
-"'l·, 
\ 1 

I -- 1 

. -r·,.~ ) 
· __ - 1- - • -- ...... ' ~ 

'->..!l- ' ~ ' l_.. " 

!{.- " 

I 

"' 

' ;1 

UC-tfl? 
LBL-27502 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Presented at the International School of Physics 
"Enrico Fermi" Summer Course CXll, Nuclear Collisions 
From the Mean-Field Into the Fragmentation Regime, 
Varenna, Italy, July 11-21, 1989 

Thermal and Statistical Properties of Nuclei 
and Nuclear Systems 

L.G. Moretto and G.J. Wozniak For Reference 

July 1989 Not to be taken from this room 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. 

• 

ljj 
1-' 

0. 
'iD . 

(Jl 
lSI 

r ..... 
ern 
;; 0 
!lJ"U 
)'<: 
'< . I-" 

r 
!Jj 
r 
I 

r(• 
-....1 
(.II 
lSI 
PJ 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain COITect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
Califomia. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Thermal and Statistical Properties of Nuclei and Nuclear Systems* 

L. G. Moretto and G. J. Wozniak . 

• 
Nuclear Science Division, Lawrence Berkeley Laboratory, Berkeley, CA 9472q USA 

1. Introduction 

The term statistical decay, statistical or thermodynamic equilibrium, thermalization, temperature, 

etc. have been used in nuclear physics since the introduction of the compound nucleus (CN) 

concept, and they are still used, perhaps even more frequently, in the context of intermediate- and 
' 

high-energy heavy-ion reactions. 

Unfortunately, the increased popularity of these terms has not made them any clearer, and more 

often than not one encounters sweeping statements about the alleged statisticity of a nuclear process 

where the "statistical" connotation is a more apt description of the state of the speaker's mind then 

of the nuclear reaction. 

It is our goal, in this short set of lectures, to set at least some ideas straight on this broad and 

beautiful subject, on the one hand by· clarifying some fundamental concepts, on the other by 

presenting some interesting applications to actual physical cases . 

. Let us start by distinguishing between statistical decay rates and statistical equilibrium. 

Statistical decay rates do not imply tqe existence of an actual equilibrium. They .apply to the decay 

of a nearly stationary state according to time-dependent first-order perturbation theory or golden 
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rule #2. 

The golden rule states that if a system in a state A decays to a system B with degeneracy PB the 

transition rate is: 

27t I 12 P = -:- HAB Ps 
A~B u 

(1) 

If the system A, rather than being in a single state, has a degeneracy PA• the "average" decay 

probability can still be written down as above, by simply averaging over the transition matrix 

elements: 

21t I 12 
P A~B = fi H AB Ps · (2) 

Thus the rule that one averages over intial states and sums over final states. These transition rates 

do not require nor do they imply that the systems A and B are in statistical equilibrium with each 

other, as, in general they are not. A typical case is the beta decay of a ground-state nucleus to a 

specific state of the daughter nucleus. This decay is statistical in that the momentum distribution of 

the emitted electron and (anti)neutrino is in accordance with their corresponding phase space. 

The case of a CN has to be dealt with with some care, as it is the case most subjected to 

improper statements. We must distinguish first between the formation o_f a CN and its decay. One 

frequently hears that a certain reaction gives rise to an equilibrated, or thermalized system called a 

CN. This means that one can describe the system in terms of an Hamiltonian HA which gives rise 

to a set of eigenstates that would be stationary if it were not for the perturbation Hamiltonian HAB 

responsible for their decay. The only statistical parameter is the level density p A or the number of 

eigenstates per unit energy at a given energy E which are assumed to be "equally" populated. 

The statistical or thermal decay of this CN means that each state decays according to Eq. 1, or 
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better that the system A with an energy E and density of states p A has an average decay rate 

according to Eq. 2. 

In summary, we have first the formation of a quasi-stationary system whose states in a given 

energy interval LlE are equally represented This system then proceeds to decay in accordance to the 

. phase space associated with each final state, as described by Eq. 2 .. 

Incidentally, the fact that HAB is Hermitian allows us to write: · 

27t I 12 p AB = fi HAB Pa (3) 

p BA = ~1t 1 H AB r p A (4) 

. PAB Pa ----
PBA PA 

or (5) 

The latter equation is the "detailed balance" equation that is frequently used in compound nuclear 

theory to express the unknown decay probability ,in terms of the "allegedly" known "inverse" 

probability, This inverse probability is often expressed in terms of an inverse-cross section which 

is unwittily identified with experimental quantities that have nothing to do with it, to the great 

confusion of us all. But this is another story! 

Statistical equilibrium is something altogether different. If a nuclear reaction is interpreted in 

terms of statistical or thermal equilibrium of the kind: 

(6) 

one expects that a stationary regime is attained, whereby A and B are confined in a well specified 

volume and do in fact interact frequently, so that their population can.be writt~n in tern1s of their 

respective partition functions: 

qA 
P(A)=-

qA +qB 
and (7) 
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where 

~ -E,ff 
and q8 = £..J e . (8) 

·As the system separates or expands beyond the freeze-out volume, A and B become decoupled and 

reflect in their distribution the original equilibrium. There ideas will be explored in the following 

two sections. The last two sections will be devoted to experimental evidence, the emission of rare 

particles and energy fluctuations. 

2. - Compound Nucleus Decay. 

2.1. Transition Rates. - "Particle" evaporation traditionally includes neutron, proton and 

a-particle emission. Alpha-particle emission did not appear strange despite the complex nature of 

the particle, because the lack of easily excited internal degrees of freedom made 4He look truly like 

. ' . 
an "elementary" particle. The similarity in mass may have led to the incorporation of the somewhat 

rarer emissions of 2H, 3H and 3He under the "evaporation" label. In its simplest form, the decay 

width is typically written down in terms of the inverse cross section and of the phase space of the 

system with the particle at infmity as: 

r(e)de = Bngm ecr( e) (E -B - )d 
2np(E) h2 p e e (9) 

where p(e) and p(E -B-e) are the level densities of the CN and residual nucleus, respectively; m, e, 

g are the mass, kinetic energy and spin degeneracy of the emitted particle; and cr(e) is the inverse 

cross section.l-4 

On the other hand, fission involves the emission of fragments with approximately one half the 

mass of the CN. The identification of fission as an independent process is based upon the vast 

separation in mass between the observable yields of fission fragments and of the evaporated 
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particles (and evaporation residues). ' ' 

· The fission decay width is traditionally evaluated by following the Bohr-Wheeler formalism 

, which makes use of the transition-state method. In this approach, the reaction (fission) coordinate 

is determined at a suitable point in coordinate space, (typically at the saddle point) and the_ decay rate 

is identified with the phase-space flux across a hyperplane in phase space passing through the 

saddle point and perpendicular to the fission direction. The decay width is written5 as: 

1 J . . rF = -27tp(E) p (E- BF- E)de, (10) 

where p(E) and p * (E - Bp -E) are the level densities of the CN and of the saddle point; E is the 

kinetic energy along the fission mode; and Bp is the fission barrier. As it can be seen, the 

dichotomy between fission and evaporation is emphasized even in the expressions for the 

corresponding decay rates. 

~ 

It was observed some time ago that this dichotomy is deceptive.6•7 The separation between 

evaporation and fission, it was claimed, was an optical illusion due to the very low cross section of 

products with masses intermediate between 4He and fission fragments. If the emission of any 

fragment is not energetically forbidden, the mass distribution should be continuous from nucleons 

to symmetric products. Thus, there is no need to consider the two extremes of this distribution as 

two independent processes. Rather, one would conclude, fission and evaporation are 

the tw.o, particularly (but accidentally) obvious extremes of a single statistical 

decay process, the connection being provided in a very natural way by the mass 

asymmetry coordinate. 

As it turns out, it is indeed possible to bring out the yield of intermediate mass fragments from 

the abyss. In fact, experimental mass or charge yields from CN decay going continuously from 
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4He to symmetry have now been obtained.8-l6 

In order to demonstrate the inherent unity of fission and evaporation through complex fragment 

emission, it is useful to consider the potential-energy landscape as a function of a suitable set of 

collective coordinates, among which the mass asymmetry plays a dominant role. 
!.t 

2.2. The Potential Energy: Absolute and Conditional Saddle Points.- The potential-energy surface 

V(q) as a function of a set of deformation c~rdinates qhas been studied indetail first within the 

framework of the liquid-drop model, 17-19 and more recently the finite-range mode1.20·21 The 

liquid-drop model calculates the macroscopic nuclear energy for a given shape by evaluating the 

corresponding shape-dependent surface and Coulomb energies plus the volume and symmetry 

terms, which are shape independent. The finite-range model starts from a sharp-surface nucleus 

and spreads out the density by folding its shape with a Gaussian plus exponential function. In this 

way the diffuseness of the surface is dealt with, together with those proximity effects arising when 

portions of the nuclear surface happen to be close to each other as in strongly indented shapes. 
' ~· . 

The stationary points of the potential-energy surface, obtained by solving the set of equations 

av(q)' 
---0 acr - (11) 

comprise the ground state minimum, and one to three saddle points, of which the saddle point with 

degree of instability one, if it exists, is known as the "fission" saddle point because of its relevance 

to the fission process. In general, only the points of the potential-energy surface corresponding to 

the solutions of the above equation are of intrinsic physical significance, because they are invariant 

under a canonical transformation of the coordinates. 
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Saddle-point shapes for fissility parameter values of x < 0. 7 are strongly constricted at the 

neck, so that the nascent fission fragments are already well defined in mass. Thus one can assign a 

physical significance to the mass-asymmetry parameter A1/(A1 + A2). Then it is possible to 

I 

consider a cut in the potential energy along the mass-asymmetry coordinate passing through the 

fission saddle point, with the property that at any point the potential energy is stationary with 

respect to all the other degrees of freedom. Each point is then a "conditional saddle point" with the 

constraint of a fixed mass asymmetry. This line has been called6,? the "ridge line" in analogy with 

the term "saddle point". The shape of the ridge line depends on whether the fissility parameter lies 

. _ above or- below the Businaro-Gallone point.22 This point corresponds .to the fissility parameter 

value at which the symmetric saddle point gains/loses stability against the mass-asymmetry 

coordinate. For the liquid-drop model~ this point occurs at x80 = 0.396 for zero angular 

momentum. The properties of the ridge line above and below the Businaro-Gallone point are 

illustrated in Fig. 1. 

