL.

Page 21

5.2.3. Tandem Queues Example

The tandem queue example is typical insofar as its data operations are concerned.
All of the information described in section 5.1.3 would be created during experimental
design and execution; and then entered into the database using the standard operators
defined above.

6 . · Simulation Environment System Architecture

Data storage and manipulation is only one component of an overall simulation
environment, albeit a very important component. This section describes other major
software components implicit in the data processing operators as described above and a
possible implementation strategy using commercial tools provided by the Hypercard/Oracle
database system.

6. 1. Major Software Components & Database Interactions

Figure 5 summarizes the various components of the system architecture. The
Database System provides a common substrate for all of the tools and allows
straightforward integration of new tools as the system evolves. All tools share a common
collection of simulation data structured as described above. Each tool automatically inserts
data it generates into the database. In addition, all tools share a common visual interface
which allows users to interact with any of the tools using a standard visual paradigm. This
is depicted by a single external interface encompassing the entire system.

Page 22

•

Figure 5. System Architecture

The object browser/editor provides support for interactive or keyword search
through an existing object hierarchy as well as addition of new object subtypes into the
hierarchy. As noted above, once an object is entered into the object hierarchy, it is not
modified or deleted In addition, each object type is expanded out to include all inherited
state and methods and stored as a self-contained unit. More efficient storage strategies can
be developed by taking advantage of the known inheritance relations to "expand out"
objects as needed (e.g. [Rowe87]). The major difficulty with this approach is the
performance penalty resulting from multiple database retrievals associated with every object
reference.

The aggregation editor allows the user to specify aggregations by constructing a
graph, labeling its nodes with the corresponding object/aggregation types and labeling its
edges with the corresponding input/output methods. Ideally the specification should be
done interactively by first selecting a collection objects (which implicitly selects a collection
of inputs and outputs for each object), then connecting outputs of one object to the
appropriate inputs of another object. The overall process can be visualized as a structured
"drawing" of the aggregation graph.

In designing an aggregation, the user can only connect compatible inputs and
outputs (i.e. if an input expects to receive a job instance of a particular class and the user

Page 23

connects an output which generates jobs of another class, either run time or compile/link
time errors will occur). Ideally these mismatches should be detected at the time the
aggregation is designed, rather than during a later debugging phase. This requires at least
a limited incremental type checking component to be invoked whenever the user adds
another arc to an aggregation under construction. This allows immediate feedback to the
user and prevents the design of incompatible aggregations.

After all of the aggregations making up a simulation model have been designed,
they need to be translated into executable code. This requires a program generator which
can recursively expand an aggregation out into a collection of object instances (code
fragments), generate the necessary linkages between objects and produce a high level
language program fragment This program fragment is then compiled and linked with an
execution framework to produce an executable simulation model.

Initially, the system requires at least one execution framework. The simplest event­
queue based simulation support routines require several hundred lines of high level
language code [Law82]. More complex techniques for multiprocessor execution use timed
messages and a variety of mechanisms for distributing the computation over multiple
processors and require more complex support routines [Misr86] [Righ89]. In addition, the
execution framework needs to coordinate storage of trace output data by accepting raw trace
values from simulation objects, and then coordinating storage into the trace-set relation. In
order to use multiple execution frameworks, a consistent interface must be established to
allow simulations to schedule events and specify trace variables in a standard manner.

The two remaining processing steps, experiment definition and data analysis,
require interactive interfaces to query the user for necessary specification data as well as an
extensible collection of tools to define new analysis operators over arbitrary collections of
experimental data. An integrated spreadsheet would be one way of providing extensibility
as well as ease of use and the ability to generate graphics directly. Another possibility
would be to provide a standard interface for data retrieval and allow the user to invoke
arbitrary analysis programs. A third possibility is to use an EDBMS, as described below.