Below the Businaro-Gallone point, the ridge line shows a maximum at symmetry. This is a 

saddle point of degree of instability t_wo (the system is unstable both along the fission mode and the 

mass-asymmetry mode). As the fissility parameter x increases above Xna• this saddle point splits 

into three saddle points. The symmetric saddle point is stable with respect to the mass-asymmetry 

mode (degree of instability one) and is the ordinary fission saddle point. The other two saddles, of 

degree of instability two, are also called Businaro-Gallone mountains, and flank symmetrically the 

'•' 
fission saddle point. The incorporation of angular momentum maintains essentially the same 

topology. Its main effect is to decrease the overall heights of the barriers and to displace the 

Businaro-Gallone point towards lower values of the fissility parameter. 
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2.3. - Complex Fragment Decay Width. - The role of the ridge line on the emission of complex 

fragments can be appreciated by observing that for x < 0.7 at all asymmetries and for x > 0.7 over a 

progressively reduced range of asymmetries, the nuclear shapes at the ridge line are so profoundly 

necked-in that the ridge and scission lines approximately coincide. This means that, as the system 

reaches a given point on the ridge line, it is, to a large extent, committed to decay with the 

corresponding saddle asymmetry. On the basis of the transition-state theory one can write, for the 

partial decay width:7 

r(Z)dZ = 1 J p**[E- B(Z) -E]dedZ 
27tp(E) 

•· (12) 

where p(E) is the CN level density, and p .. [E -B(Z) - £] is the level density at the conditional 

saddle of energy B(Z), which the system is transiting with kinetic energy E. 

The units and the number of degrees of freedom associated with the various level densities are 

clarified by the following relations : 

r z(Z) = 21t~(E)J p •• (E-B(Z) -E)dE _ 1 ** f -EIT 
2
1tp(E)p [E-B(Z)] e dE 

T ** 
_ 

2
7tp(E) p [E -B(Z)] (13) 

Well above the B usinaro-Gallone point, one can expand the potential energy as: 

B(Z) = BF + bZ2. (14) 

This gives rise to a fission peak whose integrated yield is: 

- T p**(E -BF)f - bz2 rr - T3t2 1tl/2 •• - - T p*(E -B ) r F = e dZ - 112 p (E B F) - F 
21tp(E) 27tp(E)b 21tp(E) 

(15) 

where we have set 

(16) 

Alternatively, 
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,, (17) 

(18) 

These results allow us to make qualitative predictions on the shape of the mass/charge distributions. 

Equation 13 can be further simplified ac; follows: 

r oc: J? .. [E -BCZ)J 
z p(E) 

- B(Z)!Tz 
·oc: e 

where T z represents the nuclear temperature calculated at an excitation energy 

Ex = E - B(Z) = aTi . 

. (19) 

(20) 

This means that the mass or charge yiel~ mirrors the ridge line, being characterized by high 

emission probabilities in the regions of low potential energy and vice-versa. This is illustrated in 

Fig. 1 for two systems, one below the Businaro-Gallone po~nt, and the second above it. In the 

former case, the yield has a characteristic U-shape, where the light wing is associated with very 

light particle emission, and the compl,ementary heavy wing with the corresponding. evaporation 
• I ' ' 

residues. In the latter case, besides the light ~d heavy wings ob.served in the former case, one 
. , . 

observes also a peak at symmetry which becomes more and more prominent with increasing 

fissility parameter x, and which can be identified as the fission peak. 
' . 

In the limit in which the conditional saddle and scission points can be considered degenerate, 

. one can also develop a theory of the complex-fragment kinetic energy and angular distributions. 
' ' . . . . . . 

2._4.- Multifragmentation and Nuclear Comminution .. - The previous discussion illustrates the 

emission of complex fragments through binary CN decay. If there is enough excitation energy 
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available, the primary binary-decay products are also very excited and have a significant probability 

of decaying in turn into two fragments. In this very conventional way, one can foresee the 

possibility of several fragments in the exit channel (multifragmentation), due to several sequential 

binary decays. At high energies, these multifragment events may be responsible for a substantial 

backgro~nd to other predicted multifragmentation mechanisms. 

This process of sequential binary decay, controlled at each stage by the CN branching ratios, 

we call "nuclear comminution". 23 The limitations of this process are of two kinds: extrinsic and 

intrinsic. 

The most obvious extrinsic limitation is the ability of the system to form a CN. In other words, 

the relaxation times associated with the CN formation may be too long when compared to the 

dynamical times leading the system to a different fate. Limitations of this sort are of course shared 

by all other multifragmentation modes involving an intermediate relaxed system. 

The intrinsic limitations are associated with the aspect of sequentiality. Should two sequential 

binary decays occur too close in space-time, they would interact to an extent incompatible with the 

definition of sequentiality. In this case one may be led to favor models in which fragments are 

formed simultaneously. Nonetheless, it may be possible to extend the sequential binary model to 

situations in which the interaction between two successive decays is only strong enough to perturb 

the angular distributions. The decay probabilities are overwhelmingly affected by the level densities 

of the corresponding final states. These level densities arise almost completely from the intrinsic 

degrees of freedom. The collective degrees of freedom on which the angular distributions depend 

hardly contribute to the level densities. Therefore, one can observe a multifragment pattern, whose 

branching ratios are still clearly binary' while the angular distributions may be substantially 

perturbed. 

)..; 
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The lesson to be learned from these considerations is that the best way to establish the 

underlying mechanism of a multifragmentation process is to study the excitation functions of 

. ·bin pry,_ tern pry, and quaternary events, which of course reflect the energy dependence of the 

. ,. ~ranching ratios, and not to be troubled too much, should the angular distributions indicate 

.· multifragp1ent interaction. 

The calculations of the resulting mass ,distributions are trivial, although tedious and time 

consuming. We have tried to simulat(! the process by assuming a potential energy curve vs mass 

.asymmetry (ridge line) with a maximum value of 40 MeV for symmetry and 8 MeV for the 

extreme asymmetries. The primary yield curve is taken to be of the form: 

Y(A) = K exp[-V(A)ff(A)]. (21) 

Each of the resulting fragments is assumed to have a similar ridge line, a properly scaled 

temperature, and is allowed to decay accordingly, until all the excitation energy is exhausted. For a 

.... series of initial excitation energies, the resulting mass distributions are shown in Fig. 2. The 

.log-log plots show an exquisite power-law dependence for the low mass fragments. At excitation 

energies of about 400 MeV, the exponent (see Fig. 3) is around 2.3 - 2.4 which, incidentally, is 

very close to the value expected for the liquid-vapor phase transition at the critical temperature. 

This result shows that a power-law dependence is not a unique diagnostic feature of liquid-vapor 

equilibrium, but rather is an apparently "generic" property arising even fromsequential-binay decay 

or comminution. A more realistic calculation with the statistical code GEMINI13 leads to similar 

results.23 

The code GEMINI generates complete events on the basis of standard CN branching ratios. 

Examples of events with three and four complex fragments plus a multitude of lighter particles are 

illustrated in Figs. 4a & 4b. Of course, the analysis of individual complete events does not 



12 

reveal the "statistical" nature of the branching ratios. Little can be said concerning the fact that the 

first "binary" decay is in one case occuring at the beginning of the cascade and in another quite late 

in the cascade after the emission of a multitude of light particles. Nor is the selection of these 

"particular" events among a plethora of ordinary binary decays conducive to an appreciation of the 

underlying statistical processes. These can be appreciated more directly in the excitation functions 

for events with one, two, three, etc. fragments in the exit channel, like those plotted in Fig. 5. Here 

one can get, at a glance, a "qualitative" feeling of the statistical competition beside the direct 

quantitative predictions. In view of the uncertainies in the barriers used in the calculations, plus 

the fact that the temperature dependence of the barriers themselves has not been included, the 

--
qualitative dependence of the branching ratios upon energy may be the most important lesson to be 

derived from this exercise. 

2.5 - Gamma, Pion, and Antiproton Emission - The y-ray decay rate can be written down quite 

--easily in terms of the inverse (absorption) cross section and the photon phase space. The 

probability of emission of a photon of energy ey is 
· r(e~ 81t 2 

P(e'Y) = -
5

- = 3 3 cr(e~ p(E- e_,) e'Y 
c h p(E) -

(22) 

81t 2 - £.ff 
= 33 cr(e,f e'Y e . 

ch 
(23) 

The inverse cross section is fairly well known experimentally. In the energy region below 20 

MeV, it is dominated by the giant dipole resonance while, above that energy the quasi-deuteron 

mechanism prevails. 

Similarly, the thermal emission of fancier particles can be written down just as easily. For 

instance for the pion evaporation we can write: 
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(24) 

wher~ m7t, E are the pion mass and kinetic en~rgy, respectively, cr7t the inverse cross section and the 

other quantities are the same as in the previous equations. 

The integrated cross section is: 

T81tmx crx p(E- mx) 

27tp(E) h2 
(25) 

For any other particle, one can use the same equ~tions; provided that the. proper spin degeneracies 

:are taken into account. Attention must be paid to the case in which a particle must be produced with 

its own antiparticle. 

A rather spectacular example24 of the exponential dependence predicted by Eq. 25 is shown in 
. / 

Fig. 6. In this figure the invariant cross section for the production 1t-, K+, K- and p for the 

reaction 28Si + 28Si at 2.0 Gev/u is plotted as a function of the threshold energy (Ethres) plus 

center-of-mass (c.m.) kinetic energy CKEc.m)· The exponential dependence is seen to ex~~nd over 

almost nine orders of magnitude with an effective temperature of- 87 MeV. As to the meaning of 

this result, the best comment may well be a prudent silence. Yet the t(!mptation of saying that a 

rather extended source with T - 87 MeV is responsible for the emission of all those particles is 

easy to succumb to. 

3. - Two or More Fragments in Equilibrium. 

Although it may not be easy to determine whether, how (and where!), a system may have 

achieved equilibrium, it is nonetheless a useful exercise to calculate some relevant distributions 
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which may be used as minimal hypotheses in the analysis of an experiment. 

We are going to consider here three kinds of equilibria which have been discussed in the 

literature with some degree of attention: 1) the chemical equilibrium; 2) the thermal equilibrium; 

and 3) the angular momentum equilibrium. 

3.1. The Chemical Equilibrium. - A fundamental problem in nuclear physics is the aggregation of 

nucleons to form nuclei. An associated question is the relative abundance of nuclei of any given 

size. Statistical mechanics shows us how to calculate equilibria of the general kind: 

aA + bB + cC + .... H 1 L + mM + nN + ..... . (26) 

or 

(27) 

For a system at equilibrium, the free energy F must be a minimum with respect to an infinitesimal 

displacement OA along the reaction coordinate A defined by: 

dNi = ~ dA.. (28) 

Therefore 

dF = (1: ai Jli) dA. = 0 '(29) 

or 

(30) 

where ~i are the chemical potentials of the ith species, that can be written as 

(31) 

where again qi is the partition function of the i th component. Substituting, one obtains 
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(32) 

or 

a b a b 
Na Nb ...... <laqb ····. 

.. (33) 

As an example, let us calculate the equilibrium: 

·P.+ n = "· (34) 

For this we need the three partition functions: qp = qn , qd. Assuming for the moment that we 

·. . are dealing with classical ideru behaviour: 

q - q . ;. , ,. n p [ r
/2 

27tm T 

= 2 h2n . V; 

where !::.. = 2.2 MeV is the deuteron binding energy, 

'N D 

N N p n 
[ ]~ . [ ]~ h

2 .· Nf . N 3N h2 
3 e D n M 

= 4 1tmnT V; NP = 4V 1tmnT e 

(35) 

(36) 

This shows that for any finite volume there will be no deuterons at high temperature, but also, and 

perhaps inore surprising, that, at any non-zero temperature, there will be no deuterons at high 

dilutions when V ~ oo. We have here, the first lesson to be learnt. If there is arty chemical 

equilibrium at all in any nuclear reaction, it is certainly not an equilibrium at infinite dilution. At 

best it is an equilibirum that is established at some freeze-out volume. After that, one must assume 

that the product distribution remains unaltered as the system keeps expanding. Thus the freeze-out 

volume, or the freeze-out concentration become inherent parameters of this kind of theoiy. 

A similar exercise can be performed for the reaction 

2n+ 2pH 4He. (37) 
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The following ratio is easily calculated 

Na - 2213 NpNn [ 2mnn Tll'2 <.ia-.ioYf 
ND - 12 y2 h2 ] e 

(38) 

which, incidentally can be used to determine the freeze-out concentration after the big bang. 

The problem of nucleation in a nuclear vapor near saturation and/or criticality may be of 

potential interest. The average nucleon-nucleon interaction is composed of a very short range 

'repulsive core and of a short range attractive part. In this it mimics the Vander Waals force 

between monoatomic gases which leads to the homonymous equation of state. In fact 

Fermi-Thomas25-27 and Hartree-Fock calculations28-30 for nuclear matter lead to isotherms which 

are quite similar to those of the Vander Waals equation. In particular, there is a critical isotherm 

along which the two phases, liquid and vapor, identified through the Maxwell construction, lose 

their identity. 

It is well known that, at the critical point, density fluctuations acquire infinite range, and 

manifest themselves through the spectacular phenomenon of critical opalescence. The distribution 

in cluster size can be derived in the following simple way.3I,32 The whole gas or vapor is an 

imperfect gas, butcan also be considered as an ideal gas mixture of clusters in equilibrium with 

each other. The condition of equilibrium between clusters of different size is: 

(39) 

where ~j is the chemical potential of the clusters of size j and ~ is the chemical potential of the 
11 

clusters of size one. 

Let Jj be the partition function of a cluster of size j. Then the partition function Aj of the mj 

clusters of size j is: 
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1 mi 
A= -·-J. 

J I J 
mi" 

(40) 

and the total partition function is: 

(41) 

The chemical potentials are: 

J.Li a In A 
--= 

T am. 
(42) 

J 

and 

(43) 

··· ·'fhe fr~e energy of a cluster can be written as: 

F . T I J • .213 . = - n . = JJ.LL + CJ J J 
(44) 

where J.l.L is the chemical potential of the liquid and the term in j213 is a surface contribution which 

takes care of the finite size of the cluster. By substitution in Eq. 42 we obtain: 

j - c j
213rr 

mi = y e 

where 

or 

where , 

(JJ.-~) ' 

Y = e T 

-err 
x = e 

(45) 

(46) 

(47) 

(48) 

Below the critichl temperature ~nd when the ga~ phase i~ stable J.L < J.lu y < !', the contribution of 
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large clusters is exponentially unimportant. On the other hand, if the liquid phase is stable, then 1.1 

~ IlL and the vapor is supersaturated. In this case the first factor increases with j and the second 

decreases with j. Therefore there is a value of j for which mj is a minimum. This is given by 

d lnrn. 
dj J = 0 (49) 

or 

2c 
lny= ~~ 

3Tj *lt3 

Clusters of this size represent a maximum in free energy. Thus the size j* defined by Eq. 50 

represents a hurdle to be overcome before entering the region of runaway condensation. 

At the critical temperature, y = 1 and x = 1 (the latter because the surface-energy coefficient c in 

Eq. 44 goes to zero at the critical temperature where no distinction exists between liquid and vapor). 

Eq. 45 would then predict a constant distribution in mj- However, it has been pointed out33 that in 

Eq. 45 the factor yJ should be multiplied by a quantity a(j) such that a(j) is of order j and ln a(j) is 

of the order ln j. This factor, that arises from the energy independent statistical weight of the 

cluster of size j, has been estimated34,35 to be of the form rt where t is a critical exponent which 

depends on the dimensionality of the cluster. Then, revision of Eq. 45 gives: 
.213 . 

• "'t J J 
mi = m0 J x y . (51) 

At the critical temperature the cluster distribution assumes a power law: 

(52) 

It is this power-law distribution that some authors believed to have identified, in a variety of 

inclusive experiments. 

The finite nuclear size and the role of the Coulomb interactions,36•37 not to speak of the shell 
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structure of the individual fragments set serious limitations to the applicability of the liquid-vapor 

equilibrium theory. 

·· Several authors38-44 have taken up these problems with a different emphasis. The general 

approach isto assume a critical freeze-out volume within which a chemical equilibrium between all 

the possible fragments is established. It is in this chemical equilibrium aspect that these theories 

· differ somewhatfrom the lower-energy transition-state theory. The latter does not require that 

chemical equilibrium is established, rather it approximates the decay rate with the phase-space flux 

across a hyper surface perpendicular to a previously identified reaction coordinate, located at a point 

where multiple crossing of phase-space trajectories is expected to be at a minimum. The presence 

of a saddle point leading to a binary decay provides a natural setting for the application of the 

transition-state theory. Unfortunately, no ternary- or quaternary-saddle points have been found that 

could provide a similar setting for multifragmentation. Consequently, all of these theories must 

requiTe 'a "deus ex machina" that somehow guarantees statistical-chemical equilibrium at some stage 

that cannot be characterized within the theory itself. 

Some attempt has been made recently45 to represent nuclear fragmentation in terms of 

percolation theories. In this approach the nucleus is imagined to be composed of nucleons located 

in a crystal lattice. In a cold nucleus all the sites are occupied. In an excited nucleus one can defme 

an average probability p ~ 1 that the lattice sites are occupied. Depending on the value of p, one 

., 
'' observes connected clusters of nucleons which are assumed to be the observed fragments. For an 

infinite system there is a critical value of p above which a cluster extending throughout the system 

exists (percolating cluster). In a nucleus one can similarly define a critical value of p above which 

one major fragment is formed and below which many fragments are produced. The similarity of 

this result with the behavior of systems exhibiting 2nd order phase transitions, like liquid-vapor 
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systems at the critical temperature, has led to the use of percolation theories to model these 

transitions. The mass distributions of the clusters near the percolation threshold is given, not 

surprising, by a power law. Thus it seems that the predictive potential of percolation theories is 

limited to very generic statistical properties, which are associated with many other models as well. 

Nonetheless, the analysis of the experimental (and theoretical!) distributions by means of the 

percolation theory may be of some benefit in helping to discriminate between generic and specific 

properties of these distributions. 

3.2. Statistical Shattering. - A bold, different assumption has been proposed by Aichelin and 

Hi.ifner-46. They envisage a brittle kind of nuclei that shatter under a sufficiently hard impact like 

two glass balls thrown at each other. The physics of shattering of fragile material, let alone nuclei, 

is poorly understood. However, it has been found empirically that the resulting distribution of 

fragments, or shards is rather simple, approaching a power-law dependence on the fragment size. 

The same authors proposed to derive such a distribution from a maximum likelihood or minimum 

bias principle. Sobotka and Moretto47 showed that their formulation corresponds to a saddle-point 

approximation to the Euler problem of number partition (i.e. all the possible ways in which an 

integer A can be split into integers under the constraint that their sum be A). Incidentally, these 

partitions multiplied by a temperature-dependent statistical weight, appear also in some of the 

statistical multifragmentation theories. 38-40 

Despite the lack of theoretical justification for such an ansatz, it is interesting to speculate 

further on possible improvements which could accomodate a modicum of physical input. 

3.3. The Role of Surface in Nuclear Shattering. - Among the many shortcomings of this approach 
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is its lack of an energy dependence and its inability to connect the mass distributions to other 

observables. A possible way to introduce an energy dependence in this problem is suggested by 

the fact that it takes energy to produce the extra surface associated with fragment formation. In 

what follows, a way is shown to evaluate the mass distribution with the constraint of a fixed 

amount of generated surface.48 
~ ' . . 

Similarly to Aichelin,46 we define a probability P(m,a) of producing a fragment of mass a with 

multiplicity m. The constraints are: 

L P(m,a) = 1 (53) 
m 

for each a, 

L L ma P(m,a)- N, (54) 
m a 

N being the mass of the object being fragmented, and 

~ ~ 2/3 
L..J L..J kma P(m,a) = S, (55) 

m a 

S being the surface produced. The information I, associated with P modified by the constraints is: 

I = L L P(m,a) In P(m,a) - K(a) P(m,a) + Dma P(m,a) + Ama
213 

P(m,a) (56) 
m a 

where K(a), D, and A arise from the introduction of the constraints. 

Minimization of the information I gives 
213 2/3 

P(m,a) = e[K(a) -1] e[ -m(Da + Aa )] = C(a) e[ -m(Da+ Aa )] 

Applying Eqs. 53,54 and 55 to Eq. 57, one obtains: 
213 

C(a) = 1- e-(Da+Aa ) 

~ ___ a __ 
L..J 213 

a exp [Da + Aa ] -1 
= N 

(57) 

(58) 

(59) 



2/3 

k,L a 2/3 
a exp [Da + Aa ] - 1 

Summing P(m,a) over m one has: 

1 
P(a) = 

213 
exp [Da + Aa ] -1 
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= s. (60) 

(61) 

By solving Eqs. 59 and 60 simultaneously forD and A and substituting the values so obtained in 

Eq. 61, one arrives at the desired distribution. If no restriction is imposed upon the surface, then A 

= 0, which defines the unconstrained surface S0. If a restriction is imposed by fixing S near S0 one 

can linearize the problem and obtain an analytical result: 

11A = H5/3)tf5/3) 

[ 
-4/3 r(4/3)~(4/3) + { [

513 rc513)~(513)12} ] 
2r(2)~(2) 

m = _ M 5/3 ~(513)~(5/3) 

2r(2)~(2) 

Do= .J"Wt 
Numerically, one has 

M =-
1.618305 0~3 

118 

so 

110 = -0.971156 M 

Do = 
1.2825 

.[N 

0
213

118 0 
(62) 

(63) 

(64) 

(65) 

(66) 

(67) 

"''I 

,_( 
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As an example, Fig. 7 shows the resulting mass distribution assuming N = 200. The three 

curves correspond to ~S!S0 = 0 ; 0.2 ; -0.2. One can readily see that, by requiring more surface 

area, one favors the formation of light fragments and by requiring less surface area one enhances 

the production of heavy fragments. 

Lastly, it remains to be established how much energy is invested in surface production in any 

given reaction. This may not be easy to determine. However, it may be possible to infer that from 

the determination of the total fragment kinetic energy in the center of mass of the fragmenting 

· nucleus~ If the virial theorem can be applied, then a relation should exist between the average total 

· · kinetic energi and the average potential energy which is approximately proportional to the average 

produced surface. 