The fmal tool is called an Assistant for experimental design. Its purpose is to
partially automate the design process by using limited forms of inference. For example,
given a experiment, the Assistant could search through the database to determine whether
or not equivalent simulation passes have already been executed as part of other experiments
(equivalent here means over the same model with the same parameter set realization over a
superset of the trace output variables); and then only execute those passes that are
necessary. Another example is experiment generation: given partial information about an
experiment (i.e. the set of participating models and the desired trace variable outputs),
construct and execute an experiment which produces the desired results. The Assistant
could prompt the user for additional required information, or it could "infer" plausible
values for all unspecified parameters.

6. 2. Hypercard/Oracle Prototype

Oracle is a commercial relational database system that has been marketed since the
late 70's [Orac88]. It is available on a variety of computer systems and has a distributed
architecture which allows applications to execute on multiple computers. Concurrent data
access, security and crash recovery are fully supported. Oracle implements a standard SQL
language interface with minimal language extensions.

The Macintosh version of Oracle supports a variety of development tools for
application programming using the Hypercard environment [0rac88]. Hypercard is a

Page 24

•

multi-media (hypertext) presentation and programming environment distributed by Apple
Computer [Appl87]. The Hypercard/Oracle system includes a Hypercard based application
generator for rapid prototyping of applications which access data stored in an Oracle
database. All of the Hypercard tools can be used to create interactive user interfaces which
integrate structured text with audio and visual data. More complex user interfaces can be
constructed using the HyperTalk script programming language with embedded SQL calls
for storage and retrieval of data from the underlying database. Finally, advanced general
purpose applications can be developed using the C programming language with embedded
SQL calls.

The simulation environment architecture defmed above could be implemented using
Hypercard/Oracle. The collection of structured simulation data would be stored in an
Oracle database, the user interface implemented using the HyperTalk scripting language,
and the simulation programs themselves in a structured version of C. The primary
difficulty in performing a direct implementation is the limited collection of data types
provided by Oracle SQL: char (fixed length up to 240 characters), date, long (variable size
up to 65,535 characters), number (with optional precision and scale), decimal (with
optional scale), float, integer, and rowid (uniquely identifies a tuple). While the long data
type allows storage of data with arbitrary internal structure, it is up the application program
developer to provide the necessary operators to correctly interpret and maintain the byte
strings. No more than one long data attribute can appear in any tuple, making
straightforward implementation of parameter set and trace set realizations difficult. In
addition, it is possible for the maximum size of a long to be exceeded by trace variables
associated with long running experiments. Despite these difficulties, however, a prototype
could be implemented to verify other aspects of the design.

7. Exodus Design Specifications

As noted in the previous section, representing non-standard data types may be
awkward, but it is possible to do with either text (unbounded string) data types or auxiliary
indexed files. Representing non-standard data operators, however, is virtually impossible
within standard SQL: it requires the use of an external programming language with an
internal SQL interface to the database. While these programming tools and techniques do
allow implementation, it is unlikely that the resulting system will be as efficient as one built
using a DBMS which provides more direct support for the particular kinds of data and
operators required. This section describes how extensible databases systems (EXODUS in
particular) could be used to provide such system support.

7 .1. Overview of Support Provided by EDBMS/EXODUS

Extensible database systems are effectively database system generators. As Lex
and Y ace are used to specify and generate language scanners and parsers, extensible
database systems are used to specify and generate custom database systems. The scope of
a database system is much broader than that of a typical programming language, and
extensible database systems are much more complex than simple program generators.
Typically they include a variety of software engineering tools to assist in system
specification and implementation: special purpose programming languages, generic run­
time storage support, libraries of standard access methods, configurable user interfaces,
rule-based optimizer generators, hooks for inclusion of user-defmed types, and more or
less comprehensive support for implementing various different concurrency control
algorithms.