3.4. Thermal Equilibrium, or the Energy Partition Between Fragments. - The most trivial case is, of 

course, that of two fragments in contact. For a given total energy Ewe can define a partition by 

giving an amount of energy x to one fragment and the complementary energy E - x to the other. 

The statistical weight for this partition is: 

P(x) oc: p1 (x) p2 (E-x) (68) 

where p1, p2 are the level densities associated with the two fragments. We can approximate the 

distribution as a Gaussian, in other words we can expand the logarithm of P up to second order 

about the maximum x0 : 

·In P =In p1 (x) +In p1 (E-x)=- (x- x0 )2!2o2. (69) 

The maximum probability is defmed as: 
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atn pl atn p = + _ __.:..2 = 0 
ax ax 

where we have used In p =Sand as1aE =Iff. 

(70) 

(71) 

(72) 

Thus the parameter characterizing the equilibrium between the fragments is their common 

temperature. If the specific heat of the nuclear stuff is the same in both fragments, the energy of 

each fragment is, on the average, proportional to its mass 

or 

xo AI 

E-x
0 

= ~ · 

The fluctuations ar~ easy to calculate 

__ 1 = _ [a trr1 _ a irr2] 

cr2 ax ~ 

where c1 c2 are the heat capacities of the fragments. For a Fermi gas nucleus c = 2aT, so 
' 

(a"" A/8). 

(73) 

(74) 

(75) 

(76) 

This shows that the fluctuations are largest when the two fragments are equal. It is also obvious 

that the fluctuations are fully anticorrelated, because of energy conservation. Furthermore, the 

fluctuations are typically rather large because the fragments are rather small and obey the Fermi 

. .. 
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statistics. 

The generalization to more than one fragment is almost straightforward. A partition is defined 

by: 

(77) 

Its probability is: 

(78) 

The maximum probability can be obtained by searching for the stationary point with respect to 

variations in the xi 's with the constraint: 

In order to do that, we introduce the auxiliary distribution: 

or 

The maximum is given by: 

oln P'(x.) 
.---

1 = 0 or ax. 
oln p(x.) 
--~1 -P = o, ax. 

1 1 

which can be written as: 

1/Ti = p = 1/T or Ti = T. 

(79) 

(80) 

(81) 

(82) 

(83) 

In other words, all the fragments are at the same temperature T = vp, which can be defined as the 

temperature of the system. 

The most probable fragment excitation energy is then approximately proportional to its mass. 
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For the fluctuations, one can proceed by taking the second derivative to obtain: 

a2i = T2ci· 

If the fragments are many, the fluctuations are approximately uncorrelated. 

(84) 

3.5. Angular Momentum Equilibrium. - Because of the vectorial nature of angular momentum, the 

thermodynamic description is somewhat more complicated. We begin with the problem of two 

spherical fragments, which we shall generalize later to the case of many fragments. 

3.5a. The Dinuclear System: Its Degrees of Freedom and Statistical Mechanics. - If the nucleus at 

the saddle point (or for that matter, at the scission point) is considered as a single rigid body, it can 

be characterized by a total of six degrees of freedom: three translational modes associated with the 

motion of the center of mass, and three rotational modes. Furthermore, if the nucleus is axially 

symmetric, as it is commonly assumed, the three rotational degrees of freedom can be reduced to a 

rotation about the symmetry axis, plus a (doubly degenerate) rotation about an axis perpendicular to 

the symmetry axis. This requires that the component K of the angular momentum along the 

symmetry axis be a constant of motion. Thus, the angle between the at)gular momentum and the 

symmetry axis is conserved; because of its relevance, such an angle is called the "tilting" angle. 

The experimental measurements of fragment angular momentum49-58, and its alignment, 

suggest that the rigid body condition must be relaxed, and that intrinsic angular-momentum-bearing 

modes characteristic of a dinuclear system59 must be introduced. These modes are easily visualized 

for a symmetric dinuclear system constituted by two equal spheres in contact60
, although the 

generalization to an asymmetric system of two touching, unequal spheroids is rather 

straightforward. 



27 

The enumeration of the degrees of freedom of a dinuclear system is immediate: two rigid 

bodies require 6+6 = 12 degrees of freedom. The condition of contact removes one, which leaves 

eleven. Of these, three are translational degrees of freedom, so there are eight angular-momentum

bearing modes left. Of these, three are associated with the "rigid" rotation of the dinuclear system. 

, :The remaining five degrees offreedomare "intrinsic" angular-momentum-bearing modes. These 

: modes are associated with rotations of one nucleus with respect to the other in such a way that 

the whole system need not carry a net amount of angular momentum. The five normal modes (plus 

the tilting mode) are illustrated in Figure 8. They are: two degenerate ;'bending" modes, two 

degenerate "wriggling" modes and one "twisting" mode. These names have been chosen to 

·correspond with the normal modes at the saddle point as described by Nix19•61 •62, although the 

correspondence is not completely obvious. 

The bending mode consists in the rotation of one sphere about an axis perpendicular to the 

symmetry axis, and in the corresponding counterrotation of the other sphere. This mode is doubly 

. degenerate. 

The twisting mode consists in the rotation of one sphere about the symmetry axis, and in the 

corresponding counterrotation of the other sphere. This mode is not degenerate. 

The wriggling mode is somewhat more complicated. Both spheres corotate about parallel axes 

perpendicular to the symmetry axis, and simultaneously counterrevolve about each other about an 

axis parallel to the rotation axes. This mode is doubly degenerate. 

In the bending and twisting modes, the spin of one sphere is compensated by that of the other, 

so that the net angular momentum is always zero. In the wriggling modes, the spins of the two 

spheres are equal and parallel, and they are exactly compensated by the orbital angular momentum 

associated with the revolution which is antiparallel to the fragment spins. Therefore, the excitation 
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of the bending and twisting modes produces fragment spins which are antiparallel, while the 

excitation of the wriggling (and tilting) modes produces fragment spins that are parallel. 

3.5b. Statistical Coupling Between Orbital and Intrinsic Angular Momenta: The Wriggling Modes. 

As we have mentioned above, the coupling between orbital and intrinsic angular momentum is 

mediated by one wriggling mode. This is illustrated in Figure 9 where it is shown that the addition 

of orbital motion to an excited wriggling mode leads to a decrease of the orbital and to an increase 

of the intrinsic angular momentum. If the total angular momentum is I and the fragment spin is s, 

the energy for an arbitrary partition between orbital and intrinsic angular momentum is: 

2 
E (s) = (I- 2s) 

~2 
2s

2 
[ 2_ + 2.. ] 2 21 

+ 2.5 = ~2 .5 s - J..li s + 2J..li . 
(85) 

The first term is the orbital and the second is the intrinsic rotational energy, .5 being the moment of 

The average spin for both fragments is given by: 

J 
-E(s)ff 

2se ds 2.5 
2s= = I= 

z J.Lr2 + 2g 

2 -:;I = 2 IR. 

This is, of course, the rigid-rotation limit. The second moment s2 is given by: 

From this we obtain the standard deviation: 

2 
= 25J.Lr T = ~.5T 

Jll + 25 7 

(86) 

(87) 

(88) 

(89) 



29 

The result in Eq. 87 is temperature indeperiderit, as one should expect from the fact that Eg. 85 is 

quadratic in s. This result could be obtained by solving the equation: 

dE 
-= 0. 
ds 

(90) 

This result corresponds to the mechanical limit of rigid rotation when the orbital and the intrinsic 

angular velocities are matched. 

The result in Eq. 89 could have been obtained also by appreciating that the thermal fluctuations 

about the average in Eq. 87 are controlled by the second derivative ofEq. 85 at the minimum, or: 

4 cr2 = 4 Tlb s (91) 

where: 

(92) 

In the case of I = 0, the fragments are still going to acquire angular momentum as shown by Eq. 

89: 

2 s = 
1 J.U

2 3 T 5 
--- = -14.5T. 2 Jll + 2.5 

(93) 

Since there are two wriggling modes, the mean square angular momentum of each fragment is: 

- - llr2 C'! T 5 
S2 = 2 s2 = _,__

2
_...> __ = -:;3T . 

!J.r + 2.5 
(94) 

3.5c. The Bending and Twisting Mod~s. - These three degrees of freedom are illustrated in Figure 

8. They are degenerate in our two-equal-sphere model. A splitting of the degeneracy could easily 

occur in the case of fragment deformation. We shall not consider this important possibility at the 

moment, although it is completely trivial, because of the arbitrariness in the choice of deformation. 
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The partition function for these three degenerate modes can be written as: 

R2 

Z oc J R2 e- ST dR , 
. 3 1 

lnZ =A- -In-
2 3T' 

(95) 

from which: 

2 
R =- (96) 

or 112 ~T per degree of freedom. 

Notice that R is the angular momentum of each fragment and that, for each mode, the angular 

momenta of the two fragments cancel out pairwise. Furthermore, for each fragment the resulting 

angular momentum is randomly oriented. It is worth stressing again that, as for the wriggling 

modes, this angular momentum can exist even when the total angular momentum is zero because of 

the pairwise cancellation mentioned above. 

At this point the (frequently asked) question may arise: "The bending and twisting modes 'in the 

two sphere model have no restoring force. Wouldn't the results be different if we were to introduce 

them?" The answer is no. Neglecting the degeneracy for the moment, the Hamiltonian would look 

like: 

R
2 

1 
H = - + -kro2 

~ 2 
(97) 

where ro is the conjugate angle and k is the stiffness. The partition function thus factors the kinetic 

and potential energy components: 

R2 

Z = J e sr dR J e 
2r dro . (98) 

As a consequence, any moment of R is strictly independent of the value of the stiffness k. 

r.,.·, 
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3.5d. The Tilting Mode. - This mode is unlike the other five "intrins~c" modes in the sense that it 

cannot confer angular momentum to the fragments, while keeping the total angular momentum 

equal to zero. However, we treat its statistical mechanics here because of its importance. 

In their most stable configuration, the two touching fragments are aligned with their common 

axis perpendicular to the total angular momentum. Because of thermal fluctuations, this condition 

· can be relaxed. If we now assume that the two fragments are rigidly. attached one to the other, the 

energy is given by: 

12-K2 ~ - L K2 
E=-··--+ . - +--. 

~ 1. ~II 2S1. . 2~eff 
(99) 

· .. whereSl = 2S +Jlrl, S 11 = 2S and.geff-1 =.g 11 ~t- .gil; Kistheprojectionoftheangular 

momentum I along the line of centers. The partition function is: 

z = h exph~:TJ Jzs,i en[ Jib], 
from which: 

For small I we have: 

K2 = .!_ 12 
3 

while for large I we have: 

K2 = C'l 14 C'l 
"'eff T = 5"' T. 

exp [ 23~ffT] 
en[h] 

(100) 

(101) 

(102) 

(103) 

t. 
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The total fragment spin is given by: 

2s = JK
2 
+ 4~[ f- K

2J (104) 

and the averaged square quantity is: 

2 2 4 4 2 45- 4 2 
4s =K+-r--K =-IC+-1 

49 49 49 49 
(105) 

and for large 1: 

4 S2 = 18 4 ..2 
T~T + 491 . (106) 

3.5e. Summary and Generalization to Asymmetric Dinuclear Systems. - The overall statistical 

treatment of the angular-momentum-bearing modes allows us to describe the angular momentum 

ciistribution of one of the two fragments as a tridimensional Gaussian distribution in the angular 

momentum components Ix, IY, Iz: 

[ 

12 12 (I - I)z] 
X y Z Z 

P (I) oc exp - - + - + , 
2cr2 2cr2 2cr2 

X y Z 

(107) 

where ~ is the rigid rotation component: 

~i 1 
I=~~- I= -I 
z Jl.r2 + 2~i 7 

(108) 

for equal touching spheres, and: 

cr2 = cr2 . + cr~ = .l ~ T + .J_ ~ T = ~ ~ T 
X tWISt tilt 2 10 5 

(109) 

1 5 6 
cr2 = cr2 + cr2 . = - ~ T + - ~ T = - ~ T 

y bend wng 2 14 7 
(110) 

(111) 

In the case of an asymmetric system, the results are qualitatively similar. The three variances in 
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dimensionless units are shown in Figure 10 as a function of mass asymmetry for two touching 

spheres. The most remarkable feature of this figure is the rapid increase of the variance ax 2 with 

inqeasing asymmetry. This effect is almost exclusively due to the softening of the tilting mode. 

As one of the two spheres becomes smaller, the rotational-energy increase associated with an 

increasing projection K becomes smaller. The corresponding K0
2 increase for the very asymmetric 

configurations associated with the emission of an a particle, a proton, or a neutron is responsible 

for the small anisotropy in the angular distributions of these particles in comparison with those for 

symmetric fission. 

3.6. Angular Momentum and Multifragmentation. - Let us now consider a collision giving rise to n 

fragments. In the "expansion" phase, we assume statistical equilibrium, until beyond a critical 

shape, or mass distribution, the fragments decouple from each other and the equilibrium remains 

frozen_ in. 

For simplicity, let us suppose that the critical shape is approximately spherical. Then, it is 

completely general to choose the z axis to coincide with the direction of the angular momentum. 

Also, for simplicity, let us assume that each fragment is spherical. The ;Hamiltonian of the system 

can be written as follows: 

1.2 
z 

+-
2mr2 

(112) 

where the sum L is to be carried over the fragments (the corresponding index is omitted for 

simplicity); Ix, Iy, and Iz are the intrinsic components of the angular momentum for a given 

fragment with moment of inertia 3; R. z is the z component of the orbital angular momentum of a 
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fragment of mass m and distance r from the z axis; and Pr and Pz are the other two generalized 

momenta for the translational motion of a fragment in cylindrical coordinates. The choice of 

cylindrical coordinates for the relative motion has the advantage of nicely isolating the z component 

of the orbital angular momentum. 

The generalized grand partition function can now be calculated: 

Z = f exp- [ L, ; -11 L, (1, +1 ,) ] dlxdl, dlydl ,dP,dP, , (113) 

where the constraint of the total angular momentum IT = L (Iz + I. z) (remember the choice of the z 

axis) has been introduced by means of the Lagrange multiplier J.L This guarantees that the total 

angular momentum will be conserved, at least on the average. More explicitly, 

z =II Jex r _ _t _l]ex J -~21T p; +p~)] exp-[_t_ ~I] 
, 2gT 2gT P(_ m 2gT z 

x exp - [ l ~ -Ill ] dl dl dl dl. dp dp , 
2mrT z xyzzrz 

(114) 

where the terms in Iz, I. z have been grouped together. Integration yields 

(115) 

or 

[ 

2 2 ] 1 1 2 Jl 2 
1nZ = L ln~T + ln2mT + 21n21WT + ~ 3T + 21n21tmr T + Tmr T . 

.•. 

(116) 

The value of the Langrange multiplier~ is determined by the equation: 

(117) 
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1.1 = ------
T L (3 +mi) 

(118) 

By differentiating once more witl:i respect to Jl, one obtains 

i1nz · 2 2 
- 2- = a1 = T L (~ + mr ) . 
dJl . T . , , 

(119) 

These are the "spurious" fluctuations in IT introduced by the grand-canonical approach and can be 

used to estimate the reliability of the theory in any given situation. Differentiation of the logarithm 

of the partition function with respect to f3 = 1tr yields the total energy, 

a mz ~ 3 ~ 3 ll
2 2~ 2 --- = E = "'- - T + "'- - T + -:r "'- (~ + mr ) 

()(3 2 2 2 
(120) 

or 

';._ .. ·, 

12 
3 3 1 

E = -nT + -nT + -----
. 2 2 2 L (~ + mr2) 

(121) 

where n is the number of fragments, the first term refers to the intrinsic rotation energy, the second 

· to the translational energy, and the third to the rigid rotation of the system at the critical shape. 

Again, the first two terms arise from the classical energy-equipartition theorem, while the third 

should be interpreted as the energy of a rigidly-rotating body whose moment of inertia is defined by 

the mass distribution associated with the critical shape. The latter is a distinctly interesting but not 

altogether unexpected result. It may be worth noticing for the last time how convenient the 

expression of the translational motion in cylindrical coordinates has turned out to be. The intrinsic 

spin of each fragment can also be obtained by differentiation: 

or 

dlnZ 

d(l/2~T) 

2 
-2 ll 2 2 

=I = 2~T+~T+-4~ T 
4 

(122) 
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[ 
~ ]2 2 

3~T + L (~ + mi) If . (123) 

This equation says that the fragment angular momentum arises from two contributions: the first is 

purely statistical and would exist also for zero angular momentum; the second is the share of the 

total angular momentum going to the fragment under study, dictated by the rigid-rotation condition. 

The two contributions are added in quadrature. From the structure of Eq. 123, one would also infer 

that 

(124) 

the average for Ix and Iy being zero and for Iz being 

I = ~ I 
z L (~ + mrl r. (125) 

The latter inference can be verified directly. By isolation of the factor containing Iz in the partition 

function, one has 

(126) 

Thus, 

(127) 

as expected. Consequently, 

2 2 2 o = cr = o = ~T. 
X y X 

(128) 

The results obtained so far allow us to describe the fragment-spin alignment through the 

relevant components of the polarization tensor: 

2 2 
P oc(J -() =0 

xy x y ' 
(129) 

.... 
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1 
(130) 

For small fluctuations, one has 

•• 
2 

[ 
L(~ + mi)] 

P zz :: 1- 3~T 
~IT 

(131) 

For large fluctuations, one has 

P n = 3~r[ L (:; rrrr2J2 

(132) 

The great simplicity and transparency of the above treatment is marred by the difficulty that one 

encounters when trying to produce some predictions. The first difficulty is associated with the 

evaluation of the total moment of inertia r. (~ + mr2). This is defined for the critical shape and 

mass distribution when the decoupling occurs. In the case of the deep-inelastic process, it was not 

too difficult to guess the critical shape as that of two touching fragments, either spherical or 

somewhat deformed. In the case of three or more fragments, the problem is much less defined; in 

fact, the critical shape, even for the same number of fragments, may vary dramatically in going from 

moderately low-energy collisions to nearly relativistic collisions. Perhaps, with some optimism, 

one could turn the problem around and, after having looked for good signs of thermalization (see 

Eq. 121 for inspiration), one might try to infer the critical shape from the observed angular 

.. momenta and polarization . 

Another difficulty, which is now associated with the entrance channel, is the definition of the 

angular-momentum window to be considered in analyzing, data within the framework of this .theory. 

Some idea may be obtained from the elaborate analyses done for other variables in relativistic 
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collisions, but at lower energies it is still an unknown. 

A comforting last observation arises from Eq. 123. Sizable angular momenta can still be 

expected even for a "central collision" for which IT = 0. In fact, one might venture to guess that in 

many instances this will be the case, especially at the lower energy end. The angular momentum 

may then be directly related to the temperature which can perhaps be inferred from other 

observables such as the internal and translational energy of the fragments. If this were fortunately 

to be the case, the picture should be reasonably easy to unscramble. 

4. Experimental Evidence For Statistical Decay 

4.1. Compound Nucleus Emission of Complex Fragments at Low Energies. - In the midst of a 

confusing experimental situation at intermediate energies, made even less clear by a variety of 

theoretical claims and counterclaims, a descent to lower energies helped to clarify at least one point, 

namely the CN emission of complex fragments. The reaction chosen for this purpose, 3He + Ag, 

presented several advantages.8•64 On the one hand, the very lightness of the projectile eliminated a 

source of complex fragments otherwise present with heavier projectiles, namely projectile 

fragmentation. On the other hand, the reaction Q-value helped to introduce a good amount of 

excitation energy with a moderate bombarding energy. 
I 

The excitation energy of the CN ranged from 50 MeV to 130 MeV, the lower limit being 

barely 10 MeV above the highest barriers. Complex: fragments were detected with cross sections 

dropping precipitously with decreasing energy. Their kinetic energy spectra resembled closely the .. 

shapes predicted by the theory illustrated above. In particular, the shapes evolved from 

Maxwellian-like for the lowest Z values to Gaussian-like for the highest Z values. 

A very effective way to appreciate the nature of the emission and the possible source of these 
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fragments is to plot their invariant cross section in velocity space. The invariant cross section plots 

in the v11 - v 1.. plane shown in Fig. 11, for a variety of fragments at 70 MeV bombarding energy, 

demonstrate striking Coulomb rings which ate the paradigms of many more to follow in the next 

pages. The essentially binary nature of the decay, its angular isotropy, and the extent of energy 

relaxation speak suggestively of CN decay. However, the crucial proof is given by the 

measurement of excitation functions extending down almost to the threshold. These excitation 

functions, shown in Fig. 12 demonstrate, with their rapid rise with increasing energy, that these 

fragments originate from CN decay and compete, in their emission, with the major decay channel, 

namely neutron emission. 

The CN fits shown in the same figure, demonstrate quantitatively the agreement with the CN 

hypothesis, and allow one to extract the conditional barriers. The extracted barriers are presented in 

Fig. 13 together with two calculations.20 The standard liquid~drop model fails dramatically in 

reproducing the barriers, while the fmite-range model, accounting for the surface-surface interaction 

(so important for these highly indented conditional saddle shapes) reproduces the experimental 

values almost exactly. This is a most important result, since it determines with great precision 

crucial points in the potential-energy surface and lends confidence to a model that can be used to 

calculate the same potential-energy landscape. The oscillations seen in the data are bigger than the 

experimental errors and are believed to be due to shell effects associated with the conditional saddle 

shapes. 

Additional studies at low energies demonstrated the role of the potential energy along the ridge 

line.9 The charge distribution is U-shaped or has an additional maximum at symmetry depending 

on whether the system is below or above the Businaro-Gallone point. The three reactions 74Ge, 

93Nb and 139La + 9Be studied at 8.5 MeV/u produce CN well below, near, and well above the 
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Businaro-Gallone point, respectively. The observed fragments are emitted from a source with CN 

velocity and are characterized by center-of-mass Coulomb-like energies. Their charge distributions 

are shown in Fig. 14 together with the corresponding CN calculations. As expected, the U-shaped 

distributions prevailing at or below the Businaro-Gallone point as exemplified by the 76Ge + 9Be 

and 93Nb + 9Be reactions, develop in the case of 139La + 9Be a central peak, characteristic of 

systems above the Businaro-Gallone point. The solid curves in the same figure represent 

calculations based on the CN hypothesis. 