The Exodus system is typical of extensible database systems in terms of the overall
system development support provided [Care86a]. The details of how EDBMS are

Page 25

designed and implemented differ greatly from system to system. The central component of
the Exodus system is the E programming language and its run-time support environment.
TheE language is an extended version of the C programming language which includes
features supporting object oriented programming (similar to those provided by C++) as
well as explicit language support for persistent objects [Rich87]. The run-time
environment implements a storage manager with integrated concurrency control and buffer
management [Care86b]. TheE language is used to define new data types and their
operators. The system provides access method support, as well as a standard internal
architecture for implementing query execution. The optimizer is generated from a
functional description and provides a mechanism for integrating user defined operators into
the overall query optimization and processing strategy [Grae87].

7. 2. Custom EDBMS System Functions to Support Simulation Data

There are four major topics that need to be addressed in order to design a custom
database system: the nature of the data that the system must handle (i.e. the standard and
non-standard data types), the collection of operators needed at the user interface to
manipulate the data, the access methods necessary to efficiently store and access the data,
and techniques for optimizing user queries to run as efficiently as possible. This section
discusses each of these areas within the context of simulation data management.

7.2.1. New Data Types & Operators

All of the new data types require a standard collection of operators to allow storage
and retrieval of instances of that type. Type-specific operations require additional
operators, as described below. Table 2 summarizes the proposed new data types and major
type-specific operators.

Page 26

..

.~

Data Type Operators
Named Value Equality

Find
Polymorphic Value Define-range

Type Compatible
Graph Add-edge

Label-edge
Add-node
Label-node

Sequence Mean
Median
Max
Min
Merge

Relation Dereference
Set Add element

Delete element
Find element
Union
Intersection

Parameter Space Difference
Inclusion

Table 2. New Data Types and Operators

Named attributes are similar to standard typed attributes, however each instance of
the attribute has a unique name along with a value. Two named attributes are equal if both
their names and values are identical and similar if their names are identical. The find
operator searches for all instances of a value with a given name (i.e. all similar instances).

Polymorphic attributes can take on values from a given range of types. Each value
is tagged with its associated type. The operators allow definition of a new type range and
determination if two polymorphic attribute instances (i.e. values) are type compatible.

Graphs are represented as a collection of nodes and directed edges. Graph
instances need not be connected. The operators allow addition of new nodes and edges,
and labeling of existing nodes and edges. Labels can be values of any type.

Sequences are ordered collections of data values. There is an implicit index ranging
over the integers. The four statistical operators (mean, median, min, max) are computed
over a numeric component of a subrange of the sequence and produce a single value. The
merge operator takes two sequences as input and produces a single sequence as output,
where the elements of the output sequence are paired elements of the input sequences.

Page 27

Relations can be stored as atomic structured data values to an arbitrary degree of
nesting. The dereferencing operator allows a relation value to appear in an extended SQL
query. This allows a query to retrieve a collection of relation values from the database, and
then to apply a given query to each of the relations in tum.

Sets are collections of values. Heterogeneous collections can be represented as
collections of polymorphic values. The basic operators allow addition and deletion of
elements (this is distinct from inserting and deleting set instances) as well as search on a
given element attribute. The set union operation takes two compatible sets as arguments
and produces a single set as a results. The set difference operator is defined analogously.

A parameter space is defmed over a parameter set specification and realization. It
has one dimension for each of the parameters and an extent defmed by the collection of
values appearing in the realization. The difference between two parameter spaces is the
volume corresponding to points which are in one parameter space, but are not in the other.
The inclusion operator determines whether or not one parameter space is completely
included within another.

Data types appropriate to simulation data can be constructed from this collection of
basic types. For example, interfaces can be represented as sets of named, polymorphic
values. Type compatibility can be verified over the two polymorphic values corresponding
to the two methods. The interface of an aggregation can be computed by taking the union
of the interfaces of its components less internal interconnections, and the parameter set and
trace set specifications of an experiment can be computed by taking the union of the
component model specifications. The Assistant could use parameter spaces to express
concisely the computations required in order to determine which experimental passes have
already been performed, and so forth.

Complex retrieval operators for accessing correlated sets of data can be broken
down into merging operations followed by one dimensional statistical operations.
Additional presentation operators could be defined as well for displaying data graphically
and tabularly, however it might be simpler to implement and use a system which supported
the notion of a standard spreadsheet as a data type rather than supplying the same
functionality in a more piece-meal fashion.

7.2.2. New Access Methods

Abstract versions of many of the new data types described above have been
previously suggested within the context of semantic data models [Hull87] [Peck88].
Extensible database systems allow direct implementation of the concrete data type. Access
methods are techniques for arranging information stored on stable storage to permit
efficient retrieval. Existing techniques work well for collections of tuples which have keys
that have at least a partial order defmed over them. If individual tuples are larger than a
single disk block, special techniques must be used to permit indexed storage [Chou85].
The Exodus storage manager provides explicit support for objects of size bounded by the
physical media [Care86b]. These tools should allow a straightforward implementation of
the simpler types: named, polymorphic, sequence and relation (treated as a pointer to a
system catalog entry).

Graphs and sets are problematic since it is not clear how they can be treated as
ordered collections of objects. One solution to this difficulty would be to add an explicit
identifier for use in building access method structures, or to simply disallow direct access

Page 28

•

...

••

on graphs or sets (that is, all retrieval would be based on other values stored in the same
tuple).

Parameter spaces are more difficult. The obvious ftrst choice is a multi-dimensional
access method implemented using standard techniques [Salz88], however the number of
dimensions is likely to be very large and the amount of data stored at every point very
small. This suggests use of an alternate structure based upon encoding of the geometric
properties of the data sets that will allow efficient implementation of the difference and
inclusion operations as simple binary operations over bit vectors.

7.2.3. Optimizer Support

Rule based query optimization is coordinated through the use of "rules"
summarizing the execution behavior of different access paths under various run-time
conditions. The EXODUS optimizer generator is designed to be easily extensible by the
addition of new rules to describe new operators and access methods [Grae87]. These rules
are based on the execution costs associated with performing the operators using alternate
access paths. These costs, in turn, depend on the low level access method design and
operator algorithms and cannot be accurately inferred prior to implementation.

8. Future Work and Extensions

The most immediate area for future work is completion of the Hypercard/Oracle
prototype implementation. This will allow validation of the simulation environment
architecture design and at least limited implementation of actual queueing simulation
experiments. This, in turn, will allow development of more precise system requirements
for EXODUS system development, another important area for future workl.

Two of many possible extensions are the use of an IRDS framework and an
Object/CASE environment. The Information Resource Dictionary Standard (IRDS) is a
new federal standard for developing a common organizational framework for describing,
storing and manipulating shared data [ANSI88]. Use of an IRDS will allow simulation to
be integrated into the overall information management strategy of an organization. Object
oriented computer aided software engineering (Object/CASE) environments provide direct
support for object oriented program development. Many of the functions described above
could be part of an Object/CASE environment (for example, an object browser and editor).
In addition, an Object/CASE environment would provide efficient storage, tracking of
updates and support of multiple versions of objects, as well as explicit support for multi­
user access of a shared object hierarchy.

9 . Summary and Conclusions

This report has discussed database system issues arising in the design,
implementation and execution of queueing simulation experiments. The approach taken
was to carefully examine how queueing simulation experiments are performed, and then to
propose a new paradigm for queueing simulation. This allowed development of a detailed
data design as well as a proposal for the architecture of a complete simulation environment.
While the data management requirements of the proposed architecture can be partially met
using existing commercial database systems, there are some aspects of the design which

1At this time, July 1989, none of the Extensible Database Systems referenced in the
introduction are being distributed for general use. It is anticipated that both Exodus and
Genesis will be available for academic use beginning September 1989.