4.2. Compound Nucleus Emission of Complex Fragments at Intermediate Energies. - The 

verification of CN emission of complex fragments at low energy carries in itself the unvoidable 

consequence of an even more abundant emission at higher energies, provided that CN are indeed 

formed. 

Part of the initial confusion about complex fragment emission at intermediate energies may 

have been due to the broad range of compound and non compound nucleus sources associated with 

the onset and establishment of incomplete fusion. This problem can be minimized to some extent 

by the choice of rather asymmetric systems. In such systems, the range of impact parameters is 

geometrically limited by the nuclear sizes of the reaction partners. Furthermore, the projectile-like 

spectator, if any, is confined to very small masses, and does not obscure other sources of complex 

fragments. 

With this in mind, we are going to follow the CN emission of complex fragments, as well as 
., 

other processes, from the lowest energies up to 50 MeV/u. The reactions studied were 63Cu, 93Nb, 

' 
139La + 9Be, 12c, 27 AI from 8.5 MeV/u up to 100 MeV/u.l0-16 These reactions were studied in 

reverse kinematics in order to facilitate the detection of fragments over most of the c.m. angular 
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range. The use of reverse kinematics is particularly useful because it carries a most powerful 

signature for binary decays producing fragments with Coulomb-like energies. Figure 15 gives an 

example of such a signature, as it appears on-line from the output of a .1E-E telescope. For each 

·atomic number, characterized by its own hyperbola, two energy components are clearly visible. 

T~e explanation of these components is given in Fig. 16. In this figure we show a schematic 

diagrain of the invariant cross section in the v11 - v J. plane for the CN binary emission of a given 

fragment. The circle represents the expected Coulomb ring associated with binary isotropic CN 

' -

emission in the center of mass. The radius of the circle decreases monotonically with increasing 

fragment charge. A given angle in the lab system intersects each circle in two points. In other 

words, a given lab angle corresponds to two c.m. angles, one forward, and the other backward. 

This explains the two components observed in Fig. 15. As the radius of the Coulomb circle 

decreases, the two solutions progressively come closer together, until they coincide and eventually 

disappear altogether. 

As can be readily seen, the presence of the two components in the .1E-E plane suggests 

immediately a variety of conclusions: 1) The fragments are emitted from a source with a well 

defined velocity; 2) The fragments are emitted in a binary decay; 3) the fragment's Coulomb 

energy indicates a complete thermal relaxation characteristic of a CN decay or completely damped 

deep-inelastic reaction. In this sense we believe that plots like those of Fig. 15 represent a 

powerful signature for CN emission. As we mentioned above, reverse kinematics allows one to 

cover a large c.m. angular range with only a moderate coverage of lab angles. Consequently, it is 

possible to reconstruct invariant cross sections in the vii - v .l plane for each atomic number rather 

readily. A few examples are shown in Figs. 17-19. For all the reactions studied so far one has 

observed beautifully developed Coulomb rings which indicate that, up to the highest bombarding 
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energies, the fragments do in fact arise from binary CN decay. Only the fragments in the 

neighborhood of the target atomic number show the presence of an additional component at 

backward angles (big foot), that can be attributed to quasi-elastic and deep-inelastic processes, 

and/or to the spectator target-like fragment in the incomplete fusion reactions prevailing at higher 

bombarding energies. 

The centers of these rings provide us with the source velocities for each Z value. For a variety 

of reactions, these source velocities are shown in Figs. 20 & 21 as a function of the fragment's 

atomic number. For all bombarding energies the source velocity is independent of the fragments' Z 

value. Up to 18 MeV/ A, one can conclude that a single source with CN velocity is responsible for 

the emission of all the fragments. 

The radii of the Coulomb rings give the emission velocities in the center of mass. These mean 

velocities with their standard deviations are shown as a function of Z value in Figs. 20 & 21 for a 

variety of reactions. The almost linear dependence of these velocities upon fragment Z value is a 

clear indication of their Coulomb origin. This is also supported by their independence on 

bombarding energy, as shown in the same figures. The Coulomb calculations (lines), which well 

reproduce the data, further illustrate the degree of relaxation of the c.m. kinetic energy. The 

. variances of the velocities arise from a variety of causes, among which the inherent Coulomb 

energy fluctuation due to the shape fluctuations of the "scission point", and the fragment recoil due 

to sequential evaporation of light particles. 

4.3. Angular Distributions. - The most important feature of the angular distributions providing 

diagnostic information regarding CN emission is their symmetry about 90° in the center of mass. 

Because of the rather large angular momenta involved in these reactions, one also expects the 
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angular distributions to be of the form dcr/dQ = 1/sinS or dcr/dS ~ constant. In contrast, the angular 

distributions of projectile-like fragments and target-like fragments produced in quasi- or deep

inelastic processes should show a backward and a forward peaking, respectively. 

The available data are sufficiently complete to provide information on the angular distribution 

of individual· fragments. Some of these angular distributions are shown in Fig. 22a&b. In 

general, one observes angular distributions with a 1/sinS dependence (dcr/dS =constant), except in 

the vicinity of the target or projectile Z value where quasi-elastic, deep-inelastic and target-spectator 

fragments manifest themselves with a forward or backward peaking. 

The backward peaking of the target-like fragment is quite visible in the case of 139La + 12C at 

18 .MeV/u, where it is most prominent for Z = 4,5 and vanishes for Z ~ 10. In the reaction 13~a + 

27 AI at 18 MeV/u, the backward peaking extends up to Z = 16 due to the larger atomic number of 

the target (Z = 13). Thus the use of a higher Z target tends to mask the CN component of a larger 

number of products with quasi-elastic and deep-inelastic products. Substantial contributions of the 

quasi-elastic and deep-inelastic components at atomic numbers near that of the projectile are visible 

in the reaction 13~a + 27 AI for the highest Z-values. 

4.4. Cross Sections. - All of the evidence presented so far for the intermediate-energy complex 

fragment emission points rather convincingly towards a CN process. However, the most 

compelling evidence for this ·CN mechanism lies in the statistical competition between complex 

fragment emission and the major decay channels, like n, p, and 4He emission. The simplest and 

most direct quantity testing this hypothesis is the absolute cross section. 

Absolute cross sections as a function of Z value are shown in Figs. 23 & 24. At first glance 

. one can observe a qualitative difference between the charge distributions from the_ Nb-induced and 
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the La-induced reactions. The former distributions portray a broad minimum at symmetry whereas 

the latter show a broad central fission-like peak that is absent in the former distributions .. This 

difference can be traced to the fact that the former systems are below or near the Businaro~Gallone 

point, while the latter systems are well above. 

IIi general, for a given system, the cross sections associated with the charge distributions 

increase in magnitude rapidly at low energies, and very slowly at high energy, in a manner 

consistent with Eq. 19. However, the shape· of the distributions is rather insensitive to the 

bombarding energy over the energy range explored, although one observes a flattening of the 

distributions with increasing bombarding energy as predicted by Eq. 19. 

As was said above, the most important information associated with these cross sections is their 

absolute value and their energy dependence. Through them, the competition of complex fragment 

emission with the major decay channels, like n, p, and a decay is manifested. This is why we 

attribute a great deal of significance to the ability to fit such data. Examples of these fits are shown 

· in Figs. 23&24. The calculations are performed with an evaporation code GEMINI13 extended to 

incorporate complex fragment emission. Angular-momentum dependent finite-range barriers are 

used.21 All the fragments produced are aHowed to decay in tum both by light particle emission or 

by complex-fragment emission. In this way higher chance emission, as well as sequential binary 

emission, are accounted for. The cross section is integrated over R. waves up to a maximum R. value 

that provides the best fit to the experimental charge distributions. In all cases shown here, the 

quality of the fits is exceptionally good and the fitted values of R. max correspond very closely to 

those predicted by the Bass model66 or by the extra push mode1.67 In sinnlar reactions, but with 

27 AI targets, the calculation falls short of the experimental cross section even when one reaches the 

R. wave at which the lowest barrier (at symmetry) goes to zero. In this case, one may have to 
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advocate fast fission to complement the CN emission. 

These calculations allow one to evaluate the contribution to the charge distributions of the pure 

evaporation residues arising solely from the emission of fragments with mass A ~ 4. This 

contribution is shown in Figs. 23 & 24 by the dashed curves. One should note that for these 

asymmetric reactions below 20 MeV/u, evaporation residues are predicted to be the dominant 

products of the CN decay. 

This remarkable success in reproducing the absolute charge distributions demonstrates that the 

CN mechanism characterized at the lowest energies dominates the picture at intermediate energies. 

It seems fair to say that, for atomic numbers between projectile and target, the CN mechanism 

accounts for all of the fragment emission, while for the remaining Z range it constitutes an 

important component, together with the quasi-elastic and deep-inelastic processes which are 

abundantly represented in this region. As we have seen, in the range of reactions considered so far, 

binary decay is dominant. However, it is an easy prediction that, even when we enter the energy 

. range where ternary and higher multiplicity events dominate, the CN mechanism will account for a 

great deal if not all of the fragment emission through sequential-binary decay. This will be shown 

below. 

4.5. Coincidence Data. - If any doubt still remains concerning the binary nature of the decay 

involved in complex fragment production, it can be removed by the detection of binary 

coincidences. Examples of z1 - ~ correlations are shown in Figs. 25 & 26. The corresponding 

z1 + ~ spectra are also shown in Fig. 27. One can observe the binary band in the Zl - ~ 

correlation as a general feature for all systems. The binary nature is proven by the correlation 

angles as well as by the sum of the fragments' atomic numbers which accounts for most of the 
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target + projectile charge. The missing charge can be accounted for by the extent of incomplete 

fusion and by the sequential evaporation of light charged particles (A ~ 4). A particularly 

interesting example of this verification is shown in Fig. 28 for the reactions 93Nb + 9Be, 27 AI. In 

this figure, the average charge sum Z1 + ~ is shown as a function of ~- The dashed lines 

indicate the charge of the CN obtained in an incomplete fusion process as calculated from the 

measured source velocities. The solid lines show the reduction in charge brought about by 

evaporation from the hot primary fragments formed in the binary decay. The excitation energy of 

the fragments was evaluated on the basis of the source velocity, which tells about the extent of 

incomplete fusion. The remarkable agreement of these calculations with the data, which is .retained 

over a large range of excitation energies speaks for the internal consistency of such an analysis. 

4.6. Complex Fragment Emission at Higher Energies. - As we have seen above, the evidence for 

the CN origin of complex fragments at low and intermediate energies is extensive. As the 

bombarding energy is increased above 18 MeV/u up to 100 MeV/u, new features come into play. 