Page 29

would be awkward or inefficient to implement. This suggests use of an extensible database
system for development of a custom DBMS to serve as the central data repository of the
simulation environment architecture. The report concluded with an outline of the system
requirements for a custom DBMS, to be developed using the EXODUS extensible database
system.
In conclusion, while it is feasible to use a commercial relational database system to
implement an environment for performing simulation experiments, it is unclear
whether or not efficient implementation is possible. The primary difficulty is the lack
of system support for application specific data types. The use of extensible database
systems is suggested as an alternative implementation strategy which will provide
better support for the kinds of structured data and manipulations required by
experimental simulation environments.

1 0. References

[Abel89] Abelson, H., M. Eisenberg, M. Halfant, J. Katzenelson, E. Sacks, G. J.
Sussman, J. Wisdom and K. Yip. (1989). "Intelligence in Scientific Computing."
CACM. 32(5): 546-562.

[ANSI88] ANSI. (1988). American National Standard X3.138-1988. Information
Resource Dictionruy System. New York, American National Standards Institute.

[Appl87] Apple Computer. (1987). Human Interface Guidelines: The Apple Desktop
Interface. Reading, MA, Addison-Wesley.

[Appl87] Apple Computer Corporation. (1987). HyperCard User's Guide. Product
Documentation #030-3081-B,

[Bate82] Bates, D., H. Boral and D. J. DeWitt. (1982). A Framework for Research in
Database Management for Statistical Analysis or a Primer on Statistical Database
Management Problems for Computer Scientists. ACM SIGMOD,

[Bato88b] Batory, D. S., J. R. Barnett, J. F. Garza, K. P. Smith, K. Tsukuda, B. C.
Twichell and T. E. Wise. (1988). "Genesis: An Extensible Database Management
System." IEEE TSWE. 14(11): 1711-1729.

[Bell82] Bell, J. (1982). Data Modelling of Scientific Simulation Programs. ACM
SIGMOD,

[Berg86] Berg, D. I. (1986). On the Application of Data Engineering to the Configuration
Management of a Hybrid Simulator. International Conference on Data Engineering,
Los Angeles, CA.

[Care86a] Carey, M. J., D. J. DeWitt, D. Frank, G. Graefe, M. Muralikrishna, J.
Richardson and E. Shekita. (1986). The Architecture of the Exodus Extensible
DBMS. International Workshop on Object-Oriented Database Systems, Pacific
Grove, CA.

[Care86b] Carey, M. J., D. J. DeWitt, J. Richardson and E. J. Shekita. (1986). Object
and File Management in the Exodus Extensible Database System. Twelfth
International Conference on Very Large Data Bases, Kyoto.

Page 30

•

..

[Chen76] Chen, P. (1976). "The Entity-Relationship Model--Towards a Unified View of
Data." ACM TODS. 1(1):

[Chou85] Chou, H., D. J. DeWitt, R. H. Katz and A. C. Klug. (1985). "Design and
Implementation of the Wisconsin Storage System." Software- Practice and
Experience. 15(10): 943-962.

[Cies89] Cieslak, R., A. Fawaz, S. Sachs, P. Varaiya, J. Walrand and A. Li. (1989) .
"The Programmable Network Prototyping System." Computer. 22(5): 67-76.

[Elma89] Elmasri, R. and S. B. Navathe. (1989).Fundamentals of Database Systems.
Redwood City, CA, Benjamin/Cummings.

[Ferr78] Ferrari, D. (1978). Computer Systems Performance Evaluation. Englewood
Cliffs, NJ, Prentice-Hall, Inc.

[Fish87] Fishman, D. H., D. Beech, H. P. Cate, E. C. Chow, T. Connors, J. W. Davis,
N. Derrett, C. G. Hoch, W. Kent, P. Lyngbaek, B. Mahbod, M.A. Neimat, T. A.
Ryan and M. C. Shan. (1987). "Iris: An Object Oriented Database Management
System." ACM TOOlS. 5(1): 48-69.

[Grae87] Graefe, G. and D. J. DeWitt. (1987). The Exodus Optimizer Generator. ACM
SIGMOD, San Francisco, CA.

[Haas89] Haas, L. M., J. C. Freytag, G. M. Lohman and H. Pirahesh. (1989).
Extensible Query Processin~ in Starburst. ACM SIGMOD, Portland, OR.

[Hull87] Hull, R. and R. King. (1987). "Semantic Database Modeling: Survey,
Applications, and Research Issues." ACM Computing Surveys. 19(3): 201-260.

[Ioan88a] Joannidis, Y. E. and M. Livny. (1988). Data Modelin~ in DELAB. ACM
SIGMOD, Chicago, IL.

[Law82] Law, A.M. and W. D. Kelton. (1982). Simulation Modelin~ and Analysis. New
York, McGraw Hill.

[Livn86] Livny, M. (1986). DeNet User's Guide <version l.Q). Computer Science
Department, University of Wisconsin-Madison, February 1988.

[McCa82] McCarthy, J. L. (1982). Metadata Mana~ement for Lar~ Statistical Databases.
Eighth International Conference on Very Large Data Bases, Mexico City.

[McCa84] McCarthy, J. L. (1984). Scientific Information- Data+ Meta-data. Department
of Statistics, Stanford University, Technical Report November 1984.

[Misr86] Misra, J. (1986). "Distributed-Discrete Event Simulation." ACM Computing
Surveys. 18(1): 39-66.

[Murp89] Murphy, M. C. and D. Rotem. (1989). Processor Scheciulin~ for
Multiprocessor Joins. Fifth International Conference on Data Engineering, Los
Angeles, CA.

[Orac88] Oracle Corporation. (1988). Oracle for Macintosh Primers. Product
Documentation Part No. 5117-Vl.O,

Page 31

[0rac88] Oracle Corporation. (1988). Oracle for Macintosh References. Product
Documentation Part No. 5116-Vl.O, 1988.

[Peck88] Peckham, J. and F. Maryanski. (1988). "Semantic Data Models." ACM
Computing Surveys. 20(3): 153-190.

[Rich87] Richardson, J. and M. J. Carey. (1987). ProjUammin~ Constructs for Database
System Implementation in Exodus. ACM SIGMOD, San Francisco, CA.

[Righ89] Righter, R. and J. Walrand. (1989). "Distributed Simulation of Discrete Event
Systems." Proc. IEEE. 77(1): 99-113.

[Rowe87] Rowe, L. and M. Stonebraker. (1987). The POSTGRES Data Model.
Thirteenth International Conference on Very Large Data Bases, Brighton, England.

[Salz88] Salzberg, B. (1988). File Structures An Analytic Approach. Englewood Cliffs,
NJ, Prentice Hall. ·

[Shos82] Shoshani, A. (1982). Statistical Databases: Characteristics. Problems and Some
Solutions. Eighth International Conference on Very Large Data Bases, Mexico
City.

[Shos84] Shoshani, A., F. Olken and H. K. T. Wong. (1984). Characteristics of
Scientific Databases. Tenth International Conference on Very Large Data Bases,
Singapore.

[Shos85] Shoshani, A. and H. K. T. Wong. (1985). "Statistical and Scientific Database
Issues." IEEE TSWE. SE-11(10): 1040-1047.

[Ston86] Stonebraker, M. and L. A. Rowe. (1986). The Desi~n of POSTGRES.
SIGMOD, Washington, D.C.

[Ullm88] Ullman, J.D. (1988). Principles of Database and Knowled~e-Base Systems.
Rockville, MD, Computer Science Press.

[Walr88] Walrand, J. (1988). An Introduction to Queuein~ Networks. Englewood Cliffs,
NJ, Prentice Hall. ·

Page 32

•

.. ~ :·

LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA

INFORMATION RESOURCES DEPARTMENT
BERKELEY, CALIFORNIA 94720

··~.-~:.,