First of all, incomplete fusion replaces complete fusion. Despite that, the incomplete fusion product 

seems to decay like a CN, so that the "binary" signature for complex fragment emission is still 

retained, at least for a while. In singles, the only noticeable feature due to the onset of incomplete 

fusion is the source velocity. The invariant cross section plots in v11 - v .l space still show well 

developed Coulomb rings like those shown in Figs. 17-19. 

Also the coincidence data give a strong indication of "binary" decay. In Fig. 29 the Z1 - ~ 

correlation diagrams are shown as they evolve from 18 MeV/u to 100 MeV/u for the reaction 139La 

+ 12c. At 18 MeV/u the "binary" band is narrow and near the value of Z1 + ~ = Zrotai· As the 

•' 
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be a long story of which the data have given us so far but a glimpse. 

S. High-Energy y-Ray Emission 

High-energy y rays associated with intermediate-energy heavy-ion reactions were studied 

initially in.~rder to observe the theoretically predicted69,70 "coherent bremsstrahlung" associated 

with the collective deceleration of the two partners in the collision. Nature's lack of cooperation 

forced the interpretation of the data back to the less exalted "incoherent nucleon-nucleon 

bremsstrahlung"69 which had at least the glamour of being associated with the entrance channel. 

This interpretation is probably correct in many cases. However, in reviewing the data available in 

the literature, we were struck by the possibility that some of the high energy y rays could come 

from the excited CN present in the exit channel. Unfortunately in all of these experiments the exit 

channels were too poorly characterized to permit any serious analysis of this sort. 

Eventually we found an experiment, 92Mo + 92Mo at 19.5 A MeV71, where the exit channel 

was well characterized. In this reaction the two nuclei undergo a deep-inelastic collision. The . . 
dissipated energy which may amount to as much as 800 MeV (400 MeV/fragment!) is disposed of 

m~ly by sequential light-particle emission. This emission is a true evaporation from the two deep 

inelastic fnigments and has been studied in detail as a function of exit-channel kinetic energy.72 At 

times these excited fragments emit complex fragments giving rise to a 3-body and a 4-body exit 

. channel.73 This emission is also statistical and is in competition with the main decay channels of n, 

p, and a-particle emission. This can be inferred from the probability of 3-body decay as a function 

of dissipated energy. All this is to prove that there are honest-to-goodness GN in the exit channel 

which decay as such, not only insofar as the common n, p, and a-particle channels are concerned, 

but also with respect to the more exotic complex fragment emission as well. 
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Coming back to y rays, the experiment measured them up to Ey = 60 MeV for 10 bins of 

total-kinetic-energy loss (TKEL). The ungated yrays look very much like those measured in other 

" , reactions, which have been interpreted in terms of nucleon-nucleon bremsstrahlung. However, 

when these spectra are gated with different bins of TKEL, a very different picture emerges, 

suggesting an exit-channel rather than an entrance-channel origin. 

In Fig. 35 three spectra are shown covering the TKEL range of the experiment. Notice how the 

high excitation energy bin is associated with the stiffest y-ray tail while the low excitation energy 

bin is associated with the softest. In Fig. 36a this is shown more clearly by plotting the slope 

·parameters vs TKEL. The square root-like dependence of these two quantities is very suggestive 

and one is tempted (and should be!) to interpret the slope parameter as a temperature. When, the 

integrated multiplicities with lower bounds of 15 and 30 MeV are plotted versus the fragment 

excitation energy (see Fig. 36b ), they reveal a dependence typical of CN decay. 

This evidence does not come totally unexpected. We know that there are two CN in the exit 

channel. We also know that they decay as such by light-particle emission and by complex fragment 

emission. Why should they not decay by y-ray emission? Perhaps there are additional sources for 

they rays, like incoherent bremsstrahlung, etc., but we know for sure that those compound nuclei 

must emit y rays. So let us calculate this emission probability. We can calculate they-ray decay 

·width in an "almost" model independent way from detailed balance and the inverse cross section: 

r(E ) 81t 2 
P( E ) = --f- = 

2 3 
cr( E ) p(E - E ) E 

i I I C h p(E) 'Y "( 'Y 
(133) 

(134) 

The inverse cross section is fairly well known experimentally. In the low energy region between 6 

- 20 MeV, it is dominated by the giant dipole resonance, while above this energy the quasideuteron 
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mechanism prevails. The temperature T can be calculated from the excitation energy as Ex= aT2. 

In the actual decay, y-ray emission competes with n, p and a-particle emissions which can be 

calculated in .a similar fashion. In this way we can generate the "first chance'' y-ray emission 

probability vs. excitation energy: 

(135) 

At this point one proceeds trivially to calculate the znd, 3rd etc. chance emission probability. The 

overall sum can be compared with experiment. In Fig. 35 we see that this calculation reproduces 

almost perfectly they-ray energy spectra from 15 MeV up to 60 MeV for all theTKEL bins, both 

qualitatively and quantitatively. The slope parameters of the calculated spectra can also be 

compared with the data. This is shown in Fig. 36a and again the fit is essentially perfect The solid 

line in the figure represents the initial calculated. temperature. The actual slope parameter is 

somewhat smaller due to the substantial presence of higher chance emission at the highest energies. 

Similarly the integrated y-ray multiplicities are equally well reproduced by the calculation, (see Fig. 

36b). We are left with the inescapable conclusion that all of they rays observed experimentally 

actually come from the statistical emission of the fragments. No room is left here for any other 

mechanism, or if anything else is there, it must be buried deep! 

Somebody might object by saying, and perhaps by showing, that "other" theories fit the data 

almost as well and that there is no reason to choose one "theory" over another. The point is that our .. 

calculation is really no theory to speak about. We know that there are two CN in the exit channel, 

emitting light particles and complex fragments, because their decay products have been measured 

and their statistical properties verified. Therefore, we know that these CN must also emit 'Y rays. 

All we have done is to calculate, as it were, the "background" y rays coming from CN decay. Any 
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other "theory" should be.testedonly after this "background" has been subtracted. In this case 

nothing noticeably above "background" seems to be visible. 

5.2. Pion Emission and Energy Fluctuations. - It would be interesting to check how much of the 

n°, n± production in intermediate-energy heavy-ion reactions can be explained in terms of emission 

from the CN present in the exit channel. Unfortunately, this will have to wait for more complete 

experiments, although it is an easy guess that, in certain low energy reactions, the CN contribution 

may not b~ negligible and must be evaluated; 

In the case of y-ray emission discussed above, two hot fragments are assumed to be present in 

the exit channel. The calculation was performed by assigning to each fragment one-half of the 

available energy. This may be correct on the average, but fluctuations may be present, thermal or 

otherwise, that may have surprising effects. In general, the role of the fluctuations in the energy 

distribution .between two or more fragments becomes more important as the barrier or negative Q 

value for the decay under consideration becomes bigger. Such would be the case in pion emission 

where the emitter must invest an energy'at least equal to the pion mass in order to emit it. Let us 

consider the case of two nuclei in the exit channel with mass A1 = A2 = A and with average 

excitation energy E1 = E2 =E. The probability of emitting a pion is given by: 

r 
1t (136) 

r +rP+r + ... n a 

which is controlled by the ratio of the width r 1t to that of the most probable channel like r n. 

The integrated neutron decay width can be written as: 

2 8nmn 
rn= ~crnT~p(E-Bn) 

2np(E) h· 
(137) 
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where mn and Bn are the neutron mass and binding energy respectively, O'n is the inverse cross 

section; p(E), p(E - Bn) are the level densities of the CN and of the residual nucleus, respectively, 

and T n is the temperature of the residual nucleus at excitation energy E - Bn. 

The differential pion decay width is: 

81tm a 
f' (E) = 1 __ n::........:n:.:..- E p(E- m -E) 

n 21tp(E) h 2 n 
(138) 

where ffin• E are the pion mass and kinetic energy, respectively, cr1t the inverse crqss section and the 

other quantities are the same as in the previous equation. 

For the ratio we have: 

rn (E)= l mn O'n _1 E p(E- mn -E) 

rn 2 mn an T~ p(E- Bn) 
(139) 

Now let us suppose that a fluctuation in the energy partition occurs such that fragment 1 has energy 

E + x and fragment 2 has energy E - x. The emission probability per fragment becomes: 

_..:.:,1t __ = __ n_ 1t + 1t = _n_cosh xrr . r' (e, x) 1 r· .(E) [ exp xrr exp -xrr ] r· (E) 

rn 2 rn exp xrr n exp -xrr n rn eft 

where T 1t is the temperature calculated for an energy E - fin -E and 

T-1 = T-1 - T-1 
eff 1t n ' 

If the fluctuations are distributed as: 

1 2 
P(x) = exp -x /2cr2 , J 2na2' 

the average emission probability becomes: 

(140) 

(141) 

(142) 
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' 

r (E) r (E) J .. 
_!L.__ = _1t_ & exp -i12d' cosh xrr •ff dx · 

rn rn 21ta2 

r (E) 2 = _1t __ exp __Q_ 

rn 2T!ff 

r (E) 
= _7t_ F( cr, . T eff) 

rn 

For thermal fluctuations the variance is: 

a a 
cr2 = 2T3 1 2 

a1 + a2 , 

(143) 

(144) 

(145) 

where Tis the common temperature of the fragments before any emission has occurred, and a1, a2 

are the level density parameters of the fragments. For a symmetric system 

·;; = aT3 

and . . 

aT3 
F = exp--. 

2 
2Teff 

(146) 

(147) 

In Fig. 37, we have plotted the thermal enhancement factor in pion emission as a function of the 

total excitation energy of the fragments. The enhancement, of course, rapidly increases with 

decreasing excitation energy. Similarly in Fig. 38 we have plotted the expected pion spectra if two 

fragments of mass A= 100 each share a total of 800 MeV excitation energy. In one case we have 

assumed an exact partition of the energy and in the other we have allowed for thermal energy 

fluctuations. The two slope parameters are quite different, the fluctuations allowing for a 

substantially larger spectral temperature. 
~ ! . . 

The rather spectacular increase in spectral temperature appears less spectacular when pne 
' .. 

/ 

considers that its origin.lies mainly in the error introduced by the sharp energy partition. Shou!d 

one consider the combined system on one hand and the two fragments in contact on the other, one 

has the obvious equality: 
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(148) 

where Pc.s.CE) is the level density of the two fragments considered as one combined system. In 

other words the folding of the level densities of the two fragments calculated over the whole range 

of energy fluctuations is equal to the level density of the combined system at the fixed total energy 

E. This means that it does not matter if one has one, two, or more fragments in thermal equilibrium. 

Therefore, the spectral temperature of the pions emitted by the two fragments cannot exceed the 

spectral temperature that would arise if the pions were emitted by the combined system. This is true 

only if the energy fluctuations are thermal. If the fluctuations are dynamical in nature and larger 

than the corresponding thermal fluctuations, then the spectral temperature can ipdeed be larger than 

the upper limit described above. 

These general consideration cast some doubts on thermal models that rely on exit channel 

clusterization to achieve high pion emission probabilities. 

6. Conclusions 

It is always preferable to draw none, but to let the audience draw their own. But if something 

must be said anyhow, then, in a valedictorian spirit, one could suggest that it pays to know 

thermodynamics and statistical mechanics. This is for two reasons, one subjective, the other 

objective. The first is that these disciplines are relatively easy and their application requires little 

specific knowledge about the system. The second is the strong penchant of Nature towards 

equilibrium, so that, if She is not quite there yet, She will get there pretty soon and us with Her. So 

. cheer up! Post iucundam inventutem, post molestam senectutem, nos habebit humus! 
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Figure Captions 

Fig. 1 Schematic ridge line potentials (solid curve) and calculated yields (dashed curve) for: a) a 
heavy CN above the Businaro-Gallone point; and b) a light CN below the Businaro-Gallone 
point as a function of the mass-asymmetry coordinate (Zasy)· 

Fig. 2 Theoretical mass distributions from comminution calculations of the deexcitation of a CN 
with mass 100 at several excitation energies. Notice the power-law behavior at small masses. 

Fig. 3 Exponent t of the power-law dependence as a function of excitation energy. See Fig. 2. 

Fig. 4 Examples of the production of a) 4-body and b) 3-body events from the sequential decay 
of the compound nucleus 145Eu (R.max = 60n) at 600 and 900 MeV excitation energy, 

respectively, as calculated by the statistical model code GEMINI. Evaporated neutrons and 
light charged particles (Z :s-;2) are shown by the filled and open circles, respectively. Residue 
imclei and complex fragments are la~elled by their mass and charge numbers. 

Fig. 5 Probability of producing exactly one, two,' three, four fragments. a) with A>4, b) A> 10 as 
a function of excitation energy for 145Eu (R. max = 60ti). 

Fig. 6 Invariant cross sections24 for 1C, K-, K+ and p production as a function of the "channel" 
* energy E = Ethres - KEc.m .. 

Fig. 7 The predicted mass distribution assuming N = 200. The three curves48 correspond to 
~SIS0 = 0; 0.2; -0.2. 

Fig: . 8 (Left) Schematic illustrating the twisting and the doubly degenerate bending modes for a 
two-equal-spheres model. In each case the spin vectors of the fragments (symbolized by the 
shorter arrows) are of equal length but point in opposite directions. (Right) Schematic 
illustrating the tilting mode and the doubly degenerate wriggling modes for a 
two-equal-spheres model. The long arrows originating at the point of tangency of the two 

. spheres represents the orbital angular momentum vectors60. 

Fig. 9 Schematic showing how the addition of orbital angular momentum (symbolized by the 
long arrow) to an excited wriggling mode leads to a decrease of the orbital angular momentum 
and an increase of the intrinsic angular momentum. 

Fig. 10 The heavy fragment spin variances for a dinuclear complex are shown as a function of 

mass asymmetry. The variances are shown i~ dimensionless units ~fter division by ,gsymT, 

the moment of inertia of a mass symmetric spherical fragment times the temperature63. 

Fig. i 1 Invariant cross section plots(- y-2 a2a;an.av) for representative ejectiles (Li, 9Be, B, 
and C) for the .reaction indicated above. . The diameter of the dots is proportional to the 
logarithm of the cross section and the x's indicate the peak of the velocity distributions. The 
large arcs are sections of circles centered on the c.m. velocity (center arrow) apfropriate for 
complete fusion. The beam direction (0°) is indicated by the c.m. velocity vector. 
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Fig. 12 Dependence of the total integrated cross sections (symbols) for emission of complex 
fragments on the center-of-mass energy, Ec.m.• in the reaction 3He + natAg. The curves are 

CN fits to the data. 64 

Fig. 13 Calculated20 and experimental64 conditional fission barriers as a function of the lighter 
fragment charge for the fission of 111 In. The experimental values are obtained from the fits in 
Fig. 12. The calculated curves for the liquid drop and Yukawa plus exponential models are 
shown. The dotted portions of the curves are extrapolations. 

Fig. 14 Center-of mass cross sections9 for products from the 74Ge, 93Nb, 139La + 9Be systems 
detected at Slab= 7.5°. The solid line is a CN calculation of the fragment yield at ec.m. = 30°. 

The arrows indicate the entrance-channel asymmetry. Data below Zasy = 0.15 were not 

obtained for the 139La + 9Be system, because of the limited dynamic range of the telescope. 

Fig. 15 Density plot of LlE-E for the reaction 18MeV/u 93Nb + 27 Al for fragments detected from 
4° to 10°. Notice the two kinetic energy components associated with each element 
characterized by a hyperbolic ridge in the distribution.13 

Fig. 16 Schematic representation of reverse kinematics for the emission of a complex fragment in 
a CN binary decay. V s is the lab source velocity, V e is the Coulomb-like velocity of the 

fragment in the source frame, while V a and V b are the two velocity components at the 

laboratory angle e. 

Fig. 17. Contours of the experimental cross section (o2cr;av 11av .l) in the v11-V .l plane for 

representative fragments detected in the reaction E/A = 12.6 MeV 63cu + 12c. The beam 
direction is vertical towards the top of the figure. The dashed lines show the maximum and 
minimum angular thresholds and the low velocity threshold of the detectors. The magnitudes 
of the contour levels indicated are relative.14 

Fig. 18 Contours of the experimental cross section (o2cr;av11av .l) in the v11-V .l plane for 

representative fragments detected in the 18.0 MeV/u 93Nb + 27 AI reaction.13 See Fig. 17. 

Fig. 19. Contours of the experimental cross section (o2cr;av11av .l) in the Vu-V .l plane for 

representative fragments detected in the 18.0 MeV/u 139La + 12c reaction.16 

Fig. 20 Source velocities extracted from the Coulomb velocity rings for each Z-species produced 
in the 12.6 MeV/u 63cu + 12c & 27 AI reactions. 13 The small error bar on each point 
indicates the statistic error associated with the extraction process. The single large error bar for 
each data set indicates the possible systematic error due to the mass parameterization and 
energy calibrations. The velocities corresponding to the beam and complete fusion are shown 
as horizontal lines. In the lower portion of the figure, are shown the extracted Coulomb 
velocities and widths. For comparison a calculation based on the Viola systematics65 without 
(dashed line) and with angular momentum effects (solid line) is shown. 

Fig. 21 Source velocities extracted from the Coulomb velocity rings for each Z-species produced 

{> 
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in the 18.0 MeV/u l39f.a + 12c & 27 Al reactions.l6 

22. Angular distributions (dcr/d8) in the source frame for representative Z values from the 
14.7 &18.0 MeV/u l39La + a) 12c and b) 27 Al reactions.l6 The backward rise at low Z 
values is attributed to target-like and projectile-like quasi and deep inelastic products. Note 
that the cross sections are flat for a large range of z values intermediate between the target and 
the projectile. The solid lines are to guide the eye. 

23 Angle-integrated charge distributions of complex fragments associated with fusion-like 
reactions of 93Nb and 12C at three bombarding energies. 13 The experimental data are 
indicated by the solid circles and the values calculated with the code GEMINI are shown by 
the histograms. The dashed curve indicates the cross section associated with classical 
evaporation residues which decay only by the emission of light particles (Z s; 2). Note the 
value of the excitation energy (E*) corresponding to complete fusion and the value of Jmax 

assumed to fit the data. 

Fig. 24 Angle-integrated· cross sections (solid circles) plotted as a function of the fragment 
· Z-value for the 14.7 & 18-MeV/u l39La + 12c reactions.16 See Fig. 23. 

Fig. 25 Representative z1-Z2 contour plots for coincidence events from the reactions 93Nb + 9Be 

& 27 AI at 11.4 and 18.0 MeV/u. Z1 and~ refer to the Z-values of fragments detected in two 
detectors at equal angles on opposite sides of the beam.13 

Fig. 26 Representative Z1-~ contour plots for coincidenc.e events from the reactions 139La + 12c 

& 27 AI at 14.7 and 18.0 MeV/u. Z1 and Zz refer to the Z-values of fragments detected in two 

detectors at equal angles on opposite sides of the beam.16 

I 

Fig. 27 The relative yield of coincidence events plotted as a function of the sum of the atomic 
charges of the two coincident fragments for the l39La + 12C & 27 AI reactions at 18 MeV /u. 16 

Fig. 28 The mean sum <Z1 + ~> of coincidence events plotted as a function of z2 for the 93Nb + 

9Be & 27 AI reactions at 25.4 and 30.3 MeV/u. The dashed lines indicate the average charge 
of the source system estimated from the mass transfer. The charge loss for binary events due 
to sequential evaporation was estimated using the evaporation code PACE, and the residual Z1 
+ ~ values are indicated by the solid curves. 11 

Fig. 29 Contour diagrams of the experimental Z1 - ~ correlation for coincident fragments 
detected at symmetric angles on opposite sides of the beam in the l39f.a + 12C reactions at 18, 
50, 80, and 100 MeV/u. f2,16,68 

Fig. 30 The relative yield of coincidence events plotted as a function of the sum of the atomic 
charges of the two coincident fragments for the l39La + 12c reactions at 18, 50, 80 and 100 
MeV/u.l2,16,68 

Fig. 31 Angular distributions in the c.m. system for the representative Z-values from the 80 & 
100 MeV/u l39La + 12C reactions.68 
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Fig. 32 Angle-integrated charge distributions for the 50, 80 & 100 MeV/u 139La + 12c reactions. 
The histograms represent calculations with the statistical code GEMINI.13 

Fig. 33 The extracted summed charge distributions for bina~ (solidi ternary (dashed) and 
quaternary (dotted curve) events from the 80 & 100 MeV /u 1 9La + 1 C reactions. 68 

Fig. 34 The extracted rapidity distributions for binary (solid), ternary (dashed) and quaternary 
(dotted curve) events from the 80 & 100 MeV/u 139La + 12c reactions.68 The vertical arrows 
denote the beam and complete-fusion velocities. • 

Fig. 35 y-ray spectra for three different bins in total kinetic enegy loss (TKEL) for the reaction 
100Mo + 10~o at 19.5 MeV/u. The solid curves represent statistical model calculations. The 
dotted curve is obtained in the same ·way as the solid curve except for the elimination of the 
quasideuteron component in they-ray cross section.71 

Fig. 36 a) "Temperatures" of Boltzman fits to measured (open circles) and calculated (stars) y-ray 
spectra. The solid line denotes the_ primary temperature of the fragments which has been 
calculated from the energy loss. b) Experimental and.theoretical multiplicities of hard photons 
with energies :2:: 15 (squares) and :2:: 30 MeV (circles), respectively. The different lines are the 
result of a statistical model calculation and show the first chance contribution (dotted line), the 
sum over all generations (solid line) and the effect of the experimental binning of the excitation 
energy (dashed line).71 . . 

Fig. ,37 Thermal-fluctuations enhancement factor in the emission of pions as a function of the total 
exCitation energy.74 ·· · · 

Fig. · 38 Pion spectra calculated with and without the enhancement factor. due to thermal 
fluctuations. 74 
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